EP2554018A1 - Source de lumière à diodes électroluminescentes - Google Patents

Source de lumière à diodes électroluminescentes

Info

Publication number
EP2554018A1
EP2554018A1 EP11716052A EP11716052A EP2554018A1 EP 2554018 A1 EP2554018 A1 EP 2554018A1 EP 11716052 A EP11716052 A EP 11716052A EP 11716052 A EP11716052 A EP 11716052A EP 2554018 A1 EP2554018 A1 EP 2554018A1
Authority
EP
European Patent Office
Prior art keywords
light emitting
emitting diode
diode array
phosphor
blue light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11716052A
Other languages
German (de)
English (en)
Other versions
EP2554018B1 (fr
Inventor
Hong Zhong
Yi MEI
Roger Cornelis Petrus Hoskens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Signify Holding BV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Priority to PL11716052T priority Critical patent/PL2554018T3/pl
Publication of EP2554018A1 publication Critical patent/EP2554018A1/fr
Application granted granted Critical
Publication of EP2554018B1 publication Critical patent/EP2554018B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/28Controlling the colour of the light using temperature feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • This invention relates generally to lighting technology, and more particularly to light emitting diode (LED) light sources.
  • LED light emitting diode
  • warm white light having a color temperature of 2700K and 3000K (abbreviated to "2700/3000K” in the following paragraphs) can be obtained from a mix of blue light, yellow/green light and a huge amount of red light.
  • warm white light can be produced by mixing the yellow/green light and the red light, which are generated by activating the nitride red fluorescent powder and phosphor with a portion of blue light emitted from the blue LED, with the unabsorbed blue light which passes through the nitride red fluorescent powder and phosphor.
  • YAG yttrium aluminum garnet
  • GaN gallium nitride
  • the warm white LED light source can be constituted by packaging an array of phosphor-coated blue LEDs, for example a YAG-coated GaN-based blue LED array, with a red LED array, for example an aluminum indium gallium phosphide (AlInGaP) LED array.
  • an array of phosphor-coated blue LEDs for example a YAG-coated GaN-based blue LED array
  • a red LED array for example an aluminum indium gallium phosphide (AlInGaP) LED array.
  • AlInGaP aluminum indium gallium phosphide
  • the lighting efficiency of this approach is much higher, because the red LED array directly emits the red light, and the quality of the mixed warm white light is better.
  • a blue LED has a different temperature-dependence of the lumen output as compared to that of the red LED, i.e. the lumen degradation of the red LED is much stronger than that of the blue LED as the junction temperature rises.
  • the LED light source when the LED light source is in operation, that is, the junction temperature reaches a high level, a color point of the warm white light, mixed from the cold white light emitted from the phosphor-coated blue LED array and the red light emitted from the red LED array, may shift greatly.
  • the observer may observe that the color of the warm white light source is more greenish or reddish.
  • the color point of the warm white light, mixed from the cold white light emitted from the phosphor-coated blue LED array and the red light emitted from the red LED array can locate within 5 MacAdam ellipses of a color temperature of 2700/3000K on the black-body locus.
  • a warm white LED light source constituted by packaging the phosphor-coated blue LED array with the red LED array is driven by a dual-channel driver.
  • the lighting system having the LED light source is generally further equipped with a temperature sensor.
  • the temperature sensor measures the junction temperature of the LED array and sends the temperature information to the dual-channel driver. Based on the received temperature information, the dual-channel driver adjusts the currents supplied to the phosphor-coated blue LED array and the red LED array, respectively, so that the ratio of the lumen output thereof remains in the range of 4.8: 1 to 3.8:1.
  • the warm white LED light source driven by the dual-channel driver can make sure that the ratio of the lumen output of the phosphor-coated blue LED array to the lumen output of the red LED array remains in the range of 4.8: 1 to 3.8: 1 during its operation, however, since this type of lighting system adopting LED light sources includes the temperature sensor and the dual-channel driver, it is complicated in structure and the cost is higher.
  • a light emitting diode light source comprises:
  • a phosphor-coated blue light emitting diode array a color point of the mixed light emitted from the phosphor-coated blue light emitting diode array falling into a quadrilateral of the CIE chromaticity diagram, wherein coordinates of four vertices of the quadrilateral are (0.375, 0.427), (0.390, 0.456), (0.366, 0.430), (0.38, 0.46);
  • the ratio of the lumen output of the phosphor-coated blue light emitting diode array to the lumen output of the red light emitting diode array is within a range of 4: 1 to 1.5: 1.
  • the ratio of the lumen output of the phosphor- coated blue light emitting diode array to the lumen output of the red light emitting diode array may be within a range of 4.8:1 to 3.8: 1, so that the color point of the warm white light, mixed from the cold white light emitted from the phosphor-coated blue light emitting diode array and the red light emitted from the red light emitting diode array, can locate within 5 MacAdam ellipses of a color temperature of 2700/3000K on the black-body locus, and thus the quality of the warm white light emitted from the light emitting diode light source is efficiently improved.
  • the quantity ratio and/or area ratio of the light emitting diodes of the phosphor-coated blue light emitting diode array to the light emitting diodes of the red light emitting diode array is adjusted such that the ratio of the lumen output of the phosphor-coated blue light emitting diode array to the lumen output of the red light emitting diode array is within a range of 4: 1 to 1.5: 1.
  • the component ratio and/or grain size of the phosphor is adjusted such that the color point of the mixed light emitted from the phosphor-coated blue light emitting diode array falls within the quadrilateral.
  • the peak emission wavelength of the blue light emitting diode array is set within a range of 440nm to 460nm.
  • the blue light emitting diode array is a gallium nitride-based blue light emitting diode array.
  • the peak emission wavelength of the red light emitting diode array (110) is set within a range of 600nm to 620nm.
  • the red light emitting diode array is an AlInGaP light emitting diode array.
  • the phosphor comprises YAG or TAG.
  • a lighting apparatus comprises a single-channel driver and any of the light emitting diode light sources described above, wherein the light emitting diode light source is driven by the single-channel driver.
  • Figure 1 is a schematic view of a light emitting diode light source 100 according to an embodiment of the present invention
  • Figure 2 is a schematic view of a lighting apparatus 10 according to an embodiment of the present invention.
  • Figure 3 is a CIE chromaticity diagram according to an embodiment of the present invention
  • Figure 4 shows a layout of respective light emitting diodes of the light emitting diode light source 100 according to an embodiment of the present invention.
  • Figure 1 is a schematic view of a light emitting diode light source 100 according to an embodiment of the present invention.
  • FIG 2 is a schematic view of a lighting apparatus 10 according to an embodiment of the present invention.
  • the lighting apparatus 10 comprises a single-channel driver 200 and the light emitting diode light source 100 of Figure 1.
  • the light emitting diode light source 100 comprises a red light emitting diode array 110 and a phosphor-coated blue light emitting diode array 120.
  • the red light emitting diode array 110 may include one or more red light emitting diodes, and similarly the blue light emitting diode array 120 may include one or more red light emitting diodes.
  • the peak emission wavelength of the blue light emitting diode array 120 is set within a range of 440nm to 460nm.
  • the blue light emitting diode array 120 comprises a gallium nitride-based blue light emitting diode array.
  • the gallium nitride-based blue light emitting diode array includes, but is not limited to, a GaN blue light emitting diode array, a GaAIN blue light emitting diode array, an InGaN light emitting diode array, or an InAlGaN blue light emitting diode array.
  • the peak emission wavelength of the red light emitting diode array 110 is set within a range of 600nm to 620nm.
  • the red light emitting diode array 110 comprises an AlInGaP light emitting diode array.
  • the phosphor comprises YAG ( Yttrium Aluminum Garnet) .
  • the phosphor comprises TAG (Terbium Aluminum Garnet).
  • the red light emitting diode array 110 and the phosphor-coated blue light emitting diode array 120 are coupled in series, and the operational current thereof is supplied by the single-channel driver 200.
  • the operational current supplied by the single-channel driver 200 flows through the red light emitting diode array 110 and the phosphor-coated blue light emitting diode array 120, so that the arrays 110 and 120, respectively, are activated to emit light.
  • a portion of the blue light emitted from the blue light emitting diode array 120 activates the phosphor coated thereon to emit yellow/green light, and the yellow/green light is mixed with unabsorbed blue light passing through the phosphor to generate cold white light.
  • the cold white light emitted from the phosphor- coated blue light emitting diode array 120 is mixed with the red light emitted from the red light emitting diode array to form warm white light.
  • the color point of the mixed light emitted from the phosphor-coated blue light emitting diode array 120 falls within a quadrilateral of a CIE chromaticity diagram of Figure 3.
  • the coordinates of four vertices of the quadrilateral are (0.375, 0.427), (0.390, 0.456), (0.366, 0.430), (0.38, 0.46).
  • the component ratio of the phosphor may be adjusted such that the color point of the mixed light emitted from the phosphor-coated blue light emitting diode array 120 falls within the quadrilateral.
  • the grain size of the phosphor may be adjusted such that the color point of the mixed light emitted from the phosphor-coated blue light emitting diode array 120 falls within the quadrilateral.
  • both the component ratio of the phosphor and the grain size of the phosphor may be adjusted such that the color point of the mixed light emitted from the phosphor-coated blue light emitting diode array falls within the quadrilateral.
  • the ratio of the lumen output of the phosphor-coated blue light emitting diode array 120 to the lumen output of the red light emitting diode array 110 is within a range of 4: 1 to 1.5:1.
  • the room temperature is 25°C .
  • room temperature of the present invention may allow a minor deviation from 25 °C .
  • a predetermined duration of operational current supply to the phosphor-coated blue light emitting diode array 120 and the red light emitting diode array 110 is in the form of pulses, and the ratio of the lumen output of the phosphor-coated blue light emitting diode array 120 to the lumen output of the red light emitting diode array 110 is measured.
  • the quantity ratio of the blue light emitting diodes of the phosphor-coated blue light emitting diode array 120 to the red light emitting diodes of the red light emitting diode array 110 is adjusted such that the ratio of the lumen output of the phosphor-coated blue light emitting diode array 120 to the lumen output of the red light emitting diode array 110 is within a range of 4: 1 to 1.5: 1.
  • the junction temperature of the light emitting diodes is substantially equal to room temperature, so that the accuracy of the measured ratio of the lumen output is ensured and thus the accuracy of the following adjustment to the ratio of the lumen output is ensured.
  • the predetermined duration is from 5 to 100 ms.
  • the predetermined duration is 25 ms.
  • the duty ratio of the operational current supplied in the form of pulses ranges from 1% to 20%.
  • the area ratio/total area ratio of the blue light emitting diodes of the phosphor-coated blue light emitting diode array 120 to the red light emitting diodes of the red light emitting diode array 110 may be adjusted such that the ratio of the lumen output of the phosphor-coated blue light emitting diode array 120 to the lumen output of the red light emitting diode array 110 is within the range of 4:1 to 1.5: 1.
  • both the quantity ratio and the area ratio of the blue light emitting diodes of the phosphor-coated blue light emitting diode array 120 to the red light emitting diodes of the red light emitting diode array 110 may be adjusted such that the ratio of the lumen output of the phosphor-coated blue light emitting diode array 120 to the lumen output of the red light emitting diode array 110 is within the range of 4: 1 to 1.5: 1.
  • the ratio of the lumen output of the phosphor-coated blue light emitting diode array 120 to the lumen output of the red light emitting diode array 110 is within the range of 4: 1 to 1.5:1.
  • the ratio of the lumen output of the phosphor-coated blue light emitting diode array 120 to the lumen output of the red light emitting diode array 110 is within a range of 4.8: 1 to 3.8: 1, so that the color point of the warm white light, mixed from the cold white light emitted from the phosphor-coated blue light emitting diode array 120 and the red light emitted from the red light emitting diode array 110, can locate within the 5 MacAdam ellipses of a color temperature of 2700/3000K on the black-body locus as shown in Figure 3.
  • FIG 4 illustrates a layout of respective light emitting diodes of the light emitting diode light source 100 according to an embodiment of the present invention.
  • the red light emitting diode array 110 of the light emitting diode light source 100 comprises a first red light emitting diode 1101 and a second red light emitting diode 1102, and the phosphor-coated blue light emitting diode array 120 comprises a first phosphor-coated blue light emitting diode 1201 and a second phosphor-coated blue light emitting diode 1202.
  • each light emitting diodes of the light emitting diode light source 100 are set asymmetrically on a substrate.
  • the first phosphor-coated blue light emitting diode 1201 is set on the left side of the substrate
  • the first red light emitting diode 1101 and the second red light emitting diode 1102 are symmetrically set respectively on the upper side and lower side of the substrate
  • the second phosphor-coated blue light emitting diode 1202 is set on the right side of the substrate.
  • the phosphor-coated blue light emitting diode array 120 and the red light emitting diode array 110 are packaged onto a carrier substrate, for example a ceramic substrate with a single silicone lens encapsulation on all these two light emitting diode arrays.
  • the phosphor-coated blue light emitting diode array 120 and the red light emitting diode array 110 are packaged onto a carrier substrate, for example a ceramic substrate with a silicone lens encapsulation on each individual light emitting diode array.
  • a light emitting diode light source 100 is driven by a single-channel driver
  • the light emitting diode light source is not limited to be driven by a single-channel driver, and it may also be driven by a dual-channel driver.
  • the light emitting diode light source is driven by the dual-channel driver, it is relatively complicated in structure and the cost is higher.
  • the light emitting diode light source of embodiments of the present invention, driven by the single-channel driver has the same lighting performance, further reduces the cost and simplifies the structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

La présente invention concerne une source de lumière à diodes électroluminescentes (100), comprenant une matrice de diodes électroluminescentes rouges (110), une matrice de diodes électroluminescentes bleues recouvertes de substance fluorescente (120), un point de couleur de la lumière émise depuis la matrice de diodes électroluminescentes bleues recouvertes de substance fluorescente (120) tombant dans un quadrilatère du diagramme de chromaticité CIE, les coordonnées de quatre sommets du quadrilatère étant (0,375, 0,427), (0,390, 0,456), (0,366, 0,430), (0,38, 0,46) ; le rapport de la sortie en lumens de la matrice de diodes électroluminescentes bleues recouvertes de substance fluorescente (120) et de la sortie en lumens de la matrice de diodes électroluminescentes rouges (110) est compris entre 4:1 et 1,5:1 lorsque la température de jonction des diodes électroluminescentes de la matrice de diodes électroluminescentes bleues recouvertes de substance fluorescente (120) et des diodes électroluminescentes de la matrice de diodes électroluminescentes rouges (110) est sensiblement égale à la température ambiante. La source de lumière à diodes électroluminescentes (100) de la présente invention permet d'améliorer efficacement la qualité de la lumière blanche chaude.
EP11716052.3A 2010-04-02 2011-03-23 Source de lumière à diodes électroluminescentes Not-in-force EP2554018B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL11716052T PL2554018T3 (pl) 2010-04-02 2011-03-23 Źródło światła z diodą elektroluminescencyjną

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010140027 2010-04-02
PCT/IB2011/051216 WO2011121489A1 (fr) 2010-04-02 2011-03-23 Source de lumière à diodes électroluminescentes

Publications (2)

Publication Number Publication Date
EP2554018A1 true EP2554018A1 (fr) 2013-02-06
EP2554018B1 EP2554018B1 (fr) 2017-05-10

Family

ID=44393511

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11716052.3A Not-in-force EP2554018B1 (fr) 2010-04-02 2011-03-23 Source de lumière à diodes électroluminescentes

Country Status (6)

Country Link
EP (1) EP2554018B1 (fr)
JP (1) JP5805175B2 (fr)
CN (1) CN102812782B (fr)
PL (1) PL2554018T3 (fr)
RU (1) RU2557016C2 (fr)
WO (1) WO2011121489A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6176525B2 (ja) * 2013-07-19 2017-08-09 パナソニックIpマネジメント株式会社 発光モジュール、照明装置および照明器具

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1187624A1 (ru) * 1984-05-14 1996-09-10 Б.И. Горфинкель Многоцветный вакуумный люминесцентный индикатор
AU669247B2 (en) * 1993-03-04 1996-05-30 Ldt Gmbh & Co. Laser-Display-Technologie Kg Television projection system
US6513949B1 (en) * 1999-12-02 2003-02-04 Koninklijke Philips Electronics N.V. LED/phosphor-LED hybrid lighting systems
DE10162360A1 (de) * 2001-12-18 2003-07-03 Roehm Gmbh Beleuchtbare Vorrichtung
US7213940B1 (en) * 2005-12-21 2007-05-08 Led Lighting Fixtures, Inc. Lighting device and lighting method
US7821194B2 (en) * 2006-04-18 2010-10-26 Cree, Inc. Solid state lighting devices including light mixtures
SG139588A1 (en) * 2006-07-28 2008-02-29 St Microelectronics Asia Addressable led architecure
CN100511741C (zh) * 2007-08-31 2009-07-08 友达光电股份有限公司 白色发光二极管、液晶显示背光模块及发光二极管的制法

Also Published As

Publication number Publication date
RU2012146737A (ru) 2014-05-10
WO2011121489A1 (fr) 2011-10-06
RU2557016C2 (ru) 2015-07-20
JP2013524427A (ja) 2013-06-17
CN102812782B (zh) 2016-05-04
CN102812782A (zh) 2012-12-05
PL2554018T3 (pl) 2017-11-30
EP2554018B1 (fr) 2017-05-10
JP5805175B2 (ja) 2015-11-04

Similar Documents

Publication Publication Date Title
US9220149B2 (en) Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
US9335006B2 (en) Saturated yellow phosphor converted LED and blue converted red LED
US8598608B2 (en) Light emitting device
US10074781B2 (en) Semiconductor light emitting devices including multiple red phosphors that exhibit good color rendering properties with increased brightness
US20140168965A1 (en) Led device having adjustable color temperature
TW201106460A (en) White light-emitting diode packages with tunable color temperature
US9219202B2 (en) Semiconductor light emitting devices including red phosphors that exhibit good color rendering properties and related red phosphors
CN103828487A (zh) 具有可选择和/或可调节色点的半导体发光器件以及相关方法
JP2008218485A (ja) 発光装置
JP6782231B2 (ja) 放射スペクトルが調整可能な光源
JP2010226088A (ja) 交流駆動型発光装置
JP2008218486A (ja) 発光装置
US10448478B2 (en) LED strip, LED luminaire, and a method of manufacturing thereof
US20090050912A1 (en) Light emitting diode and outdoor illumination device having the same
KR101493708B1 (ko) 백색 발광 장치
TWI595803B (zh) 白光照明系統
CN103618040A (zh) 一种白光二极管
EP2554018B1 (fr) Source de lumière à diodes électroluminescentes
US10103292B2 (en) Mixed-light generation apparatus
KR20130041552A (ko) 조명 장치
US9054278B2 (en) Lighting apparatuses and driving methods regarding to light-emitting diodes
EP2830093B1 (fr) Module à DEL comprenant un indice de rendu de couleur élevé
TWI251945B (en) White light-emitting diode unit
TWI488283B (zh) Light emitting diode light source
KR20090078478A (ko) 발광 장치

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS N.V.

17Q First examination report despatched

Effective date: 20150130

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PHILIPS LIGHTING HOLDING B.V.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602011037793

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: F21K0009000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F21K 9/00 20160101AFI20161110BHEP

Ipc: F21Y 113/10 20160101ALN20161110BHEP

Ipc: F21Y 115/10 20160101ALN20161110BHEP

INTG Intention to grant announced

Effective date: 20161124

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 892731

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011037793

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170510

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 892731

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170811

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170910

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011037793

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

26N No opposition filed

Effective date: 20180213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180329

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20180322

Year of fee payment: 8

Ref country code: SE

Payment date: 20180327

Year of fee payment: 8

Ref country code: FR

Payment date: 20180329

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180530

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011037793

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190324

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190323

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170510

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190323