EP2553275B1 - Carter de turbochargeur incluant un carter de soupape et procédé de fabrication d'un tel carter - Google Patents
Carter de turbochargeur incluant un carter de soupape et procédé de fabrication d'un tel carter Download PDFInfo
- Publication number
- EP2553275B1 EP2553275B1 EP11710461.2A EP11710461A EP2553275B1 EP 2553275 B1 EP2553275 B1 EP 2553275B1 EP 11710461 A EP11710461 A EP 11710461A EP 2553275 B1 EP2553275 B1 EP 2553275B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- valve
- housing
- passage section
- slide element
- turbocharger housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000004512 die casting Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/009—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by bleeding, by passing or recycling fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/20—Accessories: Details
- B22D17/22—Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
- B22D17/24—Accessories for locating and holding cores or inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/105—Final actuators by passing part of the fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/026—Scrolls for radial machines or engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
- F04D27/0207—Surge control by bleeding, bypassing or recycling fluids
- F04D27/0215—Arrangements therefor, e.g. bleed or by-pass valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/4206—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/40—Application in turbochargers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/21—Manufacture essentially without removing material by casting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/30—Arrangement of components
- F05D2250/31—Arrangement of components according to the direction of their main axis or their axis of rotation
- F05D2250/312—Arrangement of components according to the direction of their main axis or their axis of rotation the axes being parallel to each other
Definitions
- the invention relates to a turbocharger housing with at least one valve device, for example a compressor housing with a diverter valve. Furthermore, the invention relates to a method for producing such a turbocharger housing.
- Turbochargers usually have a turbine which is arranged in an exhaust gas flow and is connected via a shaft to a compressor in the intake tract.
- a turbine wheel and a compressor wheel are arranged on the shaft.
- the turbine wheel drives the compressor wheel of the compressor.
- the compressor can increase the pressure in the intake tract of the engine, so that a larger amount of air enters the cylinder during the intake stroke. This has the consequence that more oxygen is available and a correspondingly larger amount of fuel can be burned.
- turbocharger In order to largely prevent or reduce the falling of the speed of the turbocharger, for example, in an engine thrust operation modern turbocharger have diverter valves. These diverter valves are located on the turbocharger in the compressor housing, which is made of aluminum. The function of the diverter valve is realized via channels between an inlet side and an outlet side and a valve seat, which represents the sealing plane. These overflow channels and also the valve seat usually have complex geometries.
- a compressor housing of a turbocharger which is a diverter valve or recirculation valve having.
- the compressor housing in this case has a valve flange to which the recirculation valve can be fastened.
- the valve flange has a flange surface, in which an inlet opening is arranged, to which a connecting channel connects to the compressor inlet.
- the valve flange has a valve seat for the closing element of the recirculation valve.
- a channel axis of the connecting channel is arranged at an angle ⁇ to the valve seat.
- the flange surface is disposed at an angle ⁇ to a reference surface which is perpendicular to the turbocharger axis and axially bounds the volute of the compressor housing toward the bearing housing side.
- the compressor housing has the disadvantage that it has a complex shape and the predetermined angle ⁇ , ⁇ are difficult to realize with sufficient accuracy.
- a compressor which comprises a compressor housing rotatably mounted compressor wheel.
- the compressor housing is connected to the housing of an external control valve, via which a recirculation path connects the discharge opening of the compressor housing with the inlet opening of the compressor housing to regulate the flow through the compressor wheel.
- a wastegate device which has a first housing and an external second housing which is bolted to the first housing.
- a first bypass line and a second bypass line are provided in the first housing.
- a membrane made of rubber is provided in the second housing, in which a valve disc is integrated. The position of the valve disc may be changed to connect or disconnect the two bypass conduits and the first housing.
- the invention provides a turbocharger housing having a valve means formed in the turbocharger housing, the valve means having at least a first passage portion and a second passage portion, and wherein the valve means further comprises a valve space formed in the turbocharger housing and a valve seat formed in the turbocharger housing.
- the first channel section connects a main channel of a suction side in the compressor housing with the valve chamber.
- the second channel section connects a volute housing a pressure side in the compressor housing with the valve chamber.
- Essential for the invention is that the two channel sections are formed without undercuts over their entire extent and are arranged parallel to each other with their longitudinal axes.
- the turbocharger housing has the advantage that it is formed by means of a simply designed and inexpensive slide element with a valve device in the die-cast can.
- the tool slide element can be designed simply because the valve device has two mutually parallel channel sections, which are formed without undercuts. As a result, the slide element can also very easily be introduced into the diecasting tool in the die casting process and easily removed again from the latter and the turbocharger housing.
- Fig. 1 is a sectional view of a finished turbocharger housing 10 with at least one valve device 12 according to the invention shown.
- the turbocharger housing 10 is in the Die casting process produced, for example as aluminum die casting or from another suitable for the die casting material or material combination.
- a die-casting tool 14 is provided, in which a tool slide element 16 is arranged, as shown by way of example in FIG Fig. 1 is shown to form a valve device 12 in the turbocharger housing 10.
- the die-cast tool can be formed, for example, in a horizontal or substantially horizontal plane divided into two mold halves 18, 20, as in Fig. 1 is indicated by a dashed line.
- the die casting tool and its two mold halves are in Fig.
- a mold half 18 can in this case, for example, the inner channel 22 and the volute casing 24 and the other mold half 20, the outer contour of the turbocharger housing 10, as in Fig. 1 is indicated.
- the die casting tool 14 may be formed such that the tool slide element 16 is received in a mold half of the die casting tool or in both mold halves 18, 20 of the diecasting tool.
- Fig. 1 Completely manufactured turbocharger housing 10, the tool slide element 16 is shown partially inserted, with which the valve means 12, here for example a diverter valve, has been formed in the turbocharger housing 10.
- the valve means 12 here for example a diverter valve
- the turbocharger housing 10 is designed in the present example as a separate compressor housing which can be fastened, for example, to a bearing housing of the turbocharger.
- a compressor housing section of a turbocharger housing which is integrally formed, for example, with a bearing housing, may also be formed with a valve device 12 according to the invention (not shown).
- valve device 12 is formed in the turbocharger housing 10.
- the tool slide element 16 is designed such that the valve chamber 26, preferably the entire valve chamber, the valve seat 28 and one or more channels 30, 32 of the valve device 12 in the turbocharger housing 10 form or form.
- a diverter valve is provided as a valve device 12.
- the corresponding tool slide member 16 has two channel section projections 34, 36, i. a first channel section projection 34 of e.g. is disposed outside and a second channel section projection 36 of the e.g. is arranged inside.
- the first outer channel section projection 34 forms the outflow or outlet channel 38, which is connected, for example, to an inlet region of the suction side or the intake channel of the compressor.
- the second inner channel portion projection 36 in turn forms e.g. the inlet or inlet channel 40, which is connected to the input area of the pressure side of the compressor.
- the two channel section projections 34, 36 of the tool slide element 16 are arranged in such a way to each other, so that the tool slide element 16 can be easily pulled out or removed from the die-cast tool 14 and the turbocharger housing 10 following a die-casting process for forming the turbocharger housing 10.
- the tool slide element 16 is designed for this purpose without undercuts or has no undercut.
- the two channel section projections 34, 36 of the tool slide element 16 are arranged in the longitudinal direction parallel to each other, wherein the two channel section projections 34, 36 with their longitudinal axes 42 while parallel and offset from each other or parallel and can be provided with their longitudinal axes 42 in a vertical or vertical plane lying or coaxial with each other, as in the following 3 and 4 is shown.
- the tool slide member 16 has a valve space portion 44, wherein the valve space portion 44 is formed so as to form the complete valve space 26 or substantially the entire valve space 26 in the turbocharger housing 10.
- the tool slide element 16 has a valve seat portion 46 for forming the valve seat 28 in the turbocharger housing 10.
- the valve seat 28 is formed on the tool slide element 16 in the form of a valve seat projection 48, for example, a circumferential projection.
- the projection 48 for the valve seat 28 may also be formed in the outer first channel portion projection 34 temporarily.
- the valve seat projection 48 also has no undercut, so that the tool slide member 16 can be easily pulled out of the die casting tool 14 and the finished shaped turbocharger housing 10.
- Fig. 2 is the sectional view of the finished turbocharger housing 10 according to Fig. 1 shown without the tool slide element.
- the compressor housing 10 has a diverter valve 12 as a valve device.
- the two channels 30, 32 of the diverter valve 12 are formed parallel to each other.
- the inlet channel 40 of the diverter valve 12 is connected to the pressure side or in this case the spiral 24 of the compressor housing 10 and the outlet channel 38 to the inlet regions of the suction side of the compressor.
- the diverter valve 10 has a valve seat 28 and a valve space 26 which is completely formed by the tool slide element 16.
- the two channel section projections 34, 36 are arranged parallel to each other and not offset from each other or the longitudinal axes 42 of the two channel section projections 34, 36 are both in a common vertical plane 50th .
- the two channel section projections 34, 36 but also be arranged in parallel and offset from each other.
- the longitudinal axes 42 of the two channel section projections 34, 36 are provided in two mutually offset vertical planes 50, 51.
- the two channel section projections 34, 36 may have an arbitrary cross-sectional shape, as long as the channel section projections 34, 36 do not form or have undercuts.
- one or both of the channel section projections 34, 36 may have a constant cross section, for example, a cylindrical cross section flattened on one side.
- one or both of the channel section projections 34, 36 may be longitudinally tapered or have a longitudinally tapered cross section, as in the first outer channel section projection 34 Fig. 3
- the valve seat projection 48 may be provided, for example, with a flat 52 on one or both sides, depending on the function and intended use.
- Fig. 4 shows the tool slide element 16 according to Fig. 3 in a side view. The transition between the valve seat projection 48 and the first outer channel section projection 34 is shown.
- Fig. 5 shows a perspective view of the tool slide element 16 from behind.
- the valve seat projection 48 and the portion 44 for forming the valve space, and the outer channel section projection 34 can be seen.
- the formation of the end 54 of the tool slide element 16 as a flat surface is greatly simplified and purely exemplary. Depending on how For example, the connection between the die casting tool and the tool slide element 16 is provided, the tool slide element 16 and its end 54 may be designed accordingly.
- Fig. 6 shows a perspective view of the tool slide element 16 from the front.
- the first and second channel portion projection 34, 36 are shown, which are parallel to each other with their longitudinal axes 42 and also not offset from each other or without an offset to each other.
- the valve seat projection 48 is shown, which merges into the outer channel section projection 34.
- FIGS. 7 and 8 a sectional perspective view of the compressor housing 10 is shown according to the invention.
- the tool slide element 16 is shown, with which a diverter valve 12 is formed in the compressor housing 10.
- the tool slide element 16 is partially pulled out of the diverter valve 12 out.
- the tool slide element 16 is in this case designed such that in the fully inserted state, the first and second channel section projections 34, 36 of the tool slide element 16, as previously in Fig. 1 is indicated, extend into the spiral or spiral housing 24 and the main channel 22 of the compressor housing 10, which are formed for example by one of the two mold halves of the die-casting tool.
- Fig. 9 shows the compressor housing 10 and the tool slide element 16 in a sectional view.
- the diverter valve 12 is shown with its inlet channel 40 and outlet channel 42, the valve seat 28 and the valve chamber 26.
- imported State fits the tool slide element 16 with its contour exactly in the contour of the diverter valve 12th
- Fig. 10 the compressor housing 10 and the tool slide element 16 is shown in a perspective sectional view.
- the valve chamber 26 and the valve seat 28, and the inlet channel 40 and the outlet channel 42 of the diverter valve 12 are shown.
- the valve seat 28 forms a section of the outlet channel or outer channel section 30.
- FIG. 11 a perspective view of the compressor housing 10 and the tool slide element 16 is shown.
- the turbocharger housing 10 or here the compressor housing 10 is produced by die casting.
- the tool slide element 16 is, for example, made of metal or another suitable solid or resistant material, which preferably allows multiple use of the tool slide element 16.
- Fig. 12 shows the compressor housing 10 in a perspective view, wherein the compressor housing 10 thereof is shown from the side of the diverter valve 12.
- the valve chamber 26 and the valve seat 28 of the diverter valve 12 is shown, as well as its outer outlet channel 38 and the inner inlet channel 40.
- the outer periphery of the valve seat 26 is flattened in the region of the outer channel 28, here the outlet channel, to a part of the Channel 28 to form.
- the portion of the valve seat 28 which forms part of the channel 28 is suitably adapted with its contour to the channel 28 to allow optimum flow through the channel.
- the turbocharger housing with valve device described above for example in the form of a compressor housing with a diverter valve, has the advantage that the housing with valve can be easily produced by die-casting.
- the compressor housing can be produced for example in aluminum die-cast or another suitable die-cast.
- the entire valve chamber, the valve seat and also the overflow channels of the diverter valve can be represented in a die-cast tool slide element. This allows either a livelihood without any additional mechanical processing, or only a minimal amount of processing, which can affect the sealing and mounting geometry, i. the sealing seat and the mounting holes of the diverter valve, limited.
- the arrangement and location of the tool slide element in the die casting tool can reduce the number and complexity of moving parts. This manufacturing costs can be reduced because the feasibility of a pressure-castable compressor housing is improved with a diverter valve. Furthermore, the complexity of the tool slide element can be reduced and the tool slide element can be simplified. Another advantage is that the processing of the compressor housing or its diverter valve can be reduced or even allows geometries that require no additional mechanical processing, resulting in a further reduction in manufacturing costs.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Supercharger (AREA)
Claims (6)
- Carter (10) de turbo-chargeur présentant un dispositif de soupape (12) formé dans le carter du turbo-chargeur,
le carter de turbo-chargeur étant un carter de compresseur,
le dispositif de soupape (12) étant une soupape de recirculation forcée d'air, le dispositif de soupape présentant un espace de soupape (26) formé dans le carter du compresseur et un siège de soupape (28) formé dans l'espace de soupape,
le dispositif de soupape présentant au moins une première section de canal (30) et une deuxième section de canal (32), la première section de canal (30) formant un canal de sortie (38) relié à un canal principal (22) du côté d'aspiration du carter de compresseur et débouchant dans l'espace de soupape (26),
la deuxième section de canal (32) formant un canal d'admission (40) relié à un carter (24) en spirale situé sur le côté refoulement du carter de compresseur et débouchant également dans l'espace de soupape (26),
caractérisé en ce que
la première section de canal (30) et la deuxième section de canal (32) sont formées sans contre-dépouille dans toute leur extension et de telle sorte que les axes longitudinaux (42) soient disposés parallèlement l'un à l'autre. - Carter de turbo-chargeur selon la revendication 1, caractérisé en ce qu'au moins l'une parmi la première section de canal (30) et la deuxième section de canal (32) se rétrécit partant de son extrémité située dans l'espace de soupape (26) en direction de son extrémité opposée.
- Carter de turbo-chargeur selon l'une des revendications 1 ou 2, caractérisé en ce que le siège de soupape (28) du dispositif de soupape (12) forme une section de la deuxième section de canal (32).
- Procédé de fabrication d'un carter (10) de turbo-chargeur doté d'un dispositif de soupape (12) formé dans le carter du turbo-chargeur selon la revendication 1, le procédé comportant les étapes suivantes :préparer un outil (14) de moulage sous pression en vue de former le carter (10) du turbo-chargeur,prévoir un élément coulissant (16) d'outil formé sans contre-dépouille dans l'outil (14) de moulage sous pression en vue de former le dispositif de soupape (12) dans le carter (10) du turbo-chargeur,l'élément coulissant (16) d'outil présentant une première saillie (34) de section de canal qui forme la première section de canal (30) et une deuxième saillie (36) de section de canal qui forme la deuxième section de canal (32), la première saillie (34) de section de canal et la deuxième saillie (36) de section de canal étant disposées de telle sorte que leurs axes longitudinaux (42) soient parallèles l'un à l'autre et l'élément coulissant d'outil présentant par ailleurs une section (44) d'espace de soupape et une section (46) de siège de soupape,introduire un matériau de moulage sous pression dans l'outil (14) de moulage sous pression et former sous la forme d'une pièce moulée sous pression le carter (10) du turbo-chargeur avec le dispositif de soupape (12) formé dans le carter (10) du turbo-chargeur.
- Procédé selon la revendication 4, caractérisé en ce que l'élément coulissant (16) d'outil est configuré pour former le siège de soupape (28), l'espace de soupape (26), la première section de canal (30) et la deuxième section de canal (32) du dispositif de soupape (12) d'une soupape de recirculation forcée d'air dans un carter de compresseur.
- Procédé selon les revendications 4 ou 5, caractérisé en ce que l'outil (14) de moulage sous pression présente une première moitié de moule (18) et une deuxième moitié de moule (20), l'élément coulissant (16) d'outil pouvant être relié à au moins une moitié d'outil (18, 20) ou être amené à l'engager.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010013264A DE102010013264A1 (de) | 2010-03-29 | 2010-03-29 | Turboladergehäuse mit einer Ventileinrichtung und Verfahren zur Herstellung eines solchen Turboladergehäuses |
PCT/EP2011/054146 WO2011120825A1 (fr) | 2010-03-29 | 2011-03-18 | Carter de turbocompresseur doté d'un dispositif à soupape et procédé de production d'un tel carter de turbocompresseur |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2553275A1 EP2553275A1 (fr) | 2013-02-06 |
EP2553275B1 true EP2553275B1 (fr) | 2018-01-24 |
Family
ID=44070722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11710461.2A Active EP2553275B1 (fr) | 2010-03-29 | 2011-03-18 | Carter de turbochargeur incluant un carter de soupape et procédé de fabrication d'un tel carter |
Country Status (5)
Country | Link |
---|---|
US (1) | US9677568B2 (fr) |
EP (1) | EP2553275B1 (fr) |
CN (1) | CN102812255B (fr) |
DE (1) | DE102010013264A1 (fr) |
WO (1) | WO2011120825A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3835590A1 (fr) | 2019-12-11 | 2021-06-16 | BMTS Technology GmbH & Co. KG | Compresseur et boîtier de compresseur |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201409976D0 (en) | 2014-06-05 | 2014-07-16 | Cummins Ltd | Method of manufacturing a compressor housing |
US10344665B2 (en) * | 2016-01-22 | 2019-07-09 | Garrett Transportation I Inc. | Compressor recirculation system having compressor inlet recirculation duct configured to reduce noise from Rossiter excitation and cavity acoustic resonance |
WO2019171431A1 (fr) | 2018-03-05 | 2019-09-12 | 三菱重工エンジン&ターボチャージャ株式会社 | Turbocompresseur et moteur à combustion interne |
CN108746494B (zh) * | 2018-08-09 | 2024-01-26 | 江苏力源金河铸造有限公司 | 一种工程机械液压电磁阀浇铸砂芯模 |
US11136997B2 (en) * | 2019-07-23 | 2021-10-05 | Ford Global Technologies, Llc | Methods and systems for a compressor housing |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69005357T2 (de) * | 1989-05-19 | 1994-05-26 | Mitsubishi Electric Corp | Ventileinrichtung zur Aufladedruckregelung. |
WO2007031752A1 (fr) * | 2005-09-15 | 2007-03-22 | Malcolm George Leavesley | Appareil turbocompresseur variable avec moyens de dérivation destinés à dériver des gaz d’échappement |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE488664A (fr) * | ||||
US4181466A (en) * | 1977-03-17 | 1980-01-01 | Wallace Murray Corp. | Centrifugal compressor and cover |
EP0122328B1 (fr) * | 1979-05-14 | 1987-03-25 | OSBORN, Norbert Lewis | Carter de compresseur pour une turbosoufflante ainsi que méthode de production d'un tel carter |
GB2246395A (en) * | 1990-07-26 | 1992-01-29 | Garrett Automotive Limited | Noise attenuation in a turbocharger |
DE10020041C2 (de) * | 2000-04-22 | 2003-05-28 | Pierburg Gmbh | Bypassventilkörper für Turbo-Otto-Brennkraftmaschine |
US20070057213A1 (en) * | 2003-10-20 | 2007-03-15 | Philippe Noelle | Adjustable valve, in particular a recirculation valve for a turbocharger |
US6898934B1 (en) * | 2003-11-18 | 2005-05-31 | Daimlerchrysler Corporation | External blow off conversion of compressor recirculation valve |
EP1536141B1 (fr) * | 2003-11-28 | 2006-06-14 | BorgWarner Inc. | Carter pour un turbocompresseur |
US8387383B2 (en) | 2005-10-29 | 2013-03-05 | Pierburg Gmbh | Ambient-air pulsed valve for internal combustion engines equipped with a turbocharger |
KR20090087879A (ko) | 2006-11-09 | 2009-08-18 | 보르그워너 인코퍼레이티드 | 터보차저 |
DE102009012732A1 (de) * | 2009-03-11 | 2010-09-16 | GM Global Technology Operations, Inc., Detroit | Turbolader |
DE202009014443U1 (de) * | 2009-10-26 | 2010-02-11 | AZ Ausrüstung und Zubehör GmbH & Co. KG | Schaltvorrichtung |
JP5420059B2 (ja) | 2010-03-18 | 2014-02-19 | 三菱電機株式会社 | エアバイパスバルブ装置 |
US8534994B2 (en) * | 2010-12-13 | 2013-09-17 | Honeywell International Inc. | Turbocharger with divided turbine housing and annular rotary bypass valve for the turbine |
-
2010
- 2010-03-29 DE DE102010013264A patent/DE102010013264A1/de not_active Withdrawn
-
2011
- 2011-03-18 CN CN201180017415.4A patent/CN102812255B/zh active Active
- 2011-03-18 WO PCT/EP2011/054146 patent/WO2011120825A1/fr active Application Filing
- 2011-03-18 EP EP11710461.2A patent/EP2553275B1/fr active Active
- 2011-03-18 US US13/638,804 patent/US9677568B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69005357T2 (de) * | 1989-05-19 | 1994-05-26 | Mitsubishi Electric Corp | Ventileinrichtung zur Aufladedruckregelung. |
WO2007031752A1 (fr) * | 2005-09-15 | 2007-03-22 | Malcolm George Leavesley | Appareil turbocompresseur variable avec moyens de dérivation destinés à dériver des gaz d’échappement |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3835590A1 (fr) | 2019-12-11 | 2021-06-16 | BMTS Technology GmbH & Co. KG | Compresseur et boîtier de compresseur |
Also Published As
Publication number | Publication date |
---|---|
CN102812255B (zh) | 2016-03-02 |
US9677568B2 (en) | 2017-06-13 |
US20130136578A1 (en) | 2013-05-30 |
CN102812255A (zh) | 2012-12-05 |
DE102010013264A1 (de) | 2011-09-29 |
WO2011120825A1 (fr) | 2011-10-06 |
EP2553275A1 (fr) | 2013-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2025896B1 (fr) | Compresseur radial pour turbocompresseur | |
EP2553275B1 (fr) | Carter de turbochargeur incluant un carter de soupape et procédé de fabrication d'un tel carter | |
EP1939427B1 (fr) | Turbocompresseur d'échappement | |
AT512332B1 (de) | Anordnung einer drosseleinrichtung zum steuern und/oder regeln des motorbremsbetriebs | |
EP2634393B1 (fr) | Module de fonctionnement doté d'une turbosoufflante de gaz d'échappement et d'un collecteur de gaz d'échappement | |
DE102009019437A1 (de) | Vorrichtung zur Steigerung der Bremsleistung einer mehrzylindrigen Brennkraftmaschine eines Fahrzeugs während des Motorbremsbetriebes | |
DE102017202132B4 (de) | Klappeneinrichtung zum Öffnen und Schließen eines Wastegatekanals in einem Turbinengehäuse eines Turboladers sowie Turbolader | |
DE112013003239B4 (de) | Turbolader mit einem Ladedruck-Regelventil | |
EP2859190B1 (fr) | Carter de turbine pour turbocompresseur à gaz d'echappement | |
DE102012004009A1 (de) | Abgasverteiler | |
DE102017216329A1 (de) | Radialverdichter mit einem Irisblendenmechanismus für eine Aufladevorrichtung eines Verbrennungsmotors, Aufladevorrichtung und Lamelle für den Irisblendenmechanismus | |
EP1530671B1 (fr) | Turbocompresseur à gaz d'échappement pour moteur à combustion | |
WO2016012154A1 (fr) | Carter de compresseur biétagé | |
DE102010051359A1 (de) | Einsatzelement für eine Turbine eines Abgasturboladers, Abgasturbolader sowie Turbine für einen Abgasturbolader | |
DE102007025128A1 (de) | Ladeeinrichtung | |
WO2017025235A1 (fr) | Compresseur d'un turbocompresseur à gaz d'échappement pourvu d'une soupape de surpression et turbocompresseur à gaz d'échappement ainsi que véhicule à moteur pourvu d'un tel compresseur | |
DE102016217446A1 (de) | Ladeeinrichtung | |
EP1375896A2 (fr) | Système d'admission d'air | |
DE102011009634B4 (de) | Abgasturbolader | |
DE19856521A1 (de) | Luftleitung, insbesondere im Ansaugtrakt einer Brennkraftmaschine | |
EP3405655B1 (fr) | Turbocompresseur à tiroir pour la communication de flux | |
DE102007020926A1 (de) | Luftansaugkanal | |
EP1847701B1 (fr) | Dispositif d'admission d'air pour moteur à combustion interne | |
DE102017209828A1 (de) | Laufrad für einen Ventilator und Verfahren zur Herstellung des Laufrads | |
WO2016202711A1 (fr) | Turbocompresseur pour véhicule automobile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20121029 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20160330 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170831 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 965949 Country of ref document: AT Kind code of ref document: T Effective date: 20180215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011013643 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180124 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180424 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180424 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180524 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011013643 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180331 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180318 |
|
26N | No opposition filed |
Effective date: 20181025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 965949 Country of ref document: AT Kind code of ref document: T Effective date: 20180318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110318 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180124 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502011013643 Country of ref document: DE Owner name: VITESCO TECHNOLOGIES GMBH, DE Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180124 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502011013643 Country of ref document: DE Owner name: VITESCO TECHNOLOGIES GMBH, DE Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 502011013643 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20230427 AND 20230503 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240331 Year of fee payment: 14 Ref country code: GB Payment date: 20240320 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240327 Year of fee payment: 14 |