EP2550682A1 - Element photovoltaïque fortement galbe - Google Patents

Element photovoltaïque fortement galbe

Info

Publication number
EP2550682A1
EP2550682A1 EP11720128A EP11720128A EP2550682A1 EP 2550682 A1 EP2550682 A1 EP 2550682A1 EP 11720128 A EP11720128 A EP 11720128A EP 11720128 A EP11720128 A EP 11720128A EP 2550682 A1 EP2550682 A1 EP 2550682A1
Authority
EP
European Patent Office
Prior art keywords
tile
photovoltaic
cells
transparent
photovoltaic cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11720128A
Other languages
German (de)
English (en)
Inventor
Guy Baret
Jean-Baptiste Chevrier
Olivier Salasca
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luxol Photovoltaics SAS
Original Assignee
Luxol Photovoltaics SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luxol Photovoltaics SAS filed Critical Luxol Photovoltaics SAS
Publication of EP2550682A1 publication Critical patent/EP2550682A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • H02S20/25Roof tile elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a photovoltaic element having a high curvature and using monocrystalline or polycrystalline silicon cells, this photovoltaic element being intended to be mounted on the roof or facade.
  • a photovoltaic cell provides an electric current depending on the illumination it receives.
  • the voltage depends on the type of semiconductor forming the cell. This voltage is usually in the range of 0.5 volts to 0.7 volts.
  • a photovoltaic module is formed by association of photovoltaic cells. The desired voltages at the output of a photovoltaic module are generally between a few volts and several tens of volts. For this, a photovoltaic module is formed of an assembly of several cells connected in series.
  • the front face of a cell is the one that receives solar radiation.
  • the front of a module is the one that receives solar radiation.
  • a photovoltaic module can be produced by combining crystalline silicon, monocrystalline or polycrystalline silicon cells.
  • the cells have on their front face in a first direction an array of narrow electrodes of width typically between 80 and 150 pm and spaced from 1, 5 to 3 mm.
  • the cells also have buses that collect the current from the narrow electrodes and also serve as connection areas on their front side.
  • the cells On their rear face, the cells have a metallization, in full surface or in the form of a grid, based on aluminum and two buses generally placed in line with the buses of the front face.
  • the narrow electrodes and the buses are made of a material rich in silver.
  • the cells are then connected together in series by electrical conductors welded on the front face of a cell and on the rear face of the next cell.
  • several series of cells can be connected in parallel to increase the current supplied by the module.
  • the cells are then encapsulated between two substrates, a transparent front substrate made of glass and a rear substrate made of glass or a polymer that is a barrier to the diffusion of water vapor.
  • a transparent polymer such as polyvinylbutyrate, better known as PVB, or an ethylene-vinyl acetate copolymer, better known as EVA, disposed between the front and back substrates surrounds the cells and provides overall cohesion. .
  • the photovoltaic modules are intended for many applications, and are thus installed in a wide variety of locations.
  • the installation on the roof has been proposed for a long time, in particular in the patent FR2354430 filed in 1976.
  • This patent describes the stack of polycrystalline silicon photovoltaic cells on a roof tile.
  • Patent DE4438858 discloses electrical connection means for photovoltaic roof elements.
  • the photovoltaic modules placed on the roof are of several types: large photovoltaic modules, typically more than half a square meter, made either in "crystalline silicon” technology on a thick silicon substrate, typically 250 ⁇ m, or in "layered” technology thin films of amorphous silicon or other semiconductors such as CIS or CdTe. These large photovoltaic modules are installed either in place of the cover, whether it is in tiles, sheets, or any other material, either superimposed on the existing cover.
  • the large photovoltaic modules are flat, their front face being formed of a flat glass.
  • small photovoltaic modules that are installed instead of several elements of the cover, for example instead of 5 tiles.
  • These small photovoltaic modules are made either in "crystalline silicon” technology or in "thin film” technology.
  • the small photovoltaic modules are also flat, their front face being formed of a flat glass.
  • Cover elements for example a tile or a slate, containing a photovoltaic module are also part of the state of the art and are marketed. These elements can be: either consisting of a photovoltaic module reported by gluing on the upper part of the tile or slate formed by depositing and interconnecting photovoltaic cells on the upper part of the tile or slate and protecting these cells with a transparent glass substrate.
  • Patent WO2007132027 describes a photovoltaic module placed in a curved tile.
  • Japanese Patent JP5005344 and European Patent EP0749557A1 describe an arrangement in which a photovoltaic module is placed behind a light-transparent tile whose surface is curved. This module is spaced from the tile by a shape matching frame between the curved tile and the flat photovoltaic module. In this configuration, an air gap is present between the transparent tile and the photovoltaic module which causes the multiplication of the glass - air interfaces, with a loss of the order of 5% of the luminous intensity at each interface.
  • the object of the invention is to remedy these drawbacks and, in particular, to enable the production of a photovoltaic roofing element by the assembly of photovoltaic cells under the underside of a highly curved transparent tile without generating a loss. optical due to a multiplication of interfaces.
  • the front face of a cell is the face of the cell which directly receives the solar radiation
  • the upper face of the tile is the face of the tile in contact with the external environment.
  • the underside of the tile is the face of the tile protected from the outside environment and which rests on the elements of the frame of the roof.
  • this object is achieved by a particular geometry of the lower face of the highly curved transparent tile, this particular geometry allowing the assembly of photovoltaic cells under the tile without generating optical loss due to a multiplication of the interfaces.
  • the photovoltaic cover element comprises a curved tile made of a transparent material, comprising an upper face provided with a convex surface, and a plurality of photovoltaic cells.
  • the tile includes a bottom face arranged to define a plurality of non-coplanar planar areas.
  • Each photovoltaic cell is associated with a flat area of the underside of the tile.
  • the photovoltaic cells are electrically interconnected.
  • each of these planar zones is equipped with several photovoltaic cells.
  • the photovoltaic cells are encapsulated using a transparent polymer material between a front substrate formed by the flat areas of the tile and a rear substrate formed by a polymer layer.
  • FIG. 1 represents, according to the invention, the section of a tile with a large curve whose bottom face formed of a plurality of non-coplanar planar zones is equipped with photovoltaic cells.
  • FIG. 2 shows, according to the invention, in view from below, a tile with a large curve whose lower face formed of a plurality of non-coplanar planar zones is equipped with photovoltaic cells.
  • FIG. 3 represents, according to the invention, an example of the section AA of a high-curved tile whose lower face formed of a plurality of non-coplanar planar zones is equipped with photovoltaic cells interconnected in a direction perpendicular to the axis of the tile.
  • FIG. 4 represents, according to the invention, an example from below of a curved tile whose lower face formed of a plurality of non-coplanar planar zones is equipped with photovoltaic cells interconnected in a direction perpendicular to the axis of the tile.
  • FIG. 5 represents, according to the invention, an example of the section BB of a tile with a large curve whose lower face formed of a plurality of non-coplanar planar zones is equipped with photovoltaic cells interconnected in a direction parallel to the axis of the tile.
  • FIG. 6 represents, according to the invention, an example from below of a curved tile whose lower face formed of a plurality of non-coplanar planar zones is equipped with photovoltaic cells interconnected in a direction parallel to the axis of the tile.
  • a photovoltaic roofing element comprises a highly curved transparent tile 1 whose upper face 2 of the tile has a strong curvature in at least one direction and whose underside has a plurality of non-coplanar planar areas forming between them a non-zero angle.
  • a photovoltaic cell 20 is encapsulated under each of the planar zones 10.
  • a highly curved tile means a tile whose upper face 2 has a convex portion.
  • the radius of curvature of the convex portion is typically between 15 cm and 30 cm.
  • a highly curved tile is, for example, channel type when the upper face 2 has the shape of an arc or ellipse ( Figure 1 and 3).
  • a strongly curved tile may also designate a so-called omega tile, with a flat part and a curved part ( Figure 5).
  • the non-coplanar planar areas 10 are denoted 10a for the first and 10k for the k-th.
  • the photovoltaic cell encapsulated under the 10k flat area is denoted 20k.
  • the photovoltaic cells are preferably interconnected to form a continuous electrical circuit having an input connection and an output connection.
  • the photovoltaic cells 20 are preferably chosen from the so-called thin-layer cells, the so-called thick cells and the so-called heterojunction cells.
  • the so-called thin-film cells consist of a thin layer of a semi- conductor selected in particular from amorphous silicon, microcrystalline silicon, cadmium telluride, copper-indium-selenium alloy and copper-indium-gallium-selenium alloy.
  • the so-called thick cells have a thickness of at least 40 ⁇ m and consist of at least one semiconductor material chosen in particular from monocrystalline silicon, polycrystalline silicon and gallium arsenide.
  • the highly curved transparent tile 1 consists of a transparent material chosen, preferably from among the glass, a transparent polymer or a glass and a transparent polymer assembly, the transparent polymer possibly being in particular a polycarbonate or a poly-methyl -meta-acrylate known as PMMA.
  • a photovoltaic cover element is formed by a highly curved transparent tile 1 and by the encapsulation of several photovoltaic cells 20 in each of the plane zones 10.
  • the j-th photovoltaic cell encapsulated under the 10k flat area is denoted 20k-j.
  • the set of photovoltaic cells are preferably interconnected in series or in parallel as is known to do in traditional photovoltaic panels to form a continuous electrical circuit having an input connection and an output connection. These input and output connections as well as the connection box are not shown in FIG.
  • At least one photovoltaic cell 20 placed under a flat zone 10 of the lower face of the highly curved transparent tile is encapsulated with a transparent polymer between a front substrate formed by said flat area 10 of the tile and a rear substrate.
  • the transparent polymer will be chosen from vinyl acetate copolymers, in particular the ethylene-vinyl acetate copolymer, better known under the name EVA, and the silicone resins.
  • This transparent polymer provides mechanical cohesion between the front substrate, the cells 10 and the rear substrate. This transparent polymer also ensures optical index matching between the material of the front substrate and the cells 10.
  • the material of the rear substrate will be chosen from glass and polymers, in particular fluorinated polymers, in order to provide a high resistance to the migration of water molecules towards the semiconductor of photovoltaic cells.
  • the set of photovoltaic cells 20 of the photovoltaic cover element is encapsulated using a transparent polymer between a front substrate formed by the plurality of plane zones 10 of the underside of the tile and a single back substrate. This rear substrate covers the entire surface receiving the photovoltaic cells 20.
  • the transparent polymer will be chosen from vinyl acetate copolymers, especially ethylene-vinyl acetate copolymer and silicone resins.
  • the material of the backing substrate will preferably be a sheet of a fluoropolymeric material.
  • the invention also applies to a photovoltaic roofing element formed by a highly curved transparent tile comprising on its underside at least three non-coplanar flat areas of which at least two are equipped with photovoltaic cells.
  • a photovoltaic cover element shown in section AA in FIG. 3 and in bottom view in FIG. 4 is made by encapsulating 36 photovoltaic cells under a highly curved transparent tile 1.
  • the molded glass tile 1 has the same geometry as the terracotta tiles it replaces in the roof.
  • the tile 1 is a tile with a large curve of dimension 280 x 480 mm 2 and which has on its upper face an irregular radius of curvature of between 120 mm and 200 mm.
  • the tile 1 has the same connection elements with the neighboring tiles and intended for the path of water than the terracotta tiles.
  • the tile 1 has on its underside four flat areas 10-1 to 10-4 forming between them an angle of 30 degrees. These areas have a width of 60 mm and a length of 345 mm.
  • Tile 1 consists of a soda-lime glass with a very low iron content, known as extra-white glass.
  • the thickness of the glass is typically between 8 and 18 mm.
  • the tile has a transmission coefficient of about 88% in the entire solar spectrum between the near ultraviolet at 350 nm and the near infrared at 1, 2 pm.
  • Monocrystalline silicon photovoltaic cells with a thickness of about 200 ⁇ m are assembled into a string consisting of nine branches of four cells.
  • the four cells of one and the same branch are arranged in such a way that there is a cell 20 facing each of the planar zones 10.
  • the first branch contains the cells 20-1-1, 20-2-1 , 20-3-1 and 20-4-1 respectively arranged facing planar areas 10-1, 10-2, 10-3 and 10-4.
  • the four cells of the same branch are electrically assembled in series.
  • a tin-plated copper ribbon of thickness 0.13 mm and width 2 mm electrically connects the upper face of a cell of the branch to the lower face of the next cell in this same branch.
  • the nine branches are then electrically assembled in parallel through the conductors 33 and 34 made of tinned copper thickness 0.13 mm and width 4 mm.
  • the conductors 33 and 34 thus constitute the ends of the string of cells and are connected in the junction box 60.
  • the encapsulation of the photovoltaic cells under the tile 1 is carried out by depositing, by roll coating, a transparent silicone resin 50 of optical index 1.44, close to that of the glass, on each of the four plane zones 10-1 to 10-4 .
  • the garland of the photovoltaic cells 20 is then placed on the flat areas 10-1 to 10-4.
  • a sheet 40 of thickness 0.3 mm of a fluoropolymer and coated with the same silicone resin is then placed on the whole of the string of cells, the side coated with the silicone resin against the cells.
  • the assembly is then placed in an elastomeric bag and the vacuum is produced in this pocket, the residual pressure being 20 millibars.
  • the pouch is then placed in an oven at a temperature of 110 ° C for 30 minutes so that the silicone resin crosslinks.
  • the final operation is then to fix the junction box 60 is to weld the conductors 33 and 34 to a connector in this box.
  • the photovoltaic roof element thus produced provides a power of 9 W peak.
  • a photovoltaic cover element shown in section BB in FIG. 5 and in bottom view in FIG. 6 is made by encapsulating 48 photovoltaic cells under a highly curved transparent tile 1.
  • the molded glass tile 1 has the same geometry as the terracotta tiles it replaces in the roof.
  • the tile 1 is a tile with a large curve of dimension 310 x 450 mm 2 and which has on its upper face a rounded part with a radius of curvature about 180 mm and a flat area.
  • the tile 1 has the same connection elements with the neighboring tiles and intended for the path of water than the terracotta tiles.
  • the tile 1 has on its underside five planar zones 10-1 to 10-5 forming between them an angle of 40 degrees facing the rounded portion on the upper face and a flat zone 10-6 opposite the flat portion opposite higher. These zones 10 have a width of 52 mm and a length of 330 mm.
  • Tile 1 consists of a soda-lime glass with a very low iron content, known as extra-white glass.
  • the thickness of the glass is typically between 8 and 18 mm.
  • the tile has a transmission coefficient close to 90% in the entire solar spectrum between the near ultraviolet at 350 nm and the near infrared at 1.2 m.
  • Monocrystalline silicon photovoltaic cells with a thickness of about 200 ⁇ are assembled into a string consisting of six branches of eight cells.
  • the eight cells of the same branch are arranged in such a way that they are all facing one and the same plane area 10.
  • the first branch contains the cells 20-1-1 to 20-1-8 disposed in look at the flat area 10-1.
  • the eight cells of the same branch are electrically assembled in series.
  • a tin-plated copper ribbon of thickness 0.13 mm and width 2 mm electrically connects the upper face of a cell of the branch to the lower face of the next cell in this same branch.
  • the six branches are then electrically assembled in parallel through the conductors 35 and 36 made of tinned copper of thickness 0.13 mm and width 4 mm.
  • the conductors 35 and 36 thus constitute the ends of the string of cells and are connected in the junction box 60.
  • the encapsulation of the photovoltaic cells under the tile 1 is carried out by depositing a sheet of an ethylene-vinyl acetate copolymer (EVA) 0.38 mm thick over the entire area covered by the flat areas 10-1 to 10- 6. The garland of the photovoltaic cells is then placed on this sheet of EVA and facing planar areas 10-1 to 10-6. A second sheet of EVA 0.38 mm thick and the same size as the first is deposited on the photovoltaic cells, directly above the first sheet of EVA. These two EVA sheets will form the transparent medium 50 after softening and crosslinking. A sheet 40 0.3 mm thick of a fluoropolymer is then placed on the second sheet of EVA.
  • EVA ethylene-vinyl acetate copolymer
  • the assembly is then placed in an elastomeric bag and the vacuum is produced in this pocket, the residual pressure being 20 millibars.
  • the pouch is then placed in an oven at a temperature of 150 ° C for 30 minutes so that the EVA softens, flows and reticles.
  • the final operation then consists in fixing the junction box 60 and welding the conductors 35 and 36 to a connector in this box.
  • the photovoltaic cover element thus produced provides a power of 11 W peak.
  • the underside of the curved tile is arranged to have photovoltaic cells.
  • the outer surface of the tile is not changed.
  • the geometry of the tile, seen from the outside is therefore identical to that of traditional terracotta tiles. Thus, it adapts perfectly with the classic tiles and the geometry of the roof is respected, which contributes to the aesthetics of the building.
  • the photovoltaic cells are less sensitive to the effects of shading caused, for example, by sheets covering the tile.
  • the dirt tends to accumulate between two tiles (in the case of the tiles according to FIG. 1) or on the flat overlapping zones (in the case of the tiles according to FIG. 5), and not on the rounded part. of the tile.
  • the yield of the photovoltaic tile is not diminished.
  • the transparent tile is formed of a single piece of glass or transparent polymer. There are no fittings or materials of different natures, which guarantees a high and durable seal over time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

Les modules photovoltaïques placés en toiture dégradent en général l'aspect esthétique du bâtiment car ils ne respectent pas la géométrie des éléments de couverture utilisés pour la toiture, notamment lorsque la toiture est réalisée avec des tuiles à fort galbe. L'invention consiste en un élément photovoltaïque réalisé par l'encapsulation directe de cellules photovoltaïques sous une tuile transparente à fort galbe. Cette tuile transparente à fort galbe présente une face inférieure constituée d'une pluralité de zones planes non coplanaires, chacune de ces zones planes étant équipée d'au moins une cellule photovoltaïque. Ces cellules photovoltaïques sont encapsulées à l'aide d'un polymère transparent entre les zones planes de la face inférieure de la tuile et un substrat arrière formé par un polymère afin de ne pas générer de perte optique par une multiplication des interfaces. La tuile transparente fortement galbée est constituée d'un matériau transparent tel que du verre, un polymère transparent ou un assemblage de verre et d'un polymère transparent, le polymère transparent pouvant être notamment un polycarbonate ou du PMMA.

Description

ELEMENT PHOTOVOLTAÏQUE
FORTEMENT GALBE
Domaine technique de l'invention
L'invention concerne un élément photovoltaïque ayant une forte courbure et utilisant des cellules en silicium monocristallin ou polycristallin, cet élément photovoltaïque étant destiné à être monté en toiture ou en façade.
État de la technique
Une cellule photovoltaïque fournit un courant électrique dépendant de l'éclairement qu'elle reçoit. La tension électrique dépend du type du semi-conducteur formant la cellule. Cette tension est habituellement de l'ordre de 0,5 Volt à 0,7 Volt. Un module photovoltaïque est formé par association de cellules photovoltaïques. Les tensions souhaitées en sortie d'un module photovoltaïque sont généralement comprises entre quelques volts et plusieurs dizaines de volts. Pour cela, un module photovoltaïque est formé d'un assemblage de plusieurs cellules montées en série.
Dans toute la description qui suit, la face avant d'une cellule est celle qui reçoit le rayonnement solaire. De même, la face avant d'un module est celle qui reçoit le rayonnement solaire.
Un module photovoltaïque peut être réalisé par association de cellules en silicium cristallin, monocristallin ou polycristallin. Les cellules possèdent sur leur face avant selon une première direction un réseau d'électrodes étroites de largeur typiquement comprise entre 80 et 150 pm et espacées de 1 ,5 à 3 mm. Les cellules possèdent également des bus qui collectent le courant issu des électrodes étroites et qui servent également de zones de connexion sur leur face avant. Sur leur face arrière, les cellules possèdent une métallisation, en pleine surface ou sous forme d'une grille, à base d'aluminium ainsi que deux bus généralement placés à l'aplomb des bus de la face avant. Les électrodes étroites ainsi que les bus sont réalisés avec un matériau riche en argent.
Les cellules sont alors connectées entre elles en série par des conducteurs électriques soudés sur la face avant d'une cellule et sur la face arrière de la cellule suivante. Dans un module photovoltaïque, plusieurs séries de cellules peuvent être montées en parallèle pour accroître le courant fourni par le module. Les cellules sont ensuite encapsulées entre deux substrats, un substrat avant transparent en verre et un substrat arrière en verre ou en un polymère faisant barrière à la diffusion de la vapeur d'eau. Un polymère transparent comme du polyvinylbutyrate, plus connu sous l'appellation PVB, ou un copolymère éthylène-acétate de vinyle, plus connu sous l'appellation EVA, disposé entre les substrats avant et arrière entoure les cellules et assure la cohésion de l'ensemble.
Les modules photovoltaïques sont destinés à de nombreuses applications, et sont ainsi installés en des emplacements très variés. L'installation en toiture a été proposée depuis longtemps, notamment dans le brevet FR2354430 déposé en 1976. Ce brevet décrit l'empilement de cellules photovoltaïques en silicium polycristallin sur une tuile de toiture. Le brevet DE4438858 décrit des moyens de connexion électrique pour des éléments de toiture photovoltaïques.
Les modules photovoltaïques placés en toiture sont de plusieurs types : des modules photovoltaïques de grande dimension, typiquement plus d'un demi mètre carré, réalisés soit en technologie « silicium cristallin » sur substrat de silicium épais, typiquement 250 pm, soit en technologie « couches minces » de silicium amorphe ou d'autres semi-conducteurs comme CIS ou CdTe. Ces modules photovoltaïques de grande dimension sont installés soit en lieu et place de la couverture, qu'elle soit en tuiles, tôles, ou toute autre matière, soit en superposition à la couverture existante.
Les modules photovoltaïques de grande dimension sont plans, leur face avant étant formée d'un verre plan. des modules photovoltaïques de petite dimension qui sont installés en lieu et place de plusieurs éléments de la couverture, par exemple à la place de 5 tuiles. Ces modules photovoltaïques de petite dimension sont réalisés soit en technologie « silicium cristallin », soit en technologie « couches minces ».
Les modules photovoltaïques de petite dimension sont également plans, leur face avant étant formée d'un verre plan.
Des éléments de couverture, par exemple une tuile ou une ardoise, contenant un module photovoltaïque font également partie de l'état de l'art et sont commercialisés. Ces éléments peuvent être : soit constitués d'un module photovoltaïque rapporté par collage sur la partie supérieure de la tuile ou de l'ardoise soit formés par dépôt et interconnexion de cellules photovoltaïques sur la partie supérieure de la tuile ou de l'ardoise et protection de ces cellules par un substrat en verre transparent.
Il est également connu d'utiliser une tuile en verre comme support d'un module photovoltaïque et en particulier d'intégrer un module photovoltaïque sous une tuile galbée en verre.
Le brevet WO2007132027 décrit un module photovoltaïque placé dans une tuile galbée.
Les brevets japonais JP5005344 et européen EP0749557A1 décrivent un arrangement dans lequel un module photovoltaïque est placé en arrière d'une tuile transparente à la lumière et dont la surface est courbe. Ce module est espacé de la tuile par un cadre d'adaptation de forme entre la tuile courbe et le module photovoltaïque plan. Dans cette configuration, une lame d'air est présente entre la tuile transparente et le module photovoltaïque ce qui provoque la multiplication des interfaces verre - air, avec une perte de l'ordre de 5% de l'intensité lumineuse à chaque interface.
Il est également connu de remplir le volume présent entre la tuile transparente et le module photovoltaïque avec un corps transparent composé d'un polymère transparent ou de verre ou de placer en avant d'un élément photovoltaïque un corps transparent ayant une forme galbée comme dans le brevet FR2354430.
Résumé de l'invention
L'invention a pour but de remédier à ces inconvénients et, en particulier, de permettre la réalisation d'un élément de couverture photovoltaïque par l'assemblage de cellules photovoltaïques sous la face inférieure d'une tuile transparente fortement galbée, sans générer de perte optique due à une multiplication des interfaces.
Dans la description suivante, la face avant d'une cellule est la face de la cellule qui reçoit directement le rayonnement solaire, et la face supérieure de la tuile est la face de la tuile en contact avec le milieu extérieur. Par opposition, la face inférieure de la tuile est la face de la tuile protégée du milieu extérieur et qui repose sur les éléments de la charpente de la toiture.
Selon l'invention, ce but est atteint par une géométrie particulière de la face inférieure de la tuile transparente fortement galbée, cette géométrie particulière permettant l'assemblage de cellules photovoltaïques sous la tuile sans générer de perte optique due à une multiplication des interfaces.
Selon l'invention, l'élément de couverture photovoltaïque comporte une tuile à fort galbe en un matériau transparent, comprenant une face supérieure munie d'une surface convexe, et une pluralité de cellules photovoltaïques. La tuile comprend une face inférieure aménagée pour définir une pluralité de zones planes non coplanaires. Chaque cellule photovoltaïque est associée à une zone plane de la face inférieure de la tuile.
Selon un développement de l'invention, les cellules photovoltaïques sont interconnectées électriquement.
Selon un autre développement de l'invention, chacune de ces zones planes est équipée de plusieurs cellules photovoltaïques.
Selon un autre développement de l'invention, les cellules photovoltaïques sont encapsulées à l'aide d'un matériau polymère transparent entre un substrat avant formé par les zones planes de la tuile et un substrat arrière formé par une couche de polymère.
Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation donnés à titre d'exemples non limitatifs et illustrés à l'aide des dessins annexés, dans lesquels :
La figure 1 représente, selon l'invention, la section d'une tuile à fort galbe dont la face inférieure formée d'une pluralité de zones planes non coplanaires est équipée de cellules photovoltaïques.
La figure 2 représente, selon l'invention, en vue de dessous, une tuile à fort galbe dont la face inférieure formée d'une pluralité de zones planes non coplanaires est équipée de cellules photovoltaïques.
La figure 3 représente, selon l'invention, un exemple de la section AA d'une tuile à fort galbe dont la face inférieure formée d'une pluralité de zones planes non coplanaires est équipée de cellules photovoltaïques interconnectées dans une direction perpendiculaire à l'axe de la tuile. La figure 4 représente, selon l'invention, un exemple en vue de dessous d'une tuile à fort galbe dont la face inférieure formée d'une pluralité de zones planes non coplanaires est équipée de cellules photovoltaïques interconnectées dans une direction perpendiculaire à l'axe de la tuile.
La figure 5 représente, selon l'invention, un exemple de la section BB d'une tuile à fort galbe dont la face inférieure formée d'une pluralité de zones planes non coplanaires est équipée de cellules photovoltaïques interconnectées dans une direction parallèle à l'axe de la tuile.
La figure 6 représente, selon l'invention, un exemple en vue de dessous d'une tuile à fort galbe dont la face inférieure formée d'une pluralité de zones planes non coplanaires est équipée de cellules photovoltaïques interconnectées dans une direction parallèle à l'axe de la tuile.
Description d'un mode de réalisation préféré de l'invention
Dans un mode de réalisation de l'invention représenté en coupe en figure 1 , un élément de couverture photovoltaïque comprend une tuile transparente fortement galbée 1 dont la face supérieure 2 de la tuile présente une forte courbure selon au moins une direction et dont la face inférieure possède une pluralité de zones planes non coplanaires 10 formant entre elles un angle non nul. Une cellule photovoltaïque 20 est encapsulée sous chacune des zones planes 10.
Par tuile fortement galbée, on entend une tuile dont la face supérieure 2 présente une partie convexe. Le rayon de courbure de la partie convexe est typiquement compris entre 15 cm et 30 cm. Une tuile fortement galbée est, par exemple, de type canal lorsque la face supérieure 2 a la forme d'un arc de cercle ou d'ellipse (Figure 1 et 3). Une tuile fortement galbée pourra également désigner une tuile dite oméga, avec une partie plane et une partie courbée (Figure 5).
Les zones planes non coplanaires 10 sont notées 10a pour la première et 10k pour la k-ème. La cellule photovoltaïque encapsulées sous la zone plane 10k est notée 20k. Les cellules photovoltaïques sont, de préférence, interconnectées afin de former un circuit électrique continu ayant une connexion d'entrée et une connexion de sortie.
Les cellules photovoltaïques 20 sont, de préférence, choisies parmi les cellules dites couches minces, les cellules dites épaisses et les cellules dites hétérojonction. Les cellules dites couches minces sont constituées d'une couche mince d'un semi- conducteur choisi notamment parmi le silicium amorphe, le silicium microcristallin, le tellurure de cadmium, l'alliage cuivre-indium-sélénium et l'alliage cuivre-indium- gallium-sélénium. Les cellules dites épaisses ont une épaisseur d'au moins 40 pm et sont constituées d'au moins un matériau semi-conducteur choisi notamment parmi le silicium monocristallin, le silicium polycristallin et l'arséniure de gallium.
La tuile transparente fortement galbée 1 est constituée d'un matériau transparent choisi, de préférence, parmi le verre, un polymère transparent ou un assemblage de verre et d'un polymère transparent, le polymère transparent pouvant être notamment un polycarbonate ou un poly-méthyl-meta-acrylate connu sous le nom de PMMA.
Dans un mode de réalisation de l'invention représenté en vue de dessous en figure 2, un élément de couverture photovoltaïque est formé par une tuile transparente fortement galbée 1 et par l'encapsulation de plusieurs cellules photovoltaïques 20 dans chacune des zones planes 10.
La j-ème cellule photovoltaïque encapsulée sous la zone plane 10k est notée 20k-j. L'ensemble des cellules photovoltaïques sont, de préférence, interconnectées en série ou en parallèle comme il est connu de le faire dans les panneaux photovoltaïques traditionnels afin de former un circuit électrique continu ayant une connexion d'entrée et une connexion de sortie. Ces connexions d'entrée et de sortie ainsi que le boîtier de connexion ne sont pas représentés sur la figure 2.
Selon un mode particulier de réalisation de l'invention, au moins une cellule photovoltaïque 20 placée sous une zone plane 10 de la face inférieure de la tuile transparente fortement galbée est encapsulée à l'aide d'un polymère transparent entre un substrat avant formé par ladite zone plane 10 de la tuile et un substrat arrière. Le polymère transparent sera choisi parmi les copolymères d'acétate de vinyle, notamment le copolymère éthylène-acétate de vinyle, plus connu sous l'appellation EVA, et les résines silicones.
Ce polymère transparent assure la cohésion mécanique entre le substrat avant, les cellules 10 et le substrat arrière. Ce polymère transparent assure également l'adaptation d'indice optique entre le matériau du substrat avant et les cellules 10.
Le matériau du substrat arrière sera choisi parmi le verre et les polymères, notamment les polymères fluorés afin d'apporter une grande résistance à la migration des molécules d'eau vers le semi-conducteur des cellules photovoltaïques. Selon un autre mode particulier de réalisation de l'invention, l'ensemble des cellules photovoltaïques 20 de l'élément de couverture photovoltaïque est encapsulée à l'aide d'un polymère transparent entre un substrat avant formé par la pluralité de zones planes 10 de la face inférieure de la tuile et d'un unique substrat arrière. Ce substrat arrière couvre l'intégralité de la surface recevant les cellules photovoltaïques 20.
Le polymère transparent sera choisi parmi les copolymères d'acétate de vinyle, notamment le copolymère éthylène-acétate de vinyle et les résines silicones. Le matériau du substrat arrière sera de préférence une feuille d'un matériau polymère fluoré.
L'invention s'applique également à un élément de couverture photovoltaïque formé par une tuile transparente fortement galbée comprenant sur sa face inférieure au moins trois zones planes non coplanaires dont au moins deux sont équipées de cellules photovoltaïques.
Exemple 1
Un élément de couverture photovoltaïque représenté en section AA en figure 3 et en vue de dessous en figure 4 est réalisé par l'encapsulation de 36 cellules photovoltaïques sous une tuile 1 transparente fortement galbée. La tuile 1 en verre moulé présente la même géométrie que les tuiles en terre cuite qu'elle remplace en toiture. La tuile 1 est une tuile à fort galbe de dimension 280 x 480 mm2 et qui présente sur sa face supérieure un rayon de courbure irrégulier compris entre 120 mm et 200 mm. La tuile 1 comporte les mêmes éléments de raccordement avec les tuiles voisines et destinés au cheminement de l'eau que les tuiles en terre cuite.
La tuile 1 présente sur sa face inférieure quatre zones planes 10-1 à 10-4 formant entre elles un angle de 30 degrés. Ces zones ont une largeur de 60 mm et une longueur de 345 mm.
La tuile 1 est constituée d'un verre sodo-calcique avec une très faible teneur en fer, connu sous le nom de verre extra-blanc. L'épaisseur du verre est typiquement comprise entre 8 et 18 mm. La tuile a un coefficient de transmission voisin de 88% dans tout le spectre solaire entre le proche ultraviolet à 350 nm et le proche infrarouge à 1 ,2 pm.
Des cellules photovoltaïques en silicium monocristallin d'une épaisseur de 200 pm environ sont assemblées en une guirlande constituée de neuf branches de quatre cellules. Les quatre cellules d'une même branche sont disposées de telle façon qu'il y a une cellule 20 en regard de chacune des zones planes 10. Par exemple, la première branche contient les cellules 20-1-1 , 20-2-1 , 20-3-1 et 20-4-1 disposées respectivement en regard des zones planes 10-1 , 10-2, 10-3 et 10-4.
Les quatre cellules d'une même branche sont électriquement assemblées en série. Pour cela un ruban 30 en cuivre étamé d'épaisseur 0,13 mm et de largeur 2 mm relie électriquement la face supérieure d'une cellule de la branche à la face inférieure de la cellule suivante dans cette même branche.
Les neuf branches sont ensuite électriquement assemblées en parallèle par l'intermédiaire des conducteurs 33 et 34 réalisés en cuivre étamé d'épaisseur 0,13 mm et de largeur 4 mm. Les conducteurs 33 et 34 constituent ainsi les extrémités de la guirlande de cellules et sont connectés dans la boîte de jonction 60.
L'encapsulation des cellules photovoltaïques sous la tuile 1 est réalisée en déposant, par enduction au rouleau, une résine silicone transparente 50 d'indice optique 1.44, proche de celui du verre, sur chacune des quatre zones planes 10-1 à 10-4. La guirlande des cellules photovoltaïques 20 est ensuite mise en place sur les zones planes 10-1 à 10-4. Une feuille 40 d'épaisseur 0.3 mm d'un polymère fluoré et enduite de la même résine silicone est alors placée sur l'ensemble de la guirlande de cellules, la face enduite de la résine silicone contre les cellules. L'ensemble est ensuite placé dans une poche en élastomère et le vide est réalisé dans cette poche, la pression résiduelle étant de 20 millibars. La poche est alors placée dans une étuve à une température de 110°C pendant 30 minutes afin que la résine silicone réticule. L'opération finale consiste alors à fixer la boite de jonction 60 est à souder les conducteurs 33 et 34 à un connecteur dans cette boite.
L'élément de couverture photovoltaïque ainsi réalisé fourni une puissance de 9 W crête.
Exemple 2
Un élément de couverture photovoltaïque représenté en section BB en figure 5 et en vue de dessous en figure 6 est réalisé par l'encapsulation de 48 cellules photovoltaïques sous une tuile 1 transparente fortement galbée. La tuile 1 en verre moulé présente la même géométrie que les tuiles en terre cuite qu'elle remplace en toiture. La tuile 1 est une tuile à fort galbe de dimension 310 x 450 mm2 et qui présente sur sa face supérieure une partie arrondie avec un rayon de courbure d'environ 180 mm et une zone plane. La tuile 1 comporte les mêmes éléments de raccordement avec les tuiles voisines et destinés au cheminement de l'eau que les tuiles en terre cuite.
La tuile 1 présente sur sa face inférieure cinq zones planes 10-1 à 10-5 formant entre elles un angle de 40 degrés en regard de la partie arrondie en face supérieure et une zone plane 10-6 en regard de la partie plane en face supérieure. Ces zones 10 ont une largeur de 52 mm et une longueur de 330 mm.
La tuile 1 est constituée d'un verre sodo-calcique avec une très faible teneur en fer, connu sous le nom de verre extra-blanc. L'épaisseur du verre est typiquement comprise entre 8 et 18 mm. La tuile a un coefficient de transmission voisin de 90% dans tout le spectre solaire entre le proche ultraviolet à 350 nm et le proche infrarouge à 1 ,2 m.
Des cellules photovoltaïques en silicium monocristallin d'une épaisseur de 200 μιτι environ sont assemblées en une guirlande constituée de six branches de huit cellules. Les huit cellules d'une même branche sont disposées de telle façon qu'elles sont toutes en regard d'une même zone plane 10. Par exemple, la première branche contient les cellules 20-1-1 à 20-1-8 disposées en regard de la zone plane 10-1.
Les huit cellules d'une même branche sont électriquement assemblées en série. Pour cela un ruban 30 en cuivre étamé d'épaisseur 0,13 mm et de largeur 2 mm relie électriquement la face supérieure d'une cellule de la branche à la face inférieure de la cellule suivante dans cette même branche.
Les six branches sont ensuite électriquement assemblées en parallèle par l'intermédiaire des conducteurs 35 et 36 réalisés en cuivre étamé d'épaisseur 0,13 mm et de largeur 4 mm. Les conducteurs 35 et 36 constituent ainsi les extrémités de la guirlande de cellules et sont connectés dans la boite de jonction 60.
L'encapsulation des cellules photovoltaïques sous la tuile 1 est réalisée en déposant une feuille d'un copolymère éthylène-acétate de vinyle (EVA) d'épaisseur 0.38 mm sur la totalité de la zone couverte par les zones planes 10-1 à 10-6. La guirlande des cellules photovoltaïques est ensuite mise en place sur cette feuille d'EVA et en regard des zones planes 10-1 à 10-6. Une seconde feuille d'EVA d'épaisseur 0.38 mm et de même dimension que la première est déposée sur les cellules photovoltaïques, à l'aplomb de la première feuille d'EVA. Ces deux feuilles d'EVA formeront le milieu transparent 50 après ramollissement et réticulation. Une feuille 40 d'épaisseur 0.3 mm d'un polymère fluoré est alors placée sur la seconde feuille d'EVA. L'ensemble est ensuite placé dans une poche en élastomère et le vide est réalisé dans cette poche, la pression résiduelle étant de 20 millibars. La poche est alors placée dans une étuve à une température de 150°C pendant 30 minutes afin que l'EVA se ramollisse, flue et réticule. L'opération finale consiste alors à fixer la boîte de jonction 60 et à souder les conducteurs 35 et 36 à un connecteur dans cette boite.
L'élément de couverture photovoltaïque ainsi réalisé fourni une puissance de 11 W crête.
Dans les modes de réalisation et exemples ci-dessus, seule la face inférieure de la tuile galbée est aménagée pour disposer des cellules photovoltaïques. La surface extérieure de la tuile n'est pas modifiée. La géométrie de la tuile, vue de l'extérieur est donc identique à celle des tuiles classiques en terre cuite. Ainsi, elle s'adapte parfaitement avec les tuiles classiques et la géométrie de la toiture est respectée, ce qui contribue à l'esthétique du bâtiment.
En étant disposées majoritairement sous la partie convexe de la tuile, les cellules photovoltaïques sont moins sensibles aux effets d'ombrages causés, par exemple, par des feuilles recouvrant la tuile. En effet, les saletés ont tendance à s'accumuler entre deux tuiles (dans le cas des tuiles selon la figure 1) ou sur les zones planes de recouvrement (dans le cas des tuiles selon la figure 5), et non sur la partie arrondie de la tuile. Le rendement de la tuile photovoltaïque n'est donc pas diminué.
La tuile transparente est formée d'une seule pièce en verre ou polymère transparent. Il n'y a donc pas de raccords, ni de matériaux de différentes natures, ce qui garantit une étanchéité élevée et durable dans le temps.

Claims

Revendications
1. Elément de couverture photovoltaïque comprenant une tuile à fort galbe, en un matériau transparent et comprenant une face supérieure munie d'une surface convexe, caractérisé en ce qu'il comporte une pluralité de cellules photovoltaïques et en ce que la tuile comprend une face inférieure aménagée pour définir une pluralité de zones planes non coplanaires, chaque cellule photovoltaïque étant associée à une zone plane de la face inférieure de la tuile.
2. Elément de couverture photovoltaïque selon la revendication 1 , caractérisé en ce que les cellules photovoltaïques sont interconnectées électriquement.
3. Elément de couverture photovoltaïque selon la revendication 1 , caractérisé en ce que chaque zone plane est équipée de plusieurs cellules photovoltaïques.
4. Elément de couverture photovoltaïque selon la revendication 1 , caractérisé en ce que les cellules photovoltaïques sont encapsulées à l'aide d'un matériau polymère transparent entre un substrat avant formé par les zones planes de la tuile et un substrat arrière formé par une couche de polymère.
5. Elément de couverture photovoltaïque selon la revendication 1 , caractérisé en ce que la tuile est en verre moulé.
6. Elément de couverture photovoltaïque selon la revendication 1 , caractérisé en ce que la tuile est en polyméthacrylate de méthyle.
EP11720128A 2010-03-23 2011-03-23 Element photovoltaïque fortement galbe Withdrawn EP2550682A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1001143A FR2957952A1 (fr) 2010-03-23 2010-03-23 Element photovoltaique fortement galbe
PCT/FR2011/000166 WO2011117481A1 (fr) 2010-03-23 2011-03-23 Element photovoltaïque fortement galbe

Publications (1)

Publication Number Publication Date
EP2550682A1 true EP2550682A1 (fr) 2013-01-30

Family

ID=43587527

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11720128A Withdrawn EP2550682A1 (fr) 2010-03-23 2011-03-23 Element photovoltaïque fortement galbe

Country Status (3)

Country Link
EP (1) EP2550682A1 (fr)
FR (1) FR2957952A1 (fr)
WO (1) WO2011117481A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018157656A1 (fr) * 2017-03-02 2018-09-07 江苏汉嘉薄膜太阳能科技有限公司 Système de bardeau solaire, et procédé de fabrication et procédé de montage pour celui-ci

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167841A1 (fr) 2013-04-10 2014-10-16 パナソニック株式会社 Appareil à photopile et son procédé de fabrication
WO2015045673A1 (fr) * 2013-09-25 2015-04-02 パナソニックIpマネジメント株式会社 Procédé de fabrication de bloc de batterie solaire
FR3051073B1 (fr) * 2016-05-09 2018-06-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaique comprenant des cellules photovoltaiques disposees selon des orientations differentes et installation photovoltaique associee

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2354430A1 (fr) 1976-06-09 1978-01-06 Radiotechnique Compelec Panneau generateur photovoltaique a cellules solaires et ensemble comportant ledit panneau
FR2550007A1 (en) * 1983-07-29 1985-02-01 Sanyo Electric Co Method for producing a semiconducting film and photovoltaic device obtained by the method
DE3626450A1 (de) * 1986-08-05 1988-02-11 Hans Joachim Dipl P Kirschning Als solarzelle wirkendes bauteil von bauwerken und gebaeuden
JP2869212B2 (ja) * 1991-06-27 1999-03-10 三洋電機株式会社 光発電装置
DE4438858A1 (de) 1994-11-03 1996-05-09 Dorothea Bergermann Solar-Dach-System
CH689568A5 (de) 1995-01-30 1999-06-15 Star Unity Ag Bauteil zum Aufbau einer Dachhaut.
JPH1054111A (ja) * 1996-08-09 1998-02-24 Seinan Sogo Kaihatsu Kk 太陽電池付き瓦
JPH1072909A (ja) * 1996-08-30 1998-03-17 Seinan Sogo Kaihatsu Kk 太陽電池モジュール
US7694653B2 (en) 2003-08-18 2010-04-13 T.F.H. Pulications, Inc. Animal chew containing hard and soft chewing surfaces
GB2431773A (en) * 2005-10-28 2007-05-02 Enigma Glass Ltd Solar panel devices
WO2007132027A1 (fr) 2006-05-12 2007-11-22 Ingeniería De Biocombustibles, S.L. Tuile solaire photovoltaïque
FR2932832B1 (fr) * 2008-06-23 2011-04-29 Jean Baptiste Chevrier Element de couverture photovoltaique

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2011117481A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018157656A1 (fr) * 2017-03-02 2018-09-07 江苏汉嘉薄膜太阳能科技有限公司 Système de bardeau solaire, et procédé de fabrication et procédé de montage pour celui-ci

Also Published As

Publication number Publication date
WO2011117481A1 (fr) 2011-09-29
FR2957952A1 (fr) 2011-09-30

Similar Documents

Publication Publication Date Title
EP2452369B1 (fr) Procédé de fabrication de cellules photovoltaiques multi-jonctions et multi-électrodes
KR101985053B1 (ko) 광 지향 매체를 포함하는 광기전 모듈 및 이를 제조하는 방법
US9157662B2 (en) Photovoltaic module
AU1844100A (en) Integrated thin-film solar battery
FR2924863A1 (fr) Perfectionnements apportes a des elements capables de collecter de la lumiere.
EP3493277B1 (fr) Procédé d'interconnexion de cellules photovoltaïques avec une électrode pourvue de nanofils métalliques
US20130306130A1 (en) Solar module apparatus with edge reflection enhancement and method of making the same
EP2212925B1 (fr) Perfectionnements apportés à des joints pour des éléments capables de collecter de la lumière
FR2922362A1 (fr) Perfectionnements apportes a un boitier de connexion pour elements capables de collecter de la lumiere.
WO2011117481A1 (fr) Element photovoltaïque fortement galbe
EP2926388A1 (fr) Dispositif organique électronique ou optoélectronique laminé
EP4002491A1 (fr) Module photovoltaïque leger et flexible ameliore
WO2010007546A2 (fr) Element de couverture photovoltaïque
EP2981156B1 (fr) Panneau photovoltaïque et un procédé de fabrication d'un tel panneau
FR2940523A1 (fr) Tuile photovoltaique.
TW201304158A (zh) 光電池裝置及光電池裝置之製造方法
EP3353816B1 (fr) Procede de fabrication d'un module photovoltaique
FR3069706A1 (fr) Cellule photovoltaique ewt de type organique ou perovskite et son procede de realisation
FR2853993A1 (fr) Procede de realisation d'un module photovoltaique et module photovoltaique realise par ce procede
EP3244456B1 (fr) Module photovoltaïque comprenant des cellules photovoltaïques disposées selon des orientations différentes et installation photovoltaïque associée
Dhere Flexible packaging for PV modules
TWI453929B (zh) 太陽能模組及製造具有並聯半導體層堆疊之太陽能模組之方法
FR2939966A1 (fr) Structure d'un module photovoltaique
FR3071682A1 (fr) Procede de fabrication d'un module photovoltaique avec controle de la distance inter-series de cellules photovoltaiques
FR2948498A1 (fr) Panneau solaire photovoltaique a diodes en couches minces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121009

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LUXOL PHOTOVOLTAICS SN

17Q First examination report despatched

Effective date: 20180416

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180828