EP2549063A1 - Élément d'écran thermique pour une turbine à gaz - Google Patents

Élément d'écran thermique pour une turbine à gaz Download PDF

Info

Publication number
EP2549063A1
EP2549063A1 EP11174851A EP11174851A EP2549063A1 EP 2549063 A1 EP2549063 A1 EP 2549063A1 EP 11174851 A EP11174851 A EP 11174851A EP 11174851 A EP11174851 A EP 11174851A EP 2549063 A1 EP2549063 A1 EP 2549063A1
Authority
EP
European Patent Office
Prior art keywords
section
heat shield
shield element
hot gas
wall section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11174851A
Other languages
German (de)
English (en)
Inventor
Janos Szijarto
Per Granberg
Esa Utriainen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP11174851A priority Critical patent/EP2549063A1/fr
Priority to PCT/EP2012/064286 priority patent/WO2013011126A2/fr
Publication of EP2549063A1 publication Critical patent/EP2549063A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0463Cobalt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • F05D2230/13Manufacture by removing material using lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/185Two-dimensional patterned serpentine-like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/25Three-dimensional helical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer

Definitions

  • the invention relates to a heat shield element for a gas turbine comprising an areal wall section, which extends with regard to a central axis in an axial direction and a circumferential direction, defined by limiting edges of the heat shield element, which wall section is of a defined thickness, said thickness depending on the axial and circumferential position extending radially from an inner surface to be exposed to the hot gas path to an outer surface to be exposed to a coolant, wherein the heat shield element is provided with mounting elements suitable for mounting on a supporting structure.
  • the invention relates to a gas turbine comprising a heat shield of this kind.
  • Geometrical expressions like radial, axial, circumferential and similar terms refer to a respective machine axis if not indicated otherwise.
  • impingement cooling Basically two modes of cooling have established: impingement cooling and film cooling.
  • the hot gas path of a gas turbine is provided with heat shields conducting the hot gas along its flow path.
  • These heat shields are very often cooled by impingement cooling, wherein a jet of coolant is applied on the radially outer surface of the heat shield wall with regard to the hot gas path.
  • these heat shields are provided with so called film cooling holes, by which a specific amount of coolant is injected into the hot gas path to establish a cooling film layered on the inner surface of the heat shield to protect the heat shield material.
  • a heat shield element of this kind is disclosed in EP 1 507 116 A1 .
  • the coolant which is partly injected into the hot gas path and which is in most cases compressed and filtered ambient air, is called secondary air.
  • the necessary amount of secondary air to enable second operation of the turbine is defined as the secondary air consumption.
  • An increase in secondary air consumption results normally in a decrease of the turbine efficiency since this coolant not only waves the material of the hot gas component but also cooled down the hot gas resulting in less power output.
  • a heat shield element of the incipiently mentioned type provided with cooling channels through the wall section comprising a first section starting at the inner surface, comprising a second section extending between the inner surface and the outer surface along a length of at least three times the thickness of the wall section at that area and comprising a third section further joining through the inner surface or joining through an edge the hot gas path.
  • the extension of the cooling channel along a basically parallel direction with regard to a center plane of the wall section provides a much more efficient usage of the secondary air amount with regard to cooling the heat shield, enabling a reduction of secondary air consumption by approximately 50% depending on the length and shape of the second section of the channel.
  • the wall section is made of nickel based superalloy especially made of hustle alloy, which is also suitable for laser sintering.
  • the heat shield according to the invention is preferably a hot gas component of a gas turbine, wherein the axial direction of the heat shield corresponds to a propagation of the hot gas along a main flow direction along the hot gas path.
  • the heat shield is located in the gas turbine opposite the tip a rotating blade, where the thermal stress is intends due to the high velocity of the hot gas along this stationary heat shield.
  • a preferred embodiment of the invention provides a gas turbine of the forgoing describes kind, wherein the first section of the channel is axially located upstream of the third section of the channel with regard to the hot gas flow direction.
  • the combustor COMB is supplied with fuel F to generate hot gas HG from the induced compressed air A.
  • Said hot gas HG is supplied along a hot gas path HGP through a first stage of the gas turbine GT and subsequent further stages, which are not depicted.
  • the first stage consists of a plurality of first stage vanes 1STV and first stage blades 1STB downstream the first stage vanes 1STV.
  • the first stage blades 1STB rotate along a machine axis MA of a gas turbine rotor.
  • the radial outer tip of the first stage blades 1STB is facing radially outward a heat shield element HS.
  • a plurality of heat shield elements HS are arranged adjacent to each other in a circumferential direction CD.
  • the radial inner surface IS of said respective heat shield element HS defines a central axis CA concentrically.
  • Said central axis CA might be inclined to the machine axis MA of the gas turbine GT but both axes might also be coaxial.
  • Said radially inner surface IS of the heat shield HS is exposed to said hot gas HG of said hot gas path.
  • a radially outer surface OS is exposed to a coolant CO - which is said secondary air SA - being supplied from a cooling air reservoir CAR through a nozzle NZ into a cavity CV, which is partly defined by the radial outer surface OS of the heat shield HS.
  • Said cavity CV extends along the circumference and is radially defined by an axially and circumferentially extending impingement blade IP perforated by impingement holes IPH channeling secondary air jets discharging against the radial outer surface OS of the heat shield HS for cooling purpose.
  • the discharged secondary air SA joins into the hot gas path HGP through channels at a leading ('leading'with regard to a flow direction of the hot gas HG along said hot gas path HGP) edge LE of the heat shield HS, shown in figur 3 .
  • This discharged secondary air SA establishes a cooling film CF covering the inner surface IS of the heat shield HS.
  • FIG 2 shows a three dimensional depiction of a heat shield element HS according to the invention.
  • a clearly distinguishing feature compared to the heat shield HS shown in figure 1 are the coolant inlet holes CI provided on the radial outer surface OS of the heat shield HS and the coolant outlet holes CO discharging the cooling air CA into the hot gas path HGP.
  • the coolant inlet holes CI are provided axially near a trailing edge TE (axially opposite the leading edge LE) and the cooling air outlet holes CO are provided near said leading edge LE of the heat shield HS.
  • FIGS. 3 and 4 show the cooling channels CC in a transparent or holographic view respectively in a negative depiction showing the secondary air SA flowing through the cooling channels CC.
  • the cooling channels CC are provided in a wall section WS of a defined wall thickness TH.
  • the wall section WS is circumferentially and axially defined by limiting edges, for example said leading edge LE and said trailing edge TE of the heat shield element HS.
  • the heat shield is limited by circumferential edges CE.
  • the cooling channels CC are provided in the wall section WS within the wall thickness TH, which extends radially from the inner surface IS to the outer surface OS.
  • the cooling channels CC comprise in downstream order of the secondary air SA flow a first section S1 starting at the inner surface IS, a second section extending between the inner surface IS and the outer surface OS along a lengths of at least three times the thickness TH of the wall section WS at that area and further comprises a third section S3 joining through the inner surface IS - or in this case the leading edge LE - the hot gas path HGP.
  • the second section S2 is of a helix shape.
  • said second section S2 is of a serpentine shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
EP11174851A 2011-07-21 2011-07-21 Élément d'écran thermique pour une turbine à gaz Withdrawn EP2549063A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11174851A EP2549063A1 (fr) 2011-07-21 2011-07-21 Élément d'écran thermique pour une turbine à gaz
PCT/EP2012/064286 WO2013011126A2 (fr) 2011-07-21 2012-07-20 Élément formant écran thermique, turbine à gaz

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11174851A EP2549063A1 (fr) 2011-07-21 2011-07-21 Élément d'écran thermique pour une turbine à gaz

Publications (1)

Publication Number Publication Date
EP2549063A1 true EP2549063A1 (fr) 2013-01-23

Family

ID=45002192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11174851A Withdrawn EP2549063A1 (fr) 2011-07-21 2011-07-21 Élément d'écran thermique pour une turbine à gaz

Country Status (2)

Country Link
EP (1) EP2549063A1 (fr)
WO (1) WO2013011126A2 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014201249A1 (fr) 2013-06-14 2014-12-18 United Technologies Corporation Panneau de chemisage de chambre de combustion à géométrie ondulée de moteur à turbine à gaz
EP2894301A1 (fr) 2014-01-14 2015-07-15 Alstom Technology Ltd Segment de bouclier thermique de stator
WO2016062581A1 (fr) * 2014-10-20 2016-04-28 Siemens Aktiengesellschaft Élément formant bouclier thermique et procédé de fabrication de celui-ci
EP3192976A1 (fr) * 2016-01-15 2017-07-19 United Technologies Corporation Composant de moteur de turbine à gaz, joint d'étanchéité à l'air externe d'aube et moteur de turbine à gaz associés
EP3196423A1 (fr) 2016-01-25 2017-07-26 Ansaldo Energia Switzerland AG Bouclier thermique de stator d'une turbine à gaz, turbine à gaz et procédé de refroidissement associés
CN107023330A (zh) * 2015-12-16 2017-08-08 通用电气公司 将目标特征用于在微通道回路形成入口通路的系统和方法
US9896970B2 (en) 2014-11-14 2018-02-20 General Electric Company Method and system for sealing an annulus
WO2019231754A1 (fr) * 2018-05-31 2019-12-05 General Electric Company Carénage pour moteur à turbine à gaz

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2125111A (en) * 1982-03-23 1984-02-29 Rolls Royce Shroud assembly for a gas turbine engine
EP0709550A1 (fr) * 1994-10-31 1996-05-01 General Electric Company Virole réfroidi
US5649806A (en) * 1993-11-22 1997-07-22 United Technologies Corporation Enhanced film cooling slot for turbine blade outer air seals
WO2000040838A1 (fr) * 1999-01-07 2000-07-13 Siemens Westinghouse Power Corporation Procede de refroidissement d'une turbine a combustion
US6276142B1 (en) * 1997-08-18 2001-08-21 Siemens Aktiengesellschaft Cooled heat shield for gas turbine combustor
EP1507116A1 (fr) 2003-08-13 2005-02-16 Siemens Aktiengesellschaft Ensemble bouclier thermique pour un composant acheminant un gaz chaud, notamment pour une chambre de combustion de turbine à gaz
EP1517008A2 (fr) * 2003-09-17 2005-03-23 General Electric Company Refroidissement d'une paroi pourvue d'une couche de protection par un réseau de canaux
US20090022583A1 (en) * 2005-04-21 2009-01-22 Albert Schrey Turbine blade with a cover plate and a protective layer applied to the cover plate
US20100139903A1 (en) * 2008-12-08 2010-06-10 General Electric Company Heat exchanging hollow passages
DE102009053247A1 (de) * 2009-11-13 2011-05-19 Mtu Aero Engines Gmbh Verfahren zum Verändern einer Eigenfrequenz einer Schaufel für eine Strömungsmaschine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2125111A (en) * 1982-03-23 1984-02-29 Rolls Royce Shroud assembly for a gas turbine engine
US5649806A (en) * 1993-11-22 1997-07-22 United Technologies Corporation Enhanced film cooling slot for turbine blade outer air seals
EP0709550A1 (fr) * 1994-10-31 1996-05-01 General Electric Company Virole réfroidi
US6276142B1 (en) * 1997-08-18 2001-08-21 Siemens Aktiengesellschaft Cooled heat shield for gas turbine combustor
WO2000040838A1 (fr) * 1999-01-07 2000-07-13 Siemens Westinghouse Power Corporation Procede de refroidissement d'une turbine a combustion
EP1507116A1 (fr) 2003-08-13 2005-02-16 Siemens Aktiengesellschaft Ensemble bouclier thermique pour un composant acheminant un gaz chaud, notamment pour une chambre de combustion de turbine à gaz
EP1517008A2 (fr) * 2003-09-17 2005-03-23 General Electric Company Refroidissement d'une paroi pourvue d'une couche de protection par un réseau de canaux
US20090022583A1 (en) * 2005-04-21 2009-01-22 Albert Schrey Turbine blade with a cover plate and a protective layer applied to the cover plate
US20100139903A1 (en) * 2008-12-08 2010-06-10 General Electric Company Heat exchanging hollow passages
DE102009053247A1 (de) * 2009-11-13 2011-05-19 Mtu Aero Engines Gmbh Verfahren zum Verändern einer Eigenfrequenz einer Schaufel für eine Strömungsmaschine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3008392A4 (fr) * 2013-06-14 2016-07-20 United Technologies Corp Panneau de chemisage de chambre de combustion à géométrie ondulée de moteur à turbine à gaz
US10508808B2 (en) 2013-06-14 2019-12-17 United Technologies Corporation Gas turbine engine wave geometry combustor liner panel
WO2014201249A1 (fr) 2013-06-14 2014-12-18 United Technologies Corporation Panneau de chemisage de chambre de combustion à géométrie ondulée de moteur à turbine à gaz
EP2894301A1 (fr) 2014-01-14 2015-07-15 Alstom Technology Ltd Segment de bouclier thermique de stator
WO2016062581A1 (fr) * 2014-10-20 2016-04-28 Siemens Aktiengesellschaft Élément formant bouclier thermique et procédé de fabrication de celui-ci
CN107076414B (zh) * 2014-10-20 2019-06-14 西门子股份公司 热屏蔽元件和用于其制造的方法
CN107076414A (zh) * 2014-10-20 2017-08-18 西门子股份公司 热屏蔽元件和用于其制造的方法
US9896970B2 (en) 2014-11-14 2018-02-20 General Electric Company Method and system for sealing an annulus
CN107023330A (zh) * 2015-12-16 2017-08-08 通用电气公司 将目标特征用于在微通道回路形成入口通路的系统和方法
US10100667B2 (en) 2016-01-15 2018-10-16 United Technologies Corporation Axial flowing cooling passages for gas turbine engine components
EP3192976A1 (fr) * 2016-01-15 2017-07-19 United Technologies Corporation Composant de moteur de turbine à gaz, joint d'étanchéité à l'air externe d'aube et moteur de turbine à gaz associés
EP3196423A1 (fr) 2016-01-25 2017-07-26 Ansaldo Energia Switzerland AG Bouclier thermique de stator d'une turbine à gaz, turbine à gaz et procédé de refroidissement associés
US10450885B2 (en) 2016-01-25 2019-10-22 Ansaldo Energia Switzerland AG Stator heat shield for a gas turbine, gas turbine with such a stator heat shield and method of cooling a stator heat shield
WO2019231754A1 (fr) * 2018-05-31 2019-12-05 General Electric Company Carénage pour moteur à turbine à gaz
US10550710B2 (en) 2018-05-31 2020-02-04 General Electric Company Shroud for gas turbine engine

Also Published As

Publication number Publication date
WO2013011126A2 (fr) 2013-01-24
WO2013011126A3 (fr) 2013-05-30

Similar Documents

Publication Publication Date Title
EP2549063A1 (fr) Élément d'écran thermique pour une turbine à gaz
US20240159151A1 (en) Airfoil for a turbine engine
CN104246138B (zh) 具有局部壁厚控制的涡轮翼型件及涡轮叶片
EP3020923B1 (fr) Aube de turbine refroidie
EP2383518A2 (fr) Chambre de combustion tangentielle
US20190085705A1 (en) Component for a turbine engine with a film-hole
EP3255248A1 (fr) Composant pour un moteur à turbine
US10815789B2 (en) Impingement holes for a turbine engine component
EP3043026B1 (fr) Aube à portance élevée et procédé associé de vectorisation d'air de refroidissement
JP2015520322A (ja) ガスタービンエンジンの壁
US10927682B2 (en) Engine component with non-diffusing section
EP3543471A1 (fr) Système de protection thermique d'une partie d'un ensemble d'anneau de cerclage de turbine à gaz
US20220145764A1 (en) Component for a turbine engine with a cooling hole
WO2017196470A2 (fr) Paroi de composant moteur comportant un circuit de refroidissement
US9963982B2 (en) Casting optimized to improve suction side cooling shaped hole performance
EP3431710A1 (fr) Écran de protection pour profil aérodynamique de moteur à turbine
JP2017053350A (ja) セラミックマトリックス複合材料シュラウドを軸方向に保持するための高度な静止シール冷却断面
US20190071976A1 (en) Component for a turbine engine with a cooling hole
JP2019060335A (ja) ターボ機械のインピンジメント冷却インサート
JP5770970B2 (ja) ガスタービンエンジン用タービンノズル
US10787913B2 (en) Airfoil cooling circuit
EP3301261B1 (fr) Aube
EP3421723A2 (fr) Profilé d'aube et procédé associé de fabrication
US20170328213A1 (en) Engine component wall with a cooling circuit
US9039370B2 (en) Turbine nozzle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130724