EP2541062A1 - Kryogene Pumpe - Google Patents

Kryogene Pumpe Download PDF

Info

Publication number
EP2541062A1
EP2541062A1 EP11352008A EP11352008A EP2541062A1 EP 2541062 A1 EP2541062 A1 EP 2541062A1 EP 11352008 A EP11352008 A EP 11352008A EP 11352008 A EP11352008 A EP 11352008A EP 2541062 A1 EP2541062 A1 EP 2541062A1
Authority
EP
European Patent Office
Prior art keywords
pump
cryogenic
valve
cryogenic pump
check valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11352008A
Other languages
English (en)
French (fr)
Inventor
Alexis Lefevre
Pierre Papirer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westport Power Inc
Original Assignee
Westport Power Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westport Power Inc filed Critical Westport Power Inc
Priority to EP11352008A priority Critical patent/EP2541062A1/de
Priority to PCT/CA2012/050416 priority patent/WO2013000077A1/en
Publication of EP2541062A1 publication Critical patent/EP2541062A1/de
Priority to US14/142,830 priority patent/US20140109600A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1013Adaptations or arrangements of distribution members the members being of the poppet valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/108Valves characterised by the material

Definitions

  • This invention relates to a cryogenic pump and particularly to a check valve for a cryogenic piston pump.
  • a cryogenic pump that utilises a piston as the pumping member has a pumping chamber with an outlet port from the pumping chamber communicating with a conduit for the pumped liquid.
  • a check valve is located in the conduit to prevent backflow of liquid from the conduit to the pumping chamber.
  • a check valve typically has its inlet and outlet in axial alignment with one another.
  • Cryogenic pumps are typically used in industrial plants for example, in plant for the separation or liquefaction of industrial gases.
  • Cryogenic liquefied gases are becoming increasingly widely used.
  • LNG liquefied natural g as
  • HSVs heavy goods vehicles
  • Piston pumps have been developed in order to transfer the LNG from a storage vessel on board the vehicle to the vehicle's engine. Such a pump needs to be quite compact and easy to maintain.
  • the pump typically has a vaporiser associated with it.
  • a cryogenic pump for pumping LNG having a piston operable to discharge cryogenic liquid from a pumping chamber within a pump housing, an outlet port from the pumping chamber, the outlet port having its location in the pump housing, an a check valve in the outlet port, wherein the check valve has a valve member, a demountable retaining member accessible from the exterior of the pump housing, an inlet axial with the valve member, and an outlet transverse to the axis of the valve member.
  • the retaining member has a sleeve for guiding the valve member.
  • the sleeve is typically integral with the retaining member.
  • the valve member may have a cylindrical body an a frusto-conical head, which, when the check valve is in its closed position, makes sealing engagement under the bias of the spring with a complementary valve seat formed in the pump housing.
  • the head is typically formed of plastics material, for example, PTFE.
  • the valve seat is typically formed of metal, for example, stainless steel.
  • the spring is typically a compression spring.
  • the compression spring may seat in a detent in the retaining member.
  • a cryogenic pump 2 of the kind having a cold end 3 adapted to be immersed in a volume of cryogenic liquid, not shown, to be supplied to, for example, a combustion engine.
  • the pump 2 is generally of the same kind as that disclosed in US 7 293 418 B2 , save that it does not include an accumulator. Instead the pump 2 has a pumping chamber communicating directly with a vaporiser or like heater.
  • the disclosure of US 7 293 418 B2 is incorporated herein by way of reference.
  • the cryogenic pump 2 has a warm end 5 opposite the cold end 3. The warm end 5 is not intended for immersion in the cryogenic liquid.
  • the pump 2 has a housing 4 of generally elongate configuration with an axial piston 6 and piston shaft 7.
  • the piston 6 is able, in operation, to draw cryogenic liquid into, and force cryogenic liquid out of, a pumping chamber 8 defined within the housing 4.
  • the pumping chamber 8 has an inlet 9 for cryogenic liquid communicating with a hollow cylindrical cryogenic liquid intake member 11 typically fitted with a filter 11 a effective to prevent small solid particles from entering the pump.
  • the pumping chamber 8 has an outlet port 10 for the discharge of cryogenic liquid.
  • the outlet port 10 houses a check valve 12.
  • the outlet port 10 is connected to a relatively small diameter conduit 13 which extends from the cold end 3 to the warm end 5 of the pump 2.
  • the conduit 13 terminates in an annular heat exchange device 15, in which the cryogenic liquid is vaporised by indirect heat exchange with a relatively high temperature heat exchange fluid.
  • the heat exchange fluid can be the aqueous liquid that is used to cool the engine.
  • the heat exchange device 15 is provided with an outlet 99 (see Figure 2 ) for vaporised natural gas and an inlet 19 and outlet 21 for the heat exchange fluid.
  • there is within the heat exchange device a passage (not shown) for the cryogenic liquid in heat exchange relationship with another passage (not shown) for the heat exchange fluid. Flow of the cryogenic liquid through its passage causes it to vaporise.
  • a drive chamber 23 for the piston 6 for the piston 6.
  • a hydraulic drive is employed, there being an inlet port 25 and an outlet port 17 for hydraulic liquid, but an electrical, pneumatic or mechanical drive could alternatively be used.
  • the drive arrangements may in general be similar to those disclosed in US 7 293 418 B2 for the pump described and shown therein.
  • the piston 6 has two strokes. In its upward stroke (that is in its stroke away from the cold end 3, a flow of cryogenic liquid through the inlet 9 is induced. In its downward stroke (that is in its stroke away from the warm end 5) a flow of cryogenic liquid through the outlet port 10 is provided.
  • the pump 2 is capable of generating a high delivery pressure, typically in the order of 300 bar, or higher.
  • the check valve 12 is best viewed in Figure 4 .
  • the check valve 12 is located in the pump housing 4 at the outlet port 10.
  • the check valve 12 has a spring-loaded valve member 14 which is retained within the housing 4 by a demountable retaining member 16 accessible from the exterior of the pump housing 4.
  • the retaining member 16 may make a screw-threaded engagement with the pump housing 4 and may have a configuration such that access can be gained to the valve member 14 from outside the housing 4 by means of a specific tool (not shown) to dismantle the part, in association with a standard wrench.
  • the retaining member 16 comprises a resilient O-ring seal 40 to prevent leakage of fluid out of the pump 16 via the screw-threads of the retaining member 16.
  • the retaining member 16 has a sleeve 22 for guiding the valve member 14.
  • the sleeve 22 is typically integral with the retaining member.
  • the valve member 14 has a cylindrical body 24 and a frusto-conical head 26. During the delivery stroke the check valve 12 remains open but it closes for the intake stroke of the piston 6. If the pump is idle, the check valve 12 remains closed. When the check valve 12 is in its closed position, the head 26 makes a sealing engagement, under the bias of a compression spring 28 and any fluid pressure in the outlet 20, with a complementary valve seat 30 formed in the pump housing 4.
  • the head 26 and the rest of the valve member 14 are formed of a plastics material which is able to be used at cryogenic temperatures. PTFE is one such plastics material.
  • the housing 4 and, in particular, the valve seat 30 is made of a material that in addition to being a metallic engineering material is suitable for use at cryogenic temperatures. Stainless steel is one such material.
  • the compression spring 28 is seated in a detent 32 in the retaining member 16. The bias of the compression spring 28 acts in a valve-closing direction. Thus, when there is no cryogenic liquid pressure acting in the opposite direction, the valve 12 remains in a closed position preventing back flow of fluid from the conduit 13 into the pumping chamber 8.
  • the basis of the spring is effective to keep the check valve closed 12 when there is no cryogenic liquid pressure acting on the valve member 14 irrespective of he attitude of the cryogenic pump 2. (in practice, the cryogenic pump is typically positioned with its axis at angle to the vertical.)
  • the valve 12 has an inlet 18 which is axial with the valve member 14 and a radial outlet 20 which is transverse to the axis of the valve member 14.
  • the check valve 12 when open, permits cryogenic liquid to flow from the inlet 18 to the outlet 20.
  • the flow path has an axial element being defined between the sleeve 22 and a complementary portion of the housing 4 and a transverse radial element through the outlet 20, there being a transverse radial passage 41 through the sleeve 22 of the retaining member 16 to aid flow of the cryogenic liquid.
  • the position of the check valve 12 in the housing 4 of the cryogenic pump 2 keeps down the dead volume between the piston 6 at the end of the downward stroke, i.e. the stroke away from the worn end 5, and the sealing area of the check valve 12, and thereby avoids loss of pump efficiency.
  • valve member 14 undergoes wear in use, so is exchanged for an identical such member after a chosen period of time.
  • the pump 2 is withdrawn from the tank (not shown) containing cryogenic liquid in which it is typically located, the pump 2 allowed to return to ambient temperature, and the retaining member 16 removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)
EP11352008A 2011-06-29 2011-06-29 Kryogene Pumpe Withdrawn EP2541062A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11352008A EP2541062A1 (de) 2011-06-29 2011-06-29 Kryogene Pumpe
PCT/CA2012/050416 WO2013000077A1 (en) 2011-06-29 2012-06-22 Cryogenic pump
US14/142,830 US20140109600A1 (en) 2011-06-29 2013-12-28 Cryogenic Pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11352008A EP2541062A1 (de) 2011-06-29 2011-06-29 Kryogene Pumpe

Publications (1)

Publication Number Publication Date
EP2541062A1 true EP2541062A1 (de) 2013-01-02

Family

ID=44862873

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11352008A Withdrawn EP2541062A1 (de) 2011-06-29 2011-06-29 Kryogene Pumpe

Country Status (3)

Country Link
US (1) US20140109600A1 (de)
EP (1) EP2541062A1 (de)
WO (1) WO2013000077A1 (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015003650A1 (en) * 2013-07-11 2015-01-15 Westport Power Inc. Low pressure cryogenic pump assembly
CN106121962A (zh) * 2016-06-29 2016-11-16 中材高新成都能源技术有限公司 Lng低温泵
DE102016210752A1 (de) 2016-06-16 2017-12-21 Robert Bosch Gmbh Förderpumpe für kryogene Kraftstoffe und Kraftstofffördersystem
DE102016210728A1 (de) 2016-06-16 2017-12-21 Robert Bosch Gmbh Förderpumpe für kryogene Kraftstoffe und Kraftstofffördersystem
WO2017215817A1 (de) 2016-06-16 2017-12-21 Robert Bosch Gmbh Fördereinrichtung für kryogene kraftstoffe
WO2018112670A1 (en) 2016-12-23 2018-06-28 Westport Power Inc. Apparatus and method for filtering cryogenic fluid
WO2019081159A1 (de) * 2017-10-26 2019-05-02 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene kraftstoffe, verfahren zum betreiben einer kraftstofffördereinrichtung für kryogene kraftstoffe
DE102017222204A1 (de) 2017-12-07 2019-06-13 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe
DE102017012218A1 (de) 2017-12-11 2019-06-13 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe
WO2019110189A1 (de) 2017-12-07 2019-06-13 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene kraftstoffe
DE102017222419A1 (de) 2017-12-11 2019-06-13 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe
DE102017222382A1 (de) 2017-12-11 2019-06-13 Robert Bosch Gmbh Verfahren zum Betreiben einer Kolbenpumpe, Kolbenpumpe
DE102018200075A1 (de) 2018-01-04 2019-07-04 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe, Verfahren zum Betreiben einer Kraftstofffördereinrichtung für kryogene Kraftstoffe
WO2019149472A1 (de) 2018-02-05 2019-08-08 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene kraftstoffe
DE102018203769A1 (de) 2018-03-13 2019-09-19 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe
CN110778432A (zh) * 2018-07-30 2020-02-11 罗伯特·博世有限公司 用于低温燃料的活塞泵和燃料输送装置
DE102019200428A1 (de) 2019-01-16 2020-07-16 Robert Bosch Gmbh Verfahren zum Betreiben einer Kraftstofffördereinrichtung für kryogene Kraftstoffe, Steuergerät sowie Kraftstofffördereinrichtung für kryogene Kraftstoffe
FR3115334A1 (fr) * 2020-10-19 2022-04-22 F2M Pompe pour fluide cryogénique
WO2022084072A1 (fr) * 2020-10-19 2022-04-28 F2M Pompe comprenant des moyens de refroidissement

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11073218B2 (en) 2014-07-23 2021-07-27 Bs&B Innovations Limited In-line pressure relief valve and rupture disk
US10060421B2 (en) * 2015-06-29 2018-08-28 Caterpillar Inc. Hydraulic drive multi-element cryogenic pump
US10024311B2 (en) * 2015-08-06 2018-07-17 Caterpillar Inc. Cryogenic pump for liquefied natural gas
US10774820B2 (en) * 2017-11-13 2020-09-15 Caterpillar Inc. Cryogenic pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1937859A (en) * 1929-08-08 1933-12-05 Phillips Petroleum Co Liquefied gas pump
US2292617A (en) * 1940-06-15 1942-08-11 Linde Air Prod Co Apparatus for pumping volatile liquids
US2447741A (en) * 1944-12-12 1948-08-24 Baufre William Lane De Liquid oxygen pump
US7293418B2 (en) 2001-11-30 2007-11-13 Westport Power Inc. Method and apparatus for delivering a high pressure gas from a cryogenic storage tank

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US620936A (en) * 1899-03-14 kunzer
US1039757A (en) * 1912-02-26 1912-10-01 John C Kitton Compressor.
US1613121A (en) * 1926-09-03 1927-01-04 Oppman Frank Refrigerant compressor
US2441911A (en) * 1945-06-11 1948-05-18 Phillips Petroleum Co Check valve and storage system containing same
US3016717A (en) * 1957-10-25 1962-01-16 Union Carbide Corp Apparatus for storing and pumping a volatile liquid
US3238887A (en) * 1964-03-26 1966-03-08 Union Carbide Corp Cryogenic liquid pump
US3220202A (en) * 1964-05-15 1965-11-30 Union Carbide Corp Apparatus for storing and pumping a volatile liquid
US3299828A (en) * 1964-12-16 1967-01-24 Lox Equip Reciprocating cryogenic pump
US3844310A (en) * 1972-01-20 1974-10-29 F Brindisi Pressure relief valve unit
US5316036A (en) * 1993-04-09 1994-05-31 Shop Vac Corporation Retainer plate assembly for pump housing
EP0730092B1 (de) * 1995-03-03 1997-12-29 Cryopump Ag Pumpe zum Pumpen eines verflüssigtes Gas aufweisenden Fluids und Einrichtung mit einer Pumpe
US5996472A (en) * 1996-10-07 1999-12-07 Chemical Seal And Packing, Inc. Cryogenic reciprocating pump
US6006525A (en) * 1997-06-20 1999-12-28 Tyree, Jr.; Lewis Very low NPSH cryogenic pump and mobile LNG station
US6663350B2 (en) * 2001-11-26 2003-12-16 Lewis Tyree, Jr. Self generating lift cryogenic pump for mobile LNG fuel supply system
US8671700B2 (en) * 2009-01-21 2014-03-18 Endocare, Inc. High pressure cryogenic fluid generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1937859A (en) * 1929-08-08 1933-12-05 Phillips Petroleum Co Liquefied gas pump
US2292617A (en) * 1940-06-15 1942-08-11 Linde Air Prod Co Apparatus for pumping volatile liquids
US2447741A (en) * 1944-12-12 1948-08-24 Baufre William Lane De Liquid oxygen pump
US7293418B2 (en) 2001-11-30 2007-11-13 Westport Power Inc. Method and apparatus for delivering a high pressure gas from a cryogenic storage tank

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015003650A1 (en) * 2013-07-11 2015-01-15 Westport Power Inc. Low pressure cryogenic pump assembly
DE102016210752A1 (de) 2016-06-16 2017-12-21 Robert Bosch Gmbh Förderpumpe für kryogene Kraftstoffe und Kraftstofffördersystem
DE102016210728A1 (de) 2016-06-16 2017-12-21 Robert Bosch Gmbh Förderpumpe für kryogene Kraftstoffe und Kraftstofffördersystem
WO2017215817A1 (de) 2016-06-16 2017-12-21 Robert Bosch Gmbh Fördereinrichtung für kryogene kraftstoffe
WO2017215839A1 (de) 2016-06-16 2017-12-21 Robert Bosch Gmbh Förderpumpe für kryogene kraftstoffe und kraftstofffördersystem
DE102016210726A1 (de) 2016-06-16 2017-12-21 Robert Bosch Gmbh Fördereinrichtung für kryogene Kraftstoffe
WO2017215818A1 (de) 2016-06-16 2017-12-21 Robert Bosch Gmbh Förderpumpe für kryogene kraftstoffe und kraftstofffördersystem
CN106121962A (zh) * 2016-06-29 2016-11-16 中材高新成都能源技术有限公司 Lng低温泵
WO2018112670A1 (en) 2016-12-23 2018-06-28 Westport Power Inc. Apparatus and method for filtering cryogenic fluid
US11628387B2 (en) 2016-12-23 2023-04-18 Westport Fuel Systems Canada Inc. Apparatus and method for filtering cryogenic fluid
EP3559575A4 (de) * 2016-12-23 2020-07-29 Westport Power Inc. Vorrichtung und verfahren zur filterung einer kryogenen flüssigkeit
WO2019081159A1 (de) * 2017-10-26 2019-05-02 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene kraftstoffe, verfahren zum betreiben einer kraftstofffördereinrichtung für kryogene kraftstoffe
DE102017222202A1 (de) 2017-12-07 2019-06-13 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe
WO2019110282A1 (de) 2017-12-07 2019-06-13 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene kraftstoffe
WO2019110189A1 (de) 2017-12-07 2019-06-13 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene kraftstoffe
DE102017222204A1 (de) 2017-12-07 2019-06-13 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe
DE102017012218A1 (de) 2017-12-11 2019-06-13 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe
DE102017222419A1 (de) 2017-12-11 2019-06-13 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe
DE102017222382A1 (de) 2017-12-11 2019-06-13 Robert Bosch Gmbh Verfahren zum Betreiben einer Kolbenpumpe, Kolbenpumpe
WO2019115161A1 (de) 2017-12-11 2019-06-20 Robert Bosch Gmbh Verfahren zum betreiben einer kolbenpumpe, kolbenpumpe
WO2019115158A1 (de) 2017-12-11 2019-06-20 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene kraftstoffe
WO2019115097A1 (de) 2017-12-11 2019-06-20 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene kraftstoffe
DE102018200075A1 (de) 2018-01-04 2019-07-04 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe, Verfahren zum Betreiben einer Kraftstofffördereinrichtung für kryogene Kraftstoffe
WO2019149472A1 (de) 2018-02-05 2019-08-08 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene kraftstoffe
DE102018201742A1 (de) 2018-02-05 2019-08-08 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe
WO2019174814A1 (de) 2018-03-13 2019-09-19 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene kraftstoffe
DE102018203769A1 (de) 2018-03-13 2019-09-19 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe
CN110778432A (zh) * 2018-07-30 2020-02-11 罗伯特·博世有限公司 用于低温燃料的活塞泵和燃料输送装置
DE102019200428A1 (de) 2019-01-16 2020-07-16 Robert Bosch Gmbh Verfahren zum Betreiben einer Kraftstofffördereinrichtung für kryogene Kraftstoffe, Steuergerät sowie Kraftstofffördereinrichtung für kryogene Kraftstoffe
FR3115334A1 (fr) * 2020-10-19 2022-04-22 F2M Pompe pour fluide cryogénique
WO2022084072A1 (fr) * 2020-10-19 2022-04-28 F2M Pompe comprenant des moyens de refroidissement

Also Published As

Publication number Publication date
WO2013000077A1 (en) 2013-01-03
US20140109600A1 (en) 2014-04-24

Similar Documents

Publication Publication Date Title
EP2541062A1 (de) Kryogene Pumpe
EP2541061B1 (de) Kryogene Pumpen
EP3309433B1 (de) Sicheres ventil für hochdruckregler
CN104884799B (zh) 低温液化气体的吸入和排出用阀体、往复式泵、以及燃料气体供给装置
EP2373910B1 (de) Flüssigkeitsregelventil
CN110185920B (zh) 包括用于容纳泵组件的贮存器的低温储存容器
JP2007506032A (ja) 内燃機関用の高圧ガス燃料供給システムと高圧ガス燃料の漏れを防止するための、構成要素間の接続部を密封する方法
DE60208497D1 (de) Anschluss für eine Vorrichtung zum Entleeren kryogener Flüssigkeiten
US7614386B2 (en) Fuel pump
EP1314886A2 (de) Kryopumpe für LNG-Brennstoff
JP6161568B2 (ja) バイフューエルエンジン
CN103104356A (zh) 让燃料流过双燃料发动机的直接喷射泵的系统和方法
US5996472A (en) Cryogenic reciprocating pump
JP2004245414A (ja) ガス制御組立体
CN103375615B (zh) 过压安全阀组件
EP3110743B1 (de) Ausgabepistole
US20170037879A1 (en) Hydraulic actuator for cryogenic pump
EP2876338B1 (de) Rückschlagventil mit rückseitiger Druckentlastung
CN104279155A (zh) 带有改进的进气阀布置的往复式活塞泵
CN203394741U (zh) 带有改进的进气阀布置的往复式活塞泵
LU93188B1 (en) Two stages gas pressure regulator with cylindrical body
US9915237B2 (en) Combination shuttle and lubricator valve for an air starter
US11982408B2 (en) Quick-fill apparatus, system and method for fuel valves
RU2770352C2 (ru) Криогенный насос
RU2756830C2 (ru) Криогенный насос

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17P Request for examination filed

Effective date: 20130702

17Q First examination report despatched

Effective date: 20150206

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150617