EP2541017A1 - Variable geometry turbocharger - Google Patents
Variable geometry turbocharger Download PDFInfo
- Publication number
- EP2541017A1 EP2541017A1 EP11747057A EP11747057A EP2541017A1 EP 2541017 A1 EP2541017 A1 EP 2541017A1 EP 11747057 A EP11747057 A EP 11747057A EP 11747057 A EP11747057 A EP 11747057A EP 2541017 A1 EP2541017 A1 EP 2541017A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- exhaust introduction
- rear exhaust
- nozzle
- space
- introduction wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007789 sealing Methods 0.000 claims abstract description 37
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 5
- 230000035515 penetration Effects 0.000 claims abstract description 4
- 230000002093 peripheral effect Effects 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 5
- 230000002265 prevention Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/12—Final actuators arranged in stator parts
- F01D17/14—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
- F01D17/16—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
- F01D17/165—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B39/00—Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/24—Control of the pumps by using pumps or turbines with adjustable guide vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/40—Application in turbochargers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/55—Seals
- F05D2240/58—Piston ring seals
Definitions
- the present invention relates to a variable geometry turbocharger capable of enhancing turbine efficiency and enabling a smooth operation of nozzle vanes with a simple structure.
- Fig. 1 is a longitudinal sectional view showing an overall structure of a variable geometry turbocharger to which the present invention is applied.
- turbine and compressor housings 1 and 2 are integrally assembled via a bearing housing 3 by fastening bolts 3a and 3b.
- Turbine and compressor impellers 4 and 5 disposed in the turbine and compressor housings 1 and 2, respectively, are coupled together by a turbine shaft 7 rotatably supported via a bearing 6 in the bearing housing 3.
- the bearing housing 3 is provided, on its side adjacent to the turbine housing, with an exhaust nozzle 9 for guiding exhaust gas introduced into a scroll passage 8 in the turbine housing 1 to the turbine impeller 4.
- the exhaust nozzle 9 comprises a front and rear exhaust introduction walls 10 and 11 adjacent to the bearing and turbine housings 3 and 1, respectively, and integrally assembled together with a required space kept therebetween by fixing members 12 provided, for example, at three circumferential positions.
- the front exhaust introduction wall 10 has a front surface (a surface adjacent to the bearing housing 3) to which a mounting member 13 is fixed.
- the mounting member 13 is pinched by the turbine and bearing housings 1 and 3 to fix the exhaust nozzle 9 in assembling of the turbine and bearing housings 1 and 3 together. In such assembling, the exhaust nozzle 9 is positioned with a positioning pin 14 relative to the bearing housing 3.
- Circumferentially equidistantly disposed between the front and rear exhaust introduction walls 10 and 11 are a plurality of nozzle vanes 15 each of which is, in Fig. 1 , pivotally supported at its opposite sides by vane shafts 16a and 16b coaxially fixed to the opposite sides of the vane 15 and penetrating through the exhaust introduction walls 10 and 11, respectively.
- reference numerals 17a, 17b, 17c and 17d denote a link-type transmission mechanism for adjusting an opening/closing angle of the nozzle vanes 15; and 18, a scroll passage formed in the compressor housing 2.
- a space 19 is provided between the turbine housing 1 and the rear exhaust introduction wall 11 in the exhaust nozzle 9.
- the space 19, which is inherently unnecessary, is provided for absorption of any thermal deformation and any variations in accuracy since the turbine housing 1 may have heat deformation between cold and hot times and components to be assembled may have variations in accuracy.
- an annular groove 22 is provided on the outer periphery of the extension 11' of the rear exhaust introduction wall 11 and typically two sealing piston rings 21 are disposed in the groove 22 with their cutout portions being not overlapped with each other, thereby forming a sealing device 23.
- Outer peripheries of the sealing piston rings 21 are pushed against the inner surface 1' of the turbine housing 1 due to resilience of the rings 21 to prevent any gas leakage.
- the sealing device 23 is provided in various elaborate manners for prevention of gas leakage from the space 19. However, it has turned out that substantially enhancing turbine efficiency is difficult to attain and is limited even if the sealing device 23 is elaborately configured.
- the inventors have variously studied and examined factors other than the gas leakage which affect turbine efficiency and found out that greater disturbance of the exhaust gas at the turbine impeller outlet 20 decreases turbine efficiency.
- each vane shaft 16b of each nozzle vane 15 is pressed by the exhaust gas from the space 19 with higher pressure to move the nozzle vane 15 toward the front exhaust introduction wall 10, thereby causing a clearance between each nozzle vane 15 and the rear exhaust introduction wall 11.
- the front exhaust introduction wall 10 is disk-shaped as a whole whereas the rear exhaust introduction wall 11 is, just like Patent Literature 1, disk-shaped at its outer periphery and has an inner periphery with the extension 11' curved axially downstream along a contour of the turbine impeller 4.
- the disk-shaped front exhaust introduction wall 10 is deformed in its entirety only in a direction of increasing diameter.
- the rear exhaust introduction wall 11 with the extension 11' is suppressed in diametral deformation of the disk-shaped outer periphery due to high stiffness strength of the extension 11' so that the disk-shaped portion is deformed to slump down against the front exhaust introduction wall 10; as a result, there is a concern that the disk-shaped portion may contact any nozzle vane 15 to block the movement of the vane 15.
- the invention was made in view of the above, and has its object to provide a variable geometry turbocharger capable of preventing, with a simple structure, front and rear exhaust introduction walls from being deformed in a non-diametral direction and ensuring stable movement of the nozzle vanes.
- the invention is directed to a variable geometry turbocharger with an exhaust nozzle having nozzle vanes interposed between front and rear exhaust introduction walls, a space being between said rear exhaust introduction wall and a turbine housing, a sealing device being arranged upstream, in a direction of exhaust gas, of each through hole provided in said rear exhaust introduction wall for penetration of a vane shaft to prevent exhaust gas in a scroll passage from leaking through said space to a turbine impeller, wherein each of said front and rear exhaust introduction walls is disk-shaped, said turbine housing being formed with a shoulder to which the disk-shaped rear exhaust introduction wall is fitted with said space.
- variable geometry turbocharger it is preferable that said front and rear exhaust introduction walls are equivalent in linear expansion coefficient.
- said sealing device comprises sealing piston rings or a disk spring seal.
- the front and rear exhaust introduction walls are disk-shaped and the disk-shaped rear exhaust introduction wall is fitted to and disposed, with the space, in the shoulder formed on the turbine housing.
- Fig. 2 shows an embodiment of the invention in which a disk-shaped rear exhaust introduction wall 51 is substituted for the rear exhaust introduction wall 11 with the extension 11' in the variable geometry turbocharger of Fig. 1 .
- each of the front and rear exhaust introduction walls 10 and 51 is disk-shaped. It is preferable that the disk-shaped front and rear exhaust introduction walls 10 and 51 are made of same material or materials equivalent in linear expansion coefficient. With the rear and front exhaust introduction walls 51 and 10 set equivalent in linear expansion coefficient, the vane shafts 16a and 16b fixed to opposite sides of each nozzle vane 15 are consistently coaxially supported by the exhaust introduction walls 51 and 10.
- the turbine housing 1 is formed with an extension 39 extending to a position facing to and spaced apart by a required space from the outer periphery of the rear exhaust introduction wall 51.
- the turbine housing 1 with the extension 39 has a front surface formed with a shoulder 50 to which the rear exhaust introduction wall 51 is fitted with the space 19 formed therebetween.
- the space 19 is set in consideration of linear expansion coefficients thereof.
- the embodiment of Fig. 2 has a sealing device 25 for prevention of the exhaust gas in the scroll passage 8 from leaking through the space 19 between the turbine housing 1 and the rear exhaust introduction wall 51 to the turbine impeller 4, the sealing device 25 being arranged (on a side adjacent to the scroll passage 8) upstream, in a direction of exhaust gas, of each through hole 24 through which the vane shaft 16b penetrates.
- the sealing device 25 of Fig. 2 comprises a groove 22 circumferentially extending on an outer periphery of the rear exhaust introduction wall 51, and sealing piston rings 21 similar to those in Fig. 1 fitted between an inner periphery of the extension 39 and the groove 22 on the outer periphery of the rear exhaust introduction wall 51.
- two sealing piston rings 21 are disposed in the groove 22.
- Such collar 35 can suppress entering of foreign matters through the through hole 24 and movement of the exhaust gas through the through hole 24 to the space 19. Furthermore, as will be described hereinafter, pressure of the exhaust gas acting on the collar 35 can be utilized for a force sufficient for movement of the nozzle vane 15 toward the rear exhaust introduction wall 51.
- Fig. 3a is a sectional view of an exhaust nozzle unit unitized to include the exhaust nozzle 9 of Fig. 2
- Fig. 3b is a front view of the exhaust nozzle unit of Fig. 3a viewed in a direction of arrow III.
- the nozzle vanes 15 with the vane shafts 16a and 16b penetrating through the through holes 24 are disposed between the disk-shaped rear exhaust introduction wall 51 with the groove 22 formed on its outer periphery and the disk-shaped front exhaust introduction wall 10.
- the front exhaust introduction wall 10 has a front surface (a right side surface in Fig. 3a ) on which a guide ring 53 is disposed for pinching a rotary ring 52 between the guide ring 53 and the mounting member 13.
- the rear exhaust introduction wall 51, the front exhaust introduction wall 10, the mounting member 13 and the guide ring 53 are fastened together with the fixing members 12 provided at three positions, whereby the exhaust nozzle unit U is unitized.
- An end of the vane shaft 16b of each nozzle vane 15 penetrates through and is fixed to an inner end of a corresponding one of transmission links 54.
- the transmission link 54 has an outer end fitted into a corresponding one of engaging recesses 55 equidistantly formed as many as the number of nozzle vanes 15 on an inner periphery of the rotary ring 52.
- Rotary movement of the vane shaft 16b of one of the nozzle vanes 15 by the transmission mechanism constituted by the parts 17a, 17b, 17c and 17d in Fig. 1 causes pivotal movement of all the nozzle vanes 15 at the same angle through the transmission links 54 and the rotary ring 52.
- the exhaust nozzle unit U unitized as shown in Figs. 3a and 3b is assembled with a flange 13' of the mounting member 13 pinched for fastening between the turbine and bearing housings 1 and 3.
- the sealing piston rings 21 are disposed between the inner periphery of the extension 39 in the shoulder 50 on the front surface of the turbine housing 1 and the groove 22 formed on the outer periphery of the rear exhaust introduction wall 51 of the exhaust nozzle unit U unitized as shown in Figs. 3a and 3b , the rear exhaust introduction wall 51 being fitted to the shoulder 50.
- the flange 13' of the mounting member 13 is pinched between the turbine and bearing housings 1 and 3 shown in Fig. 1 and they are integrally fastened together with the fastening bolt 3a.
- the rear exhaust introduction wall 51 is disposed in the shoulder 50 of the turbine housing 1 with the space 19.
- the rear exhaust introduction wall 11 with the extension 11' in Fig. 1 is deformed to slump down in a non-diametral direction
- such deformation can be suppressed in the structure of Fig. 2 to prevent an irrational force from acting on any of the nozzle vanes 15.
- the nozzle vanes 15 can always ensure a stable pivotal movement.
- the sealing device 25 with the sealing piston rings 21 disposed between the inner periphery of the extension 39 and the groove 22 formed on the outer periphery of the rear exhaust introduction wall 51 prevents the exhaust gas in the scroll passage 8 from leaking through the space 19 between the turbine housing 1 and the rear exhaust introduction wall 51.
- a pressure P2 in the space 19 downstream of the sealing device 25 is low and brings about a state of P1 > P2 with respect to a pressure P1 in the exhaust nozzle 9, so that the exhaust gas in the exhaust nozzle 9 is liable to flow through the space 19 downstream of the sealing device 25 as indicated by an arrow B.
- the difference in pressure as P1 > P2 described above causes the nozzle vanes 15 to be pressed against the rear exhaust introduction wall 51 to deform, so that a clearance between each nozzle vane 15 and the rear exhaust introduction wall 51 becomes minimum.
- Fig. 4a shows a further embodiment of the invention with a sealing device 25 different from that in Fig. 2 .
- the shoulder 50 of the turbine housing 1 facing to a vertical surface of the rear exhaust introduction wall 51 with the space 19 has an inner periphery 26 which in turn is formed at its outer peripheral position with a shoulder 27 recessed from the inner periphery 26 further into the turbine housing 1, a ring-shaped disk spring seal 28 being arranged between the shoulder 27 and the rear surface of the rear exhaust introduction wall 51.
- the shoulder 27 is defined by a facing surface 27a parallel to the rear exhaust introduction wall 51 (or at a right angle to the axis of the turbine impeller 4) and an annular tapered surface 27b extending with decreased diameter from the inner periphery 26 into the turbine housing 1.
- the bottom of the shoulder 27 may be not the tapered surface 27b but, for example, a cylindrical surface having a constant radius about the axis; even if the bottom of the shoulder 27 is cylindrical, the disk spring seal 28 can be held.
- the disk spring seal 28 can be stably held and thus the seal effect can be enhanced; moreover, the disk spring seal 28 can be prevented from moving and falling off from the shoulder 27 during, for example, assembling of the variable geometry turbocharger.
- the disk spring seal 28 has a cutout 38 having a width of the order of 0.2 to 0.8 mm formed by cutting out a part on its perimeter as indicted by two-dot chain lines in Fig. 4b .
- the disk spring seal 28 is bent to the facing surface 27a and then is bent outward at a position near an inner peripheral edge 29 to provide a straight portion 30 abutting on the facing surface 27a; the straight portion 30 is followed by bent toward the rear exhaust introduction wall 51 to provide a substantially S-shaped portion.
- the disk spring seal 28 has an outer peripheral edge 31 with a tilt portion 32 tiltingly extending from the straight portion 30 to the rear exhaust introduction wall 51.
- An outer periphery of the tilt portion 32 forms a curved portion 33 abutting on the rear exhaust introduction wall 51 and is then curved in a direction away therefrom.
- the disk spring seal 28 has an approximately frustoconical shape with the inner and outer peripheral edges 29 and 31 being axially shifted in position.
- the disk spring seal 28 in the frustoconical shape is formed with such an axial height that the curved portion 33 is pressed against the rear surface of the rear exhaust introduction wall 51 with a predetermined force when the inner peripheral edge 29 is fitted to the tapered surface 27b with the straight portion 30 abutting on the facing surface 27a.
- the disk spring seal 28 to be fitted to the tapered surface 27b of the shoulder 27 has the axial height in the frustoconical shape between the straight portion 30 and the curved portion 33 higher than a distance between the facing surface 27a and the rear surface of the rear exhaust introduction wall 51, so that the straight portion 30 and the curved portion 33 of the outer peripheral edge 31 of the disk spring seal 28 are pressed against the facing surface 27a and the rear surface of the rear exhaust introduction wall 51, respectively, when the variable geometry turbocharger is assembled.
- the sealing device 25 with the disk spring seal 28 can prevent the exhaust gas in the scroll passage 8 from leaking through the space 19 between the turbine housing 1 and the rear exhaust introduction wall 51.
- each of the front and rear exhaust introduction walls 10 and 51 constituting the exhaust nozzle 9, which has the disk-shaped simple structure, is freely deformed only diametrally.
- deformation in a non-diametral direction is suppressed to prevent an irrational force from acting on any of the nozzle vanes 15.
- the nozzle vanes 15 can always ensure a stable pivotal movement.
- Fig. 5 shows a still further embodiment similar to the sealing device 25 shown in Fig. 4a .
- the shoulder of the turbine housing 1 facing to the vertical surface of the rear exhaust introduction wall 51 with the space 19 has the inner periphery 26 which in turn is formed at its outer peripheral position with a shoulder 36 deeper than the shoulder 27 in Fig. 4a , a ring-shaped disk spring seal 37 being arranged between the shoulder 36 and the rear surface of the rear exhaust introduction wall 51.
- the shoulder 37 is defined by a cutting surface 36a formed facing to the rear exhaust introduction wall 51 and a cylindrical surface 36b parallel to the axis of the turbine shaft 7.
- the disk spring seal 37 has a cutout 38 having a width of the order of 0.2 to 0.8 mm formed by cutting out a part on its perimeter as indicated by two-dot chain lines in Fig. 4b .
- the inner peripheral edge 29 is bent in a direction away from the rear exhaust introduction wall 51 and is fitted movably and closely to the cylindrical surface 36b.
- the disk spring seal has a frustoconical shape with its diameter divergent from the fitted portion to the rear exhaust introduction wall 51, with the curved portion 33 formed on the outer peripheral edge 31 abutting on the rear surface of the rear exhaust introduction wall 51.
- the disk spring seal 37 placed on and fitted to the cylindrical surface 36b of the shoulder 36 in Fig. 5 moves along the cylindrical surface 36b by the pressure of the exhaust gas in the scroll passage 8 (a differentiation in pressure between the scroll passage 8 and the space 19), so that the curved portion 33 of the outer peripheral edge 31 is automatically pressed against the rear surface of the rear exhaust introduction wall 51.
- the disk spring seal 37 is configured in advance such that, at this time, its diameter is reduced to cause the cutout portion 38 shown in Fig. 4b to disappear, with opposite ends defining the same in contact with each other.
- the sealing device 25 with the disk spring seal 37 can prevent the exhaust gas in the scroll passage 8 from leaking through the space 19 between the turbine housing 1 and the rear exhaust introduction wall 51.
- each of the front and rear exhaust introduction walls 10 and 51 constituting the exhaust nozzle 9, which has the disk-shaped simple structure, is freely deformed only diametrally.
- deformation in a non-diametral direction is suppressed to prevent an irrational force from acting on any of the nozzle vanes 15.
- the nozzle vanes 15 can always ensure a stable pivotal movement.
- each of front and rear exhaust introduction walls is disk-shaped and a turbine housing is formed with a shoulder to which a disk-shaped rear exhaust introduction wall is fitted with a space.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Supercharger (AREA)
Abstract
Description
- The present invention relates to a variable geometry turbocharger capable of enhancing turbine efficiency and enabling a smooth operation of nozzle vanes with a simple structure.
-
Fig. 1 is a longitudinal sectional view showing an overall structure of a variable geometry turbocharger to which the present invention is applied. In the turbocharger, turbine andcompressor housings housing 3 by fasteningbolts 3a and 3b. Turbine andcompressor impellers compressor housings turbine shaft 7 rotatably supported via abearing 6 in the bearinghousing 3. - The bearing
housing 3 is provided, on its side adjacent to the turbine housing, with an exhaust nozzle 9 for guiding exhaust gas introduced into ascroll passage 8 in theturbine housing 1 to theturbine impeller 4. - The exhaust nozzle 9 comprises a front and rear
exhaust introduction walls turbine housings members 12 provided, for example, at three circumferential positions. The frontexhaust introduction wall 10 has a front surface (a surface adjacent to the bearing housing 3) to which amounting member 13 is fixed. Themounting member 13 is pinched by the turbine and bearinghousings housings positioning pin 14 relative to the bearinghousing 3. - Circumferentially equidistantly disposed between the front and rear
exhaust introduction walls nozzle vanes 15 each of which is, inFig. 1 , pivotally supported at its opposite sides byvane shafts vane 15 and penetrating through theexhaust introduction walls Fig. 1 ,reference numerals nozzle vanes 15; and 18, a scroll passage formed in thecompressor housing 2. - A
space 19 is provided between theturbine housing 1 and the rearexhaust introduction wall 11 in the exhaust nozzle 9. Thespace 19, which is inherently unnecessary, is provided for absorption of any thermal deformation and any variations in accuracy since theturbine housing 1 may have heat deformation between cold and hot times and components to be assembled may have variations in accuracy. - Since the
space 19 exists, exhaust gas in thescroll passage 8 may wastefully leak through thespace 19 to aturbine impeller outlet 20. Thus, in order to block thespace 19, it has been proposed to provide the rearexhaust introduction wall 11 with an extension 11' extending downstream, sealingpiston rings 21 being arranged between an outer periphery of the extension 11' and an inner surface 1' of theturbine housing 1 facing to the extension 11' for prevention of any gas leakage and absorption of any thermal deformation (see Patent Literature 1). - As shown in
Fig. 1 , inPatent Literature 1, anannular groove 22 is provided on the outer periphery of the extension 11' of the rearexhaust introduction wall 11 and typically twosealing piston rings 21 are disposed in thegroove 22 with their cutout portions being not overlapped with each other, thereby forming asealing device 23. Outer peripheries of the sealingpiston rings 21 are pushed against the inner surface 1' of the turbine housing 1 due to resilience of therings 21 to prevent any gas leakage. - In the turbocharger shown in
Fig. 1 , thesealing device 23 is provided in various elaborate manners for prevention of gas leakage from thespace 19. However, it has turned out that substantially enhancing turbine efficiency is difficult to attain and is limited even if thesealing device 23 is elaborately configured. - Thus, the inventors have variously studied and examined factors other than the gas leakage which affect turbine efficiency and found out that greater disturbance of the exhaust gas at the
turbine impeller outlet 20 decreases turbine efficiency. - In the structure like the
sealing device 23 inFig. 1 with thesealing piston rings 21 arranged between the outer periphery of the extension 11' of the rearexhaust introduction wall 11 and the inner surface 1' of theturbine housing 1, pressure in thespace 19 on which the pressure in thescroll passage 8 directly acts is larger than pressure in the exhaust nozzle 9, so that the exhaust gas with higher pressure in thespace 19 flows downstream of the exhaust nozzle 9 through clearances between thevane shafts 16b and their through holes 24 (seeFig. 2 ). In this case, a clearance is present in advance between eachnozzle vane 15 and the front and rearexhaust introduction walls nozzle vane 15, and the size of this clearance varies depending on the turbocharger concerned. Thus, it has been found that eachvane shaft 16b of eachnozzle vane 15 is pressed by the exhaust gas from thespace 19 with higher pressure to move thenozzle vane 15 toward the frontexhaust introduction wall 10, thereby causing a clearance between eachnozzle vane 15 and the rearexhaust introduction wall 11. Thus, findings have been obtained such that the exhaust gas with higher pressure flows downstream of the exhaust nozzle 9 through the clearance between eachnozzle vane 15 and the rearexhaust introduction wall 11 and significantly disturbs the exhaust gas at theturbine impeller 4 outlet, leading to degraded turbine efficiency. - Thus, the applicant already filed an application as to a turbocharger which prevents the exhaust gas in a
scroll passage 8 from leaking through thespace 19 to theturbine impeller 4 and also prevents the exhaust gas with higher pressure in thespace 19 from flowing downstream of the exhaust nozzle 9 through a clearance between eachvane shaft 16a and its through hole 24 (seeFig. 2 ) and a clearance between eachnozzle vane 15 and the rear exhaust introduction wall 11 (see Patent Literature 2). -
- [Patent Literature 1]
JP 2006-125588A - [Patent Literature 2]
JP 2009-144545A - According to the turbocharger of
Patent Literature 2, the gas leakage to theturbine impeller 4 due to thespace 19 and the disturbance of the exhaust gas at theturbine impeller 4 outlet can be prevented to effectively enhance turbine efficiency. - However, in
Patent Literature 2, the frontexhaust introduction wall 10 is disk-shaped as a whole whereas the rearexhaust introduction wall 11 is, just likePatent Literature 1, disk-shaped at its outer periphery and has an inner periphery with the extension 11' curved axially downstream along a contour of theturbine impeller 4. Thus, when heated by the exhaust gas at high temperatures, the disk-shaped frontexhaust introduction wall 10 is deformed in its entirety only in a direction of increasing diameter. By contrast, the rearexhaust introduction wall 11 with the extension 11' is suppressed in diametral deformation of the disk-shaped outer periphery due to high stiffness strength of the extension 11' so that the disk-shaped portion is deformed to slump down against the frontexhaust introduction wall 10; as a result, there is a concern that the disk-shaped portion may contact anynozzle vane 15 to block the movement of thevane 15. - The invention was made in view of the above, and has its object to provide a variable geometry turbocharger capable of preventing, with a simple structure, front and rear exhaust introduction walls from being deformed in a non-diametral direction and ensuring stable movement of the nozzle vanes.
- The invention is directed to a variable geometry turbocharger with an exhaust nozzle having nozzle vanes interposed between front and rear exhaust introduction walls, a space being between said rear exhaust introduction wall and a turbine housing, a sealing device being arranged upstream, in a direction of exhaust gas, of each through hole provided in said rear exhaust introduction wall for penetration of a vane shaft to prevent exhaust gas in a scroll passage from leaking through said space to a turbine impeller, wherein each of said front and rear exhaust introduction walls is disk-shaped, said turbine housing being formed with a shoulder to which the disk-shaped rear exhaust introduction wall is fitted with said space.
- In the above-mentioned variable geometry turbocharger, it is preferable that said front and rear exhaust introduction walls are equivalent in linear expansion coefficient.
- In the above-mentioned variable geometry turbocharger, it is preferable that said sealing device comprises sealing piston rings or a disk spring seal.
- According to the variable geometry turbocharger of the invention, the front and rear exhaust introduction walls are disk-shaped and the disk-shaped rear exhaust introduction wall is fitted to and disposed, with the space, in the shoulder formed on the turbine housing. Thus, an excellent effect can be achieved such that, with a simple structure, the deformation of the front and rear exhaust introduction walls in a non-diametral direction can be prevented and stable movement of the nozzle vanes can be ensured.
-
-
Fig. 1 is a longitudinal sectional view showing an overall structure of a variable geometry turbocharger to which the invention is applied; -
Fig. 2 is a sectional view in a vicinity of an exhaust nozzle showing an embodiment of the invention; -
Fig. 3a is a sectional view showing an integrally unitized exhaust nozzle unit with the exhaust nozzle ofFig. 2 ; -
Fig. 3b is a front view of the exhaust nozzle unit ofFig. 3a viewed from a direction of arrow III; -
Fig. 4a is a sectional view showing a further embodiment of the invention with a sealing device different from that ofFig. 2 ; -
Fig. 4b is a front view of a disk spring seal inFig. 4a ; and -
Fig. 5 is a sectional view of a still further embodiment of the invention with a sealing device similar to that ofFig. 4a . - Embodiments of the invention will be described below with reference to the attached drawings.
-
Fig. 2 shows an embodiment of the invention in which a disk-shaped rearexhaust introduction wall 51 is substituted for the rearexhaust introduction wall 11 with the extension 11' in the variable geometry turbocharger ofFig. 1 . Thus, each of the front and rearexhaust introduction walls exhaust introduction walls exhaust introduction walls vane shafts nozzle vane 15 are consistently coaxially supported by theexhaust introduction walls - The
turbine housing 1 is formed with anextension 39 extending to a position facing to and spaced apart by a required space from the outer periphery of the rearexhaust introduction wall 51. Theturbine housing 1 with theextension 39 has a front surface formed with ashoulder 50 to which the rearexhaust introduction wall 51 is fitted with thespace 19 formed therebetween. For prevention of theturbine housing 1 from contacting the rearexhaust introduction wall 51, thespace 19 is set in consideration of linear expansion coefficients thereof. - Further, the embodiment of
Fig. 2 has a sealingdevice 25 for prevention of the exhaust gas in thescroll passage 8 from leaking through thespace 19 between theturbine housing 1 and the rearexhaust introduction wall 51 to theturbine impeller 4, the sealingdevice 25 being arranged (on a side adjacent to the scroll passage 8) upstream, in a direction of exhaust gas, of each throughhole 24 through which thevane shaft 16b penetrates. - The sealing
device 25 ofFig. 2 comprises agroove 22 circumferentially extending on an outer periphery of the rearexhaust introduction wall 51, and sealingpiston rings 21 similar to those inFig. 1 fitted between an inner periphery of theextension 39 and thegroove 22 on the outer periphery of the rearexhaust introduction wall 51. In the embodiment ofFig. 2 , two sealingpiston rings 21 are disposed in thegroove 22. - A fixed portion of each of the
vane shafts nozzle vane 15 for penetration through the front and rearexhaust introduction walls collar 35 for coverage of the throughhole 24.Such collar 35 can suppress entering of foreign matters through the throughhole 24 and movement of the exhaust gas through the throughhole 24 to thespace 19. Furthermore, as will be described hereinafter, pressure of the exhaust gas acting on thecollar 35 can be utilized for a force sufficient for movement of thenozzle vane 15 toward the rearexhaust introduction wall 51. -
Fig. 3a is a sectional view of an exhaust nozzle unit unitized to include the exhaust nozzle 9 ofFig. 2 , andFig. 3b is a front view of the exhaust nozzle unit ofFig. 3a viewed in a direction of arrow III. In the nozzle unit U, thenozzle vanes 15 with thevane shafts holes 24 are disposed between the disk-shaped rearexhaust introduction wall 51 with thegroove 22 formed on its outer periphery and the disk-shaped frontexhaust introduction wall 10. The frontexhaust introduction wall 10 has a front surface (a right side surface inFig. 3a ) on which aguide ring 53 is disposed for pinching arotary ring 52 between theguide ring 53 and the mountingmember 13. The rearexhaust introduction wall 51, the frontexhaust introduction wall 10, the mountingmember 13 and theguide ring 53 are fastened together with the fixingmembers 12 provided at three positions, whereby the exhaust nozzle unit U is unitized. An end of thevane shaft 16b of eachnozzle vane 15 penetrates through and is fixed to an inner end of a corresponding one of transmission links 54. Thetransmission link 54 has an outer end fitted into a corresponding one of engagingrecesses 55 equidistantly formed as many as the number ofnozzle vanes 15 on an inner periphery of therotary ring 52. Rotary movement of thevane shaft 16b of one of thenozzle vanes 15 by the transmission mechanism constituted by theparts Fig. 1 causes pivotal movement of all thenozzle vanes 15 at the same angle through the transmission links 54 and therotary ring 52. - With the disk-shaped rear
exhaust introduction wall 51 being fitted, with thespace 19, to theshoulder 50 on the front surface of theturbine housing 1 inFig. 2 , the exhaust nozzle unit U unitized as shown inFigs. 3a and3b is assembled with a flange 13' of the mountingmember 13 pinched for fastening between the turbine and bearinghousings - An operation of the embodiment shown in
Fig. 2 is as follows. - In the variable geometry turbocharger shown in
Fig. 2 , thesealing piston rings 21 are disposed between the inner periphery of theextension 39 in theshoulder 50 on the front surface of theturbine housing 1 and thegroove 22 formed on the outer periphery of the rearexhaust introduction wall 51 of the exhaust nozzle unit U unitized as shown inFigs. 3a and3b , the rearexhaust introduction wall 51 being fitted to theshoulder 50. In this state, the flange 13' of the mountingmember 13 is pinched between the turbine and bearinghousings Fig. 1 and they are integrally fastened together with the fastening bolt 3a. Thus, the rearexhaust introduction wall 51 is disposed in theshoulder 50 of theturbine housing 1 with thespace 19. - Each of the front and rear
exhaust introduction walls exhaust introduction wall 11 with the extension 11' inFig. 1 is deformed to slump down in a non-diametral direction, such deformation can be suppressed in the structure ofFig. 2 to prevent an irrational force from acting on any of the nozzle vanes 15. Thus, thenozzle vanes 15 can always ensure a stable pivotal movement. - Also, as described above, the sealing
device 25 with thesealing piston rings 21 disposed between the inner periphery of theextension 39 and thegroove 22 formed on the outer periphery of the rearexhaust introduction wall 51 prevents the exhaust gas in thescroll passage 8 from leaking through thespace 19 between theturbine housing 1 and the rearexhaust introduction wall 51. - Further, since the sealing
device 25 is disposed (on a side adjacent to the scroll passage 8) upstream, in the direction of the exhaust gas, of the throughholes 24 of the rearexhaust introduction wall 51 through whichvane shafts 16b penetrate, a pressure P2 in thespace 19 downstream of the sealingdevice 25 is low and brings about a state of P1 > P2 with respect to a pressure P1 in the exhaust nozzle 9, so that the exhaust gas in the exhaust nozzle 9 is liable to flow through thespace 19 downstream of the sealingdevice 25 as indicated by an arrow B. The difference in pressure as P1 > P2 described above causes thenozzle vanes 15 to be pressed against the rearexhaust introduction wall 51 to deform, so that a clearance between eachnozzle vane 15 and the rearexhaust introduction wall 51 becomes minimum. At this time, with the provision of thecollar 35 covering the throughhole 24 on the fixed portion to thenozzle vane 15 of thevane shaft 16b penetrating through the rearexhaust introduction wall 51, the pressure of the exhaust gas in the exhaust nozzle 9 acts on thecollar 35 and thus thecollar 35 is pressed against the rearexhaust introduction wall 51 to block the throughhole 24; then, leakage of exhaust gas indicated by the arrow B is decreased and the amount of exhaust gas introduced to theturbine impeller 4 is increased, thereby enhancing efficiency of theturbine impeller 4. Note that even if nocollar 35 is provided, the pressure P2 acting on thespace 19 of thevane shaft 16b is lower than that ofFig. 1 , and thus thenozzle vane 15 moves toward the rearexhaust introduction wall 51. However, if thecollar 35 is provided as described above, thenozzle vane 15 moves more reliably to the rearexhaust introduction wall 51, which is preferable. -
Fig. 4a shows a further embodiment of the invention with a sealingdevice 25 different from that inFig. 2 . In thissealing device 25, theshoulder 50 of theturbine housing 1 facing to a vertical surface of the rearexhaust introduction wall 51 with thespace 19 has aninner periphery 26 which in turn is formed at its outer peripheral position with ashoulder 27 recessed from theinner periphery 26 further into theturbine housing 1, a ring-shapeddisk spring seal 28 being arranged between theshoulder 27 and the rear surface of the rearexhaust introduction wall 51. Theshoulder 27 is defined by a facing surface 27a parallel to the rear exhaust introduction wall 51 (or at a right angle to the axis of the turbine impeller 4) and an annular tapered surface 27b extending with decreased diameter from theinner periphery 26 into theturbine housing 1. Note that the bottom of theshoulder 27 may be not the tapered surface 27b but, for example, a cylindrical surface having a constant radius about the axis; even if the bottom of theshoulder 27 is cylindrical, thedisk spring seal 28 can be held. However, as described above, when the bottom of theshoulder 27 is the tapered surface 27b, thedisk spring seal 28 can be stably held and thus the seal effect can be enhanced; moreover, thedisk spring seal 28 can be prevented from moving and falling off from theshoulder 27 during, for example, assembling of the variable geometry turbocharger. - The
disk spring seal 28 has acutout 38 having a width of the order of 0.2 to 0.8 mm formed by cutting out a part on its perimeter as indicted by two-dot chain lines inFig. 4b . Thedisk spring seal 28 is bent to the facing surface 27a and then is bent outward at a position near an innerperipheral edge 29 to provide astraight portion 30 abutting on the facing surface 27a; thestraight portion 30 is followed by bent toward the rearexhaust introduction wall 51 to provide a substantially S-shaped portion. Provision of such substantially S-shape portion makes it easy to press-fit the innerperipheral edge 29 of thedisk spring seal 28 to the tapered surface 27b and makes difficult removal of the press-fitted innercircumferential edge 29 out of theshoulder 27 because of the shape of the tapered surface 27b. Furthermore, thedisk spring seal 28 has an outerperipheral edge 31 with atilt portion 32 tiltingly extending from thestraight portion 30 to the rearexhaust introduction wall 51. An outer periphery of thetilt portion 32 forms acurved portion 33 abutting on the rearexhaust introduction wall 51 and is then curved in a direction away therefrom. Thus, thedisk spring seal 28 has an approximately frustoconical shape with the inner and outerperipheral edges disk spring seal 28 in the frustoconical shape is formed with such an axial height that thecurved portion 33 is pressed against the rear surface of the rearexhaust introduction wall 51 with a predetermined force when the innerperipheral edge 29 is fitted to the tapered surface 27b with thestraight portion 30 abutting on the facing surface 27a. - In
Fig. 4a , thedisk spring seal 28 to be fitted to the tapered surface 27b of theshoulder 27 has the axial height in the frustoconical shape between thestraight portion 30 and thecurved portion 33 higher than a distance between the facing surface 27a and the rear surface of the rearexhaust introduction wall 51, so that thestraight portion 30 and thecurved portion 33 of the outerperipheral edge 31 of thedisk spring seal 28 are pressed against the facing surface 27a and the rear surface of the rearexhaust introduction wall 51, respectively, when the variable geometry turbocharger is assembled. Thus, the sealingdevice 25 with thedisk spring seal 28 can prevent the exhaust gas in thescroll passage 8 from leaking through thespace 19 between theturbine housing 1 and the rearexhaust introduction wall 51. - Also in the embodiment in
Fig. 4a , each of the front and rearexhaust introduction walls nozzle vanes 15 can always ensure a stable pivotal movement. -
Fig. 5 shows a still further embodiment similar to the sealingdevice 25 shown inFig. 4a . In thissealing device 25, the shoulder of theturbine housing 1 facing to the vertical surface of the rearexhaust introduction wall 51 with thespace 19 has theinner periphery 26 which in turn is formed at its outer peripheral position with ashoulder 36 deeper than theshoulder 27 inFig. 4a , a ring-shapeddisk spring seal 37 being arranged between theshoulder 36 and the rear surface of the rearexhaust introduction wall 51. Theshoulder 37 is defined by a cutting surface 36a formed facing to the rearexhaust introduction wall 51 and acylindrical surface 36b parallel to the axis of theturbine shaft 7. - The
disk spring seal 37 has acutout 38 having a width of the order of 0.2 to 0.8 mm formed by cutting out a part on its perimeter as indicated by two-dot chain lines inFig. 4b . As shown inFig. 5 , the innerperipheral edge 29 is bent in a direction away from the rearexhaust introduction wall 51 and is fitted movably and closely to thecylindrical surface 36b. Further, the disk spring seal has a frustoconical shape with its diameter divergent from the fitted portion to the rearexhaust introduction wall 51, with thecurved portion 33 formed on the outerperipheral edge 31 abutting on the rear surface of the rearexhaust introduction wall 51. - The
disk spring seal 37 placed on and fitted to thecylindrical surface 36b of theshoulder 36 inFig. 5 moves along thecylindrical surface 36b by the pressure of the exhaust gas in the scroll passage 8 (a differentiation in pressure between thescroll passage 8 and the space 19), so that thecurved portion 33 of the outerperipheral edge 31 is automatically pressed against the rear surface of the rearexhaust introduction wall 51. Thedisk spring seal 37 is configured in advance such that, at this time, its diameter is reduced to cause thecutout portion 38 shown inFig. 4b to disappear, with opposite ends defining the same in contact with each other. Also in the embodiment ofFig. 5 , the sealingdevice 25 with thedisk spring seal 37 can prevent the exhaust gas in thescroll passage 8 from leaking through thespace 19 between theturbine housing 1 and the rearexhaust introduction wall 51. - Also in the embodiment in
Fig. 5 , each of the front and rearexhaust introduction walls nozzle vanes 15 can always ensure a stable pivotal movement. - It is to be understood that the invention is not limited to the embodiments mentioned above and, as a matter of course, can be variously modified within a range not deviating from the gist of the invention.
- According to a variable geometry turbocharger of the invention, each of front and rear exhaust introduction walls is disk-shaped and a turbine housing is formed with a shoulder to which a disk-shaped rear exhaust introduction wall is fitted with a space. Thus, deformation of an exhaust nozzle is suppressed to enable a smooth operation of nozzle vanes.
-
- 1
- turbine housing
- 3
- bearing housing
- 4
- turbine impeller
- 8
- scroll passage
- 9
- exhaust nozzle
- 10
- front exhaust introduction wall
- 11'
- disk-shaped rear exhaust introduction wall
- 15
- nozzle vane
- 16a, 16b
- vane shaft
- 19
- space
- 21
- sealing piston ring
- 24
- through hole
- 25
- sealing device
- 28
- disk spring seal
- 50
- shoulder
Claims (4)
- A variable geometry turbocharger with an exhaust nozzle having nozzle vanes interposed between front and rear exhaust introduction walls, a space being between said rear exhaust introduction wall and a turbine housing, a sealing device being arranged upstream, in a direction of exhaust gas, of each through hole provided in said rear exhaust introduction wall for penetration of a vane shaft to prevent exhaust gas in a scroll passage from leaking through said space to a turbine impeller, wherein each of said front and rear exhaust introduction walls is disk-shaped, said turbine housing being formed with a shoulder to which the disk-shaped rear exhaust introduction wall is fitted with said space.
- The variable geometry turbocharger as claimed in claim 1, wherein said front and rear exhaust introduction walls are equivalent in linear expansion coefficient.
- The variable geometry turbocharger as claimed in claim 1, wherein said sealing device comprises sealing piston rings.
- The variable geometry turbocharger as claimed in claim 1, wherein said sealing device comprises a disk spring seal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010039786 | 2010-02-25 | ||
PCT/JP2011/001071 WO2011105090A1 (en) | 2010-02-25 | 2011-02-24 | Variable geometry turbocharger |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2541017A1 true EP2541017A1 (en) | 2013-01-02 |
EP2541017A4 EP2541017A4 (en) | 2013-08-14 |
EP2541017B1 EP2541017B1 (en) | 2016-02-24 |
Family
ID=44506517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11747057.5A Active EP2541017B1 (en) | 2010-02-25 | 2011-02-24 | Variable geometry turbocharger |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130149129A1 (en) |
EP (1) | EP2541017B1 (en) |
JP (1) | JP5370579B2 (en) |
KR (2) | KR20140054431A (en) |
CN (1) | CN102762838B (en) |
WO (1) | WO2011105090A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5710452B2 (en) * | 2011-11-16 | 2015-04-30 | トヨタ自動車株式会社 | Turbocharger |
JP5942464B2 (en) * | 2012-02-21 | 2016-06-29 | トヨタ自動車株式会社 | Turbocharger |
US9011089B2 (en) * | 2012-05-11 | 2015-04-21 | Honeywell International Inc. | Expansion seal |
JP6040727B2 (en) * | 2012-11-21 | 2016-12-07 | 株式会社Ihi | Turbocharger |
JPWO2014128894A1 (en) * | 2013-02-21 | 2017-02-02 | 三菱重工業株式会社 | Variable displacement exhaust turbocharger |
US10450887B2 (en) * | 2014-08-27 | 2019-10-22 | Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. | On-off valve device and rotary machine |
CA3043949C (en) * | 2016-11-18 | 2021-03-23 | Jingfeng Liu | A low friction inlet nozzle for a turbo expander |
DE102016125189B4 (en) * | 2016-12-21 | 2020-11-26 | Man Energy Solutions Se | turbocharger |
US11326615B2 (en) | 2017-03-17 | 2022-05-10 | Ihi Corporation | Seal structure of variable nozzle unit, and variable capacity type turbocharger |
PL424582A1 (en) | 2018-02-13 | 2019-08-26 | General Electric Company | Cable assembly, friction damper of the cable assembly and method for assembling of the friction damper |
WO2020012731A1 (en) * | 2018-07-11 | 2020-01-16 | 株式会社Ihi | Supercharger |
DE112019005210T5 (en) * | 2018-10-18 | 2021-07-08 | Ihi Corporation | Variable capacity turbocharger |
CN111350585B (en) * | 2018-12-24 | 2021-12-21 | 长城汽车股份有限公司 | Turbocharger and vehicle |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008005405A1 (en) * | 2008-01-21 | 2009-07-23 | Bosch Mahle Turbo Systems Gmbh & Co. Kg | Turbine for exhaust gas turbocharger of motor vehicle, has annular ring lying with front side at support region of housing, where support region includes recess flow throughable by medium and marginally opening to annular bezel |
JP2009197633A (en) * | 2008-02-20 | 2009-09-03 | Ihi Corp | Turbo charger |
JP2010024915A (en) * | 2008-07-17 | 2010-02-04 | Ihi Corp | Turbocharger |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6145313A (en) * | 1997-03-03 | 2000-11-14 | Allied Signal Inc. | Turbocharger incorporating an integral pump for exhaust gas recirculation |
EP1536103B1 (en) * | 2003-11-28 | 2013-09-04 | BorgWarner, Inc. | Turbo machine having inlet guide vanes and attachment arrangement therefor |
JP4729901B2 (en) | 2004-11-01 | 2011-07-20 | 株式会社Ihi | Turbocharger and sealing device |
JP4952558B2 (en) * | 2007-12-12 | 2012-06-13 | 株式会社Ihi | Turbocharger |
-
2011
- 2011-02-24 US US13/522,047 patent/US20130149129A1/en not_active Abandoned
- 2011-02-24 KR KR1020147009185A patent/KR20140054431A/en active Search and Examination
- 2011-02-24 WO PCT/JP2011/001071 patent/WO2011105090A1/en active Application Filing
- 2011-02-24 EP EP11747057.5A patent/EP2541017B1/en active Active
- 2011-02-24 KR KR1020127021674A patent/KR20120105055A/en active Application Filing
- 2011-02-24 CN CN201180011081.XA patent/CN102762838B/en active Active
- 2011-02-24 JP JP2012501684A patent/JP5370579B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008005405A1 (en) * | 2008-01-21 | 2009-07-23 | Bosch Mahle Turbo Systems Gmbh & Co. Kg | Turbine for exhaust gas turbocharger of motor vehicle, has annular ring lying with front side at support region of housing, where support region includes recess flow throughable by medium and marginally opening to annular bezel |
JP2009197633A (en) * | 2008-02-20 | 2009-09-03 | Ihi Corp | Turbo charger |
JP2010024915A (en) * | 2008-07-17 | 2010-02-04 | Ihi Corp | Turbocharger |
Non-Patent Citations (1)
Title |
---|
See also references of WO2011105090A1 * |
Also Published As
Publication number | Publication date |
---|---|
KR20140054431A (en) | 2014-05-08 |
WO2011105090A1 (en) | 2011-09-01 |
JP5370579B2 (en) | 2013-12-18 |
CN102762838B (en) | 2015-06-10 |
CN102762838A (en) | 2012-10-31 |
US20130149129A1 (en) | 2013-06-13 |
JPWO2011105090A1 (en) | 2013-06-20 |
EP2541017A4 (en) | 2013-08-14 |
EP2541017B1 (en) | 2016-02-24 |
KR20120105055A (en) | 2012-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2541017B1 (en) | Variable geometry turbocharger | |
JP4952558B2 (en) | Turbocharger | |
KR101182121B1 (en) | Turbo charger | |
EP2530276B1 (en) | Sealing device for turbocharger | |
US10801368B2 (en) | Turbocharger | |
EP2233718B1 (en) | Turbocharger | |
EP3575644B1 (en) | Sliding seal | |
EP2818664A1 (en) | Turbo charger | |
JP2009047027A (en) | Turbocharger | |
CN111902609B (en) | Cooling device for a turbine of a turbomachine | |
JP2010112195A (en) | Sealing device of turbocharger | |
CN111902607A (en) | Cooling apparatus for a turbine of a turbine engine | |
CN107614948B (en) | Sealing device and rotary machine | |
EP3112633A1 (en) | Sheet metal turbine housing | |
CN109563771B (en) | Turbine housing, exhaust turbine, and supercharger | |
US20220025774A1 (en) | Turbine housing and turbocharger | |
EP3228837B1 (en) | Assembly of turboengine components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120710 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20130711 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F02B 39/00 20060101ALI20130705BHEP Ipc: F02B 37/24 20060101AFI20130705BHEP |
|
17Q | First examination report despatched |
Effective date: 20141001 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150828 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 776870 Country of ref document: AT Kind code of ref document: T Effective date: 20160315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011023424 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160224 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 776870 Country of ref document: AT Kind code of ref document: T Effective date: 20160224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160524 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160624 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160229 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160229 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160229 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011023424 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160224 |
|
26N | No opposition filed |
Effective date: 20161125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160224 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200128 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200113 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210224 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231229 Year of fee payment: 14 |