EP2539266B1 - Système d'alimentation en énergie pour élévateurs à pignon et crémaillère et procédé d'alimentation en énergie de ces élévateurs - Google Patents
Système d'alimentation en énergie pour élévateurs à pignon et crémaillère et procédé d'alimentation en énergie de ces élévateurs Download PDFInfo
- Publication number
- EP2539266B1 EP2539266B1 EP11747796.8A EP11747796A EP2539266B1 EP 2539266 B1 EP2539266 B1 EP 2539266B1 EP 11747796 A EP11747796 A EP 11747796A EP 2539266 B1 EP2539266 B1 EP 2539266B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- energy
- load carrier
- power
- electric motor
- mast
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 13
- 238000005381 potential energy Methods 0.000 claims description 27
- 238000004146 energy storage Methods 0.000 claims description 22
- 230000001172 regenerating effect Effects 0.000 claims description 13
- 230000001133 acceleration Effects 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000012544 monitoring process Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 4
- 239000000446 fuel Substances 0.000 claims description 3
- 239000000969 carrier Substances 0.000 claims 4
- 230000001939 inductive effect Effects 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 6
- 238000005265 energy consumption Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 2
- 238000009435 building construction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/24—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
- B66B1/28—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
- B66B1/30—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
- B66B1/302—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor for energy saving
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B9/00—Kinds or types of lifts in, or associated with, buildings or other structures
- B66B9/02—Kinds or types of lifts in, or associated with, buildings or other structures actuated mechanically otherwise than by rope or cable
- B66B9/022—Kinds or types of lifts in, or associated with, buildings or other structures actuated mechanically otherwise than by rope or cable by rack and pinion drives
Definitions
- the present invention concerns a power supply system for rack and pinion lifts according to the introduction to claim 1.
- the present invention concerns also a method for the power supply for rack and pinion lifts according to the introduction to claim 12.
- the invention includes also the use of a power supply system according to claim 1, as specified in claim 20.
- the power that is required to drive transport means, such as lifts, for persons or goods between floors in buildings varies, depending on a number of factors such as, for example, the instantaneous load on the lift, its speed, the direction of travel and in which part of the transport cycle the lift is currently operating. It is important that the power requirement be reduced as far as possible not only to reduce the installation and operating costs of the lift, but also to reduce the dimensions and space required for the power supply system of the lift.
- a rack and pinion lift as known from JP 2003238051 comprises in general a load carrier such as a lift car that can be driven along a track by means of electric motors and cogged wheels, which track is normally in the form of a mast provided with a cogged rod.
- the electric motors that are referred to are normally of three-phase type with a rated voltage of 380-500 V and a frequency of 50 or 60 Hz. The motors offers soft starting and stopping by the use of frequency control.
- the electric motor for a rack and pinion lift is supported immediately by the lift car, as is also the control and operating unit for controlling the lift.
- the rack and pinion lifts differ from conventional lifts in that the lift car carries its own drive unit and the associated control and operating unit for the control of the electric motor.
- An electrical power line such as electrical conductors surrounded by insulating material, passes from a unit at ground level up to the lift car for power supply to the electric motors.
- the electrical power line is arranged, with the aid of a cable trolley or similar guided along the mast, to follow with an adapted length the lift car upwards and downwards along the mast, suspended under the lift car. It should be understood that, as the lift car carries its own drive unit supply, the electrical power line must be extended and shortened as the lift car moves along the mast.
- the lifts are, on the other hand, becoming evermore higher and it has proved to be the case that the weight of the electrical power line, for lift heights up to 400-500 m and in certain cases even higher, becomes so great that it influences the loading capacity of the lift.
- the extension of the electrical power line as the lift car moves along the mast creates also difficulties with housing the complete cable length, in particular, when the power cable is to supply powerful motors with the current they require.
- the length, stiffness and deadweight of the electrical power line constitute problems, whereby the relatively heavy-duty electrical power line that accompanies the lift car becomes difficult to control and to carry.
- Rack and pinion lifts normally lack this possibility and the potential energy must be continuously overcome by the power supply system, which, of course, places considerable demands on this system. Enormous amounts of energy are generated when a rack and pinion lift car moves downwards along the mast during braking (retardation). The potential energy that is in this way released by the lift car is normally converted to heat energy in separate resistances (braking resistances) or it is fed back into the mains power network by a process known as "regenerative braking". It should be realised that a rack and pinion lift produces a considerably greater amount of energy during its motion downwards than conventional lifts provided with counterweights produce, due to the absence of a counterweight. Previous attempts to equip rack and pinion lifts with counterweights have been less than successful, mainly as a result of complicated designs and the extra work that the counterweight arrangement introduces during the tasks of mounting and demounting the lift.
- the power supply system and the associated electrical plant must be dimensioned to cope with the highest output power that is required during short periods, while the appearance of the standard load places considerably lower requirements for the capacity of the power plant, overload protection, the conductor system and other equipment in the consumer circuit will not be used fully with respect to the capacity of the equipment. As a consequence of this, the investment costs for the power supply system will be significant and more extensive than necessary and they will be inefficient from the point of view of costs.
- Figures 1 and 1a show how three-phase alternating current is fed to a transformer 116 in a main power generator 120 that is part of the public mains power network 115, in order to be transformed down to a suitable level of voltage.
- a three-phase electric motor 103, 104 supported by a first and a second lift car 101, 102 is supplied with electrical energy.
- the lift cars 101, 102 are rack and pinion cars and they can be driven along a mast 105 through the interaction between a cogged wheel 111 driven by the relevant electric motor 103, 104 and a cogged rod 112 arranged on the mast.
- the selected speed during raising and lowering is controlled through appropriate frequency conversion of the electric motor 103, 104.
- FIG 2 shows an example in which a diesel-powered unit 125 intended to be used as a source of power is a component of the main power generator 120.
- the diesel-powered unit 125 is mechanically coupled to an AC power generator 126.
- the AC alternating current that is produced by the power generator 126 supplies the electric motors 103, 104 of the relevant lift car with AC alternating current through an electrical power line 113' and from this point the system is the same as that described in Figure 1 .
- an inverted flow of AC alternating current is generated in the motor.
- a first principal aim of the present invention is to achieve a more efficient power supply system for rack and pinion lifts not least with the aim of reducing energy consumption and the rated power requirement for the generator system.
- a second aim is to achieve a system that facilitates the housing and the weight from the electrical power line that supplies the electric motors with power and extends from the unit at ground level to the lift car.
- a third aim of the invention is to achieve a power supply system for rack and pinion lifts that is simple to use together with a freely chosen type of main power generator, that can regain and store a considerable amount of energy through generative braking when the lift car moves downwards which can be used later, and in particular during the instant of starting, i.e. during the initial part of the transport cycle when the lift car is accelerated.
- a further aim of the invention is to achieve a method that allows a more efficient power supply of rack and pinion lifts and that the requirements placed on the generator system that is used can be reduced.
- a DC bus as a component of a power cable for the power supply of the drive machinery from the ground level
- it makes it possible to transport power with lower resistance losses and dielectric losses than those experienced using alternating current at corresponding powers.
- the advantages become particularly large if the driving current in this case is constituted by a high-voltage DC current.
- a typical DC transmission cable includes conductors and an insulating layer.
- An AC voltage also gives rise to capacitance losses, which can be avoided with a DC direct current as the driving current.
- a further advantage of using a DC bus architecture with a positive and a negative side is that it makes it possible to connect different types of electrical equipment in parallel directly to the power supply system in a freely chosen manner, such as an energy storage system, alternative power-generating main power networks, and a braking resistance directly to the mains power network.
- the electrical drive motors 3, 4 of the lift cars 1, 2 may in one design be selected from a group consisting of frequency-controlled motors, AC current motors, and DC current motors.
- the power-generating main network 12 may, in an alternative design, comprise a source of power 15, 25 selected from any one of the following: diesel engines, turbine engines, Stirling engines, Otto engines, fuel cells, solar cells, AC electrical networks, wind turbines, and combinations of these.
- the control unit may, in an alternative design, be selected from any one of the following: an analogue unit, a programmable logic controller (PLC), and a computer.
- PLC programmable logic controller
- each lift comprises a load carrier in the form of a lift car that can be driven, by means of an electric motor 3, 4 supported by this lift car and a transmission with a shaft that can be rotated and that interacts with a cogged wheel, along a track in the form of a mast 5 provided with a cogged rod (see Figure 1a ).
- Each lift car 1, 2 supports a converter 6, 7 for the conversion of DC to AC adapted for driving the electric motor. It is appropriate that the said relevant electric motor be of three-phase type, having, for example, a rated voltage of 380-500 V and a frequency of 50 or 60 Hz.
- the present power supply system is shown in Figures 3-5 incorporated as a component of the two prior art designs that are shown in Figures 1, 1a and 2 .
- An energy storage system denoted generally by the reference number 10 is a component of the power supply system, which, with an energy store 11 located at ground level, can absorb and store energy that is produced through regenerative operation when one of the lift cars 1, 2 is retarded during motion downwards along the mast 5, i.e. when the potential energy is reduced and converted to electrical energy in the electric motor.
- the electric motor is supplied with the energy stored in the energy store 11 in order to achieve an increase in the potential energy of the lift car.
- any further energy that is required is taken, either from a principal power network that generates power and that is denoted generally by the reference number 12, which may, for example, be constituted by an electrical power network located at ground level or from the diesel-powered unit and the associated power generator shown in Figure 2 .
- Electrical power is supplied to the electric motors 3, 4 during the motion of the lift cars 1, 2 upwards along the mast 5, whereby the potential energy of the lift cars increases, and electrical power is produced through regenerative braking of the electric motor during the motion of the lift cars 1, 2 downwards along the mast, whereby the potential energy is reduced.
- ground level is here used to denote generally the lowest level located along a track on which a lift car is normally located or the lower level from which electrical power is led up to the drive machinery of the lift car.
- the energy storage system 10 is shown in Figures 3 and 4 surrounded by a dash-dot line and connected in parallel to a DC bus with a positive side 13 and a negative side 13'.
- the principal power network 12 that produces power is also connected to the positive and negative sides 13, 13' of the DC bus.
- the said principal power network 12 that produces power includes generally a mains power network 15 from which three-phase alternating current is fed to a transformer 16, to be transformed down to a suitable level of voltage.
- the alternating current is converted to a DC direct voltage by a converter 16 that is connected to the DC bus 13, 13' mentioned above.
- the three-phase AC drive motors 3, 4 of the relevant lift cars 1, 2 are connected to the DC bus 13, 13' through converters 6, 7 and through a DC power cable or transmission cable 14 that extends between the said converters and the DC bus. It would be possible, as an alternative, that the DC power cable or transmission cable 14 be constituted by a current rail or similar attached to the mast 5 and running along it. As Figure 1 makes clear, it can be selected that the drive motors 3, 4 obtain current either from the energy storage system 10 or from the principal power network 12 that produces power, or as a combination of power from the said two power supplies.
- control system 34 for example a programmable logic controller, a PLC, or a computer that is placed in connection with the relevant converters 6, 7, 17, 20 by channels 35, 36, 37, 38] in the form of, for example, a radio link 35 or wired connection.
- the power system described and shown here contains also a dynamic brake resistance 18 that can be connected by means of a switch 19 such that energy that has been produced by generative braking will be returned to the DC bus when one of the lifts 1, 2 moves downwards along the mast 5 and its potential energy is reduced, and it can then be selected whether this energy is to be led either to the braking resistance in order to be dissipated as heat or to the energy storage system 10 to be stored and used later. It would be appropriate for monitoring and surveillance of the voltage levels of the DC bus that it should be possible to arrange to what is known as a "buck-boost" circuit or similar between the DC bus 13, 13' and the energy storage system 10.
- the energy storage system 10 comprises a converter 20, a three-phase induction motor 21 and an energy storage 11 in the form of a flywheel 22.
- the induction motor 22 may be constituted by, for example, a traction motor, i.e. a three-phase synchronous motor with permanent magnets.
- the AC alternating current that is generated from the lift motor is thereby converted to DC direct current through the converter 6, 7, which direct current is led after passage through the DC bus to the energy storage system 10, which receives and stores the potential energy that has been received as kinetic energy in the flywheel 22 that is used in the energy store 11, through the flywheel being accelerated by means of the motor 21.
- the kinetic energy in the flywheel 22 can, when power is needed, be converted subsequently to electrical energy, which can be used by one of the two lifts 1 and 2.
- the potential energy levels of the two lift cars 1, 2 can in this way be balanced through mutual energy transfer. This is very interesting, in particular during the acceleration phase, since it means that the main network 12 that produces power must supply only a limited part of the current that normally would be required during the critical acceleration phase of the lift car (see also Figures 7 and 8 ).
- the advantage that the main power unit 12 needs to deliver only a fraction of the energy that is normally required during the acceleration phase means that it is possible to reduce significantly the dimensions of the exertal power system.
- FIG 4 shows the principal power network 12 that produces power in an alternative design where a diesel-powered unit 25 is used as a source of power.
- the diesel-powered unit 25 is mechanically coupled to an AC power generator 26.
- the AC alternating current that is supplied by the power generator 26 is converted to DC direct current by means of a converter 27 and is led into the DC bus through the positive 13 side and the negative side 13'.
- Figure 5 shows the energy storage system 10 in an alternative design comprising an energy store 11 in the form of a supercondensor 27 in which the potential energy that is obtained during the motion downwards of one of the lift cars 1, 2 along the mast 5 and generative braking can be stored.
- a diode 28 and a charge switch 29 are present in a first branch whereby the branch is connected in parallel across the positive side 13 and the negative side 13' of the DC bus.
- a second branch is present with a switch 30 that causes when closed the supercondensor 27 to be discharged.
- the diode 28 allows current to pass only in a direction that leads to charging of the supercondensor 27, whereby discharge cannot take place through the said first branch, which contains the diode 28.
- the voltage of the supercondensor 27 increases such that it eventually exceeds the voltage across a condensor 31 that is component of the DC bus. Since the voltage across the supercondensor 27 is higher than the voltage across the condensor 31 of the DC bus, the supercondensor can be connected for the delivery of power to one of the drive motors 3, 4 of the lifts 1, 2 through the relevant converter 6, 7, which takes place in practice through the second branch being closed by means of the switch 30.
- FIG. 6 shows the energy storage system 10 in an alternative design comprising an energy store 11 in the form of a battery 32 that is controlled by means of a switch 33 for the storage of energy and the delivery of the said energy in the form of a DC direct current.
- Block A corresponds to the electricity consumed during acceleration of the lift car 1, 2 to a predetermined speed in a direction of motion upwards along the mast 5.
- Block B corresponds to the power consumption when the lift car 1, 2 increases its potential energy through moving at a constant speed upwards along the mast.
- Block C corresponds to the energy consumption during retardation and stop of the lift car 1, 2.
- Block D represents the inverse power or the return of potential energy for storage during acceleration downwards of the lift car 1, 2.
- Block E represents inverse energy consumption during motion at constant speed downwards and block F represents the inverse energy during retardation and stop of the lift car 1, 2 during downwards motion.
- Figure 8 shows graphically the power consumption that can be achieved according to the principles of the present invention whereby the power consumption is illustrated as constant with time in the hatched block and is obtained through stored potential energy from regenerative motor operation being recycled as power that is superimposed on the power that is consumed in Figure 7 .
- the graph is intended to give an example of how residual power that is recycled and stored in the energy storage system 10 that has been obtained during braking of the lift car during its motion downwards and that is stored as transferred potential energy in, for example as kinetic energy of the flywheel 22 of the energy storage system, can be returned at times during the transport cycle of the lifts 1, 2 when the power that is required is at its greatest, for example, at the instant of starting when the lift car is accelerated.
- the collected energy in the power supply system can be regarded as a constant, as is stated by the general laws of thermodynamics, whereby the only energy that is consumed is the energy that is lost due to the appearance of mechanical and electrical losses.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Structural Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Elevator Control (AREA)
Claims (20)
- Système d'alimentation en énergie pour un ascenseur du type dans lequel la machinerie d'entraînement est soutenue par un transporteur de charge (1, 2) et entraîne au moyen d'une roue dentée (111) et d'une tige dentée (112) le transporteur de charge le long d'une voie sur un mât (5) dans des première et deuxième directions, et un moteur électrique (3, 4) qui fait partie de la machinerie d'entraînement du transporteur de charge est alimenté en puissance par une unité située au niveau du sol, comprenant ;
un moteur électrique actionné électriquement (3, 4) qui fait partie de la machinerie d'entraînement et est agencé pour entraîner le transporteur de charge (1, 2) dans des première et deuxième directions le long du mât (5) et pour générer de l'énergie électrique par l'intermédiaire d'une opération de régénération du moteur électrique pendant l'entraînement du transporteur de charge dans une deuxième direction opposée,
un système de stockage d'énergie (10) qui est un composant de l'unité au niveau du sol et qui comprend un stockage d'énergie (11) pour le stockage d'énergie,
un réseau électrique principal (12) disposé au niveau du sol, à partir duquel l'énergie électrique peut être retirée,
caractérisé en ce qu'il comprend ;
un bus à courant continu de transfert d'énergie (13, 13') et une ligne à courant continu d'alimentation électrique (14) pour suivre d'une longueur adaptée le transporteur de charge vers le haut et vers le bas le long du mât pour transférer de l'énergie électrique entre la machinerie d'entraînement du transporteur de charge (1, 2), le système de stockage d'énergie (10) et le réseau électrique principal (12) produisant de l'énergie, chacun dudit système de stockage (10) et dudit réseau électrique principal (12) étant connectés en parallèle au bus à courant continu,
un système de commande et de surveillance (17) pour la surveillance et la commande des flux d'énergie électrique entre le moteur électrique (3, 4) du transporteur de charge, le stockage d'énergie (11) au niveau du sol et du réseau électrique principal (12). - Système d'alimentation en énergie selon la revendication 1, dans lequel la ligne à courant continu d'alimentation électrique (14) est agencée pour être suspendue au niveau du transporteur de charge (1, 2) pour le transfert de puissance entre les moteurs électriques du transporteur de charge (1, 2), le système de stockage d'énergie (10) et le réseau électrique principal (12) produisant de la puissance.
- Système d'alimentation en énergie selon la revendication 2, dans lequel la ligne d'alimentation électrique (14) comprend un câble de transmission à courant continu avec des conducteurs et une couche isolante.
- Système d'alimentation en énergie selon l'une quelconque des revendications 1 à 3, dans lequel le moteur électrique (3, 4) comprend l'un des moteurs suivants : moteurs à fréquence contrôlée, moteurs à courant alternatif et moteurs à courant continu.
- Système d'alimentation en énergie selon la revendication 3 ou 4, dans lequel le moteur électrique (3, 4) est du type triphasé inductif alternatif avec un convertisseur associé (6, 7) suspendu de la même manière au transporteur de charge (1, 2) pour la conversion du courant continu délivré par le bus à courant continu.
- Système d'alimentation en énergie selon l'une quelconque des revendications 3 à 5, comprenant une résistance de freinage à fonctionnement dynamique (18) pouvant être connectée entre les connexions positive (13) et négative (13') du bus à courant continu au moyen d'un commutateur (19), l'énergie électrique produite pendant l'opération de régénération pouvant être dissipée sous forme de chaleur dans la résistance de freinage.
- Système d'alimentation en énergie selon l'une quelconque des revendications 3 à 6, dans lequel le bus à courant continu transfère le courant continu produit pendant l'opération de régénération au système de stockage d'énergie (10) afin d'augmenter l'énergie stockée dans le stockage d'énergie (11) lorsque le transporteur de charge (1, 2) réduit son énergie potentielle par un mouvement descendant le long de la voie (5).
- Système d'alimentation en énergie selon l'une quelconque des revendications 1 à 7, dans lequel le réseau électrique principal (12) comprend une source de puissance (15, 25) sélectionnée parmi l'un des éléments suivants dans un groupe : moteurs diesel, piles à combustible, cellules solaires, réseaux électriques à courant alternatif, éoliennes et leurs combinaisons.
- Système d'alimentation en énergie selon l'une quelconque des revendications 1 à 8, dans lequel le système de stockage d'énergie (10) comprend un stockage d'énergie (11) sélectionné parmi l'un des éléments suivants dans un groupe : une batterie (32), un super-condensateur (27), un volant (22) et des combinaisons de ceux-ci.
- Système d'alimentation en énergie selon l'une quelconque des revendications 1 à 9, dans lequel le système de commande et de surveillance (17) comprend une unité de commande sélectionnée parmi l'un des éléments suivants dans un groupe: une unité analogique, un contrôleur logique programmable et un ordinateur.
- Ascenseur du type dans lequel lesdits transporteurs de charge (1, 2) sont constitués par un système avec ce que l'on appelle des "doubles wagons" pouvant être entraînés le long de voies s'étendant en parallèle l'une de l'autre sur un mât commun (5) comprenant un système d'alimentation en énergie selon l'une quelconque des revendications 1 à 10, dans lequel de l'énergie provenant de l'un des moteurs d'entraînement (3) du transporteur de charge (1) pendant le freinage régénérateur est stockée dans le stockage d'énergie (11) et est renvoyée et utilisée par le moteur d'entraînement (4) du deuxième transporteur de charge (2) lorsqu'il est accéléré vers le haut le long de la voie.
- Procédé d'alimentation en énergie d'ascenseurs du type dans lequel la machinerie d'entraînement est soutenue par un support de charge (1, 2) et entraîne au moyen d'une roue dentée (111) et d'une tige dentée (112) le transporteur de charge le long d'une voie sur un mât (5) dans des première et deuxième directions, et un moteur électrique (3, 4) qui fait partie de la machinerie d'entraînement du transporteur de charge est alimenté en énergie par une unité située au niveau du sol, comprenant des étapes de fonctionnement suivantes ;a) où un transporteur de charge (1, 2) est agencé,b) où la machinerie d'entraînement du transporteur de charge (1, 2) est pourvue d'un moteur électrique (3, 4) qui permet au transporteur de charge d'être entraîné dans des première et deuxième directions le long du mât (5) et de produire de l'énergie électrique par l'intermédiaire d'une opération de régénération du moteur électrique pendant l'entraînement du transporteur de charge dans ladite deuxième direction vers le bas,c) où un réseau d'alimentation principal (12) pour l'alimentation en énergie électrique est agencé à un niveau du sol,d) où un système de stockage d'énergie (10) comprenant un stockage d'énergie (11) pour le stockage d'énergie est agencé au niveau du sol, caractérisé par les étapes de fonctionnement suivantes ;e) où un bus à courant continu (13, 13') et une ligne à courant continu (14) pour suivre d'une longueur adaptée le transporteur de charge vers le haut et vers le bas le long du mât sont agencés pour transférer de l'énergie électrique entre le moteur électrique (3, 4) qui est supporté par le transporteur de charge (1, 2), le stockage d'énergie (11) disposé au niveau du sol et le réseau d'alimentation principal (12) situé au niveau du sol, chacun dudit système de stockage (10) et dudit réseau électrique principal (12) étant connectés en parallèle au bus à courant continue,f) où un système de commande et de surveillance (17) est agencé pour la surveillance et la commande des flux d'énergie électrique entre le moteur électrique (3, 4) du transporteur de charge, le stockage d'énergie (11) au niveau du sol et du réseau électrique principal (12) produisant de la puissance,g) où le fonctionnement du transporteur de charge (1, 2) est agencé pour fournir, lors de l'opération de régénération, l'énergie potentielle lors de la descente le long du mât (5) et que l'énergie électrique ainsi obtenue est acheminée par le bus jusqu'au stockage d'énergie (11) à stocker, eth) où le transporteur de charge (1, 2) est agencé pour augmenter son énergie potentielle pendant une accélération ou un mouvement vers le haut le long du mât (5) par l'influence de l'énergie électrique qui a été obtenue depuis le stockage d'énergie (11).
- Procédé selon la revendication 12, dans lequel de l'énergie électrique est transférée sous la forme d'un courant continu entre le moteur électrique (3, 4) et le stockage d'énergie (11) agencé au niveau du sol.
- Procédé selon la revendication 12, dans lequel le courant continu est transféré sur un câble d'alimentation en courant continu ou un câble de transmission (14) suspendu au niveau du transporteur de charge (1, 2) et s'étendant vers le bas ou alternativement au moyen d'un rail de courant fixé au mât (5) et s'étendant le long de celui-ci.
- Procédé selon l'une quelconque des revendications 13 à 14, dans lequel, en tant que moteur électrique (3, 4), est sélectionné un moteur électrique à courant alternatif inductif entraîné par un courant alternatif et en ce que la cabine d'ascenseur (1, 2) est agencée pour supporter un convertisseur (6, 7) pour la conversion du courant continu en courant alternatif adapté au fonctionnement du moteur électrique à courant alternatif.
- Procédé selon l'une quelconque des revendications 12 à 15, dans lequel l'ascenseur est agencé en tant que double wagon avec des transporteurs de charges s'étendant par paires sur un mât commun (5), et en ce que l'énergie électrique obtenue lors du freinage régénérateur du moteur d'entraînement (3) de l'un des transporteurs de charge (1) lorsque celui-ci descend, est stockée dans le système d'énergie (10) et est renvoyée et utilisée par le moteur d'entraînement (4) du deuxième des transporteurs de charge (2) lorsque ce transporteur de charge est accéléré vers le haut et le long du mât.
- Procédé selon l'une quelconque des revendications 12 à 16, dans lequel le stockage d'énergie (11) est sélectionné parmi l'un des éléments suivants dans un groupe : une batterie (32), un super-condensateur (27), un volant (22) et des combinaisons de ceux-ci.
- Procédé selon l'une quelconque des revendications 12 à 17, dans lequel le réseau électrique principal (12) est sélectionné parmi l'un des éléments suivants dans un groupe : moteurs diesel, moteurs à turbine, moteurs Stirling, moteurs Otto, piles à combustible, cellules solaires, réseaux électriques à courant alternatif, éoliennes et leurs combinaisons.
- Procédé selon l'une quelconque des revendications 12 à 18, dans lequel le système de commande et de surveillance (17) est sélectionné parmi l'un des éléments suivants dans un groupe: une unité analogique, un contrôleur logique programmable et un ordinateur.
- Utilisation d'un système d'alimentation en énergie selon la revendication 1 avec une combinaison d'un bus à courant continu et d'un câble de transmission à courant continu (14) pour le transfert de puissance au moteur électrique (3, 4) d'un transporteur de charge (1, 2) du type spécifié dans l'introduction de revendication 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1050181A SE536861C2 (sv) | 2010-02-26 | 2010-02-26 | Kraftförsörjningssystem vid kuggstångsburna hissar och förfarande för framställning av ett sådant kraftförsörjningssystem |
PCT/SE2011/050213 WO2011105959A1 (fr) | 2010-02-26 | 2011-02-24 | Système d'alimentation en énergie pour élévateurs à pignon et crémaillère et procédé d'alimentation en énergie de ces élévateurs |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2539266A1 EP2539266A1 (fr) | 2013-01-02 |
EP2539266A4 EP2539266A4 (fr) | 2016-01-13 |
EP2539266B1 true EP2539266B1 (fr) | 2019-09-18 |
Family
ID=44507099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11747796.8A Active EP2539266B1 (fr) | 2010-02-26 | 2011-02-24 | Système d'alimentation en énergie pour élévateurs à pignon et crémaillère et procédé d'alimentation en énergie de ces élévateurs |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2539266B1 (fr) |
ES (1) | ES2761327T3 (fr) |
SE (1) | SE536861C2 (fr) |
WO (1) | WO2011105959A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012012619A1 (de) * | 2012-06-26 | 2014-01-02 | Liebherr-Elektronik Gmbh | Vorrichtung und Verfahren zur elektrischen Energieversorgung einer industriellen Anlage |
EP3223420B1 (fr) * | 2016-03-22 | 2020-05-06 | Siemens Aktiengesellschaft | Système de convertisseur de courant destiné au freinage fiable d'un système d'entrainement |
US11873190B2 (en) | 2018-09-18 | 2024-01-16 | Inventio Ag | System for conveying passengers, method for optimizing the operation of a system for conveying passengers |
EP3733578A1 (fr) * | 2019-05-03 | 2020-11-04 | Otis Elevator Company | Entraînement régénératif |
CN115380462A (zh) * | 2019-12-31 | 2022-11-22 | 苏莱曼·图纳·汉恩·塔什奇 | 重力发电系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1192059A (ja) * | 1997-09-19 | 1999-04-06 | Ohbayashi Corp | 建設用リフト |
JP4347982B2 (ja) * | 2000-02-28 | 2009-10-21 | 三菱電機株式会社 | エレベーターの制御装置 |
JP2003238051A (ja) | 2002-02-15 | 2003-08-27 | Sansei Kenki Kk | 工事用エレベーター |
US8220590B2 (en) * | 2007-01-11 | 2012-07-17 | Otis Elevator Company | Thermoelectric thermal management system for the energy storage system in a regenerative elevator |
ES2437624T3 (es) * | 2008-08-15 | 2014-01-13 | Otis Elevator Company | Control de almacenamiento para corriente y energía de línea para un grupo tractor de ascensor |
-
2010
- 2010-02-26 SE SE1050181A patent/SE536861C2/sv unknown
-
2011
- 2011-02-24 WO PCT/SE2011/050213 patent/WO2011105959A1/fr active Application Filing
- 2011-02-24 ES ES11747796T patent/ES2761327T3/es active Active
- 2011-02-24 EP EP11747796.8A patent/EP2539266B1/fr active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2539266A4 (fr) | 2016-01-13 |
WO2011105959A1 (fr) | 2011-09-01 |
EP2539266A1 (fr) | 2013-01-02 |
SE536861C2 (sv) | 2014-10-07 |
SE1050181A1 (sv) | 2011-08-27 |
ES2761327T3 (es) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2691333B1 (fr) | Procédé et dispositif permettant une alimentation électrique pour des ascenseurs à crémaillère | |
EP2539266B1 (fr) | Système d'alimentation en énergie pour élévateurs à pignon et crémaillère et procédé d'alimentation en énergie de ces élévateurs | |
CN101670959A (zh) | 电梯系统 | |
CN105914768A (zh) | 一种分布式飞轮储能阵列和飞轮储能电厂 | |
CN114784830A (zh) | 一种重力结合飞轮的综合物理储能系统及储能方法 | |
EP4244168B1 (fr) | Système et procédés d'élévateur pneumatique durables | |
CN117639015B (zh) | 废旧矿井用直线电机重力储能装置及其多储能块协同控制方法 | |
CN102351119A (zh) | 交流永磁同步变频电梯公用直流回路技术 | |
CN112390113A (zh) | 施工升降机 | |
CN102412781B (zh) | 一种整体移动式高压变频电控装置 | |
CN115549268A (zh) | 一种立体仓库自动化设备的势能回收系统及其搭建方法 | |
CN201869080U (zh) | 供电结构可变飞轮储能电机装置 | |
Iannuzzi et al. | Use of supercapacitors for energy saving in overhead travelling crane drives | |
CN111099483B (zh) | 升降机、电能存储释放控制器和电能存储释放方法 | |
CN113800361A (zh) | 基于电动底盘的电梯驱动系统 | |
Plotnikov et al. | About using the frequency-controlled electric drives with supercapacitors in the hoisting applications | |
CN110797890A (zh) | 垂直提升装置的储能回收系统 | |
CN203728339U (zh) | 为停车装置的升降驱动部位充电的电源补给装置 | |
CN202334262U (zh) | 整体移动式高压变频电控装置 | |
CN201550078U (zh) | 施工升降机分体变频调速系统 | |
CN213085149U (zh) | 一种柔性储能回馈利用的电梯节能装置 | |
CN221370280U (zh) | 一种新能源起重机小车 | |
JP2012005274A (ja) | 電力平準化装置及び方法 | |
CN102142733A (zh) | 供电结构可变飞轮储能电机装置 | |
CN101633456A (zh) | 低功率电梯系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120823 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20151215 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B66B 9/02 20060101AFI20151209BHEP Ipc: B66B 1/30 20060101ALI20151209BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190405 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALIMAK GROUP SWEDEN AB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011062152 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1181061 Country of ref document: AT Kind code of ref document: T Effective date: 20191015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190918 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191219 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1181061 Country of ref document: AT Kind code of ref document: T Effective date: 20190918 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200120 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2761327 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011062152 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200119 |
|
26N | No opposition filed |
Effective date: 20200619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200224 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200224 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200224 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200224 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240319 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20240220 Year of fee payment: 14 Ref country code: DE Payment date: 20240219 Year of fee payment: 14 Ref country code: CZ Payment date: 20240126 Year of fee payment: 14 |