EP2536988B1 - Support arm for an electrode of a melt metallurgic furnace - Google Patents

Support arm for an electrode of a melt metallurgic furnace Download PDF

Info

Publication number
EP2536988B1
EP2536988B1 EP11703657.4A EP11703657A EP2536988B1 EP 2536988 B1 EP2536988 B1 EP 2536988B1 EP 11703657 A EP11703657 A EP 11703657A EP 2536988 B1 EP2536988 B1 EP 2536988B1
Authority
EP
European Patent Office
Prior art keywords
support arm
electrode support
electrode
optical waveguide
arm according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11703657.4A
Other languages
German (de)
French (fr)
Other versions
EP2536988A1 (en
Inventor
Gereon Fehlemann
Dirk Lieftucht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP2536988A1 publication Critical patent/EP2536988A1/en
Application granted granted Critical
Publication of EP2536988B1 publication Critical patent/EP2536988B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/10Mountings, supports, terminals or arrangements for feeding or guiding electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/28Arrangement of controlling, monitoring, alarm or the like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/08Heating by electric discharge, e.g. arc discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/08Heating by electric discharge, e.g. arc discharge
    • F27D11/10Disposition of electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices

Definitions

  • the invention relates to a Elektrodentragarm a molten metallurgical furnace, in particular an electric arc furnace, wherein the electrode support arm is provided with at least one measuring element for measuring a physical quantity.
  • the DE 198 56 765 discloses a method for detecting the degradation of electrically-energizable or energetically-connectable components of electric arc furnaces that arc burning from an electrode during operation.
  • an electrode arrangement with a generic electrode support arm is known.
  • holding devices for the required electrodes are used. These devices usually consist of a support pole, which carries a Elektrodentragarm; the electrode support arm runs in horizontal direction.
  • an electrode is arranged, which extends vertically downwards, ie it hangs at the end of the electrode support arm.
  • the flow guide from a power connection to the electrode is usually done by copper-plated steel sheets, which make up the support arm. The steel sheet essentially performs the mechanical support function, with the copper applied conducting the current.
  • the electrode support arm can be provided with sensor elements, with load cells or strain gauges being used. With these sensors, the deformation of the support arm is detected. The determined sensory determined data are compared with setpoints, for which a measured value evaluation device is used.
  • the present invention is based on the object, a Elektrodentragarm of the type mentioned in such a way that it is possible to detect thermal and / or mechanical loads on the Elektrodentragarms as accurately as possible and to improve the operation of the electrode assembly to improve. So it should be provided an efficient monitoring for the electrode support arm. In this case, a continuous and precise monitoring of the temperatures or the mechanical stresses of the electrode support arm should be possible, which can be realized inexpensively.
  • the solution of this object by the invention is characterized in that the measuring element is formed in the electrode support arm for measuring the temperature and / or mechanical strain of the electrode support arm, wherein the measuring element comprises at least one optical waveguide which extends at least in sections along the longitudinal extent of the electrode support arm.
  • the optical waveguide can be arranged in a surrounding tube.
  • the optical waveguide and the tube possibly surrounding it can be arranged in a bore in the electrode support arm.
  • the optical waveguide and possibly surrounding him tube are arranged in a groove in the electrode support arm.
  • the groove can be closed by a closure element which holds the optical waveguide and the possibly surrounding tube in the groove base, wherein the closure element is in particular a metal part inserted into the groove or cast into the groove.
  • the closure element is preferably connected to the groove by friction stir welding.
  • friction stir welding advantageously, the welding temperature can be well controlled, whereby it can be prevented that the optical waveguide inside the groove becomes too hot.
  • a further alternative provides that the optical waveguide and / or, if appropriate, the tube surrounding it are arranged in a layer, wherein the layer is arranged on or in the electrode support arm.
  • the layer may consist of metal or of a temperature-resistant non-metallic material.
  • the optical waveguide and the possibly surrounding tube can be completely surrounded by the material of the layer.
  • the layer may be applied galvanically to or in the electrode support arm. It can be made of copper, chrome or nickel. It may be a spray coating or a chemical coating, as for example from the DE 10 2009 049479.0 is known.
  • temperatures and / or stresses or strains in the components of the electrode support arm can be measured as a temperature or stress profile over the surface of the electrode support arm. Also included are dynamic changes due to flows in the melt, which is located in the vessel under the arm. As a result, an assessment of the state of wear and the present load situation of the support arm by the temperature and / or the voltage is possible.
  • the proposed concept enables a representation of the thermal or mechanical loading of the components over their surface in the respective operating state.
  • the optical waveguide or the metal tube surrounding the optical waveguide In order to be able to carry out precise temperature measurements with the optical waveguide, it is advantageous for the optical waveguide or the metal tube surrounding the optical waveguide to rest tightly against the component or medium, if possible without (insulating) air gap, thus ensuring good temperature transmission can take place on the optical fiber.
  • the fiber optic cable must not be mislaid during the temperature measurement, so that it can expand or contract when the temperature changes.
  • the optical waveguide is firmly connected to the component whose elongation or its temporal strain curve to be measured, so that the mechanical strain of the component transmits to the optical waveguide.
  • the optical waveguide or the tube surrounding it is firmly connected to the bore or groove base.
  • a filler for closing the groove is used, which may consist of metal. It can be made to fit the shape of the groove. It can also be provided that the filler is produced by casting or spraying the material of the filler into the groove. After that, therefore, the material from which the filling piece is made pourable or sprayable and then poured or injected into the groove, in which the optical waveguide, if necessary, including tube was inserted.
  • the proposed embodiment thus offers the possibility to detect stress states in the measured plane and thus to detect the mechanical stress of the components.
  • the optical waveguide is preferably connected to an evaluation unit in which the temperature distribution in the electrode support arm can be determined. With this evaluation, the mechanical stress on the wall of the electrode support arm can also be detected accordingly.
  • Fig. 1 is an electrode assembly 6 can be seen, which is used in an electric arc furnace.
  • the electrode assembly 6 has a support pole 8 extending vertically.
  • an electrode support arm 1 is arranged, which extends horizontally.
  • an electrode 7 is arranged hanging, over which the arc is generated in the electric arc furnace.
  • the electrode support arm 1 extends in a longitudinal extension L, which in the present case corresponds to the horizontal direction.
  • the power supply of the electrode 7 via a power connector. 9
  • the electrode support arm 1 is made of sheet steel, with which a sufficient mechanical strength is achieved. For the electrical conduction of the current from the power connection 9 to the electrode 7, plating with copper is provided.
  • the Elektrodentragarm 1 is liquid-cooled.
  • the electrode support arm 1 has a cooling channel 10, which flows through a coolant becomes.
  • the media supply lines required for this purpose are not shown.
  • the electrode support arm 1 has a respective bore 5 in its upper and in its lower region (see FIG. FIGS. 2 and 3 ), in which a measuring element 2 is housed, with which the temperature and the voltage can be measured.
  • This is an optical waveguide 3, which is housed in a protective tube 4.
  • the two, still empty holes are in Fig. 3 to see; in this, the optical waveguide is introduced together with tube 4, as it is made Fig. 4 evident.
  • the optical waveguide 3 typically has a diameter of z. B. 0.12 mm; with cladding tube 4 usually results in a diameter in the range of 0.8 mm to 2.0 mm.
  • the optical waveguide 3 consists of a base fiber, which is introduced into the holes 5 or in similar channels or grooves in the electrode support arm 1.
  • the optical waveguide 3 can withstand temperatures up to 800 ° C continuous load.
  • the tube 4 is only optional, not mandatory. In this case, the optical waveguide 3 without tube 4 by the connection to the base material of the electrode support arm 1 expansions is particularly favorable; the same applies to the temperatures that can be well detected by the optical waveguide 3 in the cladding tube 4.
  • a respective bore 5 is provided in the upper and lower region of the electrode support arm 1, in each of which an optical waveguide 3 is introduced. It is also possible in all four side sections of the profile how it looks Fig. 3 indicates to bring holes and place optical fiber 3.
  • the light waves are guided via lens plug from the electrode support arm in the respective rest position to the evaluation unit.
  • optical waveguide 3 - possibly together with tube 4 - in a layer of metallic material or temperature-resistant non-metallic material, which is applied to the electrode support arm 1.
  • the optical waveguide fiber optic sensors in modules, that is, enclosed in prefabricated structural units.
  • the optical fibers are loosely laid in the modules, so that a temperature-induced change in length of the optical waveguide within the module is possible stress-free.
  • the optical waveguides are preferably permanently connected over their entire length to the material of the module or to the housing of the module, so that an expansion of the module or of its housing is transmitted to the optical waveguides.
  • the modules with the optical waveguides are glued or welded onto the electrode support arm and thus actively connected. An elongation or temperature change of the electrode arm is therefore transmitted to the optical waveguide via the module.
  • the modules or the optical waveguides in the modules are suitable to measure the temperature, the mechanical stress or strain and / or - over the time course of the elongation - also the acceleration behavior of the component, in particular of the electrode support arm.
  • a special measuring device may be required, which may be integrated into the module.
  • the strain or acceleration measurements can be used to dampen unwanted vibrations of the component control technology, that is, to correct.
  • the layer can be galvanized (in the case of metal), wherein the optical waveguide 3 together with the tube 4 are completely encased.
  • the galvanic layer may for example consist of copper, chromium or nickel.
  • the optical waveguide 3 is connected to a temperature detection system, not shown, or to a detection system for mechanical stresses or strains. By means of the detection system laser light is generated, which is fed into the optical waveguide 3. The of the optical fiber 3 collected data are converted by means of the detection system into temperatures or voltages and assigned to the different measuring locations.
  • the evaluation can be carried out, for example, according to the so-called fiber Bragg grating method (FBG method).
  • FBG method fiber Bragg grating method
  • suitable optical waveguides are used, the measuring points with a periodic variation of the refractive index or grating get impressed with such variations.
  • This periodic variation of the refractive index leads to the fact that the optical waveguide represents a dielectric mirror as a function of the periodicity for specific wavelengths at the measuring points.
  • the Bragg wavelength is changed and exactly this is reflected.
  • Light that does not satisfy the Bragg condition is not significantly affected by the Bragg grating.
  • the different signals of the different measuring points can then be distinguished from one another on the basis of propagation time differences.
  • the detailed structure of such fiber Bragg gratings and the corresponding evaluation units are well known.
  • the accuracy of the spatial resolution is given by the number of impressed measuring points.
  • the size of a measuring point can be, for example, in the range of 1 mm to 5 mm.
  • the "Optical Frequency Domain Reflectometry” method (OFDR method) or the “Optical Time Domain Reflectometry” method (OTDR method) can also be used to measure the temperature.
  • These methods are based on the principle of fiber optic Raman backscatter, taking advantage of the fact that a temperature change at the point of a light guide causes a change in the Raman backscatter of the optical waveguide material.
  • the evaluation unit eg a Raman reflectometer
  • the temperature values along a fiber can then be determined in a spatially resolved manner, with this method averaging over a specific length of the conductor. This length is about a few centimeters.
  • the different measuring points are in turn separated by differences in transit time.
  • the structure of such systems for evaluation according to the said methods is well known, as are the necessary lasers which generate the laser light within the optical waveguide 3.
  • the largest adjusting lever for vibration compensation is usually the regulation of the adjusting cylinder of the height control of the support arm (see in particular the above-mentioned DE 36 08 338 A1 ).
  • This height control can be used to compensate for the vibrations and deformations identified by the strain measurement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Furnace Details (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Radiation Pyrometers (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

Die Erfindung betrifft einen Elektrodentragarm eines schmelzmetallurgischen Ofens, insbesondere eines Lichtbogenofens, wobei der Elektrodentragarm mit mindestens einem Messelement zur Messung einer physikalischen Größe versehen ist.The invention relates to a Elektrodentragarm a molten metallurgical furnace, in particular an electric arc furnace, wherein the electrode support arm is provided with at least one measuring element for measuring a physical quantity.

Die DE 198 56 765 offenbart ein Verfahren zur Erfassung der Nutzungsminderung von mit elektrischem Strom beaufschlagbaren oder mit diesem energiemäßig in Verbindung bringbaren Bauteilen an Lichtbogenöfen, bei denen während des Betriebs von einer Elektrode ausgehend ein Lichtbogen brennt.The DE 198 56 765 discloses a method for detecting the degradation of electrically-energizable or energetically-connectable components of electric arc furnaces that arc burning from an electrode during operation.

Aus der DE 27 50 271 A1 ist eine Elektrodenanordnung mit einem gattungsgemäßen Elektrodentragarm bekannt. In schmelzmetallurgischen Öfen, insbesondere in Lichtbogenöfen, werden Halteeinrichtungen für die benötigen Elektroden eingesetzt. Diese Einrichtungen bestehen zumeist aus einem Tragmast, der einen Elektrodentragarm trägt; der Elektrodentragarm verläuft dabei in horizontale Richtung. An dem vom Tragmast entfernten Ende des Elektrodentragarms ist eine Elektrode angeordnet, die sich vertikal nach unten erstreckt, d. h. sie hängt am Ende des Elektrodentragarms. Die Strömführung von einem Stromanschluss zur Elektrode erfolgt zumeist durch kupferplattierte Stahlbleche, aus denen der Tragarm besteht. Das Stahlblech übernimmt dabei im Wesentlichen die mechanische Tragfunktion, wobei das aufgebrachte Kupfer den Strom leitet.From the DE 27 50 271 A1 an electrode arrangement with a generic electrode support arm is known. In melting metallurgical furnaces, in particular in electric arc furnaces, holding devices for the required electrodes are used. These devices usually consist of a support pole, which carries a Elektrodentragarm; the electrode support arm runs in horizontal direction. At the end remote from the support pole of the electrode support arm, an electrode is arranged, which extends vertically downwards, ie it hangs at the end of the electrode support arm. The flow guide from a power connection to the electrode is usually done by copper-plated steel sheets, which make up the support arm. The steel sheet essentially performs the mechanical support function, with the copper applied conducting the current.

In dem genannten Dokument wird auch bereits erläutert, dass der Elektrodentragarm mit Sensorenelementen versehen werden kann, wobei Kraftmessdosen bzw. Dehnmessstreifen zum Einsatz kommen. Mit diesen Sensoren wird die Deformation des Tragarms erfasst. Dabei können die ermittelten sensorisch ermittelten Daten mit Sollwerten verglichen werden, wofür ein Messwertauswertungsgerät zum Einsatz kommt.The cited document also already explains that the electrode support arm can be provided with sensor elements, with load cells or strain gauges being used. With these sensors, the deformation of the support arm is detected. The determined sensory determined data are compared with setpoints, for which a measured value evaluation device is used.

Ähnliche Elektrodenanordnungen sind in der DE 27 50 186 A1 , in der DE 36 08 338 A1 , in der EP 1 537 372 B1 und in der EP 0 094 378 B1 beschrieben.Similar electrode arrangements are in DE 27 50 186 A1 , in the DE 36 08 338 A1 , in the EP 1 537 372 B1 and in the EP 0 094 378 B1 described.

Nachteilig ist bei den vorbekannten Systemen - soweit sie überhaupt auf die Fragestellung der Messwerterfassung im Elektrodentragarm eingehen -, dass infolge der hohen Stromstärke durch den Elektrodentragarm hohe elektrische Störfelder vorliegen, die sowohl Thermoelemente als auch Dehnmessstreifen empfindlich stören. Demgemäß ist es schwierig, thermische Daten (also Temperaturen) und mechanische Daten (also Spannungen bzw. Dehnungen) genau zu ermitteln, was allerdings die Voraussetzung dafür ist, den Elektrodenbetrieb in optimaler Weise zu fahren.A disadvantage of the prior art systems - as far as they go at all to the question of data acquisition in Elektrodentragarm - that high electrical interference due to the high current through the Elektrodentragarm present that disturb both thermocouples and strain gauges sensitive. Accordingly, it is difficult to accurately determine thermal data (that is, temperatures) and mechanical data (ie, strains), which, however, is the prerequisite for optimally driving the electrode operation.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Elektrodentragarm der eingangs genannten Art so fortzubilden, dass es möglich wird, thermische und/oder mechanische Belastungen des Elektrodentragarms möglichst genau zu erfassen und so den Betrieb der Elektrodenanordnung verbessert zu steuern. Es soll also eine effiziente Überwachung für den Elektrodentragarm bereitgestellt werden. Dabei soll eine kontinuierliche und präzise Überwachung der Temperaturen bzw. der mechanischen Spannungen des Elektrodentragarms möglich sein, die sich kostengünstig realisieren lässt.The present invention is based on the object, a Elektrodentragarm of the type mentioned in such a way that it is possible to detect thermal and / or mechanical loads on the Elektrodentragarms as accurately as possible and to improve the operation of the electrode assembly to improve. So it should be provided an efficient monitoring for the electrode support arm. In this case, a continuous and precise monitoring of the temperatures or the mechanical stresses of the electrode support arm should be possible, which can be realized inexpensively.

Die Lösung dieser Aufgabe durch die Erfindung ist dadurch gekennzeichnet, dass das Messelement im Elektrodentragarm zur Messung der Temperatur und/oder der mechanischen Dehnung des Elektrodentragarms ausgebildet ist, wobei das Messelement mindestens einen Lichtwellenleiter umfasst, der zumindest abschnittsweise entlang der Längenerstreckung des Elektrodentragarms verläuft.The solution of this object by the invention is characterized in that the measuring element is formed in the electrode support arm for measuring the temperature and / or mechanical strain of the electrode support arm, wherein the measuring element comprises at least one optical waveguide which extends at least in sections along the longitudinal extent of the electrode support arm.

Der Lichtwellenleiter kann dabei in einem diesen umgebenden Rohr angeordnet sein.The optical waveguide can be arranged in a surrounding tube.

Der Lichtwellenleiter und das gegebenenfalls ihn umgebende Rohr können in einer Bohrung im Elektrodentragarm angeordnet sein.The optical waveguide and the tube possibly surrounding it can be arranged in a bore in the electrode support arm.

Alternativ hierzu ist es möglich, dass der Lichtwellenleiter und das gegebenenfalls ihn umgebende Rohr in einer Nut im Elektrodentragarm angeordnet sind. Die Nut kann durch ein Verschlusselement verschlossen sein, das den Lichtwellenleiter und das gegebenenfalls ihn umgebende Rohr im Nutgrund hält, wobei das Verschlusselement insbesondere ein in die Nut eingesetztes oder ein in die Nut eingegossenes Metallteil ist. Das Verschlusselement ist mit der Nut vorzugsweise durch Reibrührschweißen verbunden. Beim Reibrührschweißen kann vorteilhafterweise die Schweißtemperatur gut kontrolliert werden, wodurch verhindert werden kann, dass der Lichtwellenleiter im Innern der Nut zu heiß wird.Alternatively, it is possible that the optical waveguide and possibly surrounding him tube are arranged in a groove in the electrode support arm. The groove can be closed by a closure element which holds the optical waveguide and the possibly surrounding tube in the groove base, wherein the closure element is in particular a metal part inserted into the groove or cast into the groove. The closure element is preferably connected to the groove by friction stir welding. In friction stir welding, advantageously, the welding temperature can be well controlled, whereby it can be prevented that the optical waveguide inside the groove becomes too hot.

Eine weitere Alternative sieht vor, dass der Lichtwellenleiter und/oder gegebenenfalls das ihn umgebende Rohr in einer Schicht angeordnet sind, wobei die Schicht am oder im Elektrodentragarm angeordnet ist. Die Schicht kann dabei aus Metall oder aus einem temperaturresistenten nichtmetallischen Material bestehen. Der Lichtwellenleiter und das gegebenenfalls ihn umgebende Rohr können vollständig vom Material der Schicht umgeben sein. Die Schicht kann galvanisch an den oder in den Elektrodentragarm aufgebracht sein. Sie kann aus Kupfer, Chrom oder Nickel bestehen. Es kann sich um eine Spritzbeschichtung oder eine chemische Beschichtung handeln, wie sie z.B. aus der DE 10 2009 049479.0 bekannt ist.A further alternative provides that the optical waveguide and / or, if appropriate, the tube surrounding it are arranged in a layer, wherein the layer is arranged on or in the electrode support arm. The layer may consist of metal or of a temperature-resistant non-metallic material. The optical waveguide and the possibly surrounding tube can be completely surrounded by the material of the layer. The layer may be applied galvanically to or in the electrode support arm. It can be made of copper, chrome or nickel. It may be a spray coating or a chemical coating, as for example from the DE 10 2009 049479.0 is known.

Durch die Einbringung von Lichtwellenleitern in die Wandungen und tragenden Elemente der Elektrodentragarme können Temperaturen und/oder Spannungen bzw. Dehnungen in den Bauteilen des Elektrodentragarms als Temperatur- bzw. Spannungsprofil über die Oberfläche des Elektrodentragarms gemessen werden. Ebenfalls erfasst werden dynamische Änderungen bedingt durch Strömungen in der Schmelze, die sich im Gefäß unter dem Tragarm befindet. Hierdurch wird eine Beurteilung des Verschleißzustandes und der vorliegenden Belastungssituation des Tragarms durch die Temperatur und/oder die Spannung möglich. Das vorgeschlagene Konzept ermöglicht eine Darstellung der thermischen bzw. mechanischen Belastung der Bauteile über ihre Oberfläche im jeweiligen Betriebszustand.By introducing optical waveguides into the walls and supporting elements of the electrode support arms, temperatures and / or stresses or strains in the components of the electrode support arm can be measured as a temperature or stress profile over the surface of the electrode support arm. Also included are dynamic changes due to flows in the melt, which is located in the vessel under the arm. As a result, an assessment of the state of wear and the present load situation of the support arm by the temperature and / or the voltage is possible. The proposed concept enables a representation of the thermal or mechanical loading of the components over their surface in the respective operating state.

Um genaue Temperatur-Messungen mit dem Lichtwellenleiter durchführen zu können, ist es vorteilhaft, dass der Lichtwellenleiter oder das Metallrohr, das den Lichtwellenleiter umgibt, eng an dem Bauteil bzw. Medium anliegt, und zwar möglichst ohne (isolierenden) Luftzwischenraum, damit eine gute Temperaturübertragung auf den Lichtwellenleiter stattfinden kann. Allerdings darf der Lichtwellenleiter bei der Temperaturmessung nicht eingeklemmt verlegt sein, damit er sich bei einer Temperaturänderung ausdehnen oder zusammenziehen kann.In order to be able to carry out precise temperature measurements with the optical waveguide, it is advantageous for the optical waveguide or the metal tube surrounding the optical waveguide to rest tightly against the component or medium, if possible without (insulating) air gap, thus ensuring good temperature transmission can take place on the optical fiber. However, the fiber optic cable must not be mislaid during the temperature measurement, so that it can expand or contract when the temperature changes.

Demgegenüber ist es für eine Dehnungsmessung mit dem Lichtwellenleiter erforderlich, dass der Lichtwellenleiter fest mit dem Bauteil verbunden ist, dessen Dehnung oder dessen zeitlicher Dehnungsverlauf gemessen werden soll, damit sich die mechanische Dehnung des Bauteils auf den Lichtwellenleiter überträgt.In contrast, it is necessary for a strain measurement with the optical waveguide, that the optical waveguide is firmly connected to the component whose elongation or its temporal strain curve to be measured, so that the mechanical strain of the component transmits to the optical waveguide.

Damit auch eine Dehnung (Spannung) der Wandung des Elektrodentragarms gemessen werden kann, ist es vorteilhaft, wenn der Lichtwellenleiter bzw. das diesen umgebende Rohr mit der Bohrung bzw. dem Nutgrund fest verbunden ist.So that an expansion (tension) of the wall of the electrode support arm can be measured, it is advantageous if the optical waveguide or the tube surrounding it is firmly connected to the bore or groove base.

Sofern eine Nut vorgesehen wird, in der der Lichtwellenleiter bzw. das diesen umgebende Rohr verlegt wird, ist bevorzugt vorgesehen, dass ein Füllstück zum Verschließen der Nut zum Einsatz kommt, das aus Metall bestehen kann. Es kann passgenau zur Form der Nut ausgebildet sein. Dabei kann auch vorgesehen werden, dass das Füllstück durch ein Vergießen oder Spritzen des Materials des Füllstücks in die Nut erzeugt ist. Hiernach wird also das Material, aus dem das Füllstück besteht, gießfähig oder spritzfähig gemacht und dann in die Nut, in die der Lichtwellenleiter ggf. samt Rohr eingelegt wurde, eingegossen bzw. eingespritzt.If a groove is provided in which the optical waveguide or the tube surrounding it is laid, it is preferably provided that a filler for closing the groove is used, which may consist of metal. It can be made to fit the shape of the groove. It can also be provided that the filler is produced by casting or spraying the material of the filler into the groove. After that, therefore, the material from which the filling piece is made pourable or sprayable and then poured or injected into the groove, in which the optical waveguide, if necessary, including tube was inserted.

Die vorgeschlagene Ausgestaltung bietet also die Möglichkeit, Spannungszustände in der gemessenen Ebene zu erfassen und so die mechanische Belastung der Bauteile zu erfassen.The proposed embodiment thus offers the possibility to detect stress states in the measured plane and thus to detect the mechanical stress of the components.

Die Technologie der Messung von Temperaturen, Dehnungen bzw. Spannungen und/oder von Beschleunigungen aus der zeitlichen Verteilung der gemessenen Dehnungen ist als solche bekannt (auch unter der Bezeichnung "optischer Dehmessstreifen"), so dass insoweit auf den Stand der Technik verwiesen wird.The technology of measuring temperatures, strains or stresses and / or accelerations from the temporal distribution of the measured strains is known as such (also under the name "optical Dehmessstreifen"), so that reference is made in this respect to the prior art.

Der Lichtwellenleiter steht hierzu bevorzugt mit einer Auswerteeinheit in Verbindung, in der die Temperaturverteilung im Elektrodentragarm ermittelt werden kann. Mit dieser Auswerteeinheit kann auch entsprechend die mechanische Belastung der Wandung des Elektrodentragarms erfasst werden.For this purpose, the optical waveguide is preferably connected to an evaluation unit in which the temperature distribution in the electrode support arm can be determined. With this evaluation, the mechanical stress on the wall of the electrode support arm can also be detected accordingly.

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Es zeigen:

Fig. 1
schematisch in der Seitenansicht eine Elektrodenanordnung eines Lichtbogenofens mit einem horizontal verlaufenden Elektrodentragarm,
Fig. 2
die Einzelheit "X" gemäß Fig. 1 in geschnittener Darstellung,
Fig. 3
den Schnitt A-B gemäß Fig. 1 und
Fig. 4
den Bereich einer Bohrung gemäß Fig. 3 in vergrößerter Darstellung.
In the drawing, an embodiment of the invention is shown. Show it:
Fig. 1
schematically in side view an electrode assembly of an arc furnace with a horizontally extending electrode support arm,
Fig. 2
the detail "X" according to Fig. 1 in a cutaway view,
Fig. 3
the section AB according to Fig. 1 and
Fig. 4
the area of a hole according to Fig. 3 in an enlarged view.

In Fig. 1 ist eine Elektrodenanordnung 6 zu sehen, die in einem Lichtbogenofen zum Einsatz kommt. Die Elektrodenanordnung 6 hat einen Tragmast 8, der sich vertikal erstreckt. An seinem oberen Ende ist ein Elektrodentragarm 1 angeordnet, der horizontal verläuft. An dem vom Tragmast 8 abgewandten Ende des Elektrodentragarms 1 ist eine Elektrode 7 hängend angeordnet, über die der Lichtbogen im Lichtbogenofen erzeugt wird. Der Elektrodentragarm 1 verläuft dabei in eine Längenerstreckung L, die vorliegend der horizontalen Richtung entspricht. Die Stromversorgung der Elektrode 7 erfolgt über einen Stromanschluss 9.In Fig. 1 is an electrode assembly 6 can be seen, which is used in an electric arc furnace. The electrode assembly 6 has a support pole 8 extending vertically. At its upper end an electrode support arm 1 is arranged, which extends horizontally. At the end remote from the support pole 8 of the electrode support arm 1, an electrode 7 is arranged hanging, over which the arc is generated in the electric arc furnace. The electrode support arm 1 extends in a longitudinal extension L, which in the present case corresponds to the horizontal direction. The power supply of the electrode 7 via a power connector. 9

Der Elektrodentragarm 1 besteht aus Stahlblech, mit dem eine ausreichende mechanische Festigkeit erreicht wird. Zur elektrischen Leitung des Stromes vom Stromanschluss 9 zur Elektrode 7 ist eine Plattierung mit Kupfer vorgesehen.The electrode support arm 1 is made of sheet steel, with which a sufficient mechanical strength is achieved. For the electrical conduction of the current from the power connection 9 to the electrode 7, plating with copper is provided.

Wie der Schnittdarstellung gemäß Fig. 2 und gemäß Fig. 3 entnommen werden kann, ist der Elektrodentragarm 1 flüssigkeitsgekühlt. Hierfür weist der Elektrodentragarm 1 einen Kühlkanal 10 auf, der von einem Kühlmittel durchströmt wird. Die hierfür erforderlichen Medienversorgungsleitungen sind nicht dargestellt.As the sectional view according to Fig. 2 and according to Fig. 3 can be removed, the Elektrodentragarm 1 is liquid-cooled. For this purpose, the electrode support arm 1 has a cooling channel 10, which flows through a coolant becomes. The media supply lines required for this purpose are not shown.

Um sowohl die Temperatur im Elektrodentragarms 1 als auch die mechanischen Dehnungen in demselben genau erfassen zu können, weist der Elektrodentragarm 1 in seinem oberen und in seinem unteren Bereich je eine Bohrung 5 auf (s. Fig. 2 und 3), in denen ein Messelement 2 untergebracht ist, mit dem die Temperatur und die Spannung gemessen werden kann. Hierbei handelt es sich um einen Lichtwellenleiter 3, der in einem schützenden Rohr 4 untergebracht ist. Die beiden, noch leeren Bohrungen sind in Fig. 3 zu sehen; in diese wird der Lichtwellenleiter samt Rohr 4 eingebracht, wie es aus Fig. 4 hervorgeht.In order to be able to detect precisely both the temperature in the electrode support arm 1 and the mechanical strains in the same, the electrode support arm 1 has a respective bore 5 in its upper and in its lower region (see FIG. FIGS. 2 and 3 ), in which a measuring element 2 is housed, with which the temperature and the voltage can be measured. This is an optical waveguide 3, which is housed in a protective tube 4. The two, still empty holes are in Fig. 3 to see; in this, the optical waveguide is introduced together with tube 4, as it is made Fig. 4 evident.

Der Lichtwellenleiter 3 hat typischer Weise einen Durchmesser von z. B. 0,12 mm; mit Hüllrohr 4 ergibt sich zumeist ein Durchmesser im Bereich von 0,8 mm bis 2,0 mm.The optical waveguide 3 typically has a diameter of z. B. 0.12 mm; with cladding tube 4 usually results in a diameter in the range of 0.8 mm to 2.0 mm.

Der Lichtwellenleiter 3 besteht aus einer Grundfaser, die in die Bohrungen 5 oder in ähnliche Kanäle oder Nuten im Elektrodentragarm 1 eingebracht wird. Der Lichtwellenleiter 3 kann dabei Temperaturen bis zu 800 °C Dauerbelastung aushalten. Das Rohr 4 ist dabei nur optional, nicht zwingend vorgesehen. Dabei stellt der Lichtwellenleiter 3 ohne Rohr 4 durch die Anbindung an das Grundmaterial des Elektrodentragarms 1 Dehnungen besonders günstig dar; dasselbe gilt für die Temperaturen, die vom Lichtwellenleiter 3 im Hüllrohr 4 auch gut erfasst werden können.The optical waveguide 3 consists of a base fiber, which is introduced into the holes 5 or in similar channels or grooves in the electrode support arm 1. The optical waveguide 3 can withstand temperatures up to 800 ° C continuous load. The tube 4 is only optional, not mandatory. In this case, the optical waveguide 3 without tube 4 by the connection to the base material of the electrode support arm 1 expansions is particularly favorable; the same applies to the temperatures that can be well detected by the optical waveguide 3 in the cladding tube 4.

In Fig. 3 ist dargestellt, dass je eine Bohrung 5 im oberen und unteren Bereich des Elektrodentragarms 1 vorgesehen ist, in die jeweils ein Lichtwellenleiter 3 eingebracht wird. Es ist auch möglich, in allen vier Seitenbereichen des Profils, wie es aus Fig. 3 hervorgeht, Bohrungen einzubringen und Lichtwellenleiter 3 zu platzieren.In Fig. 3 is shown that a respective bore 5 is provided in the upper and lower region of the electrode support arm 1, in each of which an optical waveguide 3 is introduced. It is also possible in all four side sections of the profile how it looks Fig. 3 indicates to bring holes and place optical fiber 3.

Um die Robustheit der Signalübertragung im Lichtwellenleiter 3 und zu nicht dargestellten Auswertegeräten zu erhöhen, werden die Lichtwellen über Linsenstecker von dem Elektrodentragarm aus in der jeweiligen Ruheposition zur Auswerteeinheit geführt.In order to increase the robustness of the signal transmission in the optical waveguide 3 and to evaluation devices, not shown, the light waves are guided via lens plug from the electrode support arm in the respective rest position to the evaluation unit.

Neben der dargestellten Möglichkeit der Unterbringung des Lichtwellenleiters 3 in Bohrungen 5 besteht auch die bevorzugte Möglichkeit, eine Nut in den Elektrodentragarm 1 einzuarbeiten und den Lichtwellenleiter 3 - ggf. samt Rohr 4 - im Nutgrund zu verlegen. Die Nut kann dann wieder verschlossen werden, wozu die oben erwähnten Maßnahmen eingesetzt werden können.In addition to the illustrated possibility of accommodating the optical waveguide 3 in holes 5 is also the preferred way to incorporate a groove in the Elektrodentragarm 1 and the optical waveguide 3 - possibly together with pipe 4 - to lay in the groove bottom. The groove can then be closed again, to which the above-mentioned measures can be used.

Ebenfalls möglich ist die Einbringung des Lichtwellenleiters 3 - ggf. samt Rohr 4 - in eine Schicht aus metallischem Material oder aus temperaturresistentem nichtmetallischem Material, die auf den Elektrodentragarm 1 aufgebracht wird.Also possible is the introduction of the optical waveguide 3 - possibly together with tube 4 - in a layer of metallic material or temperature-resistant non-metallic material, which is applied to the electrode support arm 1.

Alternativ sind die Lichtwellenleiter LWL-Sensoren in Modulen, das heißt, in vorgefertigten baulichen Einheiten eingefasst. Für eine Temperaturmessung sind die Lichtwellenleiter in den Modulen locker verlegt, so dass eine temperaturbedingte Längenänderung des Lichtwellenleiters innerhalb des Moduls spannungsfrei möglich ist. Für eine Dehnungsmessung sind die Lichtwellenleiter dagegen vorzugsweise über ihrer gesamten Länge fest mit dem Material des Moduls oder mit dem Gehäuse des Moduls verbunden, so dass sich eine Dehnung des Moduls oder von dessen Gehäuse auf die Lichtwellenleiter überträgt. Die Module mit den Lichtwellenleitern sind auf den Elektrodentragarm aufgeklebt oder aufgeschweißt und insofern wirkverbunden. Eine Dehnung oder Temperaturänderung des Elektrodenarms überträgt sich deshalb über das Modul auf den Lichtwellenleiter. Die Module bzw. die Lichtwellenleiter in den Modulen sind geeignet, die Temperatur, die mechanische Spannung bzw. Dehnung und/oder - über den zeitlichen Verlauf der Dehnung - auch das Beschleunigungsverhalten des Bauteils, hier insbesondere des Elektrodentragarms, messtechnisch zu erfassen. Für die Beschleunigungsmessung kann eine spezielle Messeinrichtung erforderlich sein, welche in das Modul integriert sein kann. Insbesondere die Dehnungs- oder Beschleunigungsmesswerte können dazu verwendet werden, unerwünschte Schwingungen des Bauteils regelungstechnisch zu dämpfen, das heißt, auszuregeln.Alternatively, the optical waveguide fiber optic sensors in modules, that is, enclosed in prefabricated structural units. For a temperature measurement the optical fibers are loosely laid in the modules, so that a temperature-induced change in length of the optical waveguide within the module is possible stress-free. On the other hand, for a strain measurement, the optical waveguides are preferably permanently connected over their entire length to the material of the module or to the housing of the module, so that an expansion of the module or of its housing is transmitted to the optical waveguides. The modules with the optical waveguides are glued or welded onto the electrode support arm and thus actively connected. An elongation or temperature change of the electrode arm is therefore transmitted to the optical waveguide via the module. The modules or the optical waveguides in the modules are suitable to measure the temperature, the mechanical stress or strain and / or - over the time course of the elongation - also the acceleration behavior of the component, in particular of the electrode support arm. For the acceleration measurement, a special measuring device may be required, which may be integrated into the module. In particular, the strain or acceleration measurements can be used to dampen unwanted vibrations of the component control technology, that is, to correct.

Die Schicht kann (im Falle von Metall) aufgalvanisiert werden, wobei der Lichtwellenleiter 3 samt Rohr 4 vollständig ummantelt werden. Die galvanische Schicht kann beispielsweise aus Kupfer, aus Chrom oder aus Nickel bestehen.The layer can be galvanized (in the case of metal), wherein the optical waveguide 3 together with the tube 4 are completely encased. The galvanic layer may for example consist of copper, chromium or nickel.

Der Lichtwellenleiter 3 ist mit einem nicht dargestellten Temperaturerfassungssystem bzw. einem Erfassungssystem für mechanische Spannungen bzw. Dehnungen verbunden. Mittels des Erfassungssystems wird Laserlicht erzeugt, das in den Lichtwellenleiter 3 eingespeist wird. Die von der Lichtwellenleitfaser 3 gesammelten Daten werden mittels des Erfassungssystems in Temperaturen oder Spannungen umgerechnet und den verschiedenen Messorten zugeordnet.The optical waveguide 3 is connected to a temperature detection system, not shown, or to a detection system for mechanical stresses or strains. By means of the detection system laser light is generated, which is fed into the optical waveguide 3. The of the optical fiber 3 collected data are converted by means of the detection system into temperatures or voltages and assigned to the different measuring locations.

Die Auswertung kann beispielsweise nach dem sog. Faser-Bragg-Gitter-Verfahren (FBG-Verfahren) erfolgen. Hierbei werden geeignete Lichtwellenleiter verwendet, die Messstellen mit einer periodischen Variation des Brechungsindexes bzw. Gitters mit solchen Variationen eingeprägt bekommen. Diese periodische Variation des Brechungsindexes führt dazu, dass der Lichtwellenleiter in Abhängigkeit der Periodizität für bestimmte Wellenlängen an den Messstellen einen dielektrischen Spiegel darstellt. Durch eine Temperaturänderung an einem Punkt wird die Bragg-Wellenlänge verändert, wobei genau diese reflektiert wird. Licht, das die Bragg-Bedingung nicht erfüllt, wird durch das Bragg-Gitter nicht wesentlich beeinflusst. Die verschiedenen Signale der unterschiedlichen Messstellen können dann aufgrund von Laufzeitunterschieden voneinander unterschieden werden. Der detailierte Aufbau solcher Faser-Bragg-Gitter sowie die entsprechenden Auswerteeinheiten sind allgemein bekannt. Die Genauigkeit der Ortsauflösung ist durch die Anzahl der eingeprägten Messstellen gegeben. Die Größe einer Messstelle kann beispielsweise im Bereich von 1 mm bis 5 mm liegen.The evaluation can be carried out, for example, according to the so-called fiber Bragg grating method (FBG method). In this case, suitable optical waveguides are used, the measuring points with a periodic variation of the refractive index or grating get impressed with such variations. This periodic variation of the refractive index leads to the fact that the optical waveguide represents a dielectric mirror as a function of the periodicity for specific wavelengths at the measuring points. By changing the temperature at one point, the Bragg wavelength is changed and exactly this is reflected. Light that does not satisfy the Bragg condition is not significantly affected by the Bragg grating. The different signals of the different measuring points can then be distinguished from one another on the basis of propagation time differences. The detailed structure of such fiber Bragg gratings and the corresponding evaluation units are well known. The accuracy of the spatial resolution is given by the number of impressed measuring points. The size of a measuring point can be, for example, in the range of 1 mm to 5 mm.

Alternativ kann zur Messung der Temperatur auch das "Optical-Frequency-Domain-Reflectometry"-Verfahren (OFDR-Verfahren) oder das "Optical-Time-Domain-Reflectometry"-Verfahren (OTDR-Verfahren) eingesetzt werden. Diese Verfahren basieren auf dem Prinzip der faseroptischen Ramanrückstreuung, wobei ausgenutzt wird, dass eine Temperaturveränderung am Punkt eines Lichtleiters eine Veränderung der Ramanrückstreuung des Lichtwellenleitermaterials verursacht. Mittels der Auswerteeinheit (z. B. einem Raman-Reflektometer) können dann die Temperaturwerte entlang einer Faser ortsaufgelöst bestimmt werden, wobei bei diesem Verfahren über eine bestimmte Länge des Leiters gemittelt wird. Diese Länge beträgt ca. einige Zentimeter. Die verschiedenen Messstellen werden wiederum durch Laufzeitunterschiede voneinander getrennt. Der Aufbau solcher Systeme zur Auswertung nach den genannten Verfahren ist allgemein bekannt, ebenso wie die nötigen Laser, die das Laserlicht innerhalb des Lichtwellenleiters 3 erzeugen.Alternatively, the "Optical Frequency Domain Reflectometry" method (OFDR method) or the "Optical Time Domain Reflectometry" method (OTDR method) can also be used to measure the temperature. These methods are based on the principle of fiber optic Raman backscatter, taking advantage of the fact that a temperature change at the point of a light guide causes a change in the Raman backscatter of the optical waveguide material. By means of the evaluation unit (eg a Raman reflectometer) The temperature values along a fiber can then be determined in a spatially resolved manner, with this method averaging over a specific length of the conductor. This length is about a few centimeters. The different measuring points are in turn separated by differences in transit time. The structure of such systems for evaluation according to the said methods is well known, as are the necessary lasers which generate the laser light within the optical waveguide 3.

Mit der Ausstattung des Elektrodentragarms 1 in der erläuterten Weise wird eine Überwachung von Temperaturen und/oder Dehnungen möglich, was in folgender Weise im Betrieb der Elektrodenanordnung genutzt werden kann:

  1. 1. Der stromführende Kupferleiter des Elektrodentragarms verändert seine Leitfähigkeit mit der Temperatur. Durch die genau ermittelten Temperaturmesswerte und die Kenntnis der zugehörigen Leitfähigkeit des Kupfers kann ein konstanter Stromfluss eingestellt bzw. geregelt werden.
  2. 2. Weiterhin ist ein Selbstschutz des Elektrodentragarms durch Kenntnis von Temperatur und Dehnung möglich. Diese ermittelten Daten können in einer Steuerung bzw. Regelung mit zulässigen Werten verglichen werden; die Regelung kann dann Korrekturen für den Stromfluss und die Positionierung des Tragarms vorgeben, so dass die zulässigen Werte eingehalten werden können.
  3. 3. Eine weitere sehr vorteilhafte Anwendung ist die Vermeidung von Schwingungen in der Elektrodenanordnung. Schwingungen im Elektrodentragarm, auch Grenzzyklen, können durch die Dehnungsmessung erkannt werden. Als Konsequenz können kritische Arbeitspunkte vermieden werden, es können namentlich die Einstellwerte für Strom und Spannung so angepasst werden bzw. es kann das Signal so moduliert werden, dass der Schwingung entgegengewirkt und diese kompensiert wird.
With the equipment of the electrode support arm 1 in the manner explained, a monitoring of temperatures and / or strains is possible, which can be used in the following manner during operation of the electrode assembly:
  1. 1. The current carrying copper conductor of the electrode support arm changes its conductivity with temperature. Due to the precisely determined temperature measured values and the knowledge of the associated conductivity of the copper, a constant current flow can be set or regulated.
  2. 2. Furthermore, self-protection of the electrode support arm by knowledge of temperature and strain is possible. This determined data can be compared in a control or regulation with permissible values; the control can then provide corrections for the current flow and the positioning of the support arm, so that the permissible values can be maintained.
  3. 3. Another very advantageous application is the avoidance of vibrations in the electrode assembly. Vibrations in the electrode support arm, including limit cycles, can be detected by the strain measurement. As a consequence, critical operating points can be avoided, in particular the setting values for current and voltage can be adapted in this way or the signal can be modulated in such a way that the oscillation is counteracted and compensated for.

Als größter Stellhebel zur Schwingungskompensation dient zumeist die Regelung des Stellzylinders der Höhenregelung des Tragarms (s. hierzu insbesondere die oben genannte DE 36 08 338 A1 ). Diese Höhenregelung kann zur Kompensation der durch die Dehnungsmessung identifizierten Schwingungen und Verformungen genutzt werden. Zu dieser an sich bekannten Vorgehensweise wird auf den Beitrag von Prof. Dr.-Ing. Klaus Krüger "Anforderungen an eine moderne Elektrodenregelung für Drehstrom-Lichtbogenöfen" in "elektrowärme international" 4/2007, Vulkan-Verlag GmbH, Essen, ISSN 0340-3521-K 5548 F, verwiesen.The largest adjusting lever for vibration compensation is usually the regulation of the adjusting cylinder of the height control of the support arm (see in particular the above-mentioned DE 36 08 338 A1 ). This height control can be used to compensate for the vibrations and deformations identified by the strain measurement. For this procedure, which is known per se, reference is made to the article by Prof. Dr.-Ing. Klaus Krüger "Requirements for a modern electrode control for three-phase electric arc furnaces" in "elektrowärme international" 4/2007, Vulkan-Verlag GmbH, Essen, ISSN 0340-3521-K 5548 F, referenced.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

  1. 1 Elektrodentragarm1 electrode support arm
  2. 2 Messelement2 measuring element
  3. 3 Lichtwellenleiter3 optical fibers
  4. 4 Rohr4 pipe
  5. 5 Bohrung5 hole
  6. 6 Elektrodenanordnung6 electrode arrangement
  7. 7 Elektrode7 electrode
  8. 8 Tragmast8 support pole
  9. 9 Stromanschluss9 power connection
  10. 10 Kühlkanal10 cooling channel
  • L LängenerstreckungL length extension

Claims (13)

  1. Electrode support arm (1) of a smelting metallurgical furnace, particularly an arc furnace, wherein the electrode support arm (1) is provided with at least one measuring element (2) for measuring a physical variable, characterised in that the measuring element (2) is constructed for measuring the temperature and/or the mechanical elongation of the electrode support arm (1), wherein the measuring element (2) comprises at least one optical waveguide (3) which at least in a section extends along the length direction (L) of the electrode support arm (1).
  2. Electrode support arm according to claim 1, characterised in that the measuring element, in the form of the optical waveguide (3), for the purpose of the temperature measurement is arranged loosely free of stress or movement in or at the electrode arm or for the purpose of elongation measurement - preferably over the entire length thereof - is arranged in operative connection with the material of the electrode support arm for ascertaining the elongations thereof.
  3. Electrode support arm according to one of the preceding claims, characterised by a measuring device for detecting the time plot of the elongations of the electrode arm and for determining the acceleration behaviour of the electrode arm from the detected time plot of the elongations.
  4. Electrode support arm according to one of the preceding claims, characterised in that the optical waveguide (3) is arranged in a module disposed in fixed operative connection with the electrode arm, wherein the optical waveguide for the purpose of the temperature measurement is arranged to be free of stress and movement in the module or for the purpose of the elongation measurement is arranged to be fixedly embedded in the module.
  5. Electrode arm according to claim 3 and 4, characterised in that the measuring device for determining the acceleration behaviour of the electrode arm is integrated in the module for elongation measurement.
  6. Electrode support arm according to claim 1, 2 or 3, characterised in that the optical waveguide (3) and/or a tube (4) optionally surrounding it is or are arranged in a bore (5) in the electrode support arm (1)
  7. Electrode support arm according to claim 1, 2 or 3, characterised in that the optical waveguide (3) and a tube (4) optionally surrounding it are arranged a groove in the electrode support arm (1).
  8. Electrode support arm according to claim 7, characterised in that the groove is closed by a closure element which holds the optical waveguide (3) and the tube (4) optionally surrounding it in the groove base, wherein the closure element is, in particular, a metal part which is inserted into or cast in place in the groove and which is connected with the groove preferably by friction stir welding.
  9. Electrode support arm according to claim 1, 2 or 3, characterised in that the optical waveguide (3) and/or the tube (4) optionally surrounding it is or are arranged in a layer, wherein the layer is arranged at or in the electrode support arm (1).
  10. Electrode support arm according to claim 9, characterised in that the layer consists of metal, preferably of copper, chromium or nickel, or of a temperature-resistant non-metallic material.
  11. Electrode support arm according to claim 9 or 10, characterised in that the optical waveguide (3) and the tube (4) optionally surrounding it are completely surrounded by the material of the layer.
  12. Electrode support arm according to any one of claims 9 to 11, characterised in that the layer is applied to or in the electrode support arm (1) by plating.
  13. Electrode support arm according to any one of claims 9 to 11, characterised in that the layer is applied to or in the electrode support arm in the form of an injection-moulded coating or a chemical coating.
EP11703657.4A 2010-02-18 2011-02-08 Support arm for an electrode of a melt metallurgic furnace Active EP2536988B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010008503 2010-02-18
DE102010025236A DE102010025236A1 (en) 2010-02-18 2010-06-26 Electrode support arm of a smelting metallurgical furnace
PCT/EP2011/051773 WO2011101271A1 (en) 2010-02-18 2011-02-08 Electrode arm of a metallurgical melting furnace

Publications (2)

Publication Number Publication Date
EP2536988A1 EP2536988A1 (en) 2012-12-26
EP2536988B1 true EP2536988B1 (en) 2016-08-31

Family

ID=44317376

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11703657.4A Active EP2536988B1 (en) 2010-02-18 2011-02-08 Support arm for an electrode of a melt metallurgic furnace

Country Status (9)

Country Link
US (1) US20120327968A1 (en)
EP (1) EP2536988B1 (en)
KR (1) KR20120128645A (en)
CN (1) CN102762946A (en)
BR (1) BR112012020837A2 (en)
DE (1) DE102010025236A1 (en)
ES (1) ES2605681T3 (en)
RU (1) RU2012139839A (en)
WO (1) WO2011101271A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2636978A1 (en) * 2012-03-06 2013-09-11 Siemens Aktiengesellschaft Method for operating an arc oven and melting assembly with an arc oven operated according to this method
EP2898104B1 (en) * 2012-09-24 2018-02-28 SMS group GmbH Method for operating an arc furnace
RU2601846C2 (en) * 2014-09-09 2016-11-10 Игорь Михайлович Бершицкий Electrode holder of electric arc furnace

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH630717A5 (en) 1977-10-17 1982-06-30 Bbc Brown Boveri & Cie Arrangement for preventing electrode breakages in an arc furnace
CH623920A5 (en) 1977-10-17 1981-06-30 Bbc Brown Boveri & Cie Arrangement for preventing electrode breaks in an arc furnace
AT373177B (en) 1982-05-12 1983-12-27 Ver Edelstahlwerke Ag DEVICE FOR CARRYING OUT MELTING PROCESS WITH SELF-EATING ELECTRODES
DE3231740A1 (en) * 1982-08-26 1984-03-01 C. Conradty Nürnberg GmbH & Co KG, 8505 Röthenbach Electrode for arc furnaces
FR2534691A1 (en) * 1982-10-15 1984-04-20 Clecim Sa DEVICE FOR MEASURING ARC VOLTAGE ON AN ELECTRIC FURNACE
DE3608338A1 (en) 1986-03-13 1987-09-17 Fuchs Systemtechnik Gmbh Hydraulic actuator for an electrode support arm of an arc furnace
US4893895A (en) * 1988-04-05 1990-01-16 The Babcock & Wilcox Company An improved encased high temperature optical fiber
DE19856765A1 (en) * 1998-11-30 2000-06-15 Mannesmann Ag Method and device for detecting the reduction in the use of components in arc furnaces
US6377604B1 (en) * 2000-11-09 2002-04-23 Dixie Arc, Inc. Current-conducting arm for an electric arc furnace
CN100371670C (en) * 2002-01-24 2008-02-27 赫罗伊斯·坦尼沃有限责任公司 Resistance furnace
ES2332270T3 (en) 2002-08-28 2010-02-01 Arndt Dung PROCEDURES AND DEVICES FOR THE CONTROL OF THE CLAMP PRESSURE THAT CAUSES AN ADJUSTMENT CYLINDER AND THAT SETS AN INTERCHANGEABLE ELECTRODE ON THE ELECTRODE HOLDING ARM.
CN1548932A (en) * 2003-05-19 2004-11-24 张立国 Photoelectrical temperature sensor
JP4706475B2 (en) * 2005-12-28 2011-06-22 日立電線株式会社 Measuring method using optical sensor
DE102009049479A1 (en) 2009-06-08 2010-12-09 Sms Siemag Ag Integration of an optical waveguide of a measuring sensor into a component

Also Published As

Publication number Publication date
BR112012020837A2 (en) 2018-03-27
EP2536988A1 (en) 2012-12-26
CN102762946A (en) 2012-10-31
RU2012139839A (en) 2014-03-27
US20120327968A1 (en) 2012-12-27
KR20120128645A (en) 2012-11-27
ES2605681T3 (en) 2017-03-15
WO2011101271A1 (en) 2011-08-25
DE102010025236A1 (en) 2011-08-18

Similar Documents

Publication Publication Date Title
EP2483650B1 (en) Sensor element for measuring a temperature gradient
EP2318162B1 (en) Casting level measurement in a mold by means of a fiber optic measuring method
EP2310155B1 (en) Temperature measurement in a chill mold by a fiber optic measurement method
EP2859126B1 (en) Method and device for determining the consumption of electrode material during the operation of an electric arc furnace
EP2312250B1 (en) Metallurgical container
EP2536988B1 (en) Support arm for an electrode of a melt metallurgic furnace
DE102013224977A1 (en) Continuous casting mold with a temperature sensor and production method for the continuous casting mold with the temperature sensor
EP2483013B1 (en) Mould for processing molten metal material
EP2539660B1 (en) Foundry ladle or intermediate vessel for receiving a liquid metal, comprising an integrated measuring element for detecting the temperature and/or mechanical load
EP2533920B1 (en) Metallurgical vessel and process for manufacturing a wall of that vessel
EP3074153B1 (en) Method for determining the melt and/or slag level in a furnace vessel
EP2536987B1 (en) Injector cooling block for holding at least one injector
DE102010034315A1 (en) Monitoring metallurgical plant, which comprises wall having a hot side and a cold side, comprises facing hot good to be processed, and measuring the temperature in the wall in two different depths spaced-apart from the hot side
EP3189316B1 (en) Method for the system-internal calibration of a measuring device for the optical temperature determination of a molten metal
EP2718041B1 (en) Strand guide segment of a strand guide of a continuous casting installation and method for operating a strand guide segment
DE102010061834A1 (en) Furnace, in particular tunnel kiln, a metallurgical plant and method for measuring temperatures and substance concentrations in the kiln air in the kiln
EP2636978A1 (en) Method for operating an arc oven and melting assembly with an arc oven operated according to this method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120918

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMS GROUP GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160415

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011010559

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 825372

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161201

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2605681

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170102

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011010559

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230223

Year of fee payment: 13

Ref country code: GB

Payment date: 20230220

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240325

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240220

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 14