EP2532247A1 - Produktvorwärmung mit Wärmepumpe - Google Patents

Produktvorwärmung mit Wärmepumpe Download PDF

Info

Publication number
EP2532247A1
EP2532247A1 EP12167300A EP12167300A EP2532247A1 EP 2532247 A1 EP2532247 A1 EP 2532247A1 EP 12167300 A EP12167300 A EP 12167300A EP 12167300 A EP12167300 A EP 12167300A EP 2532247 A1 EP2532247 A1 EP 2532247A1
Authority
EP
European Patent Office
Prior art keywords
cooling
heat
heat pump
heat exchanger
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12167300A
Other languages
English (en)
French (fr)
Other versions
EP2532247B1 (de
Inventor
Falko Jens Wagner
Jan Karsten Münzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krones AG
Original Assignee
Krones AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krones AG filed Critical Krones AG
Priority to PL12167300T priority Critical patent/PL2532247T3/pl
Publication of EP2532247A1 publication Critical patent/EP2532247A1/de
Application granted granted Critical
Publication of EP2532247B1 publication Critical patent/EP2532247B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/42Preservation of non-alcoholic beverages
    • A23L2/46Preservation of non-alcoholic beverages by heating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C3/00Preservation of milk or milk preparations
    • A23C3/02Preservation of milk or milk preparations by heating
    • A23C3/023Preservation of milk or milk preparations by heating in packages
    • A23C3/027Preservation of milk or milk preparations by heating in packages progressively transported through the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/04Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus without applying pressure
    • B67C3/045Apparatus specially adapted for filling bottles with hot liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • B67C2003/226Additional process steps or apparatuses related to filling with hot liquids, e.g. after-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • Y02A40/963Off-grid food refrigeration

Definitions

  • the invention relates to a method for hot filling of liquids, in particular juices, with a Kurzzeiterhitzer comprising a first heat exchanger, a filling station for filling the liquids in containers, such as bottles, and a cooling tunnel, which consists of a plurality of cooling cells, for cooling the filled container by means of a cooling liquid, for example water, according to the preamble of claim 1.
  • a Kurzzeiterhitzer comprising a first heat exchanger, a filling station for filling the liquids in containers, such as bottles, and a cooling tunnel, which consists of a plurality of cooling cells, for cooling the filled container by means of a cooling liquid, for example water, according to the preamble of claim 1.
  • the invention also relates to a corresponding device according to claim 7 for carrying out the method.
  • liquids in particular juice-containing beverages or the like
  • the hot filling ensures the sterilization of the container, it also serves at the same time for the pasteurization of the product, such as the drink.
  • the products in the containers which are typically sealed, are cooled down to at least ambient temperature or a desired storage temperature for ease of handling and also for storage purposes.
  • steam for example steam
  • a cooling tower and / or a refrigeration system are typically used for the purpose of cooling.
  • the liquid to be heated can be conducted into the heat exchanger at about room temperature and is heated therein to temperatures of 80-90 ° C. This is typically followed by bottling in containers.
  • a cooling line such as a cooling tunnel, connected to a cooling tower is typically used.
  • the heat energy present in the containers with the filled, still hot liquid is released to the environment. This energy is lost to the system.
  • heat exchangers In view of at least partially recovering the heat present in the liquid in the containers, it is known in the art to use heat exchangers.
  • the cooling water used in cooling heats up as part of the cooling process.
  • a heat exchanger can extract heat energy from the thus heated cooling water, so that it can be used again for preheating.
  • a heat exchanger can transmit only certain, suitable energies, so that the er Wired cooling water must reach a certain temperature before it can be used to transfer heat to other liquids.
  • the DE 10 2007 003 976 A1 further describes a pasteurizer with integrated heat pump, wherein a pasteurizer comprises a plurality of similar pasteurization zones or pasteurization segments, wherein heat energy from a colder segment of the pasteurizer can be fed to a warmer segment of the pasteurizer.
  • a pasteurizer comprises a plurality of similar pasteurization zones or pasteurization segments, wherein heat energy from a colder segment of the pasteurizer can be fed to a warmer segment of the pasteurizer.
  • exclusively filled, sealed containers are treated in the pasteurization device.
  • the heat pump is integrated into the pasteurization device, whereby the structure and complexity of the pasteurization be increased.
  • This object is achieved by a method for hot filling of liquids, in particular juices, according to claim 1. Furthermore, this object is also achieved with a corresponding device which is suitable for carrying out the method, according to claim 7.
  • the invention provides a method for hot filling of liquids, in particular juices, with a short-time heater comprising a first heat exchanger, a filling station for filling the liquids into containers, for example bottles, and a cooling tunnel, which consists of a plurality of cooling cells Cooling of the filled containers by means of a cooling liquid, such as water, the liquids are heated prior to filling in containers in the filling station in the short-term heater by thermal energy of the heated during the cooling cooling liquid of the cooling tunnel is supplied by a separate heat pump to Kurzzeiterhitzer.
  • a cooling liquid such as water
  • the liquid to be filled is heated in a short-time heater, specifically before filling.
  • the heat energy from the cooling liquid which is heated during the cooling process in the cooling cells of the cooling tunnel, fed to the short-time heater by means of the separate heat pump.
  • the steam heating device supply and discharge of the steam can be omitted.
  • the coefficient of performance, COP (coefficient of performance), of the heat pump is significantly better than when using a heat exchanger.
  • the heat pump allows simultaneous cooling / heating at low cost.
  • the costs are essentially incurred with regard to the resulting electrical current that can be used to operate the heat pump.
  • the heat energy supplied by the heat pump can be transferred to the liquids by means of the first heat exchanger for heating them.
  • the heat energy supplied by the heat pump for example, with the aid of a suitable liquid, such as water, in the first heat exchanger to the liquid to be heated transferable.
  • the now cooler by the heat exchange liquid can be returned to the heat pump back.
  • the heating of the liquids can be done completely by the heat energy supplied by means of the heat pump.
  • the heat pump and the heat energy extracted from the cooling cells provide for the heating of the product.
  • the preheating of the liquids to be filled can be done completely by the heat energy supplied by means of the heat pump. That is, with the aid of the extracted heat energy from the cooling tunnel and the heat pump and the electrical energy supplied to the heat pump, the heating of the liquids before filling can be done completely, without additional heating steps are necessary.
  • a second heat exchanger may additionally be provided in series with the heat pump such that the heated cooling liquid passes from the cooling tunnel to the second heat exchanger and then to the heat pump; so that at least a part of the heat energy of the heated cooling liquid can first be transferred by means of the second heat exchanger to the liquid to be heated, and thereafter at least one further part of the heat energy by means of the heat pump to the short-term heater for further heating of the liquids can be transferred.
  • the second heat exchanger can be provided in series, that is to say serially with the heat pump.
  • the serial connection of the second heat exchanger to the heat pump with respect to the heating of the liquids thus makes it possible in particular to increase the temperature level in the heat pump and thus to improve the coefficient of performance of the heat pump.
  • two steps are typically carried out for heating the liquid to be filled, the heat transfer by means of the second heat exchanger in particular for directly transferable heat energy from the cooling tunnel to the liquid and then increasing the energy level to the provided for the preheating of the liquid, so the product temperature with the help the heat pump.
  • a second heat exchanger may be provided parallel to the heat pump such that at least a portion of the heated cooling liquid passes from the cooling tunnel to the second heat exchanger and at least one further portion of the heated cooling liquid from the cooling tunnel Heat pump passes so that at least a portion of the heat energy of the heated cooling liquid can be transmitted by means of the second heat exchanger to the liquid to be heated, and at least a further portion of the heat energy can be transmitted by the heat pump to the short-term heater for further heating of the liquids.
  • the second heat exchanger may be provided parallel to the heat pump.
  • a first cascade of cooling cells for direct heat transfer through the second heat exchanger may, for example, be used.
  • This cooling liquid is returned, for example, after the heat exchange in the second heat exchanger back to the cooling cells.
  • a second, parallel cascade of cooling cells is connected, for example, to the heat pump, for example additionally by means of a simple pump, whereby the energy level of the heat energy of the second cascade can be increased, so that this energy level for heating the liquids to be filled can be raised to the desired filling temperature ,
  • the part of the heated cooling liquid which reaches the second heat exchanger may be warmer than the part of the heated cooling liquid which reaches the heat pump.
  • the temperature in the group of first cooling cells, which are typically arranged sequentially is higher than in the group of second cooling cells, which are likewise typically arranged sequentially. Due to the parallel connection of the second heat exchanger according to the first cascade and the heat pump according to the second cascade, an even higher energy level and thus a higher coefficient of performance of the heat pump can be achieved.
  • the control of the device according to the invention as described above can be done for example with a suitable control unit such as a computer.
  • the invention further comprises an apparatus for carrying out the method for hot filling of liquids as described above.
  • the short-time heater, the filling station and the cooling tunnel can each be designed separately.
  • Each of these elements can thus be formed separately from the other elements.
  • the connections of the elements can be provided by suitable conveying and / or transporting elements, for example tubes for transporting the product or other liquids which can serve as auxiliary fluids for heat transfer, as well as conveyor belts or transport means for containers.
  • the first heat exchanger of the short-time heater as described above may include a plate heat exchanger, PWT, or a tube heat exchanger, RWT. That is, common heat exchanger types can be used to transfer the heat energy supplied by the heat pump to the liquid to be heated.
  • PWT plate heat exchanger
  • RWT tube heat exchanger
  • the heat pump used in the device according to the invention may comprise, for example, a compression heat pump, for example an electrically driven compression heat pump, an ammonia heat pump or a heat pump with transcritical CO 2 process.
  • a compression heat pump for example an electrically driven compression heat pump, an ammonia heat pump or a heat pump with transcritical CO 2 process.
  • common types of heat pumps can be used, especially those in which ammonia or CO 2 is used as the coolant.
  • the latter allows the use of particularly energy-efficient heat pumps, while at the same time can be dispensed with coolant such as nitrogen or halogen-alkanes, the latter in bottling plants may possibly be undesirable and, moreover, halogen alkanes can not be desired in their capacity as climate-damaging gases.
  • the heat pump of the device according to the invention can typically be provided between one of the cooling cells of the cooling tunnel and the first heat exchanger of the short-time heater.
  • the heat pump can thus be provided between the multicellular cooling tunnel and the heat exchanger.
  • the heated coolant / the heated cooling liquid can be pumped from the cooling tunnel by means of a simple pump to the heat pump. After the heat exchange, the then cooler liquid is returned to the cooling tunnel, for example again with an additional pump.
  • the cooling cells of the cooling tunnel are connected to one another such that cooling liquid can be pumped from a cooling cell into one or more adjacent cooling cells, for example, in particular, from a colder cooling cell to a warmer cooling cell.
  • the filled, sealed containers pass through the cooling tunnel, i. a cooling section with several similar or similar cooling cells.
  • the cold rooms typically differ in the temperatures that prevail in a cold room.
  • Each of the cold rooms typically includes a sprinkler or sprayer to spray the containers with cooling fluid.
  • the containers to be cooled are therefore sprinkled with water, for example. This can cause a heat exchange between the cooling water and the liquid filled in the containers.
  • the cooling liquid is collected, typically separately for each cooling cell.
  • there is a temperature gradient from the first to the last of the plurality of cooling cells with typically the first cooling cell being the warmest and the last cooling cell the coldest cooling cell.
  • the reservoirs / reservoirs for the cooling liquid / the cooling water of the cooling cells are connected to one another, for example, so that cooling water can be pumped from a cooling cell into an adjacent cooling cell and, where appropriate, also used again for sprinkling.
  • the heat pump can be provided between the cooling cell with the maximum temperature of the heated coolant and the first heat exchanger. Typically, this is the first cooling cell of the cooling tunnel.
  • the liquid to be heated typically flows through the first and second heat exchangers.
  • the two heat exchangers are therefore serially provided in the short-time heater.
  • a heat pump which can be provided separately from the cooling tunnel, separate from the filling station and the short-time heater, offers the possibility of efficient and high energy recovery in the context of product preheating.
  • the use of a heat pump in parallel or serial connection with a heat exchange enables a further increase in efficiency and at the same time an improvement in the coefficient of performance of the heat pump.
  • the Fig. 1 shows a conventional product preheating as known in the art.
  • the product Via a product feed line 1, controlled by a valve 2, the product, ie a liquid to be heated and again to be cooled after filling, for example a juice beverage, is passed to a heat exchanger 3.
  • the product flows through the heat exchanger 3 therethrough.
  • Heated coolant such as cooling water from the cooling section 20, is used to partially heat the product.
  • the heated cooling water from the cooling section / cooling tunnel 20 is pumped via a line 4 and a pump 5 to the heat exchanger 3.
  • the product is passed via a line 11 to a further heat exchanger 12, which essentially serves as a short-time heater.
  • the heat exchanger / short-time heater 12 is from
  • Steam typically steam, flows through, which transfers its heat energy to the product flowing through the short-time heater 12 product.
  • the steam is supplied to the heat exchanger / short-time heater 12 by means of the line 13 and the cooler after the heat exchange steam is passed through the line 14 back from the short-time heater 12 away.
  • the steam used in this process for example water vapor, can be heated by conventional means.
  • the heating of the product in the short-time heater 12 can be up to temperatures of 80 - 90 ° C, depending on the temperature desired for the product.
  • the heated product can be transported to a filling station 15 via suitable supply lines 16, which are indicated purely schematically by an arrow but can be located spatially separated from the short-time heater 12.
  • the filling station 15 may comprise a suitable device for hot filling the product, that is, the heated liquid, into containers 25, for example bottles, as known in the art.
  • the containers 25 are typically closed and then passed by means of a transport device 17, which in turn is indicated purely schematically as an arrow, to the cooling section / the cooling tunnel 20.
  • the cooling tunnel / cooling section 20 consists of several cooling cells. Purely by way of example are in Fig. 1 six cold cells 20.1, 20.2, 20.3, 20.4, 20.5 and 20.6 shown.
  • the filled containers 25 pass through a suitable transport medium (not shown here), such as a conveyor belt, for example, immediately adjacent cooling cells.
  • the filled containers 25, such as bottles, can be passed directly from one to the other cold storage cell.
  • the cooling cells further comprise sprinklers 21.1, 21.2, 21.3, 21.4, 21.5 and 21.6, which are shown schematically. These serve to sprinkle the closed containers 25 to be cooled with a cooling liquid, for example water, in order to cool them.
  • the cooling water is fed through cooling water supply lines 25.1, 25.2, 25.3, 25.4, 25.5 and 25.6 the sprinklers.
  • the coolant used can be collected by coolant tanks, which are designated by the reference numerals 23.1, 23.2, 23.3, 23.4, 23.5 and 23.6.
  • Coolant tanks 23.1, 23.2, 23.3, 23.4, 23.5 and 23.6 From the designated coolant tanks 23.1, 23.2, 23.3, 23.4, 23.5 and 23.6, at least a portion of the cooling water by means of pumps 22.1, 22.2, 22.3, 22.4, 22.5 and 22.6 can each be used again for sprinkling. Furthermore, fresh, for example, cooler coolant, such as water can be supplied (not shown here). Furthermore, heated cooling water, which has given off part of its heat in the heat exchanger 3 to the product and which was subsequently cooled again by means of a cooling tower 7, via a supply line 8, a conventional pump 9 and a supply line 10 are again fed to the cooling tunnel 20.
  • Fig. 1 is shown by way of example that with the help of the cooling tower 7 again cooled water, ie after the cooling process in the cooling tower 7, the coldest of the cooling cells 20.1, 20.2, 20.3, 20.4, 20.5 and 20.6, in this case the cooling cell 20.6, is supplied.
  • the coolant reservoirs 23.1, 23.2, 23.3, 23.4, 23.5 and 23.6 are each adjacent, so that at least two adjacent cooling cells can be connected by suitable lines 24.1, 24.2, 24.3, 24.4 and 24.5.
  • the coolant in the area in front of the heat exchanger 3 may have, for example, temperatures in the range of about 40-70 ° C.
  • the coolant may have a slightly lower temperature of about 35 ° to 40 ° C before being directed by line 6 into the cooling tower 7.
  • the coolant may for example have a temperature of about 30 ° C.
  • these temperature data can fluctuate and depend on the machine length, the length of the lines and the number of cooling cells, for example.
  • the throughput at the cooling tower 7 can vary between 17 m 3 and 43 m 3 per hour.
  • Fig. 2 shows a device for hot filling of liquids / products, in particular beverage juices, according to the present invention.
  • Fig. 2 again shows a cooling tunnel / cooling section 20, as already in Fig. 1 so that the elements of this cooling tunnel 20 will not be described again.
  • the product ie the liquid to be heated, for example beverage juice, is fed to a heat exchanger / short-time heater 12 via a product feed line 1.
  • the liquid is passed after heating by means of a purely schematically illustrated line 16 to a filling station 15.
  • a filling station 15 There, the heated / heated liquid in the container 25, such as bottles, filled.
  • the containers 25 are closed in the filling station after filling.
  • the closed, hot containers 25 are fed by means of a suitable transport route 17 to the cooling tunnel / the cooling section 20.
  • the liquid to be heated ie the product, in the short-time heater 12, not heated by means of steam, but with the aid of a suitable liquid, such as water, which is supplied from a heat pump, which is designated by the reference numeral 30.
  • the heat pump 30 passes via the supply line 19 a a suitable heated liquid to the short-time heater / heat exchanger 12, in which the heat transfer takes place on the product. After the heat transfer, the now cooler liquid can be conducted back to the heat pump 30 by means of a pump 18 via the line 19b.
  • the heat pump 30 includes a heat dissipating member 34, a heat receiving member 31, and a throttle 33 and a compressor 32. Within the heat pump, the circulation paths are determined by arrows 35 and 36.
  • the temperatures on the right, cooler side of the heat pumps are designated T C2 and T C1 .
  • T C1 can be about 16 ° C, but there are also other temperatures depending on machine design, length of the machine, insulation, etc. possible.
  • the temperature T C2 may be about 30 to 32 ° C, other temperatures are possible as well.
  • the temperature T 1 may be about 28 ° C.
  • the temperature T 2 about 96 ° C.
  • the temperature T 3 about 28 ° C.
  • the temperature T 4 about 27 ° C.
  • the heated cooling liquid is pumped via a supply line 4 by means of a conventional pump 5 to the heat pump 30, ie in particular to the element 31 of the heat pump 30.
  • the now cooler coolant is returned via the line 10 back into the cooling section.
  • another auxiliary pump not shown here, can be used.
  • the cooling liquid is returned to the coldest of the cooling cells 20.1, 20.2, 20.3, 20.4, 20.5 and 20.6, in this example the cooling cell with the reference numeral 20.6.
  • FIG. 3 shows a further development in the context of the present invention. Again, a cooling line / tunnel 20 is used, as already described with reference to FIG Fig. 1 and 2 has been described. Again, the same elements are denoted by the same reference numerals and will not be mentioned here again.
  • the liquid to be heated ie the product
  • the device comprises two heat exchangers, which are designated by the reference numerals 60 and 62.
  • the heat exchangers 62 and 60 are provided, for example, in series in the short-time heater.
  • the heat exchangers 60 and 62 are connected in series via the line with the reference numeral 61.
  • the filling station 15 may be a filling station, as already described in relation to FIG Fig. 1 and Fig. 2 has been described.
  • the filling process and closing of the container 25, in which the heated liquid has been filled can be made to the cooling tunnel 20 via a suitable transport path 17 of the transport of the container 25.
  • the heated coolant for example, cooling water from the cooling section / the cooling tower 20, provided in series.
  • the second heat exchanger 60 is thus provided with respect to the heating serially to the heat pump 50.
  • the heated coolant is passed from the cooling section 20 into the heat exchanger 60 or pumped by means of the feed line 66.
  • the heated coolant is used to heat the product in a first step, ie for directly transferable energies. It is thus already by means of the heat exchanger 60, a heating of the supplied via the feed line 1 product.
  • the heated product After heating in the heat exchanger 60, the heated product is forwarded to the heat exchanger 62.
  • the cooled by use in the heat exchanger 60 slightly in the temperature level cooling liquid is passed from the heat exchanger 60 by means of the supply line 67 to the heat pump 50.
  • the heat pump 50 comprises heat pump element 51 for heat absorption, heat pump element 54 for heat dissipation, as well as compressor 52 and throttle 53.
  • the reference numerals 55 and 56 indicate the direction of flow within the heat pump 50.
  • a suitable liquid for Heat transfer to the first heat exchanger 62 passed, whereby the product can be heated to the desired target temperature.
  • the cooled liquid is conducted via the supply line 65 back to the heat pump 50.
  • the cooled after passing through the element 51 cooling liquid is returned via the line 10 back to the cooling tunnel 20. It is, as exemplified in Fig. 3 shown, this cooling liquid to the coldest of the cells 20.1, 20.2, 20.3, 20.4, 20.5 and 20.6 of the cooling tunnel, cell 20.6, passed.
  • Fig. 4 shows a further development according to the present invention.
  • a cooling tunnel / cooling section 70 is shown, the / although the in the Fig. 1-3 Cooling sections shown is similar, but is different in that groups of cooling cells of the cooling section can deliver the cooling water taken from them to different elements. However, it would also be possible to have a cold room as in Fig. 1-3 shown to use.
  • the cooling section 70 comprises, by way of example, six cooling cells 70.1, 70.2, 70.3, 70.4, 70.5 and 70.6. These cold rooms include sprinklers / sprinklers 71.1, 71.2, 71.3, 71.4, 71.5 and 71.6. These sprinkler systems 71.1, 71.2, 71.3, 71.4, 71.5 and 71.6, which are shown purely diagrammatically with two arms, receive the coolant used for sprinkling, such as water, via supply lines 75.1, 75.2, 75.3, 75.4, 75.5 and 75.6.
  • the coolant used for sprinkling such as water
  • the after the sprinkling of the containers 25 dripping or licking cooling water is collected in respective storage tanks 73.1, 73.2, 73.3, 73.4, 73.5 and 73.6, which may be open, in the respective cold storage cell 70.1, 70.2, 70.3, 70.4, 70.5 and 70.6.
  • the collected cooling water can be used at least partially via pumps 72.1, 72.2, 72.3, 72.4, 72.5 and 72.6 again for irrigation. In this case - not shown here - also cooler fresh water from other supply sources can be used. Further, cooler water flowing back from a heat pump 80 may be supplied to the cooling cells 70.1, 70.2, 70.3, 70.4, 70.5, and 70.6, as will be described below.
  • the liquid to be heated, the product such as a beverage juice
  • the device in turn comprises two heat exchangers 92 and 90.
  • the heat exchangers 92 and 90 are provided, for example, serially in the short-time heater.
  • the second heat exchanger 90 is connected via a line 91 to the first heat exchanger 92.
  • the product supplied through the line 1 is at least partially heated.
  • the product is then sent to the heat exchanger 92 for further heating to the desired target temperature.
  • the second heat exchanger 90 is provided for heating the product in parallel to a heat pump 80, as described below.
  • the product After heating to the target temperature, the product is fed to a filling station 15 via a line 93, which is drawn purely schematically.
  • the filling station 15 corresponds to the above-described filling stations in connection with the Fig. 1-3 , Purely schematically indicated again by the reference numeral 17 that the liquid filled in container 25, wherein the container 25 are subsequently closed, can be passed to the cooling section / the cooling tunnel 70.
  • the filling device and the cooling section be provided spatially separated from each other. The same applies to the short-time heater with the heat exchangers 90 and 92.
  • the heat pump 80 which is provided with heat pump element 81 for heat absorption on the cooler side of the heat pump 80, and heat pump element 84 for heat dissipation on the warmer side of the heat pump 80, is provided. Between the element 81 and the element 84, a compressor 82 and on the opposite side a throttle 83 is provided.
  • the reference characters 85 and 86 designate the flow direction within the inner circle of the heat pump.
  • a first cascade for example comprising a group of three cooling cells 70.1, 70.2, 70.3, wherein any other grouping is possible, is connected to the heat exchanger 90. That is, the heated cooling liquid from this group, typically taken from the warmest coolant storage tank 73.1, is passed via a feed line 78 and a pump 99 and another feed line 98 to the heat exchanger 90 to transfer energy from the first cascade to the product , Via a return line 97, the coolant is returned to the group after the heat has been transferred. It should be noted that there is a connection between the elements of the group. The connection is designated by reference numerals 74.1 and 74.2.
  • the Fig. 4 shows another group, which consists of three cooling cells 70.4, 70.5 and 70.6, for example, but also a different grouping is possible. These cooling cells are also connected to connecting elements 74.4 and 74.5.
  • the warmest of the second cascade consisting of the cells 70.4, 70.5 and 70.6, ie from the cell 70.4 and its reservoir 73.4 via a supply line 77 and a pump 89 coolant to the heat pump 80 passed.
  • the now cooler coolant is returned to the cell with the reference numeral 70.6, ie the coldest of the second group.
  • the heating and cooling of the product can be controlled by a suitable computer control, not shown here.
  • the devices shown can also be used for a targeted cooling of products at low temperatures.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)

Abstract

Verfahren zur Heißabfüllung von Flüssigkeiten, insbesondere Säften, mit einem Kurzzeiterhitzer, der einen ersten Wärmetauscher umfasst, einer Füllstation zum Abfüllen der Flüssigkeiten in Behälter, beispielsweise Flaschen, und einem Kühltunnel, der aus einer Mehrzahl von Kühlzellen besteht, zur Abkühlung der abgefüllten Behälter mittels einer Kühlflüssigkeit, beispielsweise Wasser, wobei die Flüssigkeiten vor dem Abfüllen in Behälter in der Füllstation in dem Kurzzeiterhitzer erwärmt werden, indem Wärmeenergie der beim Abkühlvorgang erwärmten Kühlflüssigkeit des Kühltunnels mittels einer separaten Wärmepumpe zum Kurzzeiterhitzer zugeführt wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Heißabfüllung von Flüssigkeiten, insbesondere Säften, mit einem Kurzzeiterhitzer, der einen ersten Wärmetauscher umfasst, einer Füllstation zum Abfüllen der Flüssigkeiten in Behälter, beispielsweise Flaschen, und einem Kühltunnel, der aus einer Mehrzahl von Kühlzellen besteht, zur Abkühlung der abgefüllten Behälter mittels einer Kühlflüssigkeit, beispielsweise Wasser, gemäß des Oberbegriffs des Patentanspruchs 1. Die Erfindung betrifft ebenso eine entsprechende Vorrichtung nach Patentanspruch 7 zur Durchführung des Verfahrens.
  • Im Stand der Technik ist es bekannt, dass Flüssigkeiten, insbesondere safthaltige Getränke oder Ähnliches, vor der Abfüllung erwärmt werden und dann erwärmt / heiß abgefüllt werden. Die heiße Abfüllung sorgt hierbei für die Sterilisation des Behälters, ferner dient sie gleichzeitig zur Pasteurisation des Produktes, etwa des Getränks. Nach der Abfüllung der Flüssigkeiten in Behälter werden die Produkte in den Behältern, die typischerweise verschlossen sind, zur besseren Handhabbarkeit und ferner zu Lagerungszwecken wenigstens auf Umgebungstemperatur oder eine gewünschte Lagerungstemperatur heruntergekühlt.
  • Zum Erwärmen des Saftes dient typischerweise Dampf, beispielsweise Wasserdampf, der durch einen Wärmetauscher hindurch geleitet wird und damit die Wärme aus dem Dampf auf das zu erwärmende/vorzuwärmende Produkt, also den Getränkesaft, überträgt. Anschließend kommen zum Zwecke der Abkühlung typischerweise ein Kühlturm und/oder eine Kälteanlage zum Einsatz.
  • Beispielsweise kann die zu erwärmende Flüssigkeit bei etwa Zimmertemperatur in den Wärmetauscher hineingeleitet werden und wird darin auf Temperaturen von 80 - 90° C erwärmt. Danach folgt typischerweise die Abfüllung in Behälter. Zur Kühlung der mit dem Produkt gefüllten Behälter wird typischerweise eine Kühlstrecke wie etwa ein Kühltunnel verwendet, der mit einem Kühlturm verbunden ist. Im einfachsten Fall wird die in den Behältern mit der abgefüllten, noch heißen Flüssigkeit vorhandene Wärmeenergie an die Umgebung abgegeben. Diese Energie geht dem System also verloren.
  • Im Hinblick auf eine zumindest teilweise Rückgewinnung der in der Flüssigkeit in den Behältern vorhandenen Wärme ist es im Stand der Technik bekannt, Wärmetauscher einzusetzen. Das bei der Kühlung verwendete Kühlwasser erwärmt sich im Rahmen des Kühlprozesses. Ein Wärmetauscher kann dem derart erwärmten Kühlwasser Wärmeenergie entziehen, so dass diese wieder zur Vorwärmung genutzt werden kann. Beispielsweise zeigt die DE 103 51 689 A1 das Rückführen von Prozessflüssigkeit zum Zwecke des Einsatzes der Wärme aus der Kühlflüssigkeit im Hinblick auf die Vorwärmung. Dabei ist jedoch ein Problem, dass ein Wärmetauscher nur bestimmte, geeignete Energien übertragen kann, so dass das erwärmet Kühlwasser eine bestimmte Temperatur erreichen muss, bevor es zum Wärmeübertrag auf andere Flüssigkeiten verwendet werden kann.
  • Die DE 10 2007 003 976 A1 beschreibt ferner eine Pasteurisierungsvorrichtung mit integrierter Wärmepumpe, wobei eine Pasteurisierungsvorrichtung mehrere gleichartige Pasteurisierungszonen oder Pasteurisierungssegmente umfasst, wobei Wärmeenergie aus einem kälteren Segment der Pasteurisierungsvorrichtung einem wärmeren Segment der Pasteurisierungsvorrichtung zugeführt werden kann. Dabei werden in der Pasteurisierungsvorrichtung ausschließlich abgefüllte, verschlossene Behälter behandelt. Dabei ist die Wärmepumpe in die Pasteurisierungsvorrichtung integriert, wodurch Aufbau und Komplexität der Pasteurisierungsvorrichtung erhöht werden.
  • Angesichts der oben genannten Probleme und des diskutierten Stands der Technik ist es Aufgabe der vorliegenden Erfindung, eine Vorrichtung zur Heißabfüllung von Flüssigkeiten bereitzustellen, mit einer effizienten Wärmerückgewinnung, die zusätzlich robust und einfach handhabbar sein soll.
  • Diese Aufgabe wird mit einem Verfahren zur Heißabfüllung von Flüssigkeiten, insbesondere Säften, entsprechend des Patentanspruchs 1 gelöst. Ferner wird diese Aufgabe ebenfalls mit einer entsprechenden Vorrichtung, die zur Durchführung des Verfahrens geeignet ist, nach Patentanspruch 7 gelöst.
  • Die Erfindung stellt ein Verfahren zur Heißabfüllung von Flüssigkeiten, insbesondere Säften, bereit, mit einem Kurzzeiterhitzer, der einen ersten Wärmetauscher umfasst, einer Füllstation zum Abfüllen der Flüssigkeiten in Behälter, beispielsweise Flaschen, und einem Kühltunnel, der aus einer Mehrzahl von Kühlzellen besteht, zur Abkühlung der abgefüllten Behälter mittels einer Kühlflüssigkeit, beispielsweise Wasser, wobei die Flüssigkeiten vor dem Abfüllen in Behälter in der Füllstation in dem Kurzzeiterhitzer erwärmt werden, indem Wärmeenergie der beim Abkühlvorgang erwärmten Kühlflüssigkeit des Kühltunnels mittels einer separaten Wärmepumpe zum Kurzzeiterhitzer zugeführt wird.
  • In dem erfindungsgemäßen Verfahren wird die abzufüllende Flüssigkeit, das Produkt, beispielsweise Getränkesaft, im Kurzzeiterhitzer erwärmt, und zwar bereits vor der Abfüllung. Dazu wird die Wärmeenergie aus der Kühlflüssigkeit, die sich beim Abkühlvorgang in den Kühlzellen des Kühltunnels erwärmt, mittels der separaten Wärmepumpe dem Kurzzeiterhitzer zugeführt. Dadurch ist es nicht mehr nötig, die zu erwärmende Flüssigkeit mit Dampf zu erhitzen. Hierdurch wird eine beträchtliche Vereinfachung der Vorrichtung erzielt, da die Dampferhitzungsvorrichtung, Zuleitung und Ableitung des Dampfes entfallen kann. Ferner ist es nicht mehr nötig, ein bestimmtes Temperaturniveau der Kühlflüssigkeit zu erzielen, bevor sie dann durch einen Wärmetauscher fließt, um einen geeigneten Wärmeübertrag im Wärmetauscher zu leisten. Hierdurch kann der Nutzungsgrad der Rückgewinnung erhöht werden. Die Leistungszahl, COP (Coefficient of Performance), der Wärmepumpe ist dabei deutlich besser als beim Einsatz von einem Wärmetauscher. Die Wärmepumpe ermöglicht dabei gleichzeitiges Kühlen/Heizen bei geringen Kosten. Die Kosten entstehen im Wesentlichen im Hinblick auf den anfallenden elektrischen Strom, der zum Betrieb der Wärmepumpe verwendet werden kann.
  • In dem erfindungsgemäßen Verfahren wie oben beschrieben kann die von der Wärmepumpe zugeführte Wärmeenergie auf die Flüssigkeiten mittels des ersten Wärmetauschers zu deren Erwärmung übertragen werden. Hierdurch ist die von der Wärmepumpe zugeführte Wärmeenergie, beispielsweise mit Hilfe einer geeigneten Flüssigkeit, wie etwa Wasser, in dem ersten Wärmetauscher auf die zu erwärmende Flüssigkeit übertragbar. Nach dem Wärmeaustausch kann die durch den Wärmeaustausch nunmehr kühlere Flüssigkeit wieder an die Wärmepumpe zurück geleitet werden.
  • In dem erfindungsgemäßen Verfahren wie oben beschrieben kann das Erwärmen der Flüssigkeiten vollständig durch die mittels der Wärmepumpe zugeführte Wärmeenergie geschieht. Die Wärmepumpe und die aus den Kühlzellen entnommene Wärmeenergie sorgen für das Erwärmen des Produkts.
  • In der erfindungsgemäßen Vorrichtung wie oben beschrieben kann das Vorwärmen der abzufüllenden Flüssigkeiten, beispielsweise Getränkesäfte, vollständig durch die mittels der Wärmepumpe zugeführte Wärmeenergie geschehen. D.h., mit Hilfe der aus dem Kühltunnel entnommenen Wärmeenergie und der Wärmepumpe und der der Wärmepumpe zugeführten elektrischen Energie kann die Erwärmung der Flüssigkeiten vor dem Abfüllen vollständig geschehen, ohne dass zusätzliche Erwärmungsschritte notwendig sind.
  • In dem erfindungsgemäßen Verfahren wie oben beschrieben kann zum Erwärmen der Flüssigkeiten vor der Abfüllung zusätzlich ein zweiter Wärmetauscher in Reihe mit der Wärmepumpe derart vorgesehen sein, dass die erwärmte Kühlflüssigkeit vom Kühltunnel zum zweiten Wärmetauscher und danach zur Wärmepumpe gelangt; so dass zumindest ein Teil der Wärmeenergie der erwärmten Kühlflüssigkeit zunächst mittels des zweiten Wärmetauschers an die zu erwärmende Flüssigkeit übertragen werden kann und danach wenigstens ein weiterer Teil der Wärmeenergie mittels der Wärmepumpe an den Kurzzeiterhitzer zur weiteren Erwärmung der Flüssigkeiten übertragen werden kann.
  • Bezüglich der Erwärmung des Produktes vor der Abfüllung kann also der zweite Wärmetauscher in Reihe, also seriell mit der Wärmepumpe vorgesehen sein. Das hinsichtlich des Erwärmens der Flüssigkeiten serielle Verbinden des zweiten Wärmetauschers mit der Wärmepumpe ermöglicht es also insbesondere, das Temperaturniveau in der Wärmepumpe zu erhöhen und damit die Leistungszahl der Wärmepumpe zu verbessern. Hierbei erfolgen typischerweise zur Erwärmung der abzufüllenden Flüssigkeit zwei Schritte, die Wärmeübertragung mittels des zweiten Wärmetauschers insbesondere für direkt übertragbare Wärmeenergien aus dem Kühltunnel an die Flüssigkeit und anschließend das Erhöhen des Energieniveaus auf die für die Vorwärmung der Flüssigkeit, also des Produkts, vorgesehene Temperatur mit Hilfe der Wärmepumpe.
  • In dem erfindungsgemäßen Verfahren wie oben beschrieben kann zum Erwärmen der Flüssigkeiten vor der Abfüllung zusätzlich ein zweiter Wärmetauscher parallel zur Wärmepumpe derart vorgesehen sein, dass wenigstens ein Teil der erwärmten Kühlflüssigkeit vom Kühltunnel zum zweiten Wärmetauscher gelangt und wenigstens ein weiterer Teil der erwärmten Kühlflüssigkeit vom Kühltunnel zur Wärmepumpe gelangt, so dass zumindest ein Teil der Wärmeenergie der erwärmten Kühlflüssigkeit mittels des zweiten Wärmetauschers an die zu erwärmende Flüssigkeit übertragen werden kann, und wenigstens ein weiterer Teil der Wärmeenergie mittels der Wärmepumpe an den Kurzzeiterhitzer zur weiteren Erwärmung der Flüssigkeiten übertragen werden kann.
  • Bezüglich der Erwärmung des Produktes vor der Abfüllung kann also der zweite Wärmetauscher parallel zur Wärmepumpe vorgesehen sein. Entsprechend der hinsichtlich des Erwärmens des Produkts parallelen Schaltung der Wärmepumpe und des zweiten Wärmetauschers kann beispielsweise eine erste Kaskade von Kühlzellen zur direkten Wärmeübertragung durch den zweiten Wärmetauscher verwendet werden. Diese Kühlflüssigkeit wird beispielsweise nach dem Wärmeaustausch im zweiten Wärmeaustauscher wieder an die Kühlzellen zurückgeleitet. Eine zweite, parallele Kaskade von Kühlzellen ist beispielsweise mit der Wärmepumpe verbunden beispielsweise zusätzlich mit Hilfe einer einfachen Pumpe, wodurch das Energieniveau von der Wärmeenergie der zweiten Kaskade erhöht werden kann, so dass dieses Energieniveau zur Erwärmung der abzufüllenden Flüssigkeiten auf die gewünschte Abfülltemperatur angehoben werden kann.
  • In dem erfindungsgemäßen Verfahren wie oben beschrieben kann der Teil der erwärmten Kühlflüssigkeit, der zum zweiten Wärmetauscher gelangt, wärmer sein als der Teil der erwärmten Kühlflüssigkeit, der zur Wärmepumpe gelangt.
  • Beispielsweise ist die Temperatur in der Gruppe der ersten Kühlzellen, die typischerweise sequentiell angeordnet sind, höher als in der Gruppe der zweiten Kühlzellen, die ebenfalls typischerweise sequentiell angeordnet sind. Durch die parallele Verschaltung von zweitem Wärmetauscher entsprechend der ersten Kaskade und der Wärmepumpe entsprechend der zweiten Kaskade lassen sich ein noch höheres Energieniveau und damit eine höhere Leistungszahl der Wärmepumpe erzielen. Die Steuerung der erfindungsgemäßen Vorrichtung wie oben beschrieben kann beispielsweise mit einer geeigneten Steuereinheit etwa eines Computers erfolgen.
  • Die Erfindung umfasst ferner eine Vorrichtung zum Durchführen des Verfahrens zur Heißabfüllung von Flüssigkeiten wie oben beschrieben.
  • In der erfindungsgemäßen Vorrichtung können der Kurzzeiterhitzer, die Füllstation und der Kühltunnel jeweils separat ausgebildet sein. Jedes dieser Elemente kann also jeweils separat von den anderen Elementen ausgebildet sein. Die Verbindungen der Elemente kann durch geeignete Förder- und / oder Transportelemente vorgesehen sein, beispielsweise Rohre zum Transport des Produkts oder anderer Flüssigkeiten, die als Hilfsflüssigkeiten zur Wärmeübertragung dienen können, sowie Förderbänder oder Transporteinrichtung für Behälter.
  • In der erfindungsgemäßen Vorrichtung kann der erste Wärmetauscher des Kurzzeiterhitzers wie oben beschrieben kann einen Plattenwärmetauscher, PWT, oder einen Röhrenwärmetauscher, RWT, umfassen. D.h., es können gängige Wärmetauschertypen verwendet werden, um die von der Wärmepumpe zugeführte Wärmeenergie auf die zu erwärmende Flüssigkeit zu übertragen. Damit ist die Wärmeübertragung der zu erwärmenden Flüssigkeit im Kurzzeiterhitzer typischerweise entkoppelt vom Abfüllvorgang, der typischerweise nach dem Erwärmen folgt, und dem darauffolgenden Kühlvorgang.
  • Die in der erfindungsgemäßen Vorrichtung eingesetzte Wärmepumpe kann beispielsweise eine Kompressionswärmepumpe, beispielsweise eine elektrisch angetriebene Kompressionswärmepumpe, eine Ammoniak-Wärmepumpe oder eine Wärmepumpe mit transkritischem CO2-Prozess umfassen. D.h. es können gängige Typen von Wärmepumpen eingesetzt werden, insbesondere auch solche, in denen Ammoniak oder CO2 als Kühlmittel eingesetzt wird. Letzteres ermöglicht den Einsatz von besonders energieeffizienten Wärmepumpen, wobei gleichzeitig auf Kühlmittel wie Stickstoff oder Halogen-Alkane verzichtet werden kann, wobei letztere in Abfüllanlagen möglicherweise unerwünscht sein können und Halogen-Alkane darüber hinaus in ihrer Eigenschaft als klimaschädliche Gase nicht gewünscht werden können.
  • Die Wärmepumpe der erfindungsgemäßen Vorrichtung, wie oben beschrieben, kann typischerweise zwischen einer der Kühlzellen des Kühltunnels und dem ersten Wärmetauscher des Kurzzeiterhitzers vorgesehen sein. Die Wärmepumpe kann also zwischen dem mehrzelligen Kühltunnel und dem Wärmetauscher vorgesehen sein. Dabei kann beispielsweise das erwärmte Kühlmittel/die erwärmte Kühlflüssigkeit aus dem Kühltunnel mittels einer einfachen Pumpe zur Wärmepumpe gepumpt werden. Nach dem Wärmeaustausch wird die dann kühlere Flüssigkeit wieder zum Kühltunnel zurückgeleitet, beispielsweise erneut mit einer zusätzlichen Pumpe.
  • In der erfindungsgemäßen Vorrichtung, wie oben beschrieben, sind beispielsweise die Kühlzellen des Kühltunnels miteinander verbunden derart, dass Kühlflüssigkeit von einer Kühlzelle in eine oder mehrere benachbarte Kühlzellen gepumpt werden kann, beispielsweise insbesondere von einer kälteren Kühlzelle in eine wärmere Kühlzelle. Nach der Abfüllung durchlaufen die abgefüllten, verschlossenen Behälter den Kühltunnel, d.h. eine Kühlstrecke mit mehreren ähnlichen oder gleichartigen Kühlzellen. Die Kühlzellen unterscheiden sich typischerweise durch die Temperaturen, die jeweils in einer Kühlzelle herrschen.
  • Jede der Kühlzellen enthält typischerweise eine Berieselungsanlage oder Sprühvorrichtung, um die Behälter mit Kühlflüssigkeit zu besprühen. Die zu kühlenden Behälter werden also beispielsweise mit Wasser berieselt. Dadurch kann ein Wärmeaustausch zwischen dem Kühlwasser und der in den Behältern abgefüllten Flüssigkeit entstehen.
  • Die Kühlflüssigkeit wird beispielsweise aufgefangen, und zwar typischerweise für jede Kühlzelle separat. Typischerweise gibt es ein Temperaturgefälle von der ersten bis zur letzten der Mehrzahl der Kühlzellen, wobei typischerweise die erste Kühlzelle die wärmste und die letzte Kühlzelle die kälteste Kühlzelle ist. Die Reservoirs / Sammelbecken für die Kühlflüssigkeit / das Kühlwasser der Kühlzellen sind beispielsweise miteinander verbunden, so dass Kühlwasser von einer Kühlzelle in eine benachbarte Kühlzelle gepumpt werden kann und dort gegebenenfalls auch erneut zur Berieselung eingesetzt werden kann.
  • In der erfindungsgemäßen Vorrichtung kann die Wärmepumpe zwischen der Kühlzelle mit der höchstens Temperatur des erwärmten Kühlmittels und dem ersten Wärmetauscher vorgesehen sein. Typischerweise handelt es sich dabei um die erste Kühlzelle des Kühltunnels.
  • In der erfindungsgemäßen Vorrichtung fließt typischerweise bei Verwendung von zwei Wärmetauschern die zu erwärmende Flüssigkeit den ersten und den zweiten Wärmetauscher. Die beiden Wärmetauscher sind also seriell im Kurzzeiterhitzer vorgesehen.
  • Es gilt also die Nutzung einer Wärmepumpe, die separat vom Kühltunnel, separat von der Füllstation und dem Kurzzeiterhitzer vorgesehen sein kann, bietet die Möglichkeit einer effizienten und hohen Energierückgewinnung im Rahmen der Produktvorwärmung. Die Verwendung von einer Wärmepumpe in paralleler oder serieller Verschaltung mit einem Wärmetausch ermöglicht eine weitere Erhöhung der Effizienz und gleichzeitig eine Verbesserung der Leistungszahl der Wärmepumpe.
  • Der Erfindungsgegenstand wird anhand der nachfolgenden Zeichnungen beispielhaft erläutert.
  • Es zeigen:
  • Fig. 1:
    eine konventionelle Produktvorwärmung von Flüssigkeiten, beispielsweise Getränkesäften, mit nachfolgender Abkühlung mittels einer Kühlstrecke, die mit einem Kühlturm verbunden ist;
    Fig. 2:
    eine schematische Darstellung der erfindungsgemäßen Vorrichtung zur Vorwärmung eines Produktes, d.h. Flüssigkeiten, in einem Kurzzeiterhitzer vor der Abfüllung und nachfolgende Abkühlung;
    Fig. 3:
    eine weitere Ausbildung einer Vorrichtung zur Heißabfüllung von Flüssigkeiten mit einer Wärmepumpe und zusätzlich einem Wärmeaustauscher, die seriell verbunden sind;
    Fig. 4
    eine weitere Ausbildung einer Vorrichtung zur Heißabfüllung von Flüssigkeiten mit einer Wärmepumpe und einem Wärmetauscher, die parallel vorgesehen sind.
  • Die Fig. 1 zeigt eine konventionelle Produktvorwärmung wie im Stand der Technik bekannt. Über eine Produktzuleitung 1 wird, gesteuert über ein Ventil 2, das Produkt, d.h. eine zu erwärmende und nach dem Abfüllen wieder abzukühlende Flüssigkeit, etwa ein Saftgetränk, zu einem Wärmetauscher 3 geleitet. Das Produkt fließt durch den Wärmetauscher 3 hindurch. Erwärmtes Kühlmittel, etwa Kühlwasser aus der Kühlstrecke 20, wird dazu verwendet, das Produkt teilweise zu erwärmen. Das erwärmte Kühlwasser aus der Kühlstrecke/Kühltunnel 20 wird über eine Leitung 4 und eine Pumpe 5 zu dem Wärmetauscher 3 gepumpt.
  • Das Produkt wird über eine Leitung 11 zu einem weiteren Wärmetauscher 12, der im Wesentlichen als Kurzzeiterhitzer dient, geleitet. Der Wärmetauscher/Kurzzeiterhitzer 12 wird von
  • Dampf, typischerweise Wasserdampf, durchströmt, der seine Wärmeenergie auf das durch den Kurzzeiterhitzer 12 strömende Produkt überträgt. Der Dampf wird den Wärmetauscher/Kurzzeiterhitzer 12 mit Hilfe der Leitung 13 zugeleitet und der nach dem Wärmeaustausch kühlere Dampf wird durch die Leitung 14 wieder vom Kurzzeiterhitzer 12 weg geleitet. Dabei kann der in diesem Vorgang zum Einsatz kommende Dampf, beispielsweise Wasserdampf, durch konventionelle Mittel erwärmt werden.
  • Die Erwärmung des Produktes im Kurzzeiterhitzer 12 kann bis auf Temperaturen von 80 - 90° C geschehen, abhängig von der für das Produkt gewünschten Temperatur. Das erwärmte Produkt kann über geeignete Zuleitungen 16, die rein schematisch mit einem Pfeil angezeigt sind, sich aber räumlich getrennt vom Kurzzeiterhitzer 12 befinden können, zu einer Füllstation 15 transportiert werden. Die Füllstation 15 kann eine geeignete Vorrichtung zur Heißabfüllung des Produkts, also der erwärmten Flüssigkeit, in Behälter 25, beispielsweise Flaschen, umfassen, wie sie im Stand der Technik bekannt ist. Innerhalb der Vorrichtung 15 werden die Behälter 25 typischerweise verschlossen und dann mittels einer Transporteinrichtung 17, die wiederum rein schematisch als Pfeil angedeutet ist, zu der Kühlstrecke/dem Kühltunnel 20 geleitet.
  • Der Kühltunnel/die Kühlstrecke 20 besteht aus mehreren Kühlzellen. Rein beispielhaft sind in Fig. 1 sechs Kühlzellen 20.1, 20.2, 20.3, 20.4, 20.5 und 20.6 gezeigt. Die abgefüllten Behälter 25 durchlaufen mit Hilfe eines geeigneten Transportmediums (hier nicht gezeigt), etwa eines Förderbandes, die beispielsweise unmittelbar benachbarten Kühlzellen. Dabei können die abgefüllten Behälter 25, etwa Flaschen, von der einen zur anderen Kühlzelle direkt geleitet werden.
  • Die Kühlzellen umfassen ferner Berieselungsanlagen 21.1, 21.2, 21.3, 21.4, 21.5 und 21.6, die schematisch dargestellt sind. Diese dienen dazu, die zu kühlenden verschlossenen Behälter 25 mit einer Kühlflüssigkeit, beispielsweise Wasser, zu berieseln, um sie somit abzukühlen. Das Kühlwasser wird durch Kühlwasserzuleitungen 25.1, 25.2, 25.3, 25.4, 25.5 und 25.6 den Berieselungsvorrichtungen zugeleitet. Dabei kann das verwendete Kühlmittel von Kühlmittelbecken aufgefangen werden, welche mit den Bezugszeichen 23.1, 23.2, 23.3, 23.4, 23.5 und 23.6 bezeichnet sind. Aus den bezeichneten Kühlmittelbecken 23.1, 23.2, 23.3, 23.4, 23.5 und 23.6 kann zumindest ein Teil des Kühlwassers mit Hilfe von Pumpen 22.1, 22.2, 22.3, 22.4, 22.5 und 22.6 jeweils erneut zum Berieseln verwendet werden. Ferner kann auch frisches, beispielsweise kühleres Kühlmittel, etwa Wasser zugeleitet werden (hier nicht gezeigt). Ferner kann erwärmtes Kühlwasser, das im Wärmetauscher 3 einen Teil seiner Wärme an das Produkt abgegeben hat und das nachfolgend mittels eines Kühlturms 7 erneut gekühlt wurde, über eine Zuleitung 8, eine konventionelle Pumpe 9 und eine Zuleitung 10 erneut dem Kühltunnel 20 zugeleitet werden.
  • In Fig. 1 ist beispielhaft gezeigt, dass das mit Hilfe des Kühlturms 7 erneut gekühlte Wasser, also nach dem Kühlvorgang im Kühlturm 7, der kältesten der Kühlzellen 20.1, 20.2, 20.3, 20.4, 20.5 und 20.6, in diesem Falle der Kühlzelle 20.6, zugeleitet wird. Die Kühlmittelsammelbecken 23.1, 23.2, 23.3, 23.4, 23.5 und 23.6 sind jeweils benachbart, so dass wenigstens zwei benachbarte Kühlzellen durch geeignete Leitungen 24.1, 24.2, 24.3, 24.4 und 24.5 verbunden sein können. In diesem Beispiel kann das Kühlmittel im Bereich vor dem Wärmetauscher 3 beispielhaft Temperaturen im Bereich von etwa 40 - 70 °C besitzen. Nachdem ein Teil der Wärmeenergie an das Produkt übertragen wurde, kann das Kühlmittel eine geringfügig niedrigere Temperatur von etwa 35° bis 40° C haben, bevor es mittels der Leitung 6 in den Kühlturm 7 geleitet wird. Nach dem Kühlen, d.h. nach dem Durchlaufen des Kühlturms 7, kann das Kühlmittel beispielsweise eine Temperatur von etwa 30° C besitzen. Dabei können diese Temperaturangaben jedoch schwanken und von der Maschinenlänge, der Länge er Leitungen und der Anzahl der Kühlzellen beispielsweise abhängig sein. Ebenso kann der Durchsatz am Kühlturm 7 zwischen 17 m3 und 43 m3 pro Stunde schwanken.
  • Fig. 2 zeigt eine Vorrichtung zur Heißabfüllung von Flüssigkeiten/Produkten, insbesondere Getränkesäften, entsprechend der vorliegenden Erfindung. Fig. 2 zeigt erneut einen Kühltunnel/eine Kühlstrecke 20, wie bereits in Fig. 1 beschrieben, so dass die Elemente dieses Kühltunnels 20 nicht erneut beschrieben werden. In Fig. 2 wird über eine Produktzuleitung 1 das Produkt, also die zu erwärmende Flüssigkeit, etwa Getränkesaft, einem Wärmetauscher/Kurzzeiterhitzer 12 zugeleitet.
  • Wie bereits in Fig. 1 beschrieben, wird die Flüssigkeit nach dem Erwärmen mittels einer rein schematisch dargestellten Leitung 16 zu einer Füllstation 15 geleitet. Dort wird die erhitzte/erwärmte Flüssigkeit im Behälter 25, beispielsweise Flaschen, abgefüllt. Die Behälter 25 werden in der Füllstation nach dem Abfüllen verschlossen. Die verschlossenen, heißen Behälter 25 werden mittels einer geeigneten Transportstrecke 17 dem Kühltunnel/der Kühlstrecke 20 zugeleitet.
  • Im Unterschied zu der Fig. 1, wird in der Fig. 2 jedoch die zu erwärmende Flüssigkeit, also das Produkt, im Kurzzeiterhitzer 12, nicht mit Hilfe von Dampf erhitzt, sondern mit Hilfe einer geeigneten Flüssigkeit, beispielsweise Wasser, die von einer Wärmepumpe, die mit dem Bezugszeichen 30 versehen ist, zugeleitet wird. Die Wärmepumpe 30 leitet über die Zuleitung 19a eine geeignete erhitzte Flüssigkeit zum Kurzzeiterhitzer/Wärmetauscher 12, in dem die Wärmeübertragung auf das Produkt stattfindet. Nach der Wärmeübertragung kann mit Hilfe einer Pumpe 18 über die Leitung 19b die nunmehr kühlere Flüssigkeit wieder zurück zur Wärmepumpe 30 geleitet werden.
  • Die Wärmepumpe 30 umfasst ein Element 34 zur Wärmeabgabe, ein Element 31 zur Wärmeaufnahme, sowie eine Drossel 33 und einen Verdichter 32. Innerhalb der Wärmepumpe sind die Zirkulationswege durch Pfeile 35 und 36 bestimmt. Die Temperaturen auf der rechten, kühleren Seite der Wärmepumpen sind mit TC2 und TC1 bezeichnet. Dabei kann TC1 in etwa 16° C betragen, es sind aber ebenso andere Temperaturen je nach Maschinenauslegung, Länge der Maschine, Isolierung usw. möglich. Ebenso kann die Temperatur TC2 etwa 30 bis 32°C betragen, es sind ebenso andere Temperaturen möglich. Beispielhaft kann die Temperatur T1 etwa 28° C betragen, die Temperatur T2 etwa 96° C, die Temperatur T3 etwa 28° C und die Temperatur T4 etwa 27° C. Dabei sollen diese Temperaturangaben rein beispielhaft verstanden sein und sind ebenso andere Temperaturangaben möglich je nach Auslegung der Wärmepumpe 30, ihrer Leistungszahl, der zugeführten elektrischen Energie und anderer Parameter entsprechend der Auslegung der Maschinen.
  • In der Fig. 2 wird aus der Kühlstrecke 20 erwärmte Kühlflüssigkeit an die Wärmepumpe 30 geleitet. Dabei wird beispielsweise aus einer der Kühlzellen der Kühlstrecke 20, beispielsweise aus der wärmsten der Kühlzellen, die erwärmte Kühlflüssigkeit über eine Zuleitung 4 mittels einer konventionellen Pumpe 5 zur Wärmepumpe 30 gepumpt, d.h. insbesondere zum Element 31 der Wärmepumpe 30. Nach dem Durchlaufen der Wärmepumpe 30, d.h. insbesondere des Elements 31 der Wärmepumpe 30, wird die nunmehr kühlere Kühlflüssigkeit über die Leitung 10 wieder in die Kühlstrecke zurückgeleitet. Hierzu kann noch eine weitere Hilfspumpe, hier nicht gezeigt, verwendet werden. Typischerweise wird die Kühlflüssigkeit an die kälteste der Kühlzellen 20.1, 20.2, 20.3, 20.4, 20.5 und 20.6, zurückgeleitet, in diesem Beispiel die Kühlzelle mit dem Bezugszeichen 20.6. Die beispielhaft gezeigte Verwendung einer Wärmepumpe 30 separat von der Kühlstrecke 20, dem Kurzzeiterhitzer 12 und der Füllstation 15, ermöglicht einen höheren Nutzungsgrad der Rückgewinnung von Wärmeenergie und bei einem geringen Kostenaufwand ermöglicht die Verwendung der Wärmepumpe 30 gleichzeitiges Kühlen oder auch Heizen.
  • Die Fig. 3 zeigt eine weitere Weiterbildung im Rahmen der vorliegenden Erfindung. Wiederum wird eine Kühlstrecke/ein Kühltunnel 20 verwendet, wie er bereits mit Bezug auf Fig. 1 und 2 beschrieben worden ist. Dabei sind wiederum gleiche Elemente mit gleichen Bezugszeichen bezeichnet und werden hier nicht erneut genannt.
  • In der erfindungsgemäßen Vorrichtung in Fig. 3 wird wiederum die zu erwärmende Flüssigkeit, also das Produkt, über die Produktzuleitung 1 der Vorrichtung zugeleitet. Die Vorrichtung umfasst dabei zwei Wärmetauscher, die mit den Bezugszeichen 60 und 62 bezeichnet sind. Die Wärmetauscher 62 und 60 sind beispielsweise in Serie im Kurzzeiterhitzer vorgesehen. Die Wärmetauscher 60 und 62 sind seriell über die Leitung mit dem Bezugszeichen 61 verbunden.
  • Nach Erhitzung des Produktes, nach Durchlaufen des Wärmetauschers 62 wird das Produkt über ein geeignetes Leitungssystem 63 zur Füllstation 15 geleitet. Die Füllstation 15 kann eine Füllstation sein, wie sie bereits in Bezug auf Fig. 1 und Fig. 2 beschrieben worden ist. Nach dem Abfüllvorgang und Verschließen der Behälter 25, in die die erwärmte Flüssigkeit abgefüllt worden ist, kann über eine geeignete Transportstrecke 17 der Transport der Behälter 25 an den Kühltunnel 20 vorgenommen werden. Ebenso ist die Verwendung des erwärmten Kühlmittels, beispielsweise Kühlwasser aus der Kühlstrecke/dem Kühlturm 20, seriell vorgesehen. Der zweite Wärmetauscher 60 ist dabei also bezüglich der Erwärmung seriell zur Wärmepumpe 50 vorgesehen. Über eine Zuleitung 4 und eine Pumpe 5 wird mittels der Zuleitung 66 das erwärmte Kühlmittel aus der Kühlstrecke 20 in den Wärmetauscher 60 geleitet oder gepumpt. Dort wird beispielsweise das erwärmte Kühlmittel verwendet, um in einem ersten Schritt, d.h. für direkt übertragbare Energien das Produkt zu erwärmen. Es erfolgt somit bereits mittels des Wärmetauschers 60 eine Erwärmung des über die Zuleitung 1 zugeführten Produkts.
  • Nach der Erwärmung im Wärmetauscher 60 wird das erwärmte Produkt an den Wärmetauscher 62 weitergeleitet. Die durch Verwendung im Wärmetauscher 60 leicht im Temperaturniveau abgekühlte Kühlflüssigkeit wird vom Wärmetauscher 60 mittels der Zuleitung 67 an die Wärmepumpe 50 geleitet.
  • Die Wärmepumpe 50 umfasst Wärmepumpenelement 51 zur Wärmeaufnahme, Wärmepumpenelement 54 zur Wärmeabgabe, sowie Verdichter 52 und Drossel 53. Die Bezugszeichen 55 und 56 bezeichnen die Fließrichtung innerhalb der Wärmepumpe 50. Aus dem Element 54 der Wärmepumpe 50 wird über die Zuleitung 64 eine geeignete Flüssigkeit zur Wärmeübertragung an den ersten Wärmetauscher 62 geleitet, wodurch das Produkt auf die gewünschte Zieltemperatur erwärmt werden kann. Nach dem Erwärmen im Wärmetauscher 62 wird die abgekühlte Flüssigkeit über die Zuleitung 65 wieder zurück zur Wärmepumpe 50 geleitet. Dort wird sie in das Element 54 der Wärmepumpe 50 geleitet. Die nach Durchlaufen des Elements 51 abgekühlte Kühlflüssigkeit wird über die Leitung 10 wieder an den Kühltunnel 20 zurückgeleitet. Dabei wird, wie beispielhaft in Fig. 3 gezeigt, diese Kühlflüssigkeit an die kälteste der Zellen 20.1, 20.2, 20.3, 20.4, 20.5 und 20.6 des Kühltunnels, Zelle 20.6, geleitet.
  • Fig. 4 zeigt eine weitere Weiterbildung entsprechend der vorliegenden Erfindung. In Fig. 4 wird ein Kühltunnel/eine Kühlstrecke 70 gezeigt, die/der zwar den in den Fig. 1 - 3 gezeigte Kühlstrecken ähnelt, jedoch dahingehend unterschiedlich ist, dass Gruppen von Kühlzellen der Kühlstrecke das aus ihnen entnommene Kühlwasser an unterschiedliche Elemente abgeben können. Es wäre jedoch ebenso möglich, eine Kühlzelle wie in Fig. 1 - 3 gezeigt zu verwenden.
  • Die Kühlstrecke 70 umfasst, beispielhaft gezeigt, sechs Kühlzellen 70.1, 70.2, 70.3, 70.4, 70.5 und 70.6. Diese Kühlzellen umfassen Berieselungseinrichtungen/Berieselungsanlagen 71.1, 71.2, 71.3, 71.4, 71.5 und 71.6. Diese Berieselungsanlagen 71.1, 71.2, 71.3, 71.4, 71.5 und 71.6, die rein schematisch zweiarmig gezeigt sind, erhalten das zum Berieseln verwendete Kühlmittel, etwa Wasser, über Zuleitungen 75.1, 75.2, 75.3, 75.4, 75.5 und 75.6. Das nach der Berieselung von den Behältern 25 abtropfende oder ableckende Kühlwasser wird in jeweiligen Sammelbehältern 73.1, 73.2, 73.3, 73.4, 73.5 und 73.6, die offen sein können, in der jeweiligen Kühlzelle 70.1, 70.2, 70.3, 70.4, 70.5 und 70.6 aufgefangen. Das aufgefangene Kühlwasser kann zumindest teilweise über Pumpen 72.1, 72.2, 72.3, 72.4, 72.5 und 72.6 wieder zur Berieselung verwendet werden. Dabei kann - hier nicht gezeigt - ebenfalls kühleres Frischwasser aus anderen Zuleitungsquellen verwendet werden. Ferner kann kühleres Wasser, das von einer Wärmepumpe 80 zurückströmt, den Kühlzellen 70.1, 70.2, 70.3, 70.4, 70.5 und 70.6 zugeführt werden, wie nachfolgend noch beschrieben wird.
  • In Fig. 4 wird wiederum die zu erwärmende Flüssigkeit, das Produkt, etwa ein Getränkesaft, durch die Produktzuleitung 1 dem Kurzzeiterhitzer zugeführt. Die Vorrichtung umfasst wiederum zwei Wärmetauscher 92 und 90. Die Wärmetauscher 92 und 90 sind beispielsweise seriell im Kurzzeiterhitzer vorgesehen. Der zweite Wärmetauscher 90 ist über eine Leitung 91 mit dem ersten Wärmetauscher 92 verbunden. Im zweiten Wärmetauscher 90 wird das durch die Leitung 1 zugeführte Produkt zumindest teilweise erwärmt. Das Produkt wird dann zur weiteren Erwärmung auf die gewünschte Zieltemperatur dem Wärmetauscher 92 zugeleitet. Der zweite Wärmetauscher 90 ist hinsichtlich der Erwärmung des Produkts parallel zu einer Wärmepumpe 80 vorgesehen, wie unten beschrieben.
  • Nach der Erwärmung auf die Zieltemperatur wird über eine Leitung 93, die rein schematisch gezeichnet ist, das Produkt einer Füllstation 15 zugeführt. Die Füllstation 15 entspricht den bereits oben geschilderten Füllstationen im Zusammenhang mit den Fig. 1 - 3. Rein schematisch ist wiederum durch das Bezugszeichen 17 angedeutet, dass die in Behälter 25 abgefüllte Flüssigkeit, wobei die Behälter 25 nachfolgend verschlossen sind, an die Kühlstrecke/den Kühltunnel 70 weitergegeben werden können. Dabei können die Abfüllvorrichtung und die Kühlstrecke räumlich getrennt voneinander vorgesehen sein. Gleiches gilt für den Kurzzeiterhitzer mit den Wärmetauschern 90 und 92.
  • Fig. 4 zeigt ferner die Wärmepumpe 80, die mit Wärmepumpenelement 81 zur Wärmeaufnahme auf der kühleren Seite der Wärmepumpe 80, und Wärmepumpenelement 84 zur Wärmeabgabe auf der wärmeren Seite der Wärmepumpe 80, versehen ist. Zwischen dem Element 81 und dem Element 84 ist ein Verdichter 82 sowie auf der gegenüberliegenden Seite eine Drossel 83 vorgesehen. Mit den Bezugszeichen 85 und 86 die Strömungsrichtung innerhalb des inneren Kreises der Wärmepumpe bezeichnet werden.
  • In der in Fig. 4 gezeigten Weiterbildung wird eine erste Kaskade, beispielsweise umfassend eine Gruppe von drei Kühlzellen 70.1, 70.2, 70.3, wobei eine beliebige andere Gruppierung möglich ist, mit dem Wärmetauscher 90 verbunden. D.h., die erwärmte Kühlflüssigkeit aus dieser Gruppe, typischerweise entnommen aus dem wärmsten Sammelbecken für Kühlflüssigkeit 73.1, wird über eine Zuleitung 78 und eine Pumpe 99 und einer weiteren Zuleitung 98 an den Wärmetauscher 90 geleitet, um Energie aus der ersten Kaskade auf das Produkt zu übertragen. Über eine Rückleitung 97 wird das Kühlmittel nach der erfolgten Wärmeübertragung wieder an die Gruppe zurückgeleitet. Dabei ist zu bemerken, dass es eine Verbindung zwischen den Elementen der Gruppe gibt. Die Verbindung wird mit den Bezugszeichen 74.1 und 74.2 bezeichnet.
  • Die Fig. 4 zeigt eine weitere Gruppe, die beispielhaft aus drei Kühlzellen 70.4, 70.5 und 70.6 besteht, wobei aber auch eine andere Gruppierung möglich ist. Diese Kühlzellen sind ebenfalls verbunden mit Verbindungselementen 74.4 und 74.5. Dabei wird aus der wärmsten der zweiten Kaskade, bestehend aus den Zellen 70.4, 70.5 und 70.6, d.h. aus der Zelle 70.4 und deren Sammelbecken 73.4 über eine Zuleitung 77 und eine Pumpe 89 Kühlmittel an die Wärmepumpe 80 geleitet. Nach Übertragung der Wärme aus dem Kühlmittel, das durch das Wärmepumpenelement 81 hindurchgeleitet wird, wird das nunmehr kühlere Kühlmittel wieder an die Zelle mit dem Bezugszeichen 70.6, also der kältesten der zweiten Gruppe, zurückgeleitet. Durch die hiermit vorgesehene parallele Erwärmung des Produkts mittels der Wärmetauscher 90 und der Wärmepumpe 80, kann eine effiziente Produktvorwärmung erzielt werden.
  • Für die in den Figuren 2 - 4 dargestellten Vorrichtungen kann die Erwärmung und Abkühlung des Produktes durch eine geeignete Computersteuerung, hier nicht gezeigt, gesteuert werden.
  • Es versteht sich, dass sinngemäß die gezeigten Vorrichtungen auch für eine gezielte Kühlung von Produkten zu kleinen Temperaturen hin verwendet werden können.
  • Es versteht sich, dass in den zuvor beschriebenen Ausführungsbeispielen genannte Merkmale sich nicht auf die speziell in den Figuren gezeigten Kombinationen beschränken, sondern auch in beliebigen anderen Kombinationen möglich sein können.

Claims (15)

  1. Verfahren zur Heißabfüllung von Flüssigkeiten, insbesondere Säften, mit einem Kurzzeiterhitzer (12, 60, 62, 90, 92), der einen ersten Wärmetauscher (12, 62, 92) umfasst, einer Füllstation (15) zum Abfüllen der Flüssigkeiten in Behälter (25), beispielsweise Flaschen, und einem Kühltunnel (20, 70), der aus einer Mehrzahl von Kühlzellen (20.1 - 20.6, 70.1 - 70.6) besteht, zur Abkühlung der abgefüllten Behälter (25) mittels einer Kühlflüssigkeit, beispielsweise Wasser,
    dadurch gekennzeichnet, dass
    die Flüssigkeiten vor dem Abfüllen in Behälter (25) in der Füllstation (15) in dem Kurzzeiterhitzer (12, 60, 62, 90, 92) erwärmt werden, indem Wärmeenergie der beim Abkühlvorgang erwärmten Kühlflüssigkeit des Kühltunnels (20, 70) mittels einer separaten Wärmepumpe (30, 50, 80) zum Kurzzeiterhitzer (12, 60, 62, 90, 92) zugeführt wird.
  2. Verfahren nach Anspruch 1, wobei die von der Wärmepumpe (30, 50, 80) zugeführte Wärmeenergie auf die Flüssigkeiten mittels des ersten Wärmetauschers (12, 62, 92) zu deren Erwärmung übertragen wird.
  3. Verfahren nach wenigstens einem der Ansprüche 1 - 2, wobei das Erwärmen der Flüssigkeiten vollständig durch die mittels der Wärmepumpe (30, 50, 80) zugeführte Wärmeenergie geschieht.
  4. Verfahren nach wenigstens einem der Ansprüche 1 - 3, wobei zum Erwärmen der Flüssigkeiten vor der Abfüllung zusätzlich ein zweiter Wärmetauscher (60, 90) in Reihe mit der Wärmepumpe (30, 50, 80) derart vorgesehen ist, dass die erwärmte Kühlflüssigkeit vom Kühltunnel (20, 70) zum zweiten Wärmetauscher (60, 90) und danach zur Wärmepumpe (30, 50, 80) gelangt; so dass zumindest ein Teil der Wärmeenergie der erwärmten Kühlflüssigkeit zunächst mittels des zweiten Wärmetauschers (60, 90) an die zu erwärmende Flüssigkeit übertragen werden kann und danach wenigstens ein weiterer Teil der Wärmeenergie mittels der Wärmepumpe (30, 50, 80) an den Kurzzeiterhitzer (12, 60, 62, 90, 92) zur weiteren Erwärmung der Flüssigkeiten übertragen werden kann.
  5. Verfahren nach wenigstens einem der Ansprüche 1 - 4, wobei zum Erwärmen der Flüssigkeiten vor der Abfüllung zusätzlich ein zweiter Wärmetauscher (60, 90) parallel zur Wärmepumpe (30, 50, 80) derart vorgesehen ist, dass wenigstens ein Teil der erwärmten Kühlflüssigkeit vom Kühltunnel (20, 70) zum zweiten Wärmetauscher (60, 90) gelangt und wenigstens ein weiterer Teil der erwärmten Kühlflüssigkeit vom Kühltunnel (20, 70) zur Wärmepumpe (30, 50, 80) gelangt, so dass zumindest ein Teil der Wärmeenergie der erwärmten Kühlflüssigkeit mittels des zweiten Wärmetauschers (12, 62, 92) an die zu erwärmende Flüssigkeit übertragen werden kann, und wenigstens ein weiterer Teil der Wärmeenergie mittels der Wärmepumpe (30, 50, 80) an den Kurzzeiterhitzer (12, 60, 62, 90, 92) zur weiteren Erwärmung der Flüssigkeiten übertragen werden kann.
  6. Verfahren nach Anspruch 5, wobei der Teil der erwärmten Kühlflüssigkeit, der zum zweiten Wärmetauscher (60, 90) gelangt, wärmer ist als der Teil der erwärmten Kühlflüssigkeit, der zur Wärmepumpe (30, 50, 80) gelangt.
  7. Vorrichtung zur Durchführung des Verfahrens zur Heißabfüllung von Flüssigkeiten nach einem der Ansprüche 1 - 6.
  8. Vorrichtung nach Anspruch 7, wobei der Kurzzeiterhitzer (12, 60, 62, 90, 92), die Füllstation (15) und der Kühltunnel (20, 70) jeweils separat ausgebildet sind.
  9. Vorrichtung nach Anspruch 8, wobei der erste Wärmetauscher (12, 62, 92) einen Plattenwärmetauscher oder einen Röhrenwärmetauscher umfasst
  10. Vorrichtung nach wenigstens einem der Ansprüche 7 - 9, wobei die Wärmepumpe (30, 50, 80) eine Kompressionswärmepumpe, beispielsweise eine elektrisch angetriebene Kompressionswärmepumpe, eine Ammoniak-Wärmepumpe oder eine Wärmepumpe mit transkritischem CO2-Prozess umfasst.
  11. Vorrichtung nach wenigstens einem der Ansprüche 7 - 10, wobei die Wärmepumpe (30, 50, 80) zwischen einer der Kühlzellen (20.1 - 20.6, 70.1 - 70.6) des Kühltunnels (20, 70) und dem ersten Wärmetauscher (12, 62, 92) vorgesehen ist.
  12. Vorrichtung nach Anspruch 11, wobei die Wärmepumpe (30, 50, 80) zwischen der Kühlzelle mit der höchstens Temperatur des erwärmten Kühlmittels und dem ersten Wärmetauscher (12, 62, 92) vorgesehen ist.
  13. Vorrichtung nach wenigstens einem der Ansprüche 7 - 12, wobei die Kühlzellen (20.1 - 20.6, 70.1 - 70.6) derart miteinander verbunden sind, dass Kühlflüssigkeit von einer Kühlzelle in eine oder mehrere benachbarte Kühlzellen (20.1 - 20.6, 70.1 - 70.6) gepumpt werden kann, beispielsweise von einer kälteren Kühlzelle in eine wärmere Kühlzelle.
  14. Vorrichtung nach wenigstens einem der Ansprüche 7 - 13, wobei jede der Kühlzellen (20.1 - 20.6, 70.1 - 70.6) eine Berieselungsanlage (21.1 - 21.6, 71.1 - 71.6) umfasst, um die Behälter (25) mit Kühlflüssigkeit zu besprühen.
  15. Vorrichtung nach wenigstens einem der Ansprüche 7 - 14 in Kombination mit einem der Ansprüche 4 - 6, wobei im Kurzzeiterhitzer (12, 60, 62, 90, 92) die zu erwärmende Flüssigkeit den ersten und den zweiten Wärmetauscher (60, 90) durchfließt.
EP12167300.8A 2011-06-10 2012-05-09 Produktvorwärmung mit Wärmepumpe Active EP2532247B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL12167300T PL2532247T3 (pl) 2011-06-10 2012-05-09 Podgrzewanie produktu pompą ciepła

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011077375A DE102011077375A1 (de) 2011-06-10 2011-06-10 Produktvorwärmung mit Wärmepumpe

Publications (2)

Publication Number Publication Date
EP2532247A1 true EP2532247A1 (de) 2012-12-12
EP2532247B1 EP2532247B1 (de) 2014-01-29

Family

ID=46178408

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12167300.8A Active EP2532247B1 (de) 2011-06-10 2012-05-09 Produktvorwärmung mit Wärmepumpe

Country Status (8)

Country Link
US (1) US20120312419A1 (de)
EP (1) EP2532247B1 (de)
CN (1) CN102815421B (de)
BR (1) BR102012013682A2 (de)
DE (1) DE102011077375A1 (de)
DK (1) DK2532247T3 (de)
ES (1) ES2449488T3 (de)
PL (1) PL2532247T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015055283A1 (de) 2013-10-17 2015-04-23 Gea Tds Gmbh Verfahren und vorrichtung zur vorerwärmung eines pumpfähigen lebensmittelprodukts in einer heissabfüllung mit einer wärmepumpe

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206716A1 (de) * 2012-04-24 2013-10-24 Krones Ag Abfüllung gekühlter produkte
DE102012220547A1 (de) * 2012-11-12 2014-05-15 Krones Ag Vorrichtung und Verfahren zum Erhitzen eines flüssigen Lebensmittelprodukts mit anschließendem Druckabbau
DE102014108798A1 (de) 2014-06-24 2015-12-24 Krones Ag Pasteurisationssystem mit Reinigung der Prozessflüssigkeit
DK178416B1 (en) * 2014-07-25 2016-02-15 Spx Flow Technology Danmark As Infusion plant
DE102015116037A1 (de) * 2015-09-23 2017-03-23 Krones Ag Vorrichtung und Verfahren zur Durchführung eines Umstellvorganges bei einer Getränkeherstellungsanlage
EP3378330B1 (de) * 2017-03-22 2020-01-08 Red Bull GmbH Pasteurisierungsanlage und verfahren zum betrieb einer pasteurisierungsanlage
DE102017205551A1 (de) * 2017-03-31 2018-10-04 Krones Ag Flaschenbehandlungsmaschine und Verfahren zum Reinigen des Pumpen-/Düsenschutzes der Flaschenbehandlungsmaschine
CN109704261A (zh) * 2019-01-20 2019-05-03 上海柯茂机械有限公司 回收排水显热高温热泵驱动巴氏杀菌机
DE102019126946A1 (de) * 2019-10-08 2021-04-08 Krones Aktiengesellschaft Verfahren und Vorrichtung zur Heißabfüllung von flüssigem Produkt
DE102019133184A1 (de) * 2019-12-05 2021-06-10 Krones Aktiengesellschaft Anlage zum Pasteurisieren von in verschlossenen Behältnissen abgefüllten Lebensmitteln oder Getränken mit einer Prozessflüssigkeit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2520984A1 (fr) * 1982-02-10 1983-08-12 Soule Fer Froid Appareil pasteurisateur comprenant une pompe a chaleur
EP1529448A1 (de) * 2003-11-06 2005-05-11 KHS Maschinen- und Anlagenbau Aktiengesellschaft Verfahren zum Betreiben einer Pasteurisierungsanlage
DE102007003919A1 (de) * 2007-01-21 2008-07-24 Rauch, Jürgen Verfahren und Vorrichtung zum Pasteurisieren von abgefüllten Lebensmitteln
DE102007003976A1 (de) 2007-01-26 2008-07-31 Khs Ag Pasteurisierungsvorrichtung mit integrierter Wärmepumpe und Verfahren hierzu

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1963688C3 (de) * 1969-12-19 1975-11-13 Habra-Werk, Wilhelm F. Ott, 6100 Darmstadt Vorrichtung zum Hocherhitzen von flüssigen und pastösen Produkten
US4331629A (en) * 1980-09-15 1982-05-25 Barry-Wehmiller Company Steam and water conservation system for pasteurizers
DE3210341A1 (de) * 1982-03-20 1983-09-22 Ernst Dr.-Ing. 7016 Gerlingen Breuning Pasteurisieranlage
DE3211159A1 (de) * 1982-03-26 1983-09-29 Ernst Dr.-Ing. 7016 Gerlingen Breuning Pasteurisieranlage
NL9300404A (nl) * 1993-03-05 1994-10-03 Heineken Tech Services Werkwijze voor het pasteuriseren van in houders opgenomen vloeistof alsmede een tunnelpasteur voor het uitvoeren van een dergelijke werkwijze.
US5804240A (en) * 1995-12-29 1998-09-08 Alipak Corporation Juice packaging process and apparatus
DE19908035B4 (de) * 1999-02-24 2006-03-23 Khs Maschinen- Und Anlagenbau Ag Verfahren zum Betreiben einer Pasteurisierungsanlage
DE10352886A1 (de) * 2003-11-10 2005-06-23 Khs Maschinen- Und Anlagenbau Ag Pasteurisierungsanlage
SE529692C2 (sv) * 2005-04-19 2007-10-23 Tetra Laval Holdings & Finance Metod vid varmfyllning av livsmedel i en förpackningsbehållare
US20070184157A1 (en) * 2006-02-07 2007-08-09 Citrus World, Inc. Hot fill and quick chill process for premium quality juice
KR101026779B1 (ko) * 2010-07-08 2011-04-11 (주)미래비엠 고효율 저온살균 냉각기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2520984A1 (fr) * 1982-02-10 1983-08-12 Soule Fer Froid Appareil pasteurisateur comprenant une pompe a chaleur
EP1529448A1 (de) * 2003-11-06 2005-05-11 KHS Maschinen- und Anlagenbau Aktiengesellschaft Verfahren zum Betreiben einer Pasteurisierungsanlage
DE10351689A1 (de) 2003-11-06 2005-06-16 Khs Maschinen- Und Anlagenbau Ag Verfahren zum Betreiben einer Pasteurisierungsanlage
DE102007003919A1 (de) * 2007-01-21 2008-07-24 Rauch, Jürgen Verfahren und Vorrichtung zum Pasteurisieren von abgefüllten Lebensmitteln
DE102007003976A1 (de) 2007-01-26 2008-07-31 Khs Ag Pasteurisierungsvorrichtung mit integrierter Wärmepumpe und Verfahren hierzu

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015055283A1 (de) 2013-10-17 2015-04-23 Gea Tds Gmbh Verfahren und vorrichtung zur vorerwärmung eines pumpfähigen lebensmittelprodukts in einer heissabfüllung mit einer wärmepumpe
DE102013017330A1 (de) * 2013-10-17 2015-04-23 Gea Tds Gmbh Verfahren und Vorrichtung zur Vorerwärmung eines pumpfähigen Lebensmittelprodukts in einer Heißabfüllanlage mit einer Wärmepumpe

Also Published As

Publication number Publication date
ES2449488T3 (es) 2014-03-19
EP2532247B1 (de) 2014-01-29
US20120312419A1 (en) 2012-12-13
PL2532247T3 (pl) 2014-07-31
DK2532247T3 (en) 2014-03-03
CN102815421B (zh) 2015-12-02
DE102011077375A1 (de) 2012-12-13
BR102012013682A2 (pt) 2014-01-21
CN102815421A (zh) 2012-12-12

Similar Documents

Publication Publication Date Title
EP2532247B1 (de) Produktvorwärmung mit Wärmepumpe
EP3068237B1 (de) Verfahren sowie anlage zum pasteurisieren von produkten in behältern
EP3355717B1 (de) Anlage und verfahren für die pasteurisierung von lebensmitteln
DE102007003976A1 (de) Pasteurisierungsvorrichtung mit integrierter Wärmepumpe und Verfahren hierzu
EP2567935B1 (de) Verfahren und Vorrichtung zum Erhitzen eines flüssigen Produkts
EP3509980B1 (de) Abfüllanlage zum wärmebehandeln und abfüllen einer flüssigkeit
EP1529448B1 (de) Verfahren zum Betreiben einer Pasteurisierungsanlage
EP2657180B1 (de) Abfüllung gekühlter Produkte
EP2117361B1 (de) Verfahren zur reduzierung des energiebedarfs bei pasteurisieranlagen sowie füllanlage
EP4068984B1 (de) Anlage zum pasteurisieren von in verschlossenen behältnissen abgefüllten lebensmitteln oder getränken mit einer prozessflüssigkeit
DE19908035A1 (de) Verfahren zum Betreiben einer Pasteurisierungsanlage
EP2281467B1 (de) Verfahren und Vorrichtung zur Erhitzung, insbesondere von hochviskosen Produkten
EP3057442B1 (de) Verfahren und vorrichtung zur vorerwärmung eines pumpfähigen lebensmittelprodukts in einer heissabfüllung mit einer wärmepumpe
EP2861400B1 (de) Verfahren zum umtemperieren von objekten
EP3862712B1 (de) Verfahren und vorrichtung zur bereitstellung und speicherung eines wärmeträgers mit wenigstens drei temperaturniveaus für ein wärmenetz
DE102019126946A1 (de) Verfahren und Vorrichtung zur Heißabfüllung von flüssigem Produkt
DE102010060919A1 (de) Vorrichtung und Verfahren zur dampflosen Pasteurisierung von abgefüllten Lebensmitteln
EP3645698B1 (de) System zur kühlung eines brauverfahrens
DE69914193T2 (de) Verfahren sowie vorrichtung zur pasteurisierung von fluessigen produkten im kontinuierlichen fluss
AT1418U1 (de) Verfahren und vorrichtung zum vorübergehenden erhitzen, insbesondere pasteurisieren, eines fliessfähigen lebensmittelproduktes
AT1698U1 (de) Verfahren und vorrichtung zum vorübergehenden erhitzen, insbesondere pasteurisieren, eines fliessfähigen lebensmittelproduktes
DE202015001143U1 (de) Hybrid-Erhitzer-Erhitzeranlage mit umschaltbarer Wärmequelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130610

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130809

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 651292

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012000354

Country of ref document: DE

Effective date: 20140313

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2449488

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140319

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140529

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140429

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140529

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012000354

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140509

26N No opposition filed

Effective date: 20141030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012000354

Country of ref document: DE

Effective date: 20141030

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140531

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120509

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20180417

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20180418

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180509

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190509

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230417

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230605

Year of fee payment: 12

Ref country code: DK

Payment date: 20230511

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240403

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240425

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240411

Year of fee payment: 13

Ref country code: FR

Payment date: 20240408

Year of fee payment: 13