EP2529187B1 - Dispositif pour la mesure de positionnement d'un micro-actionneur - Google Patents

Dispositif pour la mesure de positionnement d'un micro-actionneur Download PDF

Info

Publication number
EP2529187B1
EP2529187B1 EP11704646.6A EP11704646A EP2529187B1 EP 2529187 B1 EP2529187 B1 EP 2529187B1 EP 11704646 A EP11704646 A EP 11704646A EP 2529187 B1 EP2529187 B1 EP 2529187B1
Authority
EP
European Patent Office
Prior art keywords
sensor
magnet
actuator
magnetic field
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11704646.6A
Other languages
German (de)
English (en)
Other versions
EP2529187A1 (fr
Inventor
David Heriban
Joël AGNUS
Ronan Noizet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Franche-Comte
Ecole Nationale Superieure de Mecanique et des Microtechniques
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Franche-Comte
Ecole Nationale Superieure de Mecanique et des Microtechniques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Franche-Comte, Ecole Nationale Superieure de Mecanique et des Microtechniques filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2529187A1 publication Critical patent/EP2529187A1/fr
Application granted granted Critical
Publication of EP2529187B1 publication Critical patent/EP2529187B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the present invention relates to a microtechnical device for measuring the positioning of a micro-actuator.
  • the detection and measurement of magnetic fields is widely used in the industrial world. In particular, it is possible to detect the presence of a magnet or to measure a specific position of this magnet in a physical environment (speed sensor, position sensors). More precisely, the magnets emit a magnetic field which is to be analyzed by means of a surrounding sensor.
  • Known sensors for this purpose are Hall effect sensors.
  • a position sensor using the measurement of the magnetic field of a permanent magnet by a magnetic field sensor has its resolution in position degrade exponentially as a function of the magnet and magnetic sensor distance. The further away the magnet is, the poorer the position sensor resolution is and the magnetic and electronic noise becomes preponderant in front of the measurement.
  • the known magnetic field industrial applications generally operate in a macroscopic field which involves a complex and expensive apparatus to increase the resolution and filter the aforementioned noises.
  • Other applications are limited to determining the position or orientation of an object in a magnetic field; or are content with displacement measures that include only one degree of freedom.
  • the document WO 2008/071875 discloses a sensor for measuring displacement of a magnet. To allow displacements of several millimeters, the magnet is defined in a cartesian or cylindrical coordinate system and the position sensors are of linear or rotary nature.
  • the document WO 2009/120507 describes a positioning probe capable of detecting a magnetic field in relation to magnets mounted on a frame. Displacements measured are limited to one degree of freedom.
  • the document WO 01/67034 discloses a method for determining the position or orientation of an object using a magnetic field.
  • a sensor is fixed on the object whose position or orientation is to be determined.
  • the document EP 1 365 208 discloses a displacement sensor comprising a magnet mounted on a moving object and a first Hall effect element disposed in the vicinity of a central point of the magnet and a second Hall effect element disposed in the vicinity of the first Hall effect element of the opposite side to the magnet. All this makes that certain technological fields, which require a high resolution and a high accuracy of position measurement, can not use the methods or device known in the state of the art in connection with magnetic field sensors. Among these areas, micro- and nanotechnologies are particularly affected.
  • Micro- and nanotechnologies are evolving rapidly. These technologies implement fabrications and processes on a submillimetric scale, namely in the micrometer and nanometer range.
  • micro- and nanotechnologies are vast and are particularly used for micromachining during the manufacture of microsystems (sensor / actuator type electronic chips) or microsystems / electromechanical nanosystems (MEMS: “ microelectromecanical systems ", MST: “ microsystem technology “or NST:” nanosystem technology ").
  • MEMS microelectromecanical systems
  • MST microsystem technology
  • NST nanosystem technology
  • Mechatronics combines electronics, mechanics and computing to drive complex systems.
  • the apparatus in micro- or nanotechnologies conventionally use piezoelectric type materials, silicon or the like.
  • the physical phenomena used are essentially based on the thermal, magnetic, piezoelectric, electrostatic or similar properties of the materials used. It is the very nature of the material and its physical properties that makes it possible to produce compact systems generating high resolution motions (1 nm to 1 ⁇ m).
  • micro- and nanotechnologies use either external, expensive and sophisticated equipment such as laser measurement equipment or interferometers to overcome the inaccuracies mentioned above, or internal equipment in the micro- or nano-system, too. subjected to disruptive physical phenomena.
  • the error correction apparatus used is generally bulky and goes against the desired miniaturization of micro- or nanotechnology.
  • the invention improves the situation.
  • the proposed microtechnic device is of the type comprising an actuator, arranged to move a mobile unit relative to a support, this mobile equipment comprising a permanent magnet, and a first magnetic sensor, arranged to detect a displacement of the magnet. It is remarkable that the actuator is arranged to move the moving equipment in two degrees of freedom from a rest position, and that we will also seek to make a two-dimensional measurement.
  • the permanent magnet is preferably selected with a magnetic field distribution which has a main plane of symmetry, as well as a main direction of magnetization which passes a center.
  • the first sensor is placed substantially in said main plane of symmetry, a first working distance of the magnet, while the working axis of this first sensor is substantially perpendicular to the main direction of magnetization, and passes substantially through the center, in the rest position of the magnet, there is provided a second magnetic sensor, located substantially in the main plane of symmetry of the field of the magnet, at a second working distance of the magnet, while the working axis of this second sensor is substantially parallel to the direction main magnetization, in the rest position of the magnet.
  • the second sensor is positioned in the vicinity of an extremum point, for said second working distance, said extremum point being located at a location for which the component on the working axis of the gradient of the component on the main direction of magnetization is maximum, the first and second sensors are then sensitive to the movements of the moving element perpendicular to their respective working axes.
  • the invention also relates to a device as defined above, supplemented by a digital control tool capable of storing the conversion parameters for passing magnetic field measurements by the sensors to the position data of the magnet and / or the mobile crew. This is also called a mechatronic device.
  • the figure 1 shows a perspective view of a microtechnic device according to one embodiment of the invention.
  • the device comprises two symmetrical parts. Each comprises an actuator P arranged to move a moving element M with respect to a support S.
  • the moving element M integrally carries a permanent magnet A.
  • the magnet A is fixed on a lower face of the crew mobile M, which is here in the rest position.
  • the actuator P is of piezoelectric type.
  • actuators sensitive to electrostatic or thermal effects in particular are conceivable.
  • the actuator P comprises a piezoelectric element acting on a deformable beam in space to allow a displacement in translation of the moving element M with respect to a support S.
  • the deformable beam is here the moving element itself. , which is provided on the upper face of two conductive strips R11 and R12 resulting in connection pads P11 and P12. It is the same on the lower face (The ribbons and studs below are not visible).
  • the beam M is a two-layer piezoelectric with a horizontal ground electrode between the layers. One layer provides the deformation of the beam in one direction, and the other in the other.
  • the permanent magnet A is chosen with a magnetic field distribution which has a main plane of symmetry, as well as a main direction of magnetization passing through a center.
  • the magnet is regular cubic. It has a volume of about 1 mm 3 .
  • the microtechnic device For each beam M and each magnet, the microtechnic device comprises sensors C1 and C2 sensitive to the magnetic field emitted by the magnet A along respective working axes represented by discontinuous arrows.
  • the sensors are fixed on the support S.
  • these are Hall effect sensors, for example the HAL401 model from MICRONAS GmbH, Freiburg, Germany. Of course, other similar sensors can be provided.
  • the sensors are arranged on the support structure to respond to a sensitivity of about 800 to 1200 G / mm (Gauss per millimeter).
  • the actuator P, the moving equipment M, the magnet A and the sensors C1 and C2 are split. So the different elements and everything particularly mobile crews can cooperate together to form a piezoelectric clamp intended for micromanipulation operations in particular, for example as described in FR 2845026 .
  • a digital control tool capable of storing conversion parameters for passing magnetic field measurements by the sensors to the position data of the magnet and / or the moving equipment.
  • the figures 2 and 2A show that the magnet A is attached laterally to the moving element M of the actuator P.
  • the moving element M is in the rest position and is arranged for a displacement along two degrees of freedom y and z from this rest position.
  • the mobile unit M of the actuator P allows a total stroke of about 400 microns on the z axis and a total stroke of about 200 microns on the y axis.
  • the relative up / down stroke (+/- direction) is respectively about 200 ⁇ m on the z axis from the rest position; and the relative right / left stroke (+/- direction) is respectively about 100 ⁇ m on the y-axis from the rest position.
  • the sensors C1 and C2 of the figure 2 are fixed on the support S. Each sensor is positioned in a specific manner. Specific positioning is performed according to the magnetic field lines.
  • the sensors C1 and C2 have respective sensitive areas C1a and C2a. The positioning of the sensor is defined as the positioning of the center of its sensitive zone with respect to the center of the magnet (or the magnetic field).
  • the invention is directed to a permanent magnet with a magnetic field distribution which has a main plane of symmetry.
  • the magnetic field also has a main direction of magnetization passing through a center.
  • the freedom of variation makes it possible to adapt the device of the invention as a function of the size of the sensors, often equipped with more or less bulky boxes.
  • the figure 3 shows schematically a front view of an alternative microtechnical device of the invention.
  • the mobile assembly M is movable in translation along the y and z axes in the displacement frame.
  • the permanent magnet A is arranged for a magnetic field distribution admitting a main plane of symmetry.
  • a cubic magnet which has two planes of symmetry, we take one of them, defined by two axes y and z, as the main plane.
  • the field lines of the magnetic field B are three-dimensional, but we will consider especially those that extend in this main plane of symmetry.
  • the sensors C1 and C2 are placed according to these field lines and each act according to respective working axes represented by discontinuous arrows; working axis T C1 for the sensor C1 and working axis T C2 for the sensor C2.
  • the working axis T C1 of the sensor C1 is directed along the axis z and the working axis T C2 of the sensor C2 is directed along the axis y.
  • each sensor measures a component (scalar value) of the magnetic field according to its respective working axis.
  • the figure 4 shows a general diagram of a magnetic field B of a permanent magnet and its field lines.
  • the figure 4 also shows the arrangement of the sensors C1 and C2 in this field B. More particularly the figure 4 describes the specific location of the sensors C1 and C2 according to one embodiment of the invention.
  • the figure 5 specifies the location of sensors C1 and C2 according to another embodiment.
  • magnétique field B is three-dimensional ( Figures 4 and 5 x, y, and z), but the location of sensors C1 and C2 is chosen in a common plane.
  • the permanent magnet A is chosen with a magnetic field distribution B which has a main plane of symmetry and a main direction of magnetization V A. We can also define the axis of magnetization which is the parallel to V A passing through the center O, and the south poles SU and north NW of the permanent magnet A.
  • the center O is the physical center of the source of the magnetic field B. It is at the intersection of the two planes of symmetry of the magnetic field generated by the magnet A and the interface plane between the North and South poles of the magnet A. In principle, it is also the center of gravity of the permanent magnet A.
  • each location of C2 of the embodiments shown respectively on the figure 4 and the figure 5 is related to the symmetry of the magnetic field emitted by the permanent magnet A, in the "secondary" plane of symmetry, perpendicular to the principal plane of symmetry already mentioned.
  • each location of C2 substantially meets the specific conditions described below.
  • the sensors C1 and C2 are positioned according to the field lines. More precisely, the sensor C1 is placed substantially in said main plane of symmetry.
  • the working axis z of this first sensor C1 is substantially perpendicular to the main direction of magnetization V A and passes substantially through the center O, in the rest position of the magnet.
  • the first sensor (C1) is placed substantially in said main plane of symmetry at a first working distance d C1 of the magnet.
  • the working axis (z) of this first sensor (C1) is substantially perpendicular to the main direction of magnetization (V A ), and passes substantially through the center (O), in the rest position of the magnet.
  • V A main direction of magnetization
  • O center
  • the first sensor C1 is positioned on the surface of a sphere centered substantially on the center O.
  • the radius of this sphere may be between 500 microns and 2000 microns, and preferably between 1000 microns and 1200 microns.
  • the essential condition to be respected is a positioning in the vicinity of a point of extremum chosen from the set of extremum points P z1 , P z2 , P z3 etc. and not to physically hit the magnet when moving the latter together with the moving equipment.
  • the sensor C1 is positioned in the vicinity of a point of extremum P z .
  • the component dB z / dy of the gradient of B z in the direction y substantially parallel to the main direction of magnetization V A.
  • the extremum point P z is defined as the point where dB z / dy is maximal (or minimum, in negative values).
  • the positioning of the sensor is substantially selected according to the spatial variation of the magnetic field B . Indeed, what is sought is a significant spatial variation of the magnetic field. This spatial variation is the divergence ⁇ . B the field defined by formula (II) of Annex I.
  • C1 sensor measures only one component of the magnetic field B .
  • This component is a scalar value, namely B z for the C1 sensor.
  • the variation of this component is then represented by the gradient defined by the formula (III) of Annex I.
  • each gradient of the magnetic field is in a two-dimensional system (at least) in the plane of symmetry of the magnetic field and / or the permanent magnet A.
  • the gradients of the magnetic field define at least two respective curves f (P 2 ) and f (P y ) - or else g (P z ) and g (P y ).
  • Each curve is described by its points and each point is a maximum dBz / dy gradient or a maximum dBy / dz gradient.
  • the determination of the extremum is simple. Indeed, the curve f (P z ) (or g (P z )) is a line that passes through the center of the magnet, and is perpendicular to the main direction of magnetization V A.
  • the sensor C2 added according to the present invention, is also positioned in the vicinity of an extremum point. The determination of this extremum is more subtle.
  • the extremum point P is defined as a point where dB y / dz is maximum (or minimum, in negative values).
  • the sensor C2 measures the component B y (scalar value) of the magnetic field B . Its variation is represented by the gradient defined by the formula (IV) of Annex I.
  • the sensor C2 is disposed at a second working distance from the magnet A, denoted d C2 . More generally, the second sensor C2 is positioned on the surface of a sphere centered substantially on the center O.
  • the essential condition to be respected is a positioning in the vicinity of a point of extremum chosen from the set of extremum points P y1 , P y2 , P y3 etc. and not to physically hit the magnet when moving the latter together with the moving equipment.
  • the sensor for measuring a displacement along the y axis namely the sensor C1
  • the sensor for measuring a displacement along the z axis namely the sensor C2
  • the sensor for measuring a displacement along the z axis namely the sensor C2
  • the magnetic field variation that it detects is maximum for a movement of the actuator in a direction along the z axis.
  • the figure 9 is a three-dimensional graph representing the variations of the dBz / dy gradient as a function of the distances y and z at the center of the magnet, with coordinates (0,0).
  • the y and z axes are graduated in mm, and the ordinate, on the right, is in Gauss per millimeter.
  • the figure 10 is a graph drawn with abscissae in the y direction, and ordinates in the z direction. It illustrates the location of extremum points for the C2 sensor. Each extremum point is established as the extremum for a given distance from the center of the magnet, having the coordinates (0,0), which are located outside the frame of the graph.
  • the graph of the figure 10 corresponds to the thick line curve that goes down on the figure 9 .
  • the curve is parabolic, and can fit on a polynomial of degree 2 or 3.
  • the microtechnic device thus returns, for each mobile unit, two magnetic field measurements, provided respectively by the sensor C1 and the sensor C2.
  • the measurements are assumed here to be made in the form of voltage, a function of the magnetic field.
  • the measurement is noisy.
  • the HAL401 sensor has a resolution between 4.2 and 5.5 mV / G (manufacturer data).
  • the output voltages are between 0 and + 4.5V. It comes with a conditioning electronics, to filter the measurement noises and amplify the signal from -10V to + 10V.
  • the sensor C1 detects the variations of the component B z of the magnetic field, in order to obtain the displacements of the magnet along the y axis.
  • the sensor C2 detects the variations of the component B y of the magnetic field, in order to obtain the displacements of the magnet along the z axis.
  • the figure 7 is a three-dimensional graph, which shows an evolution of a magnetic field on two directions y and z on the abscissa, with ordinate a magnitude Comp.Z, on which we will return. It shows the coupling between the measurements made. The measurements are dependent on the positioning of the permanent magnet A.
  • Comp.Z the magnetic field component measured on the sensor C1. It is assumed that the magnetic field sensors deliver a voltage proportional to the magnetic field they detect.
  • the equipotential curve Eq.B of the figure 7 is defined, in the plane yz, by points (in y) for which we obtain the same value of Comp.Z. In the absence of coupling, this curve Eq.B would be a straight line parallel to the z axis; we would have an identical value of Comp.Z regardless of the position of the magnet A in the z direction. Therefore, the deviation of the curve Eq.B from a parallel to the z-axis passing through the measured value at rest of the magnet expresses the coupling between the measurements made by the sensors C1 and C2.
  • a displacement on the z-axis of the entire stroke of the magnet can affect about 20% on the measurement of the magnetic field.
  • the sensor C1 measuring a y-direction displacement of the magnet A is disturbed by the displacement thereof in the z direction.
  • This coupling can be corrected by using an appropriate decoupling algorithm, using, for example, calibration data, obtained in the presence of known displacements.
  • the algorithm used numerically reconstructs a theoretical image of the magnetic field component values measurable by C1 and C2, called B1th and B2th.
  • the algorithm uses the theoretical equations expressing the magnetic field generated by a permanent magnet, as well as the positions in the space of the sensors relative to the permanent magnet A at rest h C1 , h C2 , l C2 .
  • This digital reconstruction makes it possible to create a matrix grouping together the sampled position pairs (y, z) and the generated component pairs (B1th, B2th) on the reachable positions of the moving element M.
  • the algorithm exploits the two measures of C1 and C2, called B1mes and B2mes, for which he seeks a correspondence in the matrix, and finally finds the ideal pair (y, z) for the measurement carried out.
  • the figure 8 shows the shape of the variations of the magnetic field on the sensor C1 in the y direction according to the invention, at constant z.
  • the curve has a substantially linear part at the low values of y (part marked in bold on the figure 8 ).
  • the linearity deviation was sought on a travel in the y direction of the moving crew M.
  • the graph of the figure 8A compares experimental measurements made with the device described with a linear evolution (regression line), for the variation of the magnetic field Bz detected by the sensor C1 as a function of the displacements of the magnet in the y direction, at constant z.
  • this linearity gap was evaluated at a maximum of about 0.22% of the expected value (0.18 G for 80 G). It follows that the curve can be considered as linear, and consequently the variation of the magnetic field Bz detected by the sensor C1 in function of the displacements of the magnet in the y direction, as linear too, at the low values of y.
  • each curve is taken with a constant z, with z-values of the series (-1.3, -1.2, -1.1, -1, -0.9).
  • the figure 13 shows a spatial resolution Res ( ⁇ m) as a function of the distance d O (mm) sensor-center O of the magnetic field of the invention.
  • Three zones stand out.
  • the resolution degradation is exponential depending on the distance between sensor C and the center O of the magnetic field. In other words, the closer the sensor is to the center O of the magnetic field, the larger the measured gradient.
  • the magnet A has a physical shape of a few mm 3 (about 1 mm 3 in the embodiment), therefore there follows a non-exploitable zone ZIII for which the sensors would come into physical contact with the magnet A. It is also necessary to provide a safety distance to avoid the aforementioned physical contact (zone ZII). In practice this will depend on the effective stroke of the magnet A on the moving equipment M.
  • the resolution of each sensor depends on several parameters including the noise of the sensor. This noise is directly dependent on the sampling frequency, namely the speed of measurement. In general we can admit that the longer a measurement is, the better its resolution. But the longer the measurement, the slower the dynamics.
  • the embodiment described uses HAL401 sensors with a sampling frequency of 100 Hz.
  • An objective of the microtechnical device is to measure the stroke of the actuator P, or more precisely of the moving element M. It is therefore important to obtain a sensitive measurement of the position. Generally, a resolution of 200 nm can be considered satisfactory. To do better, we will aim for a resolution of about 100 nm.
  • the set of magnet-sensor elements of the microtechnic device will therefore be spatially inscribed in a sphere of about 10 mm radius.
  • the microtechnic device of the invention is designed to measure strokes of the moving equipment less than or equal to 1 mm.
  • the actuator may be a piezoelectric actuator, a thermal actuator and / or an electrostatic actuator, or a magnetic actuator. In the latter case, the effects of the magnetic actuator on the sensors will be minimized and / or compensated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

  • La présente invention se rapporte à un dispositif microtechnique pour la mesure de positionnement d'un micro-actionneur.
    La détection et la mesure de champs magnétiques est largement utilisée dans le monde industriel. Notamment, il est possible de détecter la présence d'un aimant ou encore de mesurer une position spécifique de cet aimant dans un environnement physique (capteur de vitesse, capteurs de position).
    Plus précisément, les aimants émettent un champ magnétique qu'il s'agit d'analyser par voie de capteur environnant. Des capteurs connus à cet effet sont les capteurs à effet Hall.
    Un capteur de position utilisant la mesure du champ magnétique d'un aimant permanent par un capteur de champ magnétique voit sa résolution en position se dégrader de manière exponentielle en fonction de la distance en aimant et capteur magnétique. Plus l'aimant est loin, plus la résolution de capteur de position est mauvaise et les bruits magnétiques et électroniques deviennent prépondérants devant la mesure. Cette dégradation est liée à la nature physique des champs magnétiques et aux performances des capteurs magnétiques.
    Les applications industrielles du champ magnétique connues opèrent généralement dans un domaine macroscopique ce qui implique un appareillage complexe et coûteux pour augmenter la résolution et filtrer les bruits précités. D'autres applications sont limitées à la détermination de position ou d'orientation d'un objet dans un champ magnétique ; ou encore se contentent de mesures de déplacements ne comprenant qu'un seul degré de liberté.
    Le document WO 2008/071875 décrit un capteur pour la mesure de déplacement d'un aimant. Pour permettre des déplacements de plusieurs millimètres, l'aimant est défini dans un repère cartésien ou cylindrique et les capteurs de position sont de nature linéaire ou rotative.
    Le document WO 2009/120507 décrit une sonde de positionnement apte à détecter un champ magnétique en relation avec des aimants montés sur une armature. Les déplacements mesurés sont limités à un seul degré de liberté.
    Le document WO 01/67034 décrit un procédé pour déterminer la position ou l'orientation d'un objet à l'aide d'un champ magnétique. Pour cela un capteur est fixé sur l'objet dont la position ou l'orientation est à déterminer. Le document EP 1 365 208 décrit un capteur de déplacement comprenant un aimant monté sur un objet en déplacement et un premier élément à effet Hall disposé au voisinage d'un point central de l'aimant et un deuxième élément à effet Hall disposé au voisinage du premier élément à effet Hall du côté opposé à l'aimant. Tout ceci fait que certains domaines technologiques, lesquels requièrent une grande résolution et une grande précision de mesure de position, ne peuvent pas faire appel aux procédés ou dispositif connus dans l'état de la technique en relation avec des capteurs de champ magnétique. Parmi ces domaines, les micro- et nanotechnologies sont particulièrement touchés.
  • Les micro- et nanotechnologies évoluent rapidement. Ces technologies mettent en oeuvre des fabrications et des procédés à l'échelle submillimétrique, à savoir dans le domaine du micromètre et nanomètre.
  • Les applications des micro- et nanotechnologies sont vastes et sont notamment utilisés pour le micro-usinage lors de la fabrication de microsystèmes (puces électroniques de type capteur/actionneur) ou microsystèmes/nanosystèmes électromécaniques (MEMS : « microelectromecanical systems », MST : « microsystem technology » ou NST : « nanosystem technology »).
  • Les systèmes précités trouvent leur application dans des domaines très variés parmi lesquels on peut citer l'industrie automobile, l'aéronautique, la télécommunication, la biotechnologie, la médecine, la physique, l'informatique, l'électronique, l'ingénierie moléculaire ou encore l'ingénierie de nanomatériaux.
  • D'autres domaines tels que la mécatronique utilisent aujourd'hui des systèmes micro- ou nanotechnologiques. La mécatronique combine l'électronique, la mécanique et l'informatique pour commander des systèmes complexes.
  • Les appareillages en micro- ou nanotechnologies utilisent classiquement des matériaux de type piézoélectrique, silicium ou analogue. Les phénomènes physiques mis en oeuvre se basent essentiellement sur les propriétés thermiques, magnétiques, piézoélectriques, électrostatiques ou analogues des matériaux utilisés. C'est la nature même du matériau et de ses propriétés physiques qui permet de réaliser des systèmes compacts générant des mouvements de haute résolution (1 nm à 1 µm).
  • Comme indiqué, ces technologies opèrent à l'échelle du micro- ou nanomètre et relèvent d'une grande précision. Mais les phénomènes physiques mis en oeuvre sont généralement non-linéaire et perturbés par l'environnement (en particulier les phénomènes thermiques ou piézoélectriques). Par conséquent les micro- et nanotechnologies ont recours soit à des appareillages externes, coûteux et sophistiqués de type appareillages de mesure au laser ou interféromètres pour palier les imprécisions citées plus haut, soit des appareillages internes au micro- ou nano-système, eux-aussi soumis à des phénomènes physiques perturbateurs.
    À cela s'ajoute que les appareillages de correction d'erreurs utilisés sont généralement encombrants et vont à l'encontre de la miniaturisation recherchée en micro- ou nanotechnologie.
  • L'invention vient améliorer la situation.
  • La Demanderesse a observé que le passage à une échelle microscopique modifie considérablement l'intérêt applicatif des mesures de champ magnétique dès lors qu'un positionnement spécifique des capteurs magnétiques est respecté.
  • Le dispositif microtechnique proposé est du type comprenant un actionneur, agencé pour déplacer un équipage mobile par rapport à un support, cet équipage mobile comportant un aimant permanent, et un premier capteur magnétique, agencé pour détecter un déplacement de l'aimant. Il est remarquable en ce que l'actionneur est agencé pour déplacer l'équipage mobile selon deux degrés de liberté à partir d'une position de repos, et que l'on va également chercher à faire une mesure à deux dimensions. L'aimant permanent est de préférence choisi avec une distribution de champ magnétique qui admet un plan de symétrie principal, ainsi qu'une direction principale d'aimantation qui passe un centre, Le premier capteur est placé sensiblement dans ledit plan de symétrie principal, à une première distance de travail de l'aimant, tandis que l'axe de travail de ce premier capteur est sensiblement perpendiculaire à la direction principale d'aimantation, et passe sensiblement par le centre, dans la position de repos de l'aimant, Il est prévu un second capteur magnétique, placé sensiblement dans le plan de symétrie principal du champ de l'aimant, à une seconde distance de travail de l'aimant, tandis que l'axe de travail de ce second capteur est sensiblement parallèle à la direction principale d'aimantation, dans la position de repos de l'aimant. Enfin, le second capteur est positionné au voisinage d'un point d'extremum, pour ladite seconde distance de travail, ledit point d'extremum étant situé à un emplacement pour lequel la composante sur l'axe de travail du gradient de la composante sur la direction principale d'aimantation est maximale, Les premier et second capteurs sont alors sensibles aux déplacements de l'équipage mobile perpendiculairement à leurs axes de travail respectifs.
  • D'autres caractéristiques sont intéressantes, séparément ou en combinaison :
    • le premier capteur est positionné sur la surface d'une sphère centrée sensiblement sur ledit centre et dont le rayon est compris entre 500 µm et 2000 µm, préférentiellement compris entre 1000 µm et 1200 µm et est encore plus préférentiellement sensiblement égal à 1100 µm ;
    • le second capteur est positionné sur la surface d'une sphère centrée sensiblement sur ledit centre et dont le rayon est compris entre 500 µm et 2000 µm, préférentiellement compris entre 1100 µm et 1500 µm et est encore plus préférentiellement sensiblement égal à 1360 µm ;
    • chaque actionneur est choisi dans le groupe constitué d'un actionneur piézoélectrique, d'un actionneur thermique, d'un actionneur magnétique et/ou d'un actionneur électrostatique ;
    • l'équipage mobile dudit actionneur est agencé pour un déplacement en translation de l'aimant de course comprise entre 0 µm et 200 µm selon une direction parallèle à la direction principale d'aimantation ;
    • la partie mobile dudit actionneur est agencée pour un déplacement en translation de course comprise entre 0 µm et 400 µm selon une direction perpendiculaire à la direction principale d'aimantation ;
  • L'invention concerne aussi un dispositif tel que défini ci-dessus, complété par un outil de commande numérique capable de stocker les paramètres de conversion pour passer des mesures de champ magnétique par les capteurs aux données de position de l'aimant et/ou de l'équipage mobile. C'est ce que l'on appelle aussi un dispositif mécatronique.
  • D'autres avantages et caractéristiques de l'invention apparaîtront à la lecture de la description détaillée ci-après et sur les dessins annexés sur lesquels :
    • la figure 1 représente de manière schématique une vue en perspective d'un dispositif microtechnique selon un mode de réalisation de l'invention,
    • la figure 2 est une vue en perspective de la partie du dispositif microtechnique où intervient l'invention,
    • la figure 2A est la même vue que la Figure 2, mais sans montrer le support S, pour une meilleure visibilité,
    • la figure 3 est une autre vue semblable à la figure 2A, montrant des lignes de champ magnétique,
    • la figure 4 est une autre vue en perspective, montrant des points de gradient maximum du champ magnétique,
    • la figure 5 est une autre vue semblable à la figure 3, montrant des notations vectorielles du champ magnétique,
    • la figure 6 est une autre vue semblable à la figure 3, montrant des notations de grandeurs de position dans l'espace,
    • la figure 7 est un graphe tridimensionnel qui montre l'évolution d'un champ magnétique sur deux directions,
    • la figure 8 montre l'allure générale de la variation du champ magnétique sur un capteur en direction y, à z constant,
    • la figure 8A est un graphe qui compare des mesures expérimentales réalisées avec un dispositif de l'invention aux faibles valeurs de y à une évolution linéaire,
    • La figure 9 est un graphe tridimensionnel représentant les variations d'un gradient de champ magnétique dBz/dy sur deux directions,
    • La figure 10 est un graphe établi avec des abscisses dans la direction y, et des ordonnées dans la direction z,
    • La figure 11 est un graphe bidimensionnel de la variation du champ magnétique sur un capteur,
    • La figure 12 est un graphe bidimensionnel de la variation du champ magnétique sur un autre capteur,
    • la figure 13 montre une résolution spatiale en fonction de la distance capteur-aimant.
  • Les dessins et la description ci-après contiennent, pour l'essentiel, des éléments de caractère certain. Les dessins représentent, pour partie au moins, des aspects difficiles à décrire autrement que par le dessin. Ils font partie intégrante de la description, et pourront donc non seulement servir à mieux faire comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant.
  • Il en est de même pour les formules annexées à la présente description.
  • La figure 1 montre une vue en perspective d'un dispositif microtechnique selon un mode de réalisation de l'invention. Le dispositif comprend deux parties symétriques. Chacune comprend un actionneur P agencé pour déplacer un équipage mobile M par rapport à un support S. L'équipage mobile M porte solidairement un aimant permanent A. Dans ce mode de réalisation l'aimant A est fixé sur une face inférieure de l'équipage mobile M, qui est ici en position de repos.
  • Dans le mode de réalisation décrit l'actionneur P est de type piézoélectrique. En variante, des actionneurs sensibles aux effets électrostatiques ou thermiques notamment sont envisageables.
  • Ici, l'actionneur P comprend un élément piézoélectrique agissant sur une poutre déformable dans l'espace pour permettre un déplacement en translation de l'équipage mobile M par rapport à un support S. La poutre déformable est ici l'équipage mobile lui-même, qui est muni en face supérieure de deux rubans conducteurs R11 et R12 aboutissant à des plots de connexion P11 et P12. Il en est de même en face inférieure (Les rubans et plots du dessous ne sont pas visibles). La poutre M est un piezoélectrique bi-couche avec entre les couches une électrode de masse horizontale. L'une des couches procure la déformation de la poutre dans une direction, et l'autre dans l'autre.
  • Ainsi le déplacement de l'équipage mobile M et de l'aimant se fait selon deux degrés de liberté à partir d'une position de repos. Il s'agit en principe de deux degrés de liberté en translation dans deux directions perpendiculaires. Toutefois, un déplacement plus complexe à deux degrés de liberté reste envisageable.
  • Selon l'invention, l'aimant permanent A est choisi avec une distribution de champ magnétique qui admet un plan de symétrie principal, ainsi qu'une direction principale d'aimantation passant par un centre. Ici, l'aimant est cubique régulier. Il possède un volume d'environ 1 mm3.
  • Pour chaque poutre M et chaque aimant, le dispositif microtechnique comprend des capteurs C1 et C2 sensibles au champ magnétique émis par l'aimant A selon des axes de travail respectifs représentés par des flèches discontinues. Les capteurs sont fixés sur le support S.
  • Dans le mode de réalisation décrit, il s'agit de capteurs à effet Hall, par exemple le modèle HAL401 de la société MICRONAS GmbH, Freiburg, Allemagne. Bien évidemment, d'autres capteurs analogues peuvent être prévus. Les capteurs sont agencés sur la structure de support pour répondre à une sensibilité d'environ 800 à 1200 G/mm (Gauss par millimètre).
  • Dans le dispositif microtechnique de la figure 1, l'actionneur P, l'équipage mobile M, l'aimant A et les capteurs C1 et C2 se trouvent dédoublés. Ainsi, les différents éléments et tout particulièrement les équipages mobiles peuvent coopérer ensemble pour former une pince piézoélectrique destinée à des opérations de micromanipulation notamment, par exemple comme décrit dans FR 2845026 . A cet effet, on prévoira un outil de commande numérique capable de stocker des paramètres de conversion pour passer des mesures de champ magnétique par les capteurs aux données de position de l'aimant et/ou de l'équipage mobile.
  • Dans la suite, on visera un mode de réalisation expérimental à un seul équipage mobile, qui ne fait que porter l'aimant. Ce qui est décrit pourra s'appliquer aux deux équipages mobiles de la Figure 1.
  • Les figures 2 et 2A font apparaître que l'aimant A est fixé latéralement à l'équipage mobile M de l'actionneur P. L'équipage mobile M est en position de repos et est agencé pour un déplacement selon deux degrés de liberté y et z à partir de cette position de repos.
  • Selon l'invention, l'équipage mobile M de l'actionneur P permet une course totale d'environ 400 µm sur l'axe z et une course totale d'environ 200 µm sur l'axe y. En d'autres termes la course relative haut/bas (sens +/-) est respectivement d'environ 200 µm sur l'axe z à partir de la position de repos; et la course relative droite/gauche (sens +/-) est respectivement d'environ 100 µm sur l'axe y à partir de la position de repos.
  • Les capteurs C1 et C2 de la figure 2 sont fixé sur le support S. Chaque capteur est positionné de manière spécifique. Le positionnement spécifique est réalisé en fonction des lignes de champs magnétique. Les capteurs C1 et C2 ont des zones sensibles respectives C1a et C2a. Le positionnement du capteur se définit comme le positionnement du centre de sa zone sensible par rapport au centre de l'aimant (ou du champ magnétique).
  • Le positionnement spécifique peut varier dans certaines limites. Cela est principalement du à la nature même des champs magnétiques, de leurs propriétés physiques et particulièrement de leur symétrie. À cet effet, l'invention vise un aimant permanent avec une distribution de champ magnétique qui admet un plan de symétrie principal. Le champ magnétique admet également une direction principale d'aimantation passant par un centre. La liberté de variation permet d'adapter le dispositif de l'invention en fonction de la taille des capteurs souvent munis de boîtiers plus ou moins encombrants.
  • La figure 3 montre de manière schématique une vue de face d'une variante de dispositif microtechnique de l'invention.
  • L'équipage mobile M est déplaçable en translation selon les axes y et z dans le référentiel de déplacement.
  • L'aimant permanent A est agencé pour une distribution de champ magnétique admettant un plan de symétrie principal. S'agissant d'un aimant cubique, qui possède deux plans de symétrie, on prend l'un de ceux-ci, défini par deux axes y et z, comme plan principal. Les lignes de champ du champ magnétique B sont tridimensionnelles, mais on va considérer surtout celles qui s'étendent dans ce plan de symétrie principal.
  • Les capteurs C1 et C2 sont placés en fonction de ces lignes de champ et agissent chacun selon des axes de travail respectifs représentés par des flèches discontinues ; axe de travail TC1 pour le capteur C1 et axe de travail TC2 pour le capteur C2. L'axe de travail TC1 du capteur C1 est dirigé selon l'axe z et L'axe de travail TC2 du capteur C2 est dirigé selon l'axe y. Précisément, chaque capteur mesure une composante (valeur scalaire) du champ magnétique selon son axe de travail respectif.
  • La figure 4 montre un schéma général d'un champ magnétique B d'un aimant permanent et de ses lignes de champ. La figure 4 montre également la disposition des capteurs C1 et C2 dans ce champ B. Plus particulièrement la figure 4 décrit l'emplacement spécifique des capteurs C1 et C2 selon un mode de réalisation de l'invention.
  • La figure 5 précise l'emplacement des capteurs C1 et C2 selon un autre mode de réalisation.
  • Il faut rappeler que le champ magnétique B est tridimensionnel (figures 4 et 5 : axes x, y, et z), mais que l'emplacement des capteurs C1 et C2 est choisi dans un plan commun.
  • L'aimant permanent A est choisi avec une distribution de champ magnétique B qui admet un plan de symétrie principal, ainsi qu'une direction principale d'aimantation VA. On peut définir aussi l'axe d'aimantation qui est la parallèle à VA passant par le centre O, et par les pôles sud SU et nord NO de l'aimant permanent A. Le centre O est le centre physique de la source du champ magnétique B. Il est à l'intersection des 2 plans de symétrie du champ magnétique généré par l'aimant A et du plan d'interface entre les pôles Nord et Sud de l'aimant A. En principe, c'est également le centre de gravité de l'aimant permanent A.
  • La différence entre l'emplacement des capteurs C2 des modes de réalisation représentés respectivement sur la figure 4 et la figure 5 est liée à la symétrie du champ magnétique émis par l'aimant permanent A, dans le plan de symétrie « secondaire », perpendiculaire au plan de symétrie principal déjà cité. Toutefois, chaque emplacement de C2 répond sensiblement aux conditions spécifiques décrites ci-dessous.
  • Les capteurs C1 et C2 sont positionnés en fonction des lignes de champ. Plus précisément, le capteur C1 est placé sensiblement dans ledit plan de symétrie principal. L'axe de travail z de ce premier capteur C1 est sensiblement perpendiculaire à la direction principale d'aimantation VA et passe sensiblement par le centre O, dans la position de repos de l'aimant.
  • On considérera maintenant une « distance de travail » entre l'aimant et un capteur. Il s'agit de la distance entre le centre de gravité O de l'aimant (ou centre du champ magnétique) et le centre de la zone sensible du capteur.
  • La figure 6 illustre des notations qui vont être utilisées ci-après :
  • dC1
    distance entre le capteur C1 et le centre O de l'aimant permanent A
    hC1
    distance en direction z entre le capteur C1 et le centre O de l'aimant.
    dC2
    distance entre le capteur C2 et le centre O de l'aimant
    hC2
    distance en direction z entre le capteur C2 et le centre O de l'aimant
    lC2
    distance en direction y entre le capteur C2 et le centre O de l'aimant.
  • Plus généralement, le premier capteur (C1) est placé sensiblement dans ledit plan de symétrie principal, à une première distance de travail dC1 de l'aimant. L'axe de travail (z) de ce premier capteur (C1) est sensiblement perpendiculaire à la direction principale d'aimantation (VA), et passe sensiblement par le centre (O), dans la position de repos de l'aimant. On a donc en principe : d C 1 = h C 1
    Figure imgb0001
  • En pratique, le premier capteur C1 est positionné sur la surface d'une sphère centrée sensiblement sur le centre O. Le rayon de cette sphère peut être compris entre 500 µm et 2000 µm, et préférentiellement compris entre 1000 µm et 1200 µm. De préférence le rayon de la sphère est encore sensiblement égal à 1100 µm, soit dC1 = 1100 µm. La condition essentielle à respecter est un positionnement au voisinage d'un point d'extremum choisi parmi l'ensemble des points d'extremum Pz1, Pz2, Pz3 etc. et de ne par heurter physiquement l'aimant lors du déplacement de ce dernier ensemble avec l'équipage mobile.
  • Ainsi, on observe que le capteur C1 est positionné au voisinage d'un point d'extremum Pz. Pour le définir, on considère la composante Bz du champ magnétique qui est détectée par le capteur C1. On considère la composante dBz/dy du gradient de Bz, sur la direction y sensiblement parallèle à la direction principale d'aimantation VA. Le point d'extremum Pz est défini comme le point où dBz/dy est maximale (ou minimale, en valeurs négatives).
  • En effet, pour la mesure d'une variation de position de l'aimant A, il faut mesurer une variation du champ magnétique B , tel que défini par la formule (I) de l'annexe I.
  • Le positionnement du capteur est sensiblement choisi en fonction en fonction de la variation spatiale du champ magnétique B . En effet, ce qui est recherché est une variation spatiale importante du champ magnétique. Cette variation spatiale est la divergence . B du champ définie par la formule (II) de l'annexe I.
  • Le capteur C1 ne mesure qu'une composante du champ magnétique B . Cette composante est une valeur scalaire, à savoir Bz pour le capteur C1. La variation de cette composante est alors représentée par le gradient défini par la formule (III) de l'annexe I.
  • Autrement dit, il existe une relation directe entre la résolution du capteur de position et la composante dBz/dy du gradient calculé à la position de C1.
  • Sur la figure 4, il apparaît que chaque gradient du champ magnétique est dans un système bidimensionnel (au moins) dans le plan de symétrie du champ magnétique et/ou de l'aimant permanent A. Ainsi, les gradients du champ magnétique définissent au moins deux courbes respectives f(P2) et f(Py) - ou encore g(Pz) et g(Py). Chaque courbe est décrite par ses points et chaque point est un gradient dBz/dy maximum ou un gradient dBy/dz maximum. La symétrie du champ magnétique a pour conséquence que f(Pz) = -g(Pz) et f(Py) = -g(Py).
  • Dans le cas du capteur C1, la détermination de l'extremum est simple. En effet, la courbe f(Pz) (ou g(Pz)) est une droite qui passe par le centre de l'aimant, et est perpendiculaire à la direction principale d'aimantation VA.
  • Tout comme le capteur C1, le capteur C2, ajouté selon la présente invention, est lui aussi positionné au voisinage d'un point d'extremum. La détermination de cet extremum est plus subtile.
  • Pour définir cet extremum, on considère la composante By du champ magnétique qui est détectée par le capteur C2. On considère la composante dBy/dz du gradient de By, selon la direction z sensiblement perpendiculaire à la direction principale d'aimantation VA. Le point d'extremum Py est défini comme un point où dBy/dz est maximale (ou minimale, en valeurs négatives).
  • Le capteur C2 mesure la composante By (valeur scalaire) du champ magnétique B . Sa variation est représentée par le gradient défini par la formule (IV) de l'annexe I.
  • Le capteur C2 est disposé à une seconde distance de travail de l'aimant A, notée dC2. Plus généralement, le second capteur C2 est positionné sur la surface d'une sphère centrée sensiblement sur le centre O. Le rayon de cette sphère peut être compris entre 500 µm et 2000 µm, et préférentiellement compris entre de 1100 µm 1500 µm. De préférence, le rayon de la sphère est sensiblement égal à 1360 µm, soit dC2 = 1,36 mm.
  • La condition essentielle à respecter est un positionnement au voisinage d'un point d'extremum choisi parmi l'ensemble des points d'extremum Py1, Py2, Py3 etc. et de ne par heurter physiquement l'aimant lors du déplacement de ce dernier ensemble avec l'équipage mobile.
  • En conséquence, le capteur de mesure d'un déplacement selon l'axe y, à savoir le capteur C1 est disposé de sorte que la variation de champ magnétique qu'il détecte soit maximum pour un déplacement de l'actionneur dans un sens selon l'axe y ; et, de même, le capteur de mesure d'un déplacement selon l'axe z, à savoir le capteur C2 est disposé de sorte que la variation de champ magnétique qu'il détecte soit maximum pour un déplacement de l'actionneur dans un sens selon l'axe z.
  • On s'intéressera maintenant à la courbe f(Py) (ou g(Py)), dans le plan de symétrie du champ magnétique B (Figure 4).
  • La figure 9 est un graphe tridimensionnel représentant les variations du gradient dBz/dy en fonction des distances y et z au centre de l'aimant, de coordonnées (0,0). Les axes y et z sont gradués en mm, et l'ordonnée, à droite, est en Gauss par millimètre.
  • La figure 10 est un graphe établi avec des abscisses dans la direction y, et des ordonnées dans la direction z. Elle illustre la localisation des points extremum pour le capteur C2. Chaque point extremum est établi comme l'extremum pour une distance donnée du centre de l'aimant, ayant les coordonnées (0,0), qui sont situées hors le cadre du graphique. Le graphe de la figure 10 correspond à la courbe en trait épais qui descend vers l'avant sur la figure 9. La courbe est d'allure parabolique, et peut s'ajuster sur un polynôme de degré 2 ou 3.
  • En résumé, dans un mode de réalisation particulier préférentiel de l'invention :
    1. a. La distance dC1 entre le capteur C1 et le centre O de l'aimant permanent A (ou centre du champ magnétique) est de 1100 µm. Le capteur C1 est positionné sur le support en dessous de l'aimant A (centré coaxialement) avec hC1 = 1100 µm en direction z. Pour C1, on a dBz/dy= 1000 Gauss/mm.
    2. b. La distance dC2 entre le capteur C2 et le centre O de l'aimant permanent A (ou centre du champ magnétique) est de 1360 µm. Le capteur C2 est positionné diagonalement par rapport à l'aimant A avec hC2 = 800 µm en direction z et lC2 = 1100 µm en direction y. Pour C2, on a dBy/dz= 900 Gauss/mm.
  • Le dispositif microtechnique selon l'invention renvoie donc, pour chaque équipage mobile, deux mesures de champ magnétique, fournies respectivement par le capteur C1 et le capteur C2. Les mesures sont supposées ici être faites sous forme de tension, fonction du champ magnétique. La mesure est bruitée. Le capteur HAL401 a une résolution comprise entre 4,2 et 5,5 mV/G (données constructeur). Les tensions de sorties sont comprises entre 0 et +4,5V. Il est assorti d'une électronique de conditionnement, pour filtrer les bruits de mesure et amplifier le signal de -10V à +10V.
  • Les mouvements de l'équipage mobile M imposent à l'aimant A des déplacements dans le plan yz, avec une faible composante dans l'axe x, compte-tenu des faibles rotations nécessaires pour déplacer l'équipage mobile M avec la déformation de l'actionneur.
  • Le capteur C1 détecte les variations de la composante Bz du champ magnétique, dans le but d'obtenir les déplacements de l'aimant selon l'axe y. De son côté, le capteur C2 détecte les variations de la composante By du champ magnétique, dans le but d'obtenir les déplacements de l'aimant selon l'axe z.
  • Mais lorsque l'on veut convertir les champs magnétiques détectés par les capteurs C1 et C2 en déplacements, il y a un couplage, car un déplacement effectué purement selon l'axe y va provoquer non seulement une variation de la composante Bz détectée par le capteur C1, mais aussi une variation de la composante By détectée par le capteur C2.
  • La figure 7 est un graphe tridimensionnel, qui montre une évolution d'un champ magnétique sur deux directions y et z en abscisses, avec en ordonnées une grandeur Comp.Z, sur laquelle on reviendra. Elle fait apparaître le couplage entre les mesures effectuées. Les mesures sont dépendantes du positionnement de l'aimant permanent A.
  • On note maintenant Comp.Z la composante de champ magnétique mesurée sur le capteur C1. On admet que les capteurs de champ magnétique délivrent une tension proportionnelle au champ magnétique qu'ils détectent. Ainsi, la courbe équipotentielle Eq.B de la figure 7 est définie, dans le plan yz, par des points (en y) pour lesquels on obtient la même valeur de Comp.Z. En l'absence de couplage, cette courbe Eq.B serait une droite parallèle à l'axe z ; on aurait une valeur identique de Comp.Z quelle que soit la position de l'aimant A en direction z. Par conséquent, l'écart de la courbe Eq.B par rapport à une parallèle à l'axe z passant par la valeur mesurée au repos de l'aimant exprime le couplage entre les mesures effectuées par les capteurs C1 et C2.
  • Par exemple, si l'on considère une variation de la mesure de 100 % pour un déplacement sur toute une course sur l'axe y de l'aimant permanent A, un déplacement sur l'axe z de toute la course de l'aimant peut influer d'environ 20 % sur la mesure du champ magnétique. En conséquence, le capteur C1 mesurant un déplacement en direction y de l'aimant A est perturbé par le déplacement de celui-ci en direction z.
  • Ce couplage peut être corrigé en utilisant un algorithme de découplage approprié, utilisant par exemple des données de calibration, obtenues en présence de déplacements connus. L'algorithme utilisé reconstruit numériquement une image théorique des valeurs des composantes du champ magnétique mesurables par C1 et C2, appelées B1th et B2th. L'algorithme utilise les équations théoriques exprimant le champ magnétique généré par un aimant permanent, ainsi que les positions dans l'espace des capteurs par rapport à l'aimant permanent A au repos hC1, hC2, lC2. Cette reconstruction numérique permet de créer une matrice regroupant les couples de position échantillonnés (y,z) et les couples de composantes générée (B1th, B2th) sur les positions atteignables de l'équipage mobile M. En fonctionnement du dispositif, l'algorithme exploite les deux mesures de C1 et C2, appelées B1mes et B2mes dont il recherche une correspondance dans la matrice, et trouve finalement le couple (y,z) idéal pour la mesure effectuée.
  • On s'intéresse maintenant à la variation du champ magnétique Bz détecté par le capteur C1 en fonction des déplacements de l'aimant dans la direction y.
  • La figure 8 montre l'allure des variations du champ magnétique sur le capteur C1 en direction y selon l'invention, à z constant. La courbe présente une partie sensiblement linéaire aux faibles valeurs de y (partie marquée en gras sur la figure 8).
  • On a recherché l'écart de linéarité sur une course dans la direction y de l'équipage mobile M. Le graphe de la figure 8A compare des mesures expérimentales réalisées avec le dispositif décrit à une évolution linéaire (droite de régression), pour la variation du champ magnétique Bz détecté par le capteur C1 en fonction des déplacements de l'aimant dans la direction y, à z constant.
  • Aux faibles valeurs de y, cet écart de linéarité a été évalué à un maximum d'environ 0,22% de la valeur attendue (0,18 G pour 80 G). Il en découle que l'on peut considérer la courbe comme linéaire, et par conséquent la variation du champ magnétique Bz détecté par le capteur C1 en fonction des déplacements de l'aimant dans la direction y, comme linéaire elle aussi, aux faibles valeurs de y.
  • La figure 11 est un graphe bidimensionnel relatif au capteur C1, placé au point optimal (y=0, z=-1.1). Elle illustre la variation de la composante Bz du champ (en Gauss) en fonction de l'écart dans la direction y par rapport à la position de repos de l'aimant. Dans la famille de courbes, chaque courbe est prise avec un z constant, avec des valeurs de z de la série (-1.3, - 1.2, -1.1, -1, -0.9). La pente est la plus faible pour z=-1.3 mm, et croît ensuite avec z.
  • La figure 12 est un graphe bidimensionnel relatif au capteur C2, placé au point optimal (y=1.1, z=0.8). Elle illustre la variation de la composante By du champ (en Gauss) en fonction de l'écart dans la direction z par rapport à la position de repos de l'aimant. Dans la famille de courbes, chaque courbe est prise avec un y constant, avec des valeurs de y de la série (1, 1.05, 1.1, 1.15, 1.2). La pente est la plus faible pour y=1.2 mm, et croît ensuite quand y décroît.
  • La figure 12 fait apparaître une zone particulière de petite taille, où les courbes se croisent, au voisinage de z = 0.88. En ce point, la variation de la position en y n'a presque pas d'influence sur By. Cette zone est particulièrement intéressante, car on y obtient un découplage « naturel » de la mesure de By. On notera que la valeur hC2 = 0.8 mm en est proche.
  • La figure 13 montre une résolution spatiale Res (µm) en fonction de la distance dO (mm) capteur-centre O du champ magnétique de l'invention. Trois zones se distinguent. Une première zone ZI dans laquelle les mesures effectuées sont exploitables, une deuxième zone ZII de sécurité (distance de sécurité capteur-aimant) et une troisième zone ZIII non exploitable.
  • La dégradation de résolution est exponentielle suivant la distance entre capteur C et le centre O du champ magnétique. En d'autres termes, plus le capteur est proche du centre O du champ magnétique plus le gradient mesuré est grand.
  • Mais, l'aimant A a une forme physique de quelques mm3 (environ 1 mm3 dans l'exemple de réalisation), par conséquent il s'ensuit une zone non exploitable ZIII pour laquelle les capteurs entreraient en contact physique avec l'aimant A. Il convient en outre de prévoir une distance de sécurité pour éviter le contact physique précité (zone ZII). En pratique cela dépendra de la course effective de l'aimant A sur l'équipage mobile M.
  • De plus, la résolution de chaque capteur dépend de plusieurs paramètres et notamment du bruit du capteur. Ce bruit est directement dépendant de la fréquence d'échantillonnage, à savoir la rapidité de mesure. En général on peut admettre que plus une mesure est longue, meilleure est sa résolution. Mais plus la mesure est longue, plus la dynamique est lente.
  • L'exemple de réalisation décrit utilise des capteurs HAL401 avec une fréquence d'échantillonnage de 100 Hz.
  • En plaçant le capteur au plus près de l'aimant, et en respectant la distance de sécurité du mode de réalisation, à savoir à une distance de 0,6 mm, on obtient une résolution de 60 nm. En se plaçant environ 0,4 mm plus loin de l'aimant, à savoir à une distance d'environ 1 mm, on obtient une résolution de 200 nm. On peut considérer ces distances comme définissant la zone exploitable ZI selon l'invention.
  • Un objectif du dispositif microtechnique est de mesurer la course de l'actionneur P, ou plus précisément de l'équipage mobile M. Il est donc important d'obtenir une mesure sensible de la position. Généralement, une résolution de 200 nm peut être considérée comme satisfaisante. Pour faire mieux, on visera une résolution d'environ 100 nm.
  • Il s'ensuit que plus les dimensions du système magnétique sont faibles plus le gradient local est important. Mais, typiquement, les boîtiers des capteurs (2,5 x 4,5 x 1,2 mm) sont assez grands par rapport à la zone sensible du capteur. Tout compris, l'ensemble des éléments aimant-capteurs du dispositif microtechnique va donc s'inscrite spatialement dans une sphère d'environ 10 mm de rayon.
  • Le dispositif microtechnique de l'invention est agencé pour mesurer des courses de l'équipage mobile inférieures ou égales à 1 mm.
  • L'actionneur peut être un actionneur piézoélectrique, un actionneur thermique et/ou d'un actionneur électrostatique, ou encore un actionneur magnétique. Dans ce dernier cas, on minimisera et/ou compensera les effets de l'actionneur magnétique sur les capteurs.
  • Annexe I - Formules
  • B = B x . x + B y . y + B z . z
    Figure imgb0002
    . B = B x x + B y y + B z z
    Figure imgb0003
    G r a d B z = B z x . x + B z y . y + B z z . z
    Figure imgb0004
    G r a d B y = B y x . x + B y y . y + B y z . z
    Figure imgb0005

Claims (7)

  1. Dispositif microtechnique, comprenant :
    - un actionneur, agencé pour déplacer un équipage mobile par rapport à un support, cet équipage mobile comportant un aimant permanent,
    un premier capteur magnétique (C1), agencé pour détecter un déplacement de l'aimant,
    dans lequel l'actionneur est agencé pour déplacer l'équipage mobile selon deux degrés de liberté à partir d'une position de repos,
    l'aimant permanent est choisi avec une distribution de champ magnétique qui admet un plan de symétrie principal, ainsi qu'une direction principale d'aimantation (VA) qui passe un centre (O),
    le premier capteur (C1) est placé sensiblement dans ledit plan de symétrie principal, à une première distance de travail de l'aimant, tandis que l'axe de travail (z) de ce premier capteur (C1) est sensiblement perpendiculaire à la direction principale d'aimantation (VA), et passe sensiblement par le centre (O), dans la position de repos de l'aimant,
    caractérisé en ce qu'
    il est prévu un second capteur magnétique (C2), placé sensiblement dans le plan de symétrie principal du champ de l'aimant, à une seconde distance de travail de l'aimant, tandis que l'axe de travail (y) de ce second capteur est sensiblement parallèle à la direction principale d'aimantation (VA), dans la position de repos de l'aimant,
    le second capteur (C2) est positionné au voisinage d'un point d'extremum, pour ladite seconde distance de travail, ledit point d'extremum étant situé à un emplacement pour lequel la composante sur l'axe de travail (y) du gradient (dBy/dz) de la composante sur la direction principale d'aimantation (VA) est maximale,
    les premier et second capteurs étant alors sensibles aux déplacements de l'équipage mobile perpendiculairement à leurs axes de travail respectifs.
  2. Dispositif selon la revendication 1, dans lequel le premier capteur (C1) est positionné sur la surface d'une sphère centrée sensiblement sur ledit centre (O) et dont le rayon est compris entre 500 µm et 2000 µm, préférentiellement compris entre de 1000 µm et 1200 µm et est encore plus préférentiellement sensiblement égale à 1100 µm.
  3. Dispositif selon l'une des revendications précédentes, dans lequel le second capteur (C2) est positionné sur la surface d'une sphère centrée sensiblement sur ledit centre (O) et dont le rayon est compris entre 500 µm et 2000 µm et est préférentiellement de préférentiellement compris entre de 1100 µm et 1500 µm et est encore plus préférentiellement sensiblement égale à 1360 µm.
  4. Dispositif microtechnique selon l'une des revendications précédentes, dans lequel chaque actionneur est choisi dans le groupe constitué d'un actionneur piézoélectrique, d'un actionneur thermique, d'un actionneur magnétique et/ou d'un actionneur électrostatique.
  5. Dispositif microtechnique selon l'une des revendications précédentes, dans lequel l'équipage mobile dudit actionneur est agencée pour un déplacement en translation de l'aimant de course comprise entre 0 µm et 200 µm selon une direction (y) parallèle à la direction principale d'aimantation.
  6. Dispositif microtechnique selon l'une des revendications précédentes, dans lequel la partie mobile dudit actionneur est agencée pour un déplacement en translation de course comprise entre 0 µm et 400 µm selon une direction (z) perpendiculaire à la direction principale d'aimantation.
  7. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend en outre un outil de commande numérique capable de stocker les paramètres de conversion pour passer des mesures de champ magnétique par les capteurs aux données de position de l'aimant et/ou de l'équipage mobile.
EP11704646.6A 2010-01-27 2011-01-17 Dispositif pour la mesure de positionnement d'un micro-actionneur Active EP2529187B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1000307A FR2955655B1 (fr) 2010-01-27 2010-01-27 Dispositif pour la mesure de positionnement d'un micro-actionneur
PCT/FR2011/000028 WO2011092396A1 (fr) 2010-01-27 2011-01-17 Dispositif pour la mesure de positionnement d'un micro-actionneur

Publications (2)

Publication Number Publication Date
EP2529187A1 EP2529187A1 (fr) 2012-12-05
EP2529187B1 true EP2529187B1 (fr) 2018-08-22

Family

ID=42931903

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11704646.6A Active EP2529187B1 (fr) 2010-01-27 2011-01-17 Dispositif pour la mesure de positionnement d'un micro-actionneur

Country Status (5)

Country Link
US (1) US9052218B2 (fr)
EP (1) EP2529187B1 (fr)
ES (1) ES2698833T3 (fr)
FR (1) FR2955655B1 (fr)
WO (1) WO2011092396A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PE20201078A1 (es) * 2017-12-04 2020-10-22 Safecertifiedstructure Tecnologia S P A Dispositivo transductor de desplazamiento
FR3082615B1 (fr) 2018-06-15 2020-10-16 Electricfil Automotive Methode de determination d'une position angulaire relative entre deux pieces
FR3087256B1 (fr) 2018-10-15 2020-10-30 Electricfil Automotive Methode et systeme capteur de determination d'une position angulaire relative entre deux pieces, et procede de fabrication d'un corps magnetique

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19600616A1 (de) * 1996-01-10 1997-07-17 Bosch Gmbh Robert Vorrichtung zur Detektierung von Auslenkungen eines magnetischen Körpers
FR2806158B1 (fr) 2000-03-07 2002-05-17 Commissariat Energie Atomique Procede pour determiner la position ou l'orientation d'un objet a l'aide d'un champ magnetique et dispositif correspondant
US20040021458A1 (en) 2000-12-27 2004-02-05 Yoshinori Imamura Displacement sensor
FR2845026B1 (fr) * 2002-09-26 2005-06-03 Ecole Nale Sup Artes Metiers Micromanipulateur piezoelectrique, notamment pour microrobotique
US6791219B1 (en) * 2003-06-18 2004-09-14 Bvr Technologies Company Contactless electro-mechanical actuator with coupled electronic motor commutation and output position sensors
FR2909170B1 (fr) 2006-11-28 2010-01-29 Moving Magnet Tech Mmt Capteur de position linaire ou rotatif a profil d'aimant variable preferentiellement de maniere quasi sinusoidal.
US7804210B2 (en) 2008-03-25 2010-09-28 Bose Corporation Position measurement using magnetic fields

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2011092396A1 (fr) 2011-08-04
EP2529187A1 (fr) 2012-12-05
FR2955655B1 (fr) 2012-04-20
ES2698833T3 (es) 2019-02-06
US9052218B2 (en) 2015-06-09
US20130027027A1 (en) 2013-01-31
FR2955655A1 (fr) 2011-07-29

Similar Documents

Publication Publication Date Title
Claverley et al. Development of a three-dimensional vibrating tactile probe for miniature CMMs
EP2622310B1 (fr) Capteur de position amélioré
EP1861679B1 (fr) Procede et dispositif d'acquisition d'une forme geometrique
EP2656006B1 (fr) Structure planaire pour gyromètre tri-axe
Liang et al. Methods and research for multi-component cutting force sensing devices and approaches in machining
GB2447001A (en) System for acquiring seismic data with six components
EP2600104B1 (fr) Micro-capteur inertiel de mouvements de rotation
Li et al. An analogue contact probe using a compact 3D optical sensor for micro/nano coordinate measuring machines
EP2529187B1 (fr) Dispositif pour la mesure de positionnement d'un micro-actionneur
FR2976353A1 (fr) Procede d'estimation simplifie de l'orientation d'un objet et centrale d'attitude mettant en oeuvre un tel procede
Li et al. Novel capacitive sensing system design of a microelectromechanical systems accelerometer for gravity measurement applications
Dai et al. Overview of 3D micro-and nanocoordinate metrology at PTB
Rezvani et al. Simultaneous clamping and cutting force measurements with built-in sensors
Michihata Surface-sensing principle of microprobe system for micro-scale coordinate metrology: a review
Bai et al. Numerical and experimental study on dynamic characteristics of planar mechanism with mixed clearances
Akiyama et al. Atomic force microscope for planetary applications
DE102011076393A1 (de) Mikromechanischer Drehbeschleunigungssensor und Verfahren zur Messung einer Drehbeschleunigung
Kim et al. Structural optimization of a novel 6-DOF pose sensor system for enhancing noise robustness at a long distance
FR3080186A1 (fr) Procede de calibration d'un reseau de magnetometres
Spiewak et al. High accuracy, low-invasive displacement sensor (halids)
Vetrivel et al. Influence of the flexure position and a thick gold film on the performance of beam-mass structures
Zhang et al. Design and characterization of a silicon piezoresistive three-axial force sensor for micro-flapping wing MAV applications
Al-Baradoni et al. Identification of the sensory properties of image-based multi-axis force/torque sensors
Spiewak et al. A Test Setup for Evaluation of Harmonic Distortions in Precision Inertial Sensors
Hoffmann Smart Materials: Proceedings of the 1st Caesarium, Bonn, November 17–19, 1999

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160429

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180309

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1033030

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011051258

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RIEDERER HASLER AND PARTNER PATENTANWAELTE AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181122

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181122

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181123

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2698833

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190206

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1033030

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011051258

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190117

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230103

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230628

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231219

Year of fee payment: 14

Ref country code: FI

Payment date: 20231219

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231219

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240202

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 14

Ref country code: CH

Payment date: 20240202

Year of fee payment: 14