EP2527743A2 - Segmentbauteil aus Hochtemperaturgussmaterial für eine Ringbrennkammer, Ringbrennkammer für ein Flugzeugtriebwerk, Flugzeugtriebwerk und Verfahren zur Herstellung einer Ringbrennkammer - Google Patents

Segmentbauteil aus Hochtemperaturgussmaterial für eine Ringbrennkammer, Ringbrennkammer für ein Flugzeugtriebwerk, Flugzeugtriebwerk und Verfahren zur Herstellung einer Ringbrennkammer Download PDF

Info

Publication number
EP2527743A2
EP2527743A2 EP12169511A EP12169511A EP2527743A2 EP 2527743 A2 EP2527743 A2 EP 2527743A2 EP 12169511 A EP12169511 A EP 12169511A EP 12169511 A EP12169511 A EP 12169511A EP 2527743 A2 EP2527743 A2 EP 2527743A2
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
chamber wall
annular
annular combustion
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12169511A
Other languages
English (en)
French (fr)
Other versions
EP2527743A3 (de
EP2527743B1 (de
Inventor
Karl Schreiber
Miklos Gerendas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP2527743A2 publication Critical patent/EP2527743A2/de
Publication of EP2527743A3 publication Critical patent/EP2527743A3/de
Application granted granted Critical
Publication of EP2527743B1 publication Critical patent/EP2527743B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/50Combustion chambers comprising an annular flame tube within an annular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00018Manufacturing combustion chamber liners or subparts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/4927Cylinder, cylinder head or engine valve sleeve making

Definitions

  • the invention relates to a segment component of high-temperature casting material for an annular combustion chamber, an annular combustion chamber for an aircraft engine, an aircraft engine and a method for producing an annular combustion chamber.
  • annular combustion chambers which are arranged axially between the compressor and the turbine.
  • An annular combustion chamber has coaxially with the engine longitudinal axis a combustion chamber walls bounded annular space, which is also referred to as a flame tube.
  • the injectors for the fuel are arranged along the annular cross section of the annular space. In operation, the fuel flames extend from these injectors into the annulus.
  • combustion chamber walls must be designed to be thermally stable accordingly. So it is known to equip the combustion chamber walls with thermally particularly resilient plates. From the EP 1 106 927 for example, a method is known in which the annulus of an annular combustor is assembled from individual segments of cast material using high temperature cast materials.
  • a combustion chamber wall which during operation shields a fuel flame extending along a burner axis from the environment, has a bulge, the bulge pointing in a direction pointing away from the burner axis.
  • a part of a segmental component for an outer combustion chamber wall of an annular combustion chamber has e.g. a bulge that points radially outward.
  • a portion of a segmental component for an internal combustion chamber wall includes e.g. a bulge that points outward.
  • an inner combustion chamber wall and an outer combustion chamber wall, between which in operation a fuel flame is arranged along a burner axis are used, e.g. U-shaped are arranged.
  • the inner and / or the outer combustion chamber wall on a bulge in the direction pointing away from the burner axis are used, e.g. U-shaped are arranged.
  • the at least one bulge of the combustion chamber wall is adapted substantially to the contour of the fuel flame during operation.
  • the length and / or width of the write-off substantially correspond to the length and / or width of the fuel flame during operation.
  • Advantageous high-temperature cast materials are a superalloy containing nickel, chromium, cobalt and / or nickel-iron, especially Inconel 738 / Inconel 738 LC, Inconel 939 / Inconel 939 LC, Inconel 713 / Inconel 713 LC, C1023, Mar M 002 and / or CM 274LC. These materials have a sufficient temperature resistance.
  • the inner combustion chamber wall and the outer combustion chamber wall are integrally connected as a casting via a combustion head or the inner combustion chamber wall and outer combustion chamber wall are connected to a combustion chamber head.
  • one-piece segment components are present; in the second variant, there are two segment components which are connected to one another.
  • an advantageous embodiment is provided if at least one mounting flange is arranged on the combustion chamber head. Furthermore, it is advantageous if a device for arranging an injector for fuel is provided on the combustion chamber head. Also, advantageously, at least one integrally formed on a combustion chamber wall nozzle for cooling air can be provided.
  • the combustion chamber wall has an average thickness of between 1 and 4 mm, in particular 1.4 to 3 mm.
  • annular combustion chamber for an aircraft engine with the features of claim 9.
  • at least two segment components according to at least one of claims 1 to 8 are used.
  • annular combustion chamber have a variable annular space height along the circumference of the annular space.
  • the annulus height By adapting the annulus height to, for example, burner flames and / or injectors, the thermal and / or mechanical loading of the walls can be achieved. This applies in particular when regions A of a larger annular space height H RA alternate with regions B of a smaller annular space height H RB along the circumference, so that the combustion chamber walls form a type of wave-like structure
  • areas are formed with a larger annulus height and areas with a smaller annulus height, which are arranged in the assembly injectors for the fuel in the areas with the larger annulus height.
  • the areas of larger annulus height give the fuel flame more space and shield it from annoyance in the annulus.
  • the segment components are interconnected by welds, in particular by electron beam welding, laser welds with IN626 Filler, Polymet 972 or other ductile welding consumables.
  • the object is also achieved by methods for producing an annular combustion chamber.
  • At least two segmental components having an inner combustion chamber wall, an outer combustion chamber wall and a combustion head are molded from high temperature cast material. Subsequently, the at least two segment components are joined by joining, in particular welding, to the annular combustion chamber.
  • At least two segment components are connected to form an inner full ring structure, in particular welded. At least two segment components are connected to form an outer full ring structure, in particular welded.
  • the present solid ring structures are connected to a combustion head structure.
  • FIG. 1 In a perspective view, an annular combustion chamber is shown with an annular space 30, as used for example in an aircraft engine.
  • the annular space 30 is arranged in the main flow direction of the aircraft engine behind the compressor, not shown here, and the inlet region of a turbine 40.
  • two injectors 25 are visible, from which fuel flames 20 (not shown here) emerge along burner axes 21 during operation.
  • the burner axes 21 and thus also the fuel flames 20 are thus between the inner combustion chamber wall 11 and the outer combustion chamber wall 12.
  • This annular space 30 is also referred to as a flame tube.
  • the combustion chamber walls 11, 12 thus shield the fuel flames 20 inwardly and outwardly from the environment.
  • the annulus height H R (also referred to as Flammraum hope) varies in the axial direction of the aircraft engine, but is constant along the circumference of the annular combustion chamber 10.
  • the invention described below with reference to various embodiments relates, inter alia, annular combustion chambers in which the ring combustion chamber height H R is non-constant along the circumference.
  • Such an annular combustion chamber is e.g. composed of at least two segment components 10 made of high temperature casting material.
  • each of the segmental components 10 would be e.g. 180 ° of the annulus 30 provide.
  • a segment component 10 is shown, which covers a much smaller angular range, namely 30 °, as in the view of Fig. 2A is particularly clear.
  • An annular combustion chamber composed of such segmental components 10, therefore has 12 of these segmental components 10.
  • a segmental component 10 is shown in which parts form the inner combustion chamber wall 11 and the outer combustion chamber wall 12 when the segmental components 10 are assembled (see FIG Fig. 5 ).
  • an opening 24 is provided for the injector 25, not shown here.
  • the fuel flame 20 (not shown here) produced by the injector 25 extends along the burner axis 21 into the annular space 30 in the direction of the inlet region of the turbine 40 (not shown here, see FIG Fig. 1 ).
  • This embodiment of the segment component 10 is produced in one piece from a high-temperature casting material.
  • a superalloy may be used which contains nickel, chromium, cobalt and / or nickel-iron.
  • Typical high temperature cast alloys are in particular Inconel 738 / Inconel 738 LC, Inconel 939 / Inconel 939 LC, Inconel 713 / Inconel 713 LC, C1023, Mar M 002 and / or CM 274LC.
  • the casting processes e.g., investment casting) allow segmental components 10 to be made with very thin walls and in very complex shapes.
  • the combustion chamber walls 11, 12 have an average thickness of between 1 and 4 mm.
  • the wall of the combustion chamber head 23 can between 2 and 4 mm.
  • the shaping it is possible, for example, to form nozzle 15 for air cooling during casting.
  • mounting flanges 23 can be molded integrally on the combustion chamber head 22. Basically, the possibilities of shaping are not limited to the illustrated features.
  • the combustion chamber walls 11, 12 of this embodiment are contoured in a particular way.
  • the inner combustion chamber wall 11 has a bulge 13, which points downwards in the representation selected here.
  • the bulge 13 thus points away from the burner axis 21.
  • the outer combustion chamber wall 12 has a bulge 14, which has the same shape in a slightly upward direction.
  • the bulge 14 thus also points away from the burner axis 21.
  • the bulges 13, 14 are arranged so that they correspond approximately to the contour of the fuel flame 20 when the annular combustion chamber is in operation.
  • the bulge 13 on the inner combustion chamber wall 11 and the bulge 14 on the outer combustion chamber wall 12 extend in the axial direction approximately as far as the fuel flame 20 extends into the annular space.
  • the axial extension of the bulges, 13, 14 is about 50 to 90% of the total axial extent of the annular space. Further, it is advantageous if the width B B of the bookings 13, 14 is about 30 to 60% of the width B of a segment component 10, wherein the width B of the bulge is smaller on the inside than on the outside.
  • Fig. 2C is the one to view the Fig. 2B also shown that the bulges 13, 14 are approximately adapted to the contour of the fuel flame.
  • a region A is drawn in, in which the annulus height H RA is increased by the stakes 13, 14 and a region B, in which the annulus height H RB is reduced.
  • An arc length U of the segment component 10 is thus composed of A + 2B. It is advantageous if the proportion of the range A is 50 to 80% of the arc length U and the portion of the range B is 20 to 50% of the arc length U.
  • H RA 0.7 - 0.9 H conv . This means that the height of the combustion chamber in the area outside the bulges 13, 14 is 70 to 90% of the usual height.
  • segment components 10 are connected to each other, an annular combustion chamber is formed whose annular space height H R is variable in the circumferential direction.
  • Segment components 10 are connected to each other, for example by laser or electron beam welding, whereby the introduced path energy is minimized. It can be a suitable, ductile filler used in welding (IN625 or Polymet 972).
  • Such a compound rivet combustion chamber is in Fig. 3 shown.
  • segment components 10 are used here to form an annular space 30.
  • Areas A of a larger annular space height H RA alternate with areas B of a smaller annular space height H RB along the circumference, so that the combustion chamber walls 11, 12 form a kind of wave-like structure.
  • the fuel flames 20 (not shown here) are in each case in the extended areas A. Between the fuel flames 20 are narrowed areas B. This leads to the effect that each fuel flame 20 can effectively burn in its own combustion chamber. Disturbances in a region of the annular space 30 can spread more severely in the entire annular space 30 due to the constrictions in the regions B.
  • air may be directed from the compressor to the turbine 40 with less severe deflection, thereby reducing the pressure loss on this flow path.
  • the described embodiment also has advantageous effects outside of the annular space 30, since the turbine cooling air K, which is guided outside the annular space, is also influenced by the contouring of the combustion chamber walls 11, 12.
  • the pressure loss during the transfer of the turbine cooling air K from the compressor outlet to the combustion chamber is determined to enter the cooling system by the flow guidance in this way. If the turbine cooling air K has to be deflected repeatedly (in particular radially) and accelerated (and then decelerated again), then the pressure loss increases. In the burner axis 21, only a small amount of turbine cooling air K flows past the burner and mixing air hole in the direction of the turbine, so the pressure loss is not so decisive there.
  • the combustion chamber head 22 is designed so that the turbine cooling air K is not greatly deflected radially outwards and inwards. These are the areas B between the bulges 13, 14, but at the respective outer sides of the annular space 30. After the radial deflection then takes place a deflection in the axial direction. Thus, in area B, there is a small deflection into the much deeper annuli around the narrower combustion chamber at this point.
  • the flow of turbine cooling air K is in Fig. 3 shown schematically.
  • the bulges 13, 14 cause a more uniform temperature distribution in the circumferential direction to form in the combustion chamber walls 11, 12, which has a positive influence on the service life of the annular combustion chamber.
  • the combustion chamber wall 11, 12, due to the bulges 13, 14 relatively far away from the fuel flame 20.
  • the combustion chamber walls 11, 12 are closer together, since the annulus height H R is lower here.
  • the wall regions of the combustion chamber walls 11, 12 which are closest to the fuel flame 20 would be hotter than other regions. For these reasons, not so much cooling air needs to be used in area A. The cooling air thus saved is available for measures to reduce exhaust emissions.
  • the inner combustion chamber wall 11 and the outer combustion chamber wall 12 have a wavy structure when made of segmental components 10, for example according to FIG Fig. 2 are composed.
  • This wavy structure allows for easier compensation of thermal and / or mechanical stresses in the combustion chamber walls 11, 12 than would be possible in annular spaces with circular cross-sections in the circumferential direction.
  • the segmental components 10 may be provided with a thermal barrier coating.
  • a further embodiment of a segment component 10 is shown. Basically, it has the same functions and properties as the segment component 10 described above, so that reference can be made to the corresponding description.
  • the bulge 13 has a rather small width in the vicinity of the combustion chamber head 23, which widens steadily, in order then to become smaller again.
  • a segment component 10 it is also possible for a segment component 10 to have only one outer or inner part of the annular combustion chamber.
  • Fig. 5 an embodiment of a segment component 10 is shown, which has only one outer combustion chamber wall 12. Like the previously described embodiments, this segmental component 10 also has a bulge 14 that faces away from the burner axis 21. To illustrate the use of this segmental component 10, are in Fig. 5 dashed lines the fuel flame 20 and the burner axis 21 drawn.
  • annular combustion chamber can be constructed, as shown in FIG Fig. 6A , B is shown.
  • segment components 10 are connected to an inner full ring structure 31, in particular welded.
  • segment components 10 are connected to an outer full ring structure 32, in particular welded Fig. 6A are the two full ring structures 31, 32 shown, each having only six segment components 10 for reasons of simplicity.
  • the inner full ring structure 31 and the outer full ring structure 32 are connected to a combustion head structure 43, as shown in FIG Fig. 6B is shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laser Beam Processing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

Die Erfindung betrifft ein Segmentbauteil aus Hochtemperaturgussmaterial für eine Ringbrennkammer eines Flugzeugtriebwerkes, gekennzeichnet durch eine Brennkammerwand (11, 12), die im Betrieb eine sich entlang einer Brennerachse (21) erstreckende Brennstoffflamme (20) gegenüber der Umgebung abschirmt, wobei die Brennkammerwand (11, 12) eine Ausbuchtung (13, 14) in eine Richtung aufweist, die von der Brennerachse (21) wegzeigt. Die Erfindung betrifft ferner eine Ringbrennkammer, ein Flugzeugtriebwerk mit einer Ringbrennkammer, sowie Verfahren zur Herstellung einer Ringbrennkammer.

Description

  • Die Erfindung betrifft ein Segmentbauteil aus Hochtemperaturgussmaterial für eine Ringbrennkammer, eine Ringbrennkammer für ein Flugzeugtriebwerk, ein Flugzeugtriebwerk und ein Verfahren zur Herstellung einer Ringbrennkammer.
  • Moderne Flugzeugtriebwerke weisen üblicherweise Ringbrennkammern auf, die axial zwischen Verdichter und Turbine angeordnet sind. Eine Ringbrennkammer weist koaxial zur Triebwerkslängsachse einen von Brennkammerwänden begrenzten Ringraum auf, der auch als Flammrohr bezeichnet wird. Entlang des ringförmigen Querschnitts des Ringraums sind die Injektoren für den Brennstoff angeordnet. Im Betrieb erstrecken sich die Brennstoffflammen von diesen Injektoren in den Ringraum hinein.
  • Aufgrund der hohen thermischen Belastungen müssen die Brennkammerwände entsprechend thermisch stabil ausgebildet sein. So ist es bekannt, die Brennkammerwände mit thermisch besonders belastbaren Platten auszustatten. Aus der EP 1 106 927 ist ein Verfahren bekannt, mit dem der Ringraum einer Ringbrennkammer aus einzelnen Segmenten aus Gussmaterial zusammengesetzt wird, wobei Hochtemperaturgussmaterialien verwendet werden.
  • Es ist die Aufgabe der vorliegenden Erfindung, Segmentbauteile für Ringbrennkammern zur Verfügung zu stellen, die thermisch und strömungstechnisch verbessert sind.
  • Diese Aufgabe wird durch ein Segmentbauteil mit den Merkmalen des Anspruchs 1 gelöst.
  • Dabei weist eine Brennkammerwand, die im Betrieb eine sich entlang einer Brennerachse erstreckende Brennstoffflamme gegenüber der Umgebung abschirmt, eine Ausbuchtung auf, wobei die Ausbuchtung in eine Richtung zeigt, die von der Brennerachse wegzeigt. Ein Teil eines Segmentbauteils für eine äußere Brennkammerwand einer Ringbrennkammer weist z.B. eine Ausbuchtung auf, die radial nach außen zeigt. Ein Teil eines Segmentbauteils für eine innere Brennkammerwand weist z.B. eine Ausbuchtung auf, die nach außen zeigt. Durch die Ausbuchtungen wird im unmittelbaren Bereich um die Brennerflamme ein größerer Raum geschaffen, indem der Abstand der Brennkammerwände zumindest bereichsweise um die Brennerflamme vergrößert wird.
  • Dabei ist es vorteilhaft, wenn eine innere Brennkammerwand und eine äußere Brennkammerwand, zwischen denen im Betrieb eine Brennstoffflamme entlang einer Brennerachse angeordnet ist, verwendet werden, die z.B. U-förmig angeordnet sind. Dabei weisen dann die innere und / oder die äußere Brennkammerwand eine Ausbuchtung in die Richtung auf, die von der Brennerachse wegzeigt.
  • Dabei ist es besonders vorteilhaft, wenn die mindestens eine Ausbuchtung der Brennkammerwand im Wesentlichen an die Kontur der Brennstoffflamme im Betrieb angepasst ist. Dabei kann vorteilhafterweise die Länge und / oder Breite der Ausbuchung im Wesentlichen der Länge und / oder Breite der Brennstoffflamme im Betrieb entsprechen.
  • Vorteilhafte Hochtemperaturgussmaterialien sind eine Superlegierung enthaltend Nickel, Chrom, Kobalt und / oder Nickel-Eisen, insbesondere insbesondere Inconel 738/ Inconel 738 LC, Inconel 939 / Inconel 939 LC, Inconel 713 / Inconel 713 LC, C1023, Mar M 002 und / oder CM 274LC. Diese Materialien weisen eine hinreichende Temperaturbeständigkeit auf.
  • Bei einer vorteilhaften Ausführungsform sind die innere Brennkammerwand und die äußere Brennkammerwand einteilig als Gussteil über einen Brennkammerkopf miteinander verbunden oder die innere Brennkammerwand und äußere Brennkammerwand sind mit einem Brennkammerkopf verbunden. Bei der ersten Variante liegen einstückige Segmentbauteile vor, bei der zweiten Variante liegen zwei Segmentbauteile vor, die miteinander verbunden werden.
  • Dabei liegt eine vorteilhafte Ausführungsform vor, wenn am Brennkammerkopf mindestens ein Befestigungsflansch angeordnet ist. Ferner ist es vorteilhaft, wenn am Brennkammerkopf eine Vorrichtung zur Anordnung eines Injektors für Brennstoff vorgesehen ist. Auch kann vorteilhafterweise mindestens ein einstückig an eine Brennkammerwand angeformter Stutzen für Kühlluft vorgesehen sein.
  • Vorteilhafterweise weist die Brennkammerwand bei einer Ausführungsform eine mittlere Dicke zwischen 1 und 4 mm, insbesondere 1,4 bis 3 mm auf.
  • Die Aufgabe wird auch durch eine Ringbrennkammer für ein Flugzeugtriebwerk mit den Merkmalen des Anspruchs 9 gelöst. Dabei werden mindestens zwei Segmentbauteile gemäß mindestens einem der Ansprüche 1 bis 8 verwendet.
  • Vorteilhafte Ausführungsformen der Ringbrennkammer weisen entlang des Umfangs des Ringraums eine variable Ringraumhöhe auf. Durch die Anpassung der Ringraumhöhe an z.B. Brennerflammen und / oder Injektoren kann die thermische und / oder mechanische Belastung der Wandungen erreicht werden. Dies gilt insbesondere dann, wenn sich Bereiche A einer größeren Ringraumhöhe HRA sich mit Bereichen B einer geringeren Ringraumhöhe HRB entlang des Umfanges abwechseln, so dass die Brennkammerwände eine Art wellenartige Struktur ausbilden
  • Dabei ist es besonders vorteilhaft, wenn Bereiche mit einer größeren Ringraumhöhe und Bereiche mit einer kleineren Ringraumhöhe gebildet werden, wobei im Zusammenbau Injektoren für den Brennstoff in den Bereichen mit der größeren Ringraumhöhe angeordnet sind. Die Bereiche der größeren Ringraumhöhe geben der Brennstoffflamme mehr Platz und schirmen sie gegen Störungen im Ringraum ab.
  • Ferner sind in vorteilhaften Ausgestaltungen die Segmentbauteile untereinander durch Schweißnähte, insbesondere durch Elektronenstrahlschweißen, Laserschweißnähte mit IN626 Filler, Polymet 972 oder anderen duktilen Schweißzusätze verbunden.
  • Die Aufgabe wird auch durch ein Flugzeugtriebwerk mit einer Ringbrennkammer nach den Ansprüchen 11 bis 14 gelöst. Die gesamte Strömung vom Verdichter, über die Brennkammer bis zur Turbine wird durch die um die Flammen herum angeordneten Ausbuchtungen verbessert.
  • Die Aufgabe wird ferner auch durch Verfahren zur Herstellung einer Ringbrennkammer gelöst.
  • In einer Ausführungsform werden mindestens zwei Segmentbauteile mit einer inneren Brennkammerwand, einer äußeren Brennkammerwand und einem Brennkammerkopf aus Hochtemperaturgussmaterial gegossen. Anschließend werden die mindestens zwei Segmentbauteile durch Fügen, insbesondere Schweißen, zur Ringbrennkammer verbunden.
  • Alternativ werden mindestens zwei Segmentbauteile zu einer inneren Vollringstruktur verbunden, insbesondere verschweißt. Mindestens zwei Segmentbauteile werden zu einer äußeren Vollringstruktur verbunden, insbesondere verschweißt. Die vorliegenden Vollringstrukturen werden mit einer Brennkammerkopfstruktur verbunden.
  • Die Erfindung wird nachfolgend unter Bezugnahme auf die Figuren der Zeichnung anhand mehrerer Ausführungsbeispiele näher erläutert. Es zeigen:
  • Fig. 1
    eine schematische, perspektivische Darstellung einer an sich bekannten Ringbrennkammer;
    Fig. 2
    eine perspektivische Darstellung einer Ausführungsform eines Segmentbauteils mit zwei Brennkammerwänden für eine Ringbrennkammer,
    Fig. 2A
    eine Ansicht vom Brennkammerkopf auf die Ausführungsform gemäß Fig. 2;
    Fig. 2B
    eine Schnittansicht der Ausführungsform gemäß Fig. 2 in Längsrichtung;
    Fig. 2C
    eine Schnittansicht der Ausführungsform gemäß Fig. 2 senkrecht zur Längsrichtung;
    Fig. 3
    eine axiale Schnittansicht auf eine Ausführungsform für eine Ringbrennkammer gebildet aus Segmentbauteilen gemäß der Ausführungsform nach Fig. 2;
    Fig. 4
    eine Draufsicht auf eine weitere Ausführungsform eines Segmentbauteils mit zwei Brennkammerwänden,
    Fig.5
    eine weitere Ausführungsform eines Segmentbauteils mit einer Brennkammerwand;
    Fig. 6A
    eine perspektivische Ansicht einer ersten Stufe des Aufbaus einer Ringraumstruktur;
    Fig. 6B
    eine perspektivische Ansicht einer zweiten Stufe des Aufbaus einer Ringraumstruktur.
  • In Fig. 1 ist in einer perspektivischen Ansicht eine Ringbrennkammer mit einem Ringraum 30 dargestellt, wie sie z.B. in einem Flugzeugtriebwerk verwendet werden.
  • Der Ringraum 30 ist in Hauptströmungsrichtung des Flugzeugtriebwerks hinter dem hier nicht dargestellten Kompressor und dem Einlaufbereich einer Turbine 40 angeordnet. In der Darstellung der Fig. 1 sind zwei Injektoren 25 sichtbar, aus denen im Betrieb Brennstoffflammen 20 (hier nicht dargestellt) entlang von Brennerachsen 21 austreten. Die Brennerachsen 21 und damit auch die Brennstoffflammen 20 liegen somit zwischen der inneren Brennkammerwand 11 und der äußeren Brennkammerwand 12. Dieser Ringraum 30 wird auch als Flammrohr bezeichnet. Die Brennkammerwände 11, 12 schirmen damit die Brennstoffflammen 20 nach innen und nach außen gegenüber der Umgebung ab.
  • Der Abstand zwischen den Brennkammerwänden 11, 12, die Ringraumhöhe HR (auch als Flammraumhöhe bezeichnet) variiert zwar in axialer Richtung des Flugzeugtriebwerks, ist aber entlang des Umfangs der Ringbrennkammer 10 konstant.
  • Die im Folgenden anhand verschiedener Ausführungsformen beschriebene Erfindung betrifft u.a. Ringbrennkammern, bei denen entlang des Umfangs die Ringbrennkammerhöhe HR nicht-konstant ist.
  • Eine solche Ringbrennkammer ist z.B. aus mindestens zwei Segmentbauteilen 10 aus Hochtemperaturgussmaterial zusammengesetzt. Im Fall von zwei Segmentbauteilen würde jedes der Segmentbauteile 10 z.B. 180° des Ringraums 30 bereitstellen.
  • In Fig. 2 ist ein Segmentbauteil 10 dargestellt, das einen deutlich kleineren Winkelbereich abdeckt, nämlich 30°, wie in der Ansicht der Fig. 2A besonders deutlich zu erkennen ist.
  • Eine Ringbrennkammer, aus solchen Segmentbauteilen 10 zusammengesetzt, weist daher 12 dieser Segmentbauteile 10 auf. Grundsätzlich ist es möglich, die Segmentbauteile 10 geometrisch anders zu gestalten, so dass weniger oder mehr als 12 Segmentbauteile 10 verwendet werden. Auch ist es nicht zwingend, dass eine gerade Anzahl von Segmentbauteilen 10 verwendet wird, um einen Ringraum 30 zu bilden.
  • In Fig. 2 ist eine Ausführungsform eines Segmentbauteils 10 dargestellt, bei dem Teile die innere Brennkammerwand 11 und die äußere Brennkammerwand 12 bilden, wenn die Segmentbauteile 10 zusammengesetzt sind (siehe Fig. 5). Am Brennkammerkopf 22 ist eine Öffnung 24 für den hier nicht dargestellten Injektor 25 vorgesehen. Die mit dem Injektor 25 erzeugte Brennstoffflamme 20 (hier nicht dargestellt) erstreckt sich entlang der Brennerachse 21 in den Ringraum 30 hinein in Richtung des Einlaufbereichs der Turbine 40 (hier nicht dargestellt, siehe Fig. 1).
  • Diese Ausführungsform des Segmentbauteils 10 ist einteilig aus einem Hochtemperaturgussmaterial hergestellt. Dazu kann vorteilhafterweise eine Superlegierung verwendet werden, die Nickel, Chrom, Kobalt und / oder Nickel-Eisen enthält. Typische Hochtemperaturgusslegierungen sind insbesondere Inconel 738/ Inconel 738 LC, Inconel 939 / Inconel 939 LC, Inconel 713 / Inconel 713 LC, C1023, Mar M 002 und / oder CM 274LC. Die Gussverfahren (z.B. Feinguss) erlauben, Segmentbauteile 10 mit sehr dünnen Wandungen und in sehr komplexen Formen herzustellen.
  • So ist es z.B. vorteilhaft, wenn die Brennkammerwände 11, 12 eine mittlere Dicke zwischen 1 und 4 mm aufweisen. Die Wandung des Brennkammerkopfes 23 kann zwischen 2 und 4 mm betragen. In der Formgebung ist es z.B. möglich, Stutzen 15 für Luftkühlung beim Gießen mit anzuformen. Auch können Befestigungsflansche 23 am Brennkammerkopf 22 einstückig mitgegossen werden. Grundsätzlich sind die Möglichkeiten der Formgebung nicht auf die dargestellten Merkmale beschränkt.
  • Die Brennkammerwände 11, 12 dieser Ausführungsform sind in einer besonderen Weise konturiert. Die innere Brennkammerwand 11 weist eine Ausbuchtung 13 auf, die in der hier gewählten Darstellung nach unten zeigt. Die Ausbuchtung 13 weist somit von der Brennerachse 21 weg. Die äußere Brennkammerwand 12 weist eine in etwas gleich geformte Ausbuchtung 14 nach oben auf. Die Ausbuchtung 14 weist somit ebenfalls von der Brennerachse 21 weg.
  • Die Ausbuchtungen 13, 14 sind dabei so angeordnet, dass sie in etwa der Kontur der Brennstoffflamme 20 entsprechen, wenn die Ringbrennkammer im Betrieb ist.
  • Diese Zusammenhänge sind schematisch in den Fig. 2B, C dargestellt, wobei Fig. 2B einen Längsschnitt durch den Ringraum 30 dargestellt; Fig. 2C zeigt eine Schnittansicht senkrecht dazu. In der Schnittansicht der Fig. 2B ist schematisch die Brennstoffflamme 20 dargestellt, die sich vom Injektor 25 in den Ringraum 30 über eine Länge LB erstreckt. Die Länge des gesamten Ringraums wird mit L bezeichnet. Es ist vorteilhaft, wenn für die Länge LB der Brennstoffflamme 20 gilt: LB = 0,5 - 0,9 L. Dies bedeutet, dass sich die Brennstoffflamme 20 über 50 bis 90% der axialen Erstreckung des Ringraums erstreckt.
  • Die Ausbuchtung 13 an der inneren Brennkammerwand 11 und die Ausbuchtung 14 an der äußeren Brennkammerwand 12 reichen in axialer Richtung in etwa soweit, wie die Brennstoffflame 20 sich in den Ringraum erstreckt.
  • In vorteilhaften Ausführungsformen beträgt die axiale Erstreckung der Ausbuchtungen, 13, 14 ca. 50 bis 90% der gesamten axialen Erstreckung des Ringraums. Ferner ist es vorteilhaft, wenn die Breite BB der Ausbuchungen 13, 14 ca. 30 bis 60% der Breite B eines Segmentbauteils 10 beträgt, wobei die Breite B der Ausbuchtung an der Innenseite kleiner ist als an der Außenseite.
  • In Fig. 2C ist die zur Ansicht der Fig. 2B senkrechte Schnittansicht dargestellt, bei der ebenfalls erkennbar ist, dass die Ausbuchtungen 13, 14 in etwa der Kontur der Brennstoffflamme angepasst sind.
  • In Fig. 2C ist ein Bereich A eingezeichnet, in dem die Ringraumhöhe HRA durch die Ausbuchrungen 13, 14 vergrößert ist und ein Bereich B, in dem die Ringraumhöhe HRB verkleinert ist.
  • Eine Bogenlänge U des Segmentbauteils 10 setzt sich somit aus A + 2B zusammen. Es ist vorteilhaft, wenn der Anteil des Bereiches A 50 bis 80% der Bogenlänge U und der Anteil des Bereichs B 20 bis 50% der Bogenlänge U ausmacht.
  • Ferner sind in Fig. 2C die üblichen Radien der Brennkammerwände eingezeichnet, nämlich Ri und Ra, wobei erkennbar ist, dass Ausbuchtungen 13, 14 teilweise außerhalb von Ra oder innerhalb von Ri liegen. Die übliche Ringraumhöhe Hkonv entspricht somit Ra - Ri.
  • Vorteilhafte Ausgestaltungen weisen Ausbuchtungen 13, 14 auf, für die gilt: HRA = 1,1 - 1,5 Hkonv. Dies bedeutet, dass die Höhe des Brennraumes im Bereich der Ausbuchtungen 13, 14 zwischen 10 und 50% gegenüber der konventionellen Bauart erweitert wird.
  • Es ist auch vorteilhaft, wenn im Bereich B, d. h. Bereichen ohne Ausbuchrungen 13, 14 gilt: HRA = 0,7 - 0,9 Hkonv. Dies bedeutet, dass die Höhe des Brennraumes im Bereich außerhalb der Ausbuchtungen 13, 14 70 bis 90% der üblichen Höhe beträgt.
  • Werden nun mehrere dieser Segmentbauteile 10 miteinander verbunden, so wird eine Ringbrennkammer gebildet, deren Ringraumhöhe HR in Umfangsrichtung variabel ist. Segmentbauteile 10 werden z.B. durch Laser oder Elektronenstrahlschweißen miteinander verbunden, wobei die eingebrachte Streckenenergie minimiert wird. Es kann ein geeigneter, duktiler Filler beim Schweißen verwendet (IN625 oder Polymet 972) werden.
  • Eine dermaßen zusammengesetzte Rinnbrennkammer ist in Fig. 3 dargestellt. Aus Gründen der Übersichtlichkeit werden hier nur sechs Segmentbauteile 10 verwendet, um einen Ringraum 30 zu bilden. Bereiche A einer größeren Ringraumhöhe HRA wechseln sich mit Bereichen B einer geringeren Ringraumhöhe HRB entlang des Umfanges ab, so dass die Brennkammerwände 11, 12 eine Art wellenartige Struktur ausbilden.
  • Die Brennstoffflammen 20 (hier nicht dargestellt) liegen dabei jeweils in den erweiterten Bereichen A. Zwischen den Brennstoffflammen 20 liegen verengte Bereiche B. Dies führt dazu, dass jede Brennstoffflamme 20 gewissermaßen in einem eigenen Brennraum brennen kann. Störungen in einem Bereich des Ringraums 30 können sich auf Grund der Verengungen in den Bereichen B schwerer im ganzen Ringraum 30 ausbreiten.
  • Auch kann in den Bereichen B zwischen den Injektoren 25 Luft mit weniger starker Umlenkung vom Verdichter zur Turbine 40 geführt werden, wodurch der Druckverlust auf diesem Strömungspfad sinkt.
  • Die beschriebene Ausführungsform hat aber auch außerhalb des Ringraums 30 vorteilhafte Wirkungen, da auch die Turbinenkühlluft K, die außerhalb des Ringraums geführt wird, durch die Konturierung der Brennkammerwände 11, 12 beeinflusst wird.
  • Dabei wird der Druckverlust bei der Überführung der Turbinenkühlluft K vom Verdichteraustritt an der Brennkammer vorbei zum Eintritt in das Kühlsystem durch die Strömungsführung auf diesem Weg bestimmt. Muss die Turbinenkühlluft K wiederholt (insbesondere radial) umgelenkt und beschleunigt (und dann wieder verzögert) werden, dann erhöht sich der Druckverlust. In der Brennerachse 21 strömt nur wenig Turbinenkühlluft K an dem Brenner und Mischluftloch vorbei in Richtung Turbine, daher ist der Druckverlust dort nicht so ausschlaggebend.
  • Zwischen den Brennern ist bei der vorliegenden Ausführungsform der Brennkammerkopf 22 so gestaltet, dass die Turbinenkühlluft K nicht erst stark radial nach außen und innen umgelenkt wird. Dies sind die Bereiche B zwischen den Ausbuchtungen 13, 14, aber an den jeweiligen Außenseiten des Ringraums 30. Nach der radialen Ablenkung erfolgt dann eine Umlenkung in axialer Richtung. Somit erfolgt im Bereich B eine kleine Umlenkung in die viel tieferen Annuli um die an dieser Stelle schmalere Brennkammer. Der Strom der Turbinenkühlluft K ist in Fig. 3 schematisch dargestellt.
  • Bei entsprechender Strömungsführung entstehen so weniger Druckverluste. Der Druckverlust wird durch die Einbuchtung zwischen den Brennern vermindert. Durch die tieferen Annuli hat die Turbinenkühlluft K auch im Vergleich zur üblichen Spaltströmung weniger Kontakt zur heißen Brennkammerwand und wird somit kälter bei der Turbine angeliefert, was der Kühlwirkung in der Turbine zugute kommt.
  • Ingesamt kann der Gesamtdruckverlust verringert werden, was den Brennstoffbedarf senkt. Außerdem fließt weniger Luft zwischen den Injektoren 25 in den Bereich des Brennkammerkopfes 22 als an der Position der Injektoren 25, so dass an diesen Umfangspositionen hinreichend Luft zur Überleitung in die Turbine 40 zur Verfügung steht.
  • Des Weiteren führen die Ausbuchtungen 13, 14 dazu, dass sich in den Brennkammerwänden 11, 12 eine gleichmäßigere Temperaturverteilung in Umfangsrichtung ausbildet, was einen positiven Einfluss auf die Lebensdauer der Ringbrennkammer hat. In den Bereichen A, in denen die Brennstoffflame 20 liegt, ist die Brennkammerwand 11, 12, auf Grund der Ausbuchtungen 13, 14 relativ weit von der Brennstoffflamme 20 entfernt. In den Bereichen B, zwischen den Brennstoffflammen 20, liegen die Brennkammerwände 11, 12 dichter beieinander, da die Ringraumhöhe HR hier geringer ist. Ohne die Ausbuchtungen 13, 14 wären die Wandungsbereiche der Brennkammerwände 11, 12, die der Brennstoffflamme 20 am nächsten sind, heißer als andere Bereiche. Aus diesen Gründen muss im Bereich A nicht so viel Kühlluft verwendet werden. Die so eingesparte Kühlluft steht für Maßnahmen zur Verminderung der Abgasemissionen zur Verfügung.
  • Wie in Fig. 3 erkennbar, weisen die innere Brennkammerwand 11 und die äußere Brennkammerwand 12 eine wellige Struktur auf, wenn sie aus Segmentbauteilen 10 z.B. gemäß Fig. 2 zusammengesetzt sind. Diese wellige Struktur ermöglicht einen leichteren Ausgleich von thermischen und / oder mechanischen Spannungen in den Brennkammerwänden 11, 12 als dies bei Ringräumen mit kreisförmigen Querschnitten in Umfangsrichtung möglich wäre.
  • Wenn es notwendig erscheint (z.B. bei größeren Flugzeugtriebwerken), können die Segmentbauteile 10 mit einer Wärmedämmschicht versehen werden.
  • Wenn ein duktiler Schweißzusatz verwendet wird, muss im Fall nachträglichen Laserbohrens an der Ringbrennkammer nicht auf die Positionen der Längsschweißnähte zwischen den Segmentbauteilen 10 Rücksicht genommen werden.
  • In Fig. 4 ist eine weitere Ausführungsform eines Segmentbauteils 10 dargestellt. Grundsätzlich hat es die gleichen Funktionen und Eigenschaften wie das zuvor beschriebene Segmentbauteil 10, so dass auf die entsprechende Beschreibung Bezug genommen werden kann.
  • Im Gegensatz zu den im Wesentlichen rechteckigen Ausbuchtungen 13, 14 bei der Ausführungsform gemäß Fig. 2 sind hier die Ausbuchtungen 14 in Form der
  • Brennstoffflamme 20 vom Brennkammerkopf 23 in Richtung zur Turbine 40 (hier nicht dargestellt) angeordnet. Die Ausbuchtung 13 weist in der Nähe des Brennkammerkopfes 23 eine eher kleine Breite auf, die sich stetig aufweitet, um dann wieder kleiner zu werden.
  • Grundsätzlich sind mit dem Gussverfahren auch andere Formen für Ausbuchtungen möglich, die einem bestimmten Einsatzzweck angepasst werden können. Gerade durch die Verwendung der oben genannten Materialien und dem Gussverfahren ist es möglich, die Ausbuchtungen 13, 14 gezielt zu formen.
  • In den Fig. 2, 3 und 4 waren Ausführungsformen dargestellt, bei denen sich zwei Brennkammerwände 11, 12 gegenüberliegen. Diese Segmentbauteile 10 weisen somit eine im Wesentlichen U-förmige Form auf, da die Brennkammerwände 11, 12 über den einstückig mit ihnen gegossenen Brennkammerkopf 23 verbunden sind.
  • Grundsätzlich ist es aber auch möglich, dass ein Segmentbauteil 10 nur einen äußeren oder inneren Teil der Ringbrennkammer aufweist. In Fig. 5 ist eine Ausführungsform eines Segmentbauteils 10 dargestellt, das nur eine äußere Brennkammerwand 12 aufweist. Wie die zuvor beschriebenen Ausführungsformen weist auch dieses Segmentbauteil 10 eine Ausbuchtung 14 auf, die von der Brennerachse 21 wegweist. Um die Verwendung dieses Segmentbauteils 10 zu verdeutlichen, sind in Fig. 5 gestrichelt die Brennstoffflamme 20 und die Brennerachse 21 eingezeichnet.
  • Auch mit dieser Ausführungsform und einem entsprechenden Segmentbauteil 10 für die innere Brennkammerwand 11 lässt sich eine Ringbrennkammer aufbauen, wie dies in Fig. 6A, B dargestellt ist.
  • Dazu werden mindestens zwei Segmentbauteile 10' zu einer inneren Vollringstruktur 31 verbunden, insbesondere verschweißt. Ferner werden zwei Segmentbauteile 10" zu einer äußeren Vollringstruktur 32 verbunden, insbesondere verschweißt. In Fig. 6A sind die beiden Vollringstrukturen 31, 32 dargestellt, die jeweils aus Gründen der Einfachheit nur sechs Segmentbauteile 10 aufweisen. Anschließend werden die innere Vollringstruktur 31 und die äußere Vollringstruktur 32 mit einer Brennkammerkopfstruktur 43 verbunden, wie dies in Fig. 6B dargestellt ist.
  • Bezugszeichenliste
  • 10
    Segmentbauteil
    11
    innere Brennkammerwand
    12
    äußere Brennkammerwand
    13
    Ausbuchtung innerer Brennkammerwand
    14
    Ausbuchtung äußerer Brennkammerwand
    15
    Stutzen für Kühlluft
    20
    Brennstoffflamme
    21
    Brennerachse
    22
    Brennkammerkopf
    23
    Befestigungsflansch
    24
    Vorrichtung zur Anordnung eines Brenners
    25
    Injektor für Brennstoff
    30
    Ringraum
    31
    innere Vollringstruktur
    32
    äußere Vollringstruktur
    40
    Einlaufbereich Turbine
    K
    Turbinenkühlluft
    HRA
    Bereich größerer Ringraumhöhe
    HRB
    Bereich kleinerer Ringraumhöhe
    HR
    Ringraumhöhe
    Hkonv
    übliche Ringraumhöhe
    Ri
    Radius der inneren Brennkammerwand
    Ra
    Radius der äußeren Brennkammerwand
    B
    Breite Segmentbauteil
    BB
    Breite Ausbuchtung
    LB
    Länge Brennstoffflamme
    L
    Länge Brennstoffkammer
    U
    Bogenlänge eines Segmentbauteils

Claims (15)

  1. Segmentbauteil aus Hochtemperaturgussmaterial für eine Ringbrennkammer eines Flugzeugtriebwerkes,
    gekennzeichnet durch
    eine Brennkammerwand (11, 12), die im Betrieb eine sich entlang einer Brennerachse (21) erstreckende Brennstoffflamme (20) gegenüber der Umgebung abschirmt, wobei die Brennkammerwand (11, 12) eine Ausbuchtung (13, 14) in eine Richtung aufweist, die von der Brennerachse (21) wegzeigt.
  2. Segmentbauteil nach Anspruch 1, gekennzeichnet durch eine innere Brennkammerwand (11) und eine äußere Brennkammerwand (12), zwischen denen im Betrieb eine Brennstoffflamme (20) entlang einer Brennerachse (21) angeordnet ist, wobei die innere und / oder äußere Brennkammerwand (11, 12) eine Ausbuchtung (13, 14) in die Richtung aufweist, die von der Brennerachse (21) wegzeigt.
  3. Segmentbauteil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die mindestens eine Ausbuchtung (13, 14) der Brennkammerwand (11, 12) im Wesentlichen an die Kontur der Brennstoffflamme (20) im Betrieb angepasst ist, insbesondere dass die Brennkammerwand (11, 12) eine Ausbuchtung (13, 14) aufweist, deren Länge (LB) und / oder Breite (BB) im Wesentlichen der Länge und / oder Breite der Brennstoffflamme (20) im Betrieb entspricht.
  4. Segmentbauteil nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Hochtemperaturgussmaterial eine Superlegierung enthaltend Nickel, Chrom, Kobalt und / oder Nickel-Eisen ist, Inconel 738/ Inconel 738 LC, Inconel 939 / Inconel 939 LC, Inconel 713 / Inconel 713 LC, C1023, Mar M 002 und / oder CM 274LC.
  5. Segmentbauteil nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die innere Brennkammerwand (11) und die äußere Brennkammerwand (12) einteilig als Gussteil über einen Brennkammerkopf (12) miteinander verbunden sind oder die innere Brennkammerwand (11) und äußere Brennkammerwand (12) mit einem Brennkammerkopf (13) verbunden sind.
  6. Segmentbauteil nach Anspruch 5, dadurch gekennzeichnet, dass am Brennkammerkopf (22) mindestens ein Befestigungsflansch (23) angeordnet ist und / oder am Brennkammerkopf (13) eine Vorrichtung (24) zur Anordnung eines Injektors (25) vorgesehen ist.
  7. Segmentbauteil nach mindestens einem der vorhergehenden Ansprüche, gekennzeichnet durch mindestens einen einstückig an eine Brennkammerwand (11, 12) angeformten Stutzen (15) für Kühlluft.
  8. Segmentbauteil nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Brennkammerwand (11, 12) eine mittlere Dicke zwischen 1 und 4 mm, insbesondere 1,4 bis 3 mm, aufweist.
  9. Ringbrennkammer für ein Flugzeugtriebwerk mit mindestens zwei Segmentbauteilen (10) nach mindestens einem der Ansprüche 1 bis 8.
  10. Ringbrennkammer nach Anspruch 9, gekennzeichnet durch h eine entlang des Umfangs des Ringraums (30) variable Ringraumhöhe (HR), insbesondere dass sich Bereiche (A) einer größeren Ringraumhöhe (HRA) sich mit Bereichen (B) einer geringeren Ringraumhöhe (HRB) entlang des Umfanges abwechseln, so dass die Brennkammerwände (11, 12) eine Art wellenartige Struktur ausbilden
  11. Ringbrennkammer nach Anspruch 9 oder 10, gekennzeichnet durch Bereiche mit einer größeren Ringraumhöhe (HRA) und Bereiche mit einer kleineren Ringraumhöhe (HRB), wobei im Zusammenbau Injektoren (25) für den Brennstoff in den Bereichen mit der größeren Ringraumhöhe (HRA) angeordnet sind.
  12. Ringbrennkammer nach mindestens einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Segmentbauteile (10) untereinander durch Schweißnähte, insbesondere durch Elektronenstrahlschweißen, Laserschweißnähte mit IN626 Filler, Polymet 972 oder anderen duktile Schweißzusätze verbunden sind.
  13. Flugzeugtriebwerk mit einer Ringbrennkammer nach den Ansprüchen 9 bis 12.
  14. Verfahren zur Herstellung einer Ringbrennkammer nach mindestens einem der Ansprüche 9 bis 12,
    dadurch gekennzeichnet, dass
    a) mindestens zwei Segmentbauteile (10) mit einer inneren Brennkammerwand (11), einer äußeren Brennkammerwand (12) und einem Brennkammerkopf (13) aus Hochtemperaturgussmaterial gegossen werden, und anschließend die
    b) mindestens zwei Segmentbauteile (10) durch Fügen, insbesondere Schweißen zur Ringbrennkammer (10) verbunden werden.
  15. Verfahren zur Herstellung einer Ringbrennkammer nach mindestens einem der Ansprüche 9 bis 12,
    dadurch gekennzeichnet, dass
    a) mindestens zwei Segmentbauteile (10') zu einer inneren Vollringstruktur (31) verbunden, insbesondere verschweißt werden,
    b) mindestens zwei Segmentbauteile (10") zu einer äußeren Vollringstruktur (32) verbunden , insbesondere verschweißt werden,
    c) die innere Vollringstruktur (31) und die äußere Vollringstruktur (32) mit einer Brennkammerkopfstruktur (43) verbunden werden.
EP12169511.8A 2011-05-25 2012-05-25 Segmentbauteil aus Hochtemperaturgussmaterial für eine Ringbrennkammer, Ringbrennkammer für ein Flugzeugtriebwerk, Flugzeugtriebwerk und Verfahren zur Herstellung einer Ringbrennkammer Not-in-force EP2527743B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011076473A DE102011076473A1 (de) 2011-05-25 2011-05-25 Segmentbauteil aus Hochtemperaturgussmaterial für eine Ringbrennkammer, Ringbrennkammer für ein Flugzeugtriebwerk, Flugzeugtriebwerk und Verfahren zur Herstellung einer Ringbrennkammer

Publications (3)

Publication Number Publication Date
EP2527743A2 true EP2527743A2 (de) 2012-11-28
EP2527743A3 EP2527743A3 (de) 2015-01-21
EP2527743B1 EP2527743B1 (de) 2016-09-28

Family

ID=46148713

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12169511.8A Not-in-force EP2527743B1 (de) 2011-05-25 2012-05-25 Segmentbauteil aus Hochtemperaturgussmaterial für eine Ringbrennkammer, Ringbrennkammer für ein Flugzeugtriebwerk, Flugzeugtriebwerk und Verfahren zur Herstellung einer Ringbrennkammer

Country Status (3)

Country Link
US (1) US8646279B2 (de)
EP (1) EP2527743B1 (de)
DE (1) DE102011076473A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013222863A1 (de) 2013-11-11 2015-05-13 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammer sowie Verfahren zu deren Herstellung
DE102014204468A1 (de) * 2014-03-11 2015-10-01 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammer sowie Verfahren zu deren Herstellung
DE102016201452A1 (de) * 2016-02-01 2017-08-03 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammer mit Wandkonturierung
CN111059575B (zh) * 2018-10-16 2022-05-10 中发天信(北京)航空发动机科技股份有限公司 涡喷发动机火焰筒外壳
US20200318549A1 (en) * 2019-04-04 2020-10-08 United Technologies Corporation Non-axisymmetric combustor for improved durability
GB202019219D0 (en) * 2020-12-07 2021-01-20 Rolls Royce Plc Lean burn combustor
GB202019222D0 (en) 2020-12-07 2021-01-20 Rolls Royce Plc Lean burn combustor
US11940151B2 (en) 2022-01-12 2024-03-26 General Electric Company Combustor with baffle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1106927A1 (de) 1999-12-09 2001-06-13 Rolls-Royce Deutschland Ltd & Co KG Verfahren zum Herstellen einer Brennkammer eines Gasturbinen-Triebwerks

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB741836A (en) * 1953-03-05 1955-12-14 Lucas Industries Ltd Combustion chambers for jet-propulsion engines, gas turbines or other prime movers
CA2056592A1 (en) * 1990-12-21 1992-06-22 Phillip D. Napoli Multi-hole film cooled combustor liner with slotted film starter
US5964091A (en) * 1995-07-11 1999-10-12 Hitachi, Ltd. Gas turbine combustor and gas turbine
EP1312865A1 (de) 2001-11-15 2003-05-21 Siemens Aktiengesellschaft Ringbrennkammer für eine Gasturbine
ES2307702T3 (es) * 2002-11-22 2008-12-01 Siemens Aktiengesellschaft Camara de combustion para la combustion de una mezcla combutible de fluidos.
EP1482246A1 (de) * 2003-05-30 2004-12-01 Siemens Aktiengesellschaft Brennkammer
US20050227106A1 (en) * 2004-04-08 2005-10-13 Schlichting Kevin W Single crystal combustor panels having controlled crystallographic orientation
GB2420614B (en) * 2004-11-30 2009-06-03 Alstom Technology Ltd Tile and exo-skeleton tile structure
US7325587B2 (en) * 2005-08-30 2008-02-05 United Technologies Corporation Method for casting cooling holes
US7540156B2 (en) * 2005-11-21 2009-06-02 General Electric Company Combustion liner for gas turbine formed of cast nickel-based superalloy
EP2100687A1 (de) * 2008-02-29 2009-09-16 Siemens Aktiengesellschaft Potentialfreie Drahterwärmung beim Schweissen und Vorrichtung dafür

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1106927A1 (de) 1999-12-09 2001-06-13 Rolls-Royce Deutschland Ltd & Co KG Verfahren zum Herstellen einer Brennkammer eines Gasturbinen-Triebwerks

Also Published As

Publication number Publication date
EP2527743A3 (de) 2015-01-21
DE102011076473A1 (de) 2012-11-29
US20120304658A1 (en) 2012-12-06
US8646279B2 (en) 2014-02-11
EP2527743B1 (de) 2016-09-28

Similar Documents

Publication Publication Date Title
EP2527743B1 (de) Segmentbauteil aus Hochtemperaturgussmaterial für eine Ringbrennkammer, Ringbrennkammer für ein Flugzeugtriebwerk, Flugzeugtriebwerk und Verfahren zur Herstellung einer Ringbrennkammer
DE60024958T2 (de) Gasturbinenbrennstoffeinspritzdüse und Montageverfahren
EP2738470B1 (de) Schindelbefestigungsanordnung einer Gasturbinenbrennkammer
DE102012100368B4 (de) Brennkammerdüse
EP2927594B1 (de) Brennkammer einer Gasturbine
EP2189720A1 (de) Brenneranordnung
CH701774B1 (de) Monolithischer Brennstoffeinspritzkopf und zugehöriges Herstellungsverfahren.
EP2921778A1 (de) Brennkammer einer Gasturbine
EP2230458A1 (de) Brenneranordnung für fluidische Brennstoffe und Verfahren zum Herstellen der Brenneranordnung
WO2010108983A1 (de) Dichtplatte und laufschaufelsystem
EP3143335B1 (de) Brenner für eine verbrennungsmaschine und verbrennungsmaschine
EP4065891A1 (de) Resonatorring für brennkammersysteme
EP2725203B1 (de) Kühlluftführung in einer Gehäusestruktur einer Strömungsmaschine
EP2871418B1 (de) Gasturbinenbrennkammer sowie Verfahren zu deren Herstellung
EP2271876B1 (de) Brenneranordnung für fluidische brennstoffe und verfahren zum herstellen einer brenneranordnung
EP2362142A1 (de) Brenneranordnung
EP3034944A1 (de) Gasturbinenbrennkammer mit veränderter wandstärke
EP2449310B1 (de) Brenner insbesondere für gasturbinen
EP3921576B1 (de) Resonator, verfahren zur herstellung eines solchen sowie mit einem solchen versehene brenneranordnung
EP1423647B1 (de) Brennkammeranordnung
EP2864705B1 (de) Brennkammerkühlung
EP3689500A1 (de) Bauteil, insbesondere für eine thermische strömungsmaschine, und verfahren zum herstellen eines derartigen bauteils
EP2215405B1 (de) Maschinenkomponente und gasturbine
DE102004034868B4 (de) Brenner für ein Heizgerät
EP2201300B1 (de) Brenner für eine Strömungsmaschine und eine Strömungsmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F23R 3/50 20060101AFI20141215BHEP

17P Request for examination filed

Effective date: 20150626

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 833108

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012008342

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161229

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012008342

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

26N No opposition filed

Effective date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170525

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170525

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 833108

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200528

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210526

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210729

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012008342

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201