EP2523780B1 - Hammer drill and/or impact hammer having cooling of equipment components - Google Patents

Hammer drill and/or impact hammer having cooling of equipment components Download PDF

Info

Publication number
EP2523780B1
EP2523780B1 EP11700320.2A EP11700320A EP2523780B1 EP 2523780 B1 EP2523780 B1 EP 2523780B1 EP 11700320 A EP11700320 A EP 11700320A EP 2523780 B1 EP2523780 B1 EP 2523780B1
Authority
EP
European Patent Office
Prior art keywords
cooling air
air flow
duct
hammer
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11700320.2A
Other languages
German (de)
French (fr)
Other versions
EP2523780A1 (en
Inventor
Michael Fischer
Otto W. Stenzel
Wolfgang Hausler
Rudolf Berger
Christian Littek
Helmut Braun
Manfred Zinsmeister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Neuson Produktion GmbH and Co KG
Original Assignee
Wacker Neuson Produktion GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Neuson Produktion GmbH and Co KG filed Critical Wacker Neuson Produktion GmbH and Co KG
Publication of EP2523780A1 publication Critical patent/EP2523780A1/en
Application granted granted Critical
Publication of EP2523780B1 publication Critical patent/EP2523780B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/20Devices for cleaning or cooling tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/06Means for driving the impulse member
    • B25D9/10Means for driving the impulse member comprising a built-in internal-combustion engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2211/00Details of portable percussive tools with electromotor or other motor drive
    • B25D2211/06Means for driving the impulse member
    • B25D2211/068Crank-actuated impulse-driving mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2217/00Details of, or accessories for, portable power-driven percussive tools
    • B25D2217/0057Details related to cleaning or cooling the tool or workpiece
    • B25D2217/0061Details related to cleaning or cooling the tool or workpiece related to cooling

Definitions

  • the invention relates to a hammer drill and / or impact hammer with an internal combustion engine.
  • hammers - Hammer drills and / or percussion hammers with internal combustion engines - hereinafter also referred to briefly as hammers - are known in particular as relatively heavy breakers with which work is carried out essentially vertically downwards.
  • a cooling air blower driven via the crankshaft of the internal combustion engine is provided for cooling the engine.
  • the cooling air fan generates a cooling air flow which is guided along the outside of the cylinder of the internal combustion engine, in particular along the cooling fins provided on the outside of the cylinder.
  • the engine cooling exhaust air discharged from the engine is usually very hot and must therefore be led away from the hammer in the shortest possible way.
  • the striking mechanism which is provided for generating the working movement of the hammer and is driven by the internal combustion engine, can also heat up considerably, in particular if it is an air spring hammer mechanism, due to the air compression. To cool the striking mechanism, it is therefore known to provide an additional fan wheel, which generates a separate cooling air flow for the striking mechanism. Corresponding installation space must be provided for this additional fan wheel and design effort must be carried out.
  • a rock drilling machine in which a cooling air flow is generated by a cooling air blower.
  • the cooling air flow is guided over ribs on the outer wall of an engine cylinder and subsequently emerges on the underside of the hood forming the cooling air channel.
  • a hammer with a cooling air blower which generates a cooling air flow.
  • the cooling air flow is led through a cladding to the outer wall of the cylinder of an internal combustion engine, the cross section of the cooling air channel tapering in the direction of flow.
  • the invention has for its object to provide a hammer drill and / or percussion hammer, in which an improved cooling of the components is possible.
  • the object is achieved by a hammer drill and / or percussion hammer according to claim 1.
  • a hammer drill and / or percussion hammer has an internal combustion engine with a cylinder and a piston movable in the cylinder, a cooling air blower for generating a cooling air flow and a cooling air duct for guiding the cooling air flow from the cooling air blower to an outer wall of the cylinder.
  • the cooling air duct Downstream from the outer wall of the cylinder, the cooling air duct has a duct region in which a plurality of partial cooling air flows are branched off from the cooling air flow (main cooling air flow).
  • the channel area is designed such that the cross section of the channel area related to a flow direction of the cooling air flow tapers to the extent that partial cooling air flows are branched off from the cooling air flow, so that the flow rate of the cooling air flow in the channel area remains essentially constant.
  • the cooling air duct is to define the entire length of the cooling air flow from the cooling air blower to the outlet from the hammer, the duct region only indicates a partial region of the cooling air duct.
  • the channel area is of particular importance for the following consideration.
  • the cooling air duct in the area in which the cylinder or the outer wall of the cylinder is to be cooled is thus designed in such a way that the flow rate of the cooling air flow (main cooling air flow) remains constant even when partial cooling air flows have already been branched off.
  • the cross section of the duct area is kept essentially constant, so that the flow rate of the cooling air is gradually reduced when partial cooling air flows are branched off.
  • the engine cooling air can be blown through the engine with a comparatively lower flow resistance. This increases the volume flow and thus reduces the temperature of the cooling air.
  • the engine only emits the amount of heat it needs to the cooling air, which also means that the cooling air does not heat up as much.
  • the prior art usually strives for a cooling air distribution in which as much heat as possible is extracted from the engine, but this is often not necessary.
  • a plurality of cooling fins running parallel to one another can be formed on the outer wall of the cylinder, a partial channel being formed in each case between two mutually adjacent cooling fins for guiding a partial cooling air flow, the partial cooling air flow being branched off from the cooling air flow brought up by the cooling air blower.
  • the cooling fins are provided on the outer wall of the cylinder in a known manner and are usually cast in one piece with the cylinder housing or subsequently attached as cooling elements on the outer wall of the cylinder.
  • One of the subchannels into which a respective partial cooling air flow is introduced is formed between the adjacent cooling fins.
  • the respective partial cooling air flows are gradually branched off from the main cooling air flow when the main cooling air flow passes the cooling fins of the cylinder becomes.
  • the channel area can be guided upstream of the cooling fins past the cooling fins and thus past the subchannels or the initial areas of the subchannels.
  • the duct area can be designed in such a way that the cross section of the duct area tapers in its course along the initial areas of the respective subchannels to the extent that partial cooling air flows are branched off from the cooling air flow, so that the above requirement is met that the flow velocity of the cooling air flow in the channel area remains essentially constant.
  • the flow rates of the partial cooling air flows in the sub-channels can be essentially the same. In particular, they can also be the same as the flow rate of the remaining cooling air flow in the duct area. In this way, an equalization and optimization of the cooling air flow is achieved with the lowest possible flow resistance. An indication of an unnecessary flow resistance would be e.g. a strong change in the flow velocity in the cooling air duct.
  • a cooling air duct for guiding the cooling air flow from the cooling air blower along an outer wall of the cylinder, the cooling air duct having a duct section downstream of the outer wall of the cylinder for guiding the cooling air flow to an exhaust system of the internal combustion engine and / or to the striking mechanism.
  • cooling air which has already warmed up as it flows past the cylinder, can continue to be used to cool other hot components whose temperature during operation is above the temperature that the Has cooling air flow downstream of the cylinder.
  • These components include in particular the exhaust system of the internal combustion engine or the striking mechanism.
  • the engine cooling exhaust air is thus used to further components of the hammer, namely in particular the exhaust system, for. B. the silencer, and to cool the hammer mechanism.
  • the exhaust system and the striking mechanism in particular are subject to high thermal loads during operation of the hammer.
  • their waste heat can be problematic for the components themselves.
  • the waste heat can also lead to excessive heating of other components of the hammer, e.g. B. lead the carburetor or the tank system, which can impair reliable operation.
  • cooling air engine cooling exhaust air coming from the engine, that is to say from the outer wall of the cylinder, is still relatively cool and can therefore be used to cool the other components.
  • this engine cooling exhaust air flow divided downstream of the outer wall of the cylinder and supplied in the form of two separate cooling air flows to the exhaust system and the hammer mechanism.
  • the cooling air duct By cleverly designing the cooling air duct, it is thus possible to conduct a cooling air flow suitable for the respective device.
  • the cooling air flow either only to the exhaust system or only to the striking mechanism or to both assemblies.
  • the cooling air flow can also be directed first to the exhaust system and then to the striking mechanism.
  • the cooling air flow can also be divided into two parallel cooling air flows, which flow parallel to the exhaust system and the striking mechanism.
  • cooling air flow downstream of the outer wall of the cylinder is divided into two cooling air flows, one cooling air flow being led directly to the exhaust system and a second cooling air flow first to the striking mechanism and only then to the exhaust system.
  • the exact design of the cooling air duct and thus the routing of the cooling air flow depends on the temperature distributions in the hammer and on the desired cooling effect.
  • the cooling air duct has a first duct section downstream of the outer wall of the cylinder, for guiding the cooling air flow to the striking mechanism. Downstream of the striking mechanism, the cooling air duct has a second duct section for guiding the cooling air flow to the exhaust system. In this way, the cooling air flow is first routed to the striking mechanism and then to the exhaust system.
  • the cooling air duct is divided downstream from the outer wall of the cylinder into a first cooling air duct for a first cooling air flow and into a second cooling air duct for a second cooling air flow.
  • the first cooling air duct serves to guide the first cooling air flow to an exhaust system of the internal combustion engine, while the second cooling air duct serves to guide the second cooling air flow to the striking mechanism.
  • the hammer mechanism can be an air spring hammer mechanism and a guide housing and one of the internal combustion engine in the guide housing z.
  • the first duct section can also be designed accordingly in order to guide the cooling air flow to the outside of the guide housing.
  • the heat in the striking mechanism arises especially in the vicinity of the air compression area inside the striking mechanism if the striking mechanism is an air spring hammer mechanism known per se. This heat is emitted to the outside via the guide housing and can be dissipated by the cooling air flow. Since the temperature generated in the hammer mechanism is higher than the temperature of the engine cooling exhaust air, the engine cooling exhaust air can still be used effectively to cool the hammer mechanism.
  • the second cooling air duct can be designed such that the second cooling air flow can also be conducted downstream of the impact mechanism to the exhaust system of the internal combustion engine. It has been found that the cooling air, even if it has already cooled the engine (cylinder) and the hammer mechanism, is still at a temperature which is lower than the exhaust system of the internal combustion engine, in particular lower than the temperature of the muffler belonging to the exhaust system . For this reason, it may be advantageous to use the cooling air after cooling the striking mechanism to support the cooling of the muffler in order to improve the cooling effect.
  • the variants described above can be combined with one another as desired. It is thus possible to independently implement the division of the cooling air flow into a first cooling air flow and a second cooling air flow downstream from the outer wall of the cylinder. It is also possible to design the cooling air duct in the duct region located upstream from the outer wall of the cylinder in the manner described, so that the flow rate of the cooling air flow in this duct region remains essentially constant. However, the two variants can also be combined with one another in order to achieve particularly effective cooling.
  • FIGS. 1 to 4 show in different representations a schematic example of a hammer drill and / or percussion hammer according to the invention.
  • the hammer has an internal combustion engine 1 which drives a striking mechanism 5 via a first crank mechanism 2, a transmission 3 and a second crank mechanism 4.
  • the striking mechanism 5 in turn acts on a tool 6, in the present example a chisel.
  • the construction of such a hammer is widely known and therefore does not need to be explained in detail.
  • the internal combustion engine 1 has a cylinder 7, inside which a piston 8 is movably guided.
  • the piston 8 drives the first crank mechanism 2 via a connecting rod 9.
  • the transmission 3 and thus the second crank mechanism 4 are moved via a crankshaft 10 of the crank mechanism 2.
  • the striking mechanism 5 is designed as an air spring hammer mechanism and has a connecting rod 11 moved by the second crank mechanism 4, which moves a drive piston 12 back and forth in a guide housing 13 belonging to the striking mechanism.
  • a percussion piston 14 In the interior of the drive piston 12, a percussion piston 14 is guided, which is moved towards the end of the tool 6 and is returned via an air spring 15 formed between the drive piston 12 and the percussion piston 14.
  • the function of such a striking mechanism 5 is also known and does not need to be discussed in greater detail at this point.
  • a cooling air blower 16 with a fan wheel 17, a blower housing 18 and a cooling air inlet 19 is arranged.
  • the fan wheel 17 is driven in rotation by the crankshaft 10 and thereby sucks ambient air via the cooling air inlet 19.
  • the cooling air is then led via a cooling air duct 20 to the components of the hammer to be cooled.
  • the cooling air duct 20 leads the cooling air to an outer wall of the cylinder 7, on which numerous cooling fins 21 are arranged in a known manner.
  • the cooling air duct 20 leads the cooling air to an outer wall of the cylinder 7, on which numerous cooling fins 21 are arranged in a known manner.
  • FIG 3 For reasons of clarity, only two of the cooling fins 21 are identified by the reference number 21.
  • the outer wall of the cylinder 7 has a plurality of cooling fins 21, as well as directly Figure 3 seen.
  • respective sub-channels 22 are formed, in which the air flow from the cooling air channel 20 can be guided past the outer wall of the cylinder 7.
  • Each of these sub-channels 22 thus branches off a partial cooling air flow from the main cooling air flow in the channel region of the cooling air channel 20 located upstream from the cylinder 7.
  • the cooling air flow in the cooling air duct 20 flows from above, ie coming from the cooling air blower 16 in the downward direction, partial cooling air flows being branched off gradually via respective sub-ducts 22 in the duct region mentioned and being guided past the outer wall of the cylinder 7.
  • the cooling air duct 20 tapers to the extent that cooling air is branched off from it into the respective sub-duct 22.
  • the cross section of the cooling air duct 20 is to be reduced in such a way that the flow rate of the cooling air flow in the cooling air duct 20 provided upstream from the cylinder 7 remains constant. In Figure 3 this taper is recognizable by an obliquely extending channel cover 23.
  • the cross-sectional tapering of the cooling air duct in Figure 4 can be seen where the channel cover 23 begins at a channel inlet 24 - based on an operating position of the hammer with the working direction directed vertically downward - both in the vertical direction downward and in the horizontal direction, away from the channel inlet 24 and thus runs obliquely Cooling air duct 20 tapers.
  • the channel inlet 24 is in Figure 4 only shown in broken lines, since it is of course not visible from the outside under the channel cover 23.
  • the cooling air flow thus effected in the cooling air duct 20 and in the various sub-ducts 22 largely has a constant, identical speed, which is positive for an optimized engine cooling.
  • the cooling air can be released to the environment downstream of the internal combustion engine 1, that is to say downstream of the outer wall of the cylinder 7.
  • the cooling air coming from the engine is still used to cool components which are heated during operation of the hammer.
  • the cooling air duct 20 is divided into a first cooling air duct 26 and a second cooling air duct 27 at an outlet 25, at which the cooling air is guided away from the cooling fins 21 and the outer wall of the cylinder 7.
  • the division takes place with the aid of baffles 28 and 29.
  • the baffles 28, 29 can be suitably shaped in space in order to guide the respective cooling air flows to the areas to be cooled.
  • a first cooling air flow is led into the first cooling air duct 26 and is led to an exhaust system 30 of the internal combustion engine 1, in particular to a silencer.
  • the exhaust system 30 with the muffler becomes particularly hot when the hammer is in operation, so that the cooling air coming from the engine, although already heated, can still contribute to cooling the exhaust system 30. This also ensures in particular that the exhaust system 30 does not in turn other components of the hammer, such as. B. the fuel supply, the tank or the carburetor can heat up in an impermissible manner when the hammer is used for a long time.
  • the second cooling air duct 27 leads the second cooling air flow as cooling air to the striking mechanism 5, in particular to the outer wall of the guide housing 13 of the striking mechanism 5 and there to an area of the striking mechanism 5 in which the air spring 15 is compressed.
  • the compression of the air spring 15 causes a strong heating in the striking mechanism 5. This heat can be dissipated by the second cooling air flow introduced in the second cooling air duct 27.
  • an 80 ° C engine cooling exhaust air can still cool down the 300 ° C hot silencer without any problems.
  • cooling air duct in such a way that the cooling air, after flowing past the cylinder 7, is first led to the outer wall of the guide housing 13 and subsequently along the exhaust system 30.
  • the cooling air can also be directed exclusively to the exhaust system 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Exhaust Silencers (AREA)
  • Percussive Tools And Related Accessories (AREA)

Description

Die Erfindung betrifft einen Bohr- und/oder Schlaghammer mit einem Verbrennungsmotor.The invention relates to a hammer drill and / or impact hammer with an internal combustion engine.

Bohr- und/oder Schlaghämmer mit Verbrennungsmotor - nachfolgend auch kurz als Hammer bezeichnet - sind insbesondere als relativ schwere Aufbruchhämmer bekannt, mit denen im Wesentlichen vertikal nach unten gearbeitet wird. Bei derartigen Benzinhämmern ist ein über die Kurbelwelle des Verbrennungsmotors angetriebenes Kühlluftgebläse zur Kühlung des Motors vorgesehen. Das Kühlluftgebläse erzeugt einen Kühlluftstrom, der an der Außenseite des Zylinders des Verbrennungsmotors, insbesondere an den an der Außenseite des Zylinders vorgesehenen Kühlrippen entlang geführt wird. Die vom Motor abgeführte Motorkühlabluft ist dabei meist stark erwärmt und muss daher auf kürzestem Wege vom Hammer weggeführt werden.Hammer drills and / or percussion hammers with internal combustion engines - hereinafter also referred to briefly as hammers - are known in particular as relatively heavy breakers with which work is carried out essentially vertically downwards. In gasoline hammers of this type, a cooling air blower driven via the crankshaft of the internal combustion engine is provided for cooling the engine. The cooling air fan generates a cooling air flow which is guided along the outside of the cylinder of the internal combustion engine, in particular along the cooling fins provided on the outside of the cylinder. The engine cooling exhaust air discharged from the engine is usually very hot and must therefore be led away from the hammer in the shortest possible way.

Auch das zur Erzeugung der Arbeitsbewegung des Hammers vorgesehene, vom Verbrennungsmotor angetriebene Schlagwerk kann sich - insbesondere wenn es sich um ein Luftfederschlagwerk handelt - aufgrund der Luftkompression stark erwärmen. Zur Kühlung des Schlagwerks ist es daher bekannt, ein zusätzliches Lüfterrad vorzusehen, das einen separaten Kühlluftstrom für das Schlagwerk erzeugt. Für dieses zusätzliche Lüfterrad muss entsprechender Bauraum bereitgestellt und konstruktiver Aufwand betrieben werden.The striking mechanism, which is provided for generating the working movement of the hammer and is driven by the internal combustion engine, can also heat up considerably, in particular if it is an air spring hammer mechanism, due to the air compression. To cool the striking mechanism, it is therefore known to provide an additional fan wheel, which generates a separate cooling air flow for the striking mechanism. Corresponding installation space must be provided for this additional fan wheel and design effort must be carried out.

Aus der DE 866 633 C ist eine Gesteinsbohrmaschine bekannt, bei der ein Kühlluftstrom durch ein Kühlluftgebläse erzeugt wird. Der Kühlluftstrom wird über Rippen an der Außenwand eines Motorzylinders geführt und tritt nachfolgend an der Unterseite der den Kühlluftkanal bildenden Haube aus.From the DE 866 633 C a rock drilling machine is known in which a cooling air flow is generated by a cooling air blower. The cooling air flow is guided over ribs on the outer wall of an engine cylinder and subsequently emerges on the underside of the hood forming the cooling air channel.

In der GB 632,560 A wird ein Hammer mit einem Kühlluftgebläse gezeigt, das einen Kühlluftstrom erzeugt. Der Kühlluftstrom wird durch eine Verkleidung zu der Außenwand des Zylinders eines Verbrennungsmotors geführt, wobei sich der Querschnitt des Kühlluftkanals in Strömungsrichtung verjüngt.In the GB 632,560 A. a hammer with a cooling air blower is shown, which generates a cooling air flow. The cooling air flow is led through a cladding to the outer wall of the cylinder of an internal combustion engine, the cross section of the cooling air channel tapering in the direction of flow.

Der Erfindung liegt die Aufgabe zugrunde, einen Bohr- und/oder Schlaghammer anzugeben, bei dem eine verbesserte Kühlung der Komponenten möglich ist.The invention has for its object to provide a hammer drill and / or percussion hammer, in which an improved cooling of the components is possible.

Die Aufgabe wird erfindungsgemäß durch einen Bohr- und/oder Schlaghammer nach Anspruch 1 gelöst.The object is achieved by a hammer drill and / or percussion hammer according to claim 1.

Vorteilhafte Ausgestaltungen sind in den abhängigen Ansprüchen angegeben.Advantageous refinements are specified in the dependent claims.

Ein Bohr- und/oder Schlaghammer weist einen Verbrennungsmotor mit einem Zylinder und einem in dem Zylinder bewegbaren Kolben, ein Kühlluftgebläse zum Erzeugen eines Kühlluftstroms und einen Kühlluftkanal zum Führen des Kühlluftstroms von dem Kühlluftgebläse zu einer Außenwand des Zylinders auf.A hammer drill and / or percussion hammer has an internal combustion engine with a cylinder and a piston movable in the cylinder, a cooling air blower for generating a cooling air flow and a cooling air duct for guiding the cooling air flow from the cooling air blower to an outer wall of the cylinder.

Dabei wird erreicht, dass das von dem Verbrennungsmotor des Hammers angetriebene Schlagwerk gekühlt wird. Stromab von der Außenwand des Zylinders weist der Kühlluftkanal einen Kanalbereich auf, in dem mehrere Teilkühlluftströme von dem Kühlluftstrom (Haupt-Kühlluftstrom) abgezweigt werden.It is thereby achieved that the hammer mechanism driven by the internal combustion engine of the hammer is cooled. Downstream from the outer wall of the cylinder, the cooling air duct has a duct region in which a plurality of partial cooling air flows are branched off from the cooling air flow (main cooling air flow).

Der Kanalbereich ist derart ausgestaltet, dass sich der auf eine Strömungsrichtung des Kühlluftstroms bezogenen Querschnitt des Kanalbereichs in dem Maße verjüngt, wie Teilkühlluftströme von dem Kühlluftstrom abgezweigt werden, so dass die Strömungsgeschwindigkeit des Kühlluftstroms in dem Kanalbereich im Wesentlichen konstant bleibt.The channel area is designed such that the cross section of the channel area related to a flow direction of the cooling air flow tapers to the extent that partial cooling air flows are branched off from the cooling air flow, so that the flow rate of the cooling air flow in the channel area remains essentially constant.

Während der Kühlluftkanal die gesamte Länge des Kühlluftstroms vom Kühlluftgebläse bis zum Austritt aus dem Hammer definieren soll, gibt der Kanalbereich lediglich einen Teilbereich des Kühlluftkanals an. Für die nachfolgende Betrachtung ist jedoch der Kanalbereich von besonderer Bedeutung.While the cooling air duct is to define the entire length of the cooling air flow from the cooling air blower to the outlet from the hammer, the duct region only indicates a partial region of the cooling air duct. However, the channel area is of particular importance for the following consideration.

Somit ist der Kühlluftkanal in dem Bereich, in dem eine Kühlung des Zylinders bzw. der Außenwand des Zylinders erfolgen soll, derart gestaltet, dass die Strömungsgeschwindigkeit des Kühlluftstroms (Haupt-Kühlluftstrom) auch dann konstant bleibt, wenn Teilkühlluftströme bereits abgezweigt werden. Beim Stand der Technik hingegen ist der Querschnitt des Kanalbereichs im Wesentlichen konstant gehalten, so dass sich die Strömungsgeschwindigkeit der Kühlluft nach und nach reduziert, wenn Teilkühlluftströme abgezweigt werden. Dadurch aber, dass auf diese Weise gerade im Verlauf des Kühlluftkanals die Strömungsgeschwindigkeit und damit der Volumenstrom an Kühlluft geringer wird, muss beim Stand der Technik eingangsseitig durch das Kühlluftgebläse ein relativ starker Kühlluftstrom generiert werden, um auch am Ende des Kühlluftkanals, nach Abzweigung mehrerer Teilkühlluftströme noch genügend Kühlluft zur Verfügung zu haben.The cooling air duct in the area in which the cylinder or the outer wall of the cylinder is to be cooled is thus designed in such a way that the flow rate of the cooling air flow (main cooling air flow) remains constant even when partial cooling air flows have already been branched off. In the prior art, on the other hand, the cross section of the duct area is kept essentially constant, so that the flow rate of the cooling air is gradually reduced when partial cooling air flows are branched off. However, due to the fact that the flow velocity and thus the volume flow of cooling air become lower in the course of the cooling air duct, a relatively strong cooling air flow must be generated on the input side by the cooling air blower in the prior art, in order to still have enough cooling air available at the end of the cooling air duct after branching off several partial cooling air flows.

Mit Hilfe der Erfindung ist es somit möglich, die Strömung optimiert im Bereich des heißen Zylinders zu führen, indem sich der Kühlluftkanal stromauf vom Zylinder verengt, so dass auch z. B. in dem Bereich, der zu der am Zylinder vorgesehenen Zündkerze weiter entfernt liegt und somit also kühler ist, viel Kühlluft vorbeiströmt. Ein separater Bypass, der einen ähnlichen Effekt haben würde, kann daher eingespart werden. Dies führt zu einer geringeren Aufheizung der Motorkühlabluft sowie zu einem geringeren Strömungswiderstand.With the help of the invention it is thus possible to optimize the flow in the area of the hot cylinder by narrowing the cooling air duct upstream of the cylinder, so that z. B. in the area which is further away from the spark plug provided on the cylinder and is therefore cooler, a lot of cooling air flows past. A separate bypass, which would have a similar effect, can therefore be saved. This leads to less heating of the engine cooling exhaust air and to a lower flow resistance.

Die Motorkühlluft kann mit vergleichsweise geringerem Strömungswiderstand durch den Motor geblasen werden. Dadurch wird der Volumenstrom erhöht und damit die Temperatur der Kühlluft gesenkt. Der Motor gibt nur die für ihn notwendige Wärmemenge an die Kühlluft ab, wodurch sich die Kühlluft ebenfalls nicht so stark aufheizt. Im Gegensatz dazu ist nach dem Stand der Technik meist eine Kühlluftverteilung angestrebt, bei der dem Motor möglichst viel Wärme entzogen wird, was jedoch oft nicht erforderlich ist.The engine cooling air can be blown through the engine with a comparatively lower flow resistance. This increases the volume flow and thus reduces the temperature of the cooling air. The engine only emits the amount of heat it needs to the cooling air, which also means that the cooling air does not heat up as much. In contrast, the prior art usually strives for a cooling air distribution in which as much heat as possible is extracted from the engine, but this is often not necessary.

An der Außenwand des Zylinders können mehrere parallel zueinander verlaufende Kühlrippen ausgebildet sein, wobei jeweils zwischen zwei zueinander benachbarten Kühlrippen jeweils ein Teilkanal ausgebildet ist, zum Führen eines Teilkühlluftstroms, wobei der Teilkühlluftstrom von dem von dem Kühlluftgebläse herangeführten Kühlluftstrom abgezweigt wird. Die Kühlrippen sind an der Außenwand des Zylinders in bekannter Weise vorgesehen und meist mit dem Zylindergehäuse in einem Stück gegossen oder nachträglich als Kühlelemente auf der Außenwand des Zylinders befestigt. Zwischen den benachbarten Kühlrippen wird jeweils einer der Teilkanäle gebildet, in die ein jeweiliger Teilkühlluftstrom eingeleitet wird. Die jeweiligen Teilkühlluftströme werden von dem Haupt-Kühlluftstrom nach und nach abgezweigt, wenn der Haupt-Kühlluftstrom an den Kühlrippen des Zylinders vorbeigeführt wird.A plurality of cooling fins running parallel to one another can be formed on the outer wall of the cylinder, a partial channel being formed in each case between two mutually adjacent cooling fins for guiding a partial cooling air flow, the partial cooling air flow being branched off from the cooling air flow brought up by the cooling air blower. The cooling fins are provided on the outer wall of the cylinder in a known manner and are usually cast in one piece with the cylinder housing or subsequently attached as cooling elements on the outer wall of the cylinder. One of the subchannels into which a respective partial cooling air flow is introduced is formed between the adjacent cooling fins. The respective partial cooling air flows are gradually branched off from the main cooling air flow when the main cooling air flow passes the cooling fins of the cylinder becomes.

Insbesondere kann der Kanalbereich stromauf von den Kühlrippen an den Kühlrippen und damit an den Teilkanälen bzw. an den Anfangsbereichen der Teilkanäle vorbeigeführt werden. Dabei kann der Kanalbereich derart ausgestaltet sein, dass sich der Querschnitt des Kanalbereichs in dessen Verlauf entlang der Anfangsbereiche der jeweiligen Teilkanäle in dem Maße verjüngt, wie Teilkühlluftströme von dem Kühlluftstrom abgezweigt werden, so dass die obige Forderung erfüllt ist, dass die Strömungsgeschwindigkeit des Kühlluftstroms in dem Kanalbereich im Wesentlichen konstant bleibt.In particular, the channel area can be guided upstream of the cooling fins past the cooling fins and thus past the subchannels or the initial areas of the subchannels. The duct area can be designed in such a way that the cross section of the duct area tapers in its course along the initial areas of the respective subchannels to the extent that partial cooling air flows are branched off from the cooling air flow, so that the above requirement is met that the flow velocity of the cooling air flow in the channel area remains essentially constant.

Die Strömungsgeschwindigkeiten der Teilkühlluftströme in den Teilkanälen können im Wesentlichen gleich sein. Sie können insbesondere auch gleich sein mit der Strömungsgeschwindigkeit des verbleibenden Kühlluftstroms im Kanalbereich. Auf diese Weise wird eine Vergleichmäßigung und Optimierung des Kühlluftstroms bei einem möglicht geringen Strömungswiderstand erreicht. Ein Indiz für einen unnötigen Strömungswiderstand wäre z.B. eine starke Änderung der Strömungsgeschwindigkeit im Kühlluftkanal.The flow rates of the partial cooling air flows in the sub-channels can be essentially the same. In particular, they can also be the same as the flow rate of the remaining cooling air flow in the duct area. In this way, an equalization and optimization of the cooling air flow is achieved with the lowest possible flow resistance. An indication of an unnecessary flow resistance would be e.g. a strong change in the flow velocity in the cooling air duct.

Erfindungsgemäss ist ein Kühlluftkanal zum Führen des Kühlluftstroms von dem Kühlluftgebläse entlang einer Außenwand des Zylinders vorgesehen, wobei der Kühlluftkanal stromab von der Außenwand des Zylinders einen Kanalabschnitt aufweist, zum Führen des Kühlluftstroms zu einer Abgasanlage des Verbrennungsmotors und/oder zu dem Schlagwerk.According to the invention, a cooling air duct is provided for guiding the cooling air flow from the cooling air blower along an outer wall of the cylinder, the cooling air duct having a duct section downstream of the outer wall of the cylinder for guiding the cooling air flow to an exhaust system of the internal combustion engine and / or to the striking mechanism.

Damit wird erreicht, dass die Kühlluft, die sich bei dem Vorbeiströmen an dem Zylinder schon erwärmt hat, weiterhin zur Kühlung anderer heißer Bauteile genutzt werden kann, deren Temperatur im Betrieb oberhalb von der Temperatur liegt, die der Kühlluftstrom stromab von dem Zylinder aufweist. Zu diesen Bauelementen gehören insbesondere die Abgasanlage des Verbrennungsmotors oder das Schlagwerk.This ensures that the cooling air, which has already warmed up as it flows past the cylinder, can continue to be used to cool other hot components whose temperature during operation is above the temperature that the Has cooling air flow downstream of the cylinder. These components include in particular the exhaust system of the internal combustion engine or the striking mechanism.

Bei dieser Lösung wird somit die Motorkühlabluft dazu genutzt, weitere Komponenten des Hammers, nämlich insbesondere die Abgasanlage, z. B. den Schalldämpfer, und das Schlagwerk zu kühlen. Gerade die Abgasanlage und das Schlagwerk sind im Betrieb des Hammers thermisch hoch belastet. Ihre Abwärme kann einerseits für die Komponenten selbst problematisch werden. Andererseits aber kann die Abwärme auch zu einer übermäßigen Erwärmung von weiteren Komponenten des Hammers, z. B. dem Vergaser oder der Tankanlage führen, was einen zuverlässigen Betrieb beeinträchtigen kann.In this solution, the engine cooling exhaust air is thus used to further components of the hammer, namely in particular the exhaust system, for. B. the silencer, and to cool the hammer mechanism. The exhaust system and the striking mechanism in particular are subject to high thermal loads during operation of the hammer. On the one hand, their waste heat can be problematic for the components themselves. On the other hand, the waste heat can also lead to excessive heating of other components of the hammer, e.g. B. lead the carburetor or the tank system, which can impair reliable operation.

Es hat sich herausgestellt, dass die vom Motor, also von der Außenwand des Zylinders kommende Kühlluft (Motorkühlabluft) noch verhältnismäßig kühl ist und dadurch zum Kühlen der weiteren Komponenten herangezogen werden kann. Somit kann z.B. bei einer Variante dieser Motorkühlabluftstrom stromab von der Außenwand des Zylinders aufgeteilt und in Form von zwei getrennten Kühlluftströmen der Abgasanlage und dem Schlagwerk zugeführt werden.It has been found that the cooling air (engine cooling exhaust air) coming from the engine, that is to say from the outer wall of the cylinder, is still relatively cool and can therefore be used to cool the other components. Thus e.g. in a variant of this engine cooling exhaust air flow divided downstream of the outer wall of the cylinder and supplied in the form of two separate cooling air flows to the exhaust system and the hammer mechanism.

Durch geschickte Gestaltung des Kühlluftkanals ist es somit möglich, einen für das jeweilige Gerät geeigneten Kühlluftstrom zu führen. Somit kann stromab von dem Zylinder z.B. der Kühlluftstrom entweder nur zu der Abgasanlage oder nur zum Schlagwerk oder auch zu beiden Baugruppen geführt werden. Weiterhin ist es möglich, den Kühlluftstrom z.B. zunächst zum Schlagwerk und dann stromab von dem Schlagwerk zu der Abgasanlage zu führen. Ebenso kann auch umgekehrt der Kühlluftstrom zunächst zur Abgasanlage und nachfolgend zum Schlagwerk geleitet werden. Der Kühlluftstrom kann auch aufgeteilt werden in zwei parallele Kühlluftströme, die parallel die Abgasanlage und das Schlagwerk anströmen.By cleverly designing the cooling air duct, it is thus possible to conduct a cooling air flow suitable for the respective device. Thus, e.g. the cooling air flow either only to the exhaust system or only to the striking mechanism or to both assemblies. It is also possible to control the cooling air flow e.g. first lead to the striking mechanism and then downstream of the striking mechanism to the exhaust system. Conversely, the cooling air flow can also be directed first to the exhaust system and then to the striking mechanism. The cooling air flow can also be divided into two parallel cooling air flows, which flow parallel to the exhaust system and the striking mechanism.

Auch Mischformen sind möglich, z.B. dass der Kühlluftstrom stromab von der Außenwand des Zylinders in zwei Kühlluftströme aufgeteilt wird, wobei ein Kühlluftstrom direkt zur Abgasanlage und ein zweiter Kühlluftstrom zunächst zum Schlagwerk und danach erst zu der Abgasanlage geführt wird.Mixed forms are also possible, for example the cooling air flow downstream of the outer wall of the cylinder is divided into two cooling air flows, one cooling air flow being led directly to the exhaust system and a second cooling air flow first to the striking mechanism and only then to the exhaust system.

Die genaue Ausgestaltung des Kühlluftkanals und damit der Führung des Kühlluftstroms hängt von den Temperaturverteilungen im Hammer und von der gewünschten Kühlwirkung ab.The exact design of the cooling air duct and thus the routing of the cooling air flow depends on the temperature distributions in the hammer and on the desired cooling effect.

Erfindungsgemäss weist der Kühlluftkanal stromab von der Außenwand des Zylinders einen ersten Kanalabschnitt auf, zum Führen des Kühlluftstroms zu dem Schlagwerk. Stromab von dem Schlagwerk weist der Kühlluftkanal einen zweiten Kanalabschnitt auf, zum Führen des Kühlluftstroms zu der Abgasanlage. Auf diese Weise wird der Kühlluftstrom seriell zunächst zum Schlagwerk und danach zu der Abgasanlage geleitet.According to the invention, the cooling air duct has a first duct section downstream of the outer wall of the cylinder, for guiding the cooling air flow to the striking mechanism. Downstream of the striking mechanism, the cooling air duct has a second duct section for guiding the cooling air flow to the exhaust system. In this way, the cooling air flow is first routed to the striking mechanism and then to the exhaust system.

Bei einer weiteren Ausführungsform ist der Kühlluftkanal stromab von der Außenwand des Zylinders aufgeteilt in einen ersten Kühlluftkanal für einen ersten Kühlluftstrom und in einen zweiten Kühlluftkanal für einen zweiten Kühlluftstrom. Der erste Kühlluftkanal dient zum Führen des ersten Kühlluftstroms zu einer Abgasanlage des Verbrennungsmotors, während der zweite Kühlluftkanal zum Führen des zweiten Kühlluftstroms zu dem Schlagwerk dient.In a further embodiment, the cooling air duct is divided downstream from the outer wall of the cylinder into a first cooling air duct for a first cooling air flow and into a second cooling air duct for a second cooling air flow. The first cooling air duct serves to guide the first cooling air flow to an exhaust system of the internal combustion engine, while the second cooling air duct serves to guide the second cooling air flow to the striking mechanism.

Das Schlagwerk kann ein Luftfederschlagwerk sein und ein Führungsgehäuse sowie einen von dem Verbrennungsmotor in dem Führungsgehäuse z. B. oszillierend und linear bewegbaren Antriebskolben aufweisen, wobei der zweite Kühlluftkanal zum Führen des zweiten Kühlluftstroms zu einer Außenseite des Führungsgehäuses dient. Entsprechend kann auch der erste Kanalabschnitt ausgebildet sein, um den Kühlluftstrom an die Außenseite des Führungsgehäuses zu führen. Die Wärme im Schlagwerk entsteht insbesondere in der Nähe des Luftkompressionsbereichs im Inneren des Schlagwerks, wenn es sich bei dem Schlagwerk um ein an sich bekanntes Luftfederschlagwerk handelt. Diese Wärme wird über das Führungsgehäuse nach außen abgegeben und kann durch den Kühlluftstrom abgeführt werden. Da die im Schlagwerk entstehende Temperatur größer ist als die Temperatur der Motorkühlabluft, kann die Motorkühlabluft noch wirksam zur Kühlung des Schlagwerks genutzt werden.The hammer mechanism can be an air spring hammer mechanism and a guide housing and one of the internal combustion engine in the guide housing z. B. oscillating and linearly movable drive piston, the second cooling air duct for guiding the second cooling air flow to an outside of the guide housing. The first duct section can also be designed accordingly in order to guide the cooling air flow to the outside of the guide housing. The heat in the striking mechanism arises especially in the vicinity of the air compression area inside the striking mechanism if the striking mechanism is an air spring hammer mechanism known per se. This heat is emitted to the outside via the guide housing and can be dissipated by the cooling air flow. Since the temperature generated in the hammer mechanism is higher than the temperature of the engine cooling exhaust air, the engine cooling exhaust air can still be used effectively to cool the hammer mechanism.

Bei einer Variante kann der zweite Kühlluftkanal derart ausgebildet sein, dass der zweite Kühlluftstrom stromab von dem Schlagwerk auch noch zu der Abgasanlage des Verbrennungsmotors führbar ist. So hat sich herausgestellt, dass die Kühlluft auch dann, wenn sie bereits den Motor (Zylinder) und das Schlagwerk gekühlt hat, immer noch eine Temperatur aufweist, die niedriger ist als die Abgasanlage des Verbrennungsmotors, insbesondere niedriger als die Temperatur des zur Abgasanlage gehörenden Schalldämpfers. Aus diesem Grund kann es vorteilhaft sein, die Kühlluft nach dem Kühlen des Schlagwerks noch zur Unterstützung der Kühlung des Schalldämpfers heranzuziehen, um auf diese Weise die Kühlwirkung zu verbessern.In a variant, the second cooling air duct can be designed such that the second cooling air flow can also be conducted downstream of the impact mechanism to the exhaust system of the internal combustion engine. It has been found that the cooling air, even if it has already cooled the engine (cylinder) and the hammer mechanism, is still at a temperature which is lower than the exhaust system of the internal combustion engine, in particular lower than the temperature of the muffler belonging to the exhaust system . For this reason, it may be advantageous to use the cooling air after cooling the striking mechanism to support the cooling of the muffler in order to improve the cooling effect.

Die oben beschriebenen Varianten können beliebig miteinander kombiniert werden. So ist es möglich, die Aufteilung des Kühlluftstroms in einen ersten Kühlluftstrom und einen zweiten Kühlluftstrom stromab von der Außenwand des Zylinders eigenständig zu realisieren. Ebenso ist es möglich, den Kühlluftkanal in dem stromauf von der Außenwand des Zylinders gelegenen Kanalbereich in der beschriebenen Weise auszugestalten, so dass die Strömungsgeschwindigkeit des Kühlluftstroms in diesem Kanalbereich im Wesentlichen konstant bleibt. Ebenso können aber die beiden Varianten auch miteinander kombiniert werden, um eine besonders wirkungsvolle Kühlung zu erreichen.The variants described above can be combined with one another as desired. It is thus possible to independently implement the division of the cooling air flow into a first cooling air flow and a second cooling air flow downstream from the outer wall of the cylinder. It is also possible to design the cooling air duct in the duct region located upstream from the outer wall of the cylinder in the manner described, so that the flow rate of the cooling air flow in this duct region remains essentially constant. However, the two variants can also be combined with one another in order to achieve particularly effective cooling.

Diese und weitere Vorteilung und Merkmale der Erfindung werden nach folgend anhand eines Beispiels unter Zuhilfenahme der begleitenden Figuren näher erläutert. Es zeigen:

Fig. 1
einen Hammer in rechter Seitenansicht;
Fig. 2
den Hammer von Fig. 1 in linker Seitenansicht;
Fig. 3
eine Schnittdarstellung des Hammers; und
Fig. 4
eine perspektivische Untersicht des Hammers.
These and further advantages and features of the invention are explained in more detail below using an example with the aid of the accompanying figures. Show it:
Fig. 1
a hammer in right side view;
Fig. 2
the hammer of Fig. 1 in left side view;
Fig. 3
a sectional view of the hammer; and
Fig. 4
a perspective bottom view of the hammer.

Die Figuren 1 bis 4 zeigen in verschiedenen Darstellungen ein schematisches Beispiel für einen erfindungsgemäßen Bohr- und/oder Schlaghammer.The Figures 1 to 4 show in different representations a schematic example of a hammer drill and / or percussion hammer according to the invention.

Der Hammer weist einen Verbrennungsmotor 1 auf, der über einen ersten Kurbeltrieb 2, ein Getriebe 3 und einen zweiten Kurbeltrieb 4 ein Schlagwerk 5 antreibt. Das Schlagwerk 5 wiederum beaufschlagt ein Werkzeug 6, im vorliegenden Beispiel einen Meißel. Der Aufbau eines derartigen Hammers ist vielfältig bekannt und muss daher nicht im Einzelnen erläutert werden.The hammer has an internal combustion engine 1 which drives a striking mechanism 5 via a first crank mechanism 2, a transmission 3 and a second crank mechanism 4. The striking mechanism 5 in turn acts on a tool 6, in the present example a chisel. The construction of such a hammer is widely known and therefore does not need to be explained in detail.

Der Verbrennungsmotor 1 weist einen Zylinder 7 auf, in dessen Innerem ein Kolben 8 beweglich geführt wird. Der Kolben 8 treibt über ein Pleuel 9 den ersten Kurbeltrieb 2 an.The internal combustion engine 1 has a cylinder 7, inside which a piston 8 is movably guided. The piston 8 drives the first crank mechanism 2 via a connecting rod 9.

Über eine Kurbelwelle 10 des Kurbeltriebs 2 wird das Getriebe 3 und damit der zweite Kurbeltrieb 4 bewegt.The transmission 3 and thus the second crank mechanism 4 are moved via a crankshaft 10 of the crank mechanism 2.

Das Schlagwerk 5 ist als Luftfederschlagwerk ausgebildet und weist ein von dem zweiten Kurbeltrieb 4 bewegtes Pleuel 11 auf, das einen Antriebskolben 12 in einem zu dem Schlagwerk gehörenden Führungsgehäuse 13 hin und her bewegt.The striking mechanism 5 is designed as an air spring hammer mechanism and has a connecting rod 11 moved by the second crank mechanism 4, which moves a drive piston 12 back and forth in a guide housing 13 belonging to the striking mechanism.

Im Inneren des Antriebskolbens 12 ist ein Schlagkolben 14 geführt, der über eine zwischen dem Antriebskolben 12 und dem Schlagkolben 14 ausgebildete Luftfeder 15 gegen das Ende des Werkzeugs 6 bewegt und wieder zurückgeführt wird. Auch die Funktion eines derartigen Schlagwerks 5 ist bekannt und muss an dieser Stelle nicht näher vertieft werden.In the interior of the drive piston 12, a percussion piston 14 is guided, which is moved towards the end of the tool 6 and is returned via an air spring 15 formed between the drive piston 12 and the percussion piston 14. The function of such a striking mechanism 5 is also known and does not need to be discussed in greater detail at this point.

An dem stirnseitigen Ende der Kurbelwelle 10 ist ein Kühlluftgebläse 16 mit einem Lüfterrad 17, einem Gebläsegehäuse 18 und einem Kühllufteinlass 19 angeordnet. Das Lüfterrad 17 wird durch die Kurbelwelle 10 drehend angetrieben und saugt dabei Umgebungsluft über den Kühllufteinlass 19 an. Die Kühlluft wird dann über einen Kühlluftkanal 20 zu den zu kühlenden Komponenten des Hammers geführt.At the front end of the crankshaft 10, a cooling air blower 16 with a fan wheel 17, a blower housing 18 and a cooling air inlet 19 is arranged. The fan wheel 17 is driven in rotation by the crankshaft 10 and thereby sucks ambient air via the cooling air inlet 19. The cooling air is then led via a cooling air duct 20 to the components of the hammer to be cooled.

Insbesondere führt der Kühlluftkanal 20 die Kühlluft zu einer Außenwand des Zylinders 7, an der zahlreiche Kühlrippen 21 in bekannter Weise angeordnet sind. In Figur 3 sind aus Gründen der Übersichtlichkeit nur zwei der Kühlrippen 21 mit dem Bezugszeichen 21 gekennzeichnet. Selbstverständlich weist die Außenwand des Zylinders 7 mehrere Kühlrippen 21 auf, wie auch unmittelbar aus Figur 3 ersichtlich.In particular, the cooling air duct 20 leads the cooling air to an outer wall of the cylinder 7, on which numerous cooling fins 21 are arranged in a known manner. In Figure 3 For reasons of clarity, only two of the cooling fins 21 are identified by the reference number 21. Of course, the outer wall of the cylinder 7 has a plurality of cooling fins 21, as well as directly Figure 3 seen.

Zwischen den Kühlrippen 21 sind jeweilige Teilkanäle 22 ausgebildet, in denen der Luftstrom vom Kühlluftkanal 20 an der Außenwand des Zylinders 7 vorbei geführt werden kann. Jeder dieser Teilkanäle 22 zweigt somit einen Teilkühlluftstrom von dem Haupt-Kühlluftstrom in dem stromauf von dem Zylinder 7 liegenden Kanalbereich des Kühlluftkanals 20 ab.Between the cooling fins 21, respective sub-channels 22 are formed, in which the air flow from the cooling air channel 20 can be guided past the outer wall of the cylinder 7. Each of these sub-channels 22 thus branches off a partial cooling air flow from the main cooling air flow in the channel region of the cooling air channel 20 located upstream from the cylinder 7.

Wie in Figur 3 erkennbar, strömt der Kühlluftstrom im Kühlluftkanal 20 von oben, d. h. vom Kühlluftgebläse 16 kommend in Richtung nach unten, wobei in dem genannten Kanalbereicht nach und nach Teilkühlluftströme über jeweilige Teilkanäle 22 abgezweigt und an der Außenwand des Zylinders 7 vorbeigeführt werden. Dabei verjüngt sich der Kühlluftkanal 20 in dem Maße, wie Kühlluft von ihm in den jeweiligen Teilkanal 22 abgezweigt wird. Dabei soll sich der Querschnitt des Kühlluftkanals 20 derart verringern, dass die Strömungsgeschwindigkeit des Kühlluftstroms in dem stromauf von dem Zylinder 7 vorgesehenen Kühlluftkanal 20 konstant bleibt. In Figur 3 ist diese Verjüngung durch eine schräg verlaufende Kanalabdeckung 23 erkennbar.As in Figure 3 Recognizable, the cooling air flow in the cooling air duct 20 flows from above, ie coming from the cooling air blower 16 in the downward direction, partial cooling air flows being branched off gradually via respective sub-ducts 22 in the duct region mentioned and being guided past the outer wall of the cylinder 7. The cooling air duct 20 tapers to the extent that cooling air is branched off from it into the respective sub-duct 22. The cross section of the cooling air duct 20 is to be reduced in such a way that the flow rate of the cooling air flow in the cooling air duct 20 provided upstream from the cylinder 7 remains constant. In Figure 3 this taper is recognizable by an obliquely extending channel cover 23.

Noch besser kann die Querschnittsverjüngung des Kühlluftkanals in Figur 4 gesehen werden, wo die Kanalabdeckung 23 beginnend an einem Kanaleinlass 24 - bezogen auf eine Betriebsstellung des Hammers mit vertikal nach unten gerichteter Arbeitsrichtung - sowohl in Vertikalrichtung nach unten als auch in Horizontalrichtung, weg von dem Kanaleinlass 24 schräg verläuft und somit den Kühlluftkanal 20 verjüngt. Der Kanaleinlass 24 ist in Figur 4 nur gestrichelt eingezeichnet, da er unter der Kanalabdeckung 23 selbstverständlich nicht von außen sichtbar ist.The cross-sectional tapering of the cooling air duct in Figure 4 can be seen where the channel cover 23 begins at a channel inlet 24 - based on an operating position of the hammer with the working direction directed vertically downward - both in the vertical direction downward and in the horizontal direction, away from the channel inlet 24 and thus runs obliquely Cooling air duct 20 tapers. The channel inlet 24 is in Figure 4 only shown in broken lines, since it is of course not visible from the outside under the channel cover 23.

Die damit im Kühlluftkanal 20 und in den diversen Teilkanälen 22 bewirkte Kühlluftströmung weist weitgehend eine konstante, gleiche Geschwindigkeit auf, was für eine optimierte Motorkühlung positiv ist.The cooling air flow thus effected in the cooling air duct 20 and in the various sub-ducts 22 largely has a constant, identical speed, which is positive for an optimized engine cooling.

Die Kühlluft kann stromab vom Verbrennungsmotor 1, also stromab von der Außenwand des Zylinders 7 an die Umgebung abgeben werden.The cooling air can be released to the environment downstream of the internal combustion engine 1, that is to say downstream of the outer wall of the cylinder 7.

Bei einer besonders vorteilhaften Ausführungsform der Erfindung jedoch - wie sie auch in den Figuren gezeigt ist - wird die vom Motor kommende Kühlluft weiterhin zur Kühlung von sich im Betrieb des Hammers erwärmenden Komponenten genutzt. Insbesondere ist der Kühlluftkanal 20 an einem Auslass 25, an dem die Kühlluft von den Kühlrippen 21 und der Außenwand des Zylinders 7 weggeführt wird, in einen ersten Kühlluftkanal 26 und einen zweiten Kühlluftkanal 27 aufgeteilt. Die Aufteilung erfolgt mit Hilfe von Leitblechen 28 und 29. Die Leitbleche 28, 29 können in geeigneter Weise im Raum geformt sein, um die jeweiligen Kühlluftströme an die zu kühlenden Bereiche zu führen.In a particularly advantageous embodiment of the invention, however, as is also shown in the figures, the cooling air coming from the engine is still used to cool components which are heated during operation of the hammer. In particular, the cooling air duct 20 is divided into a first cooling air duct 26 and a second cooling air duct 27 at an outlet 25, at which the cooling air is guided away from the cooling fins 21 and the outer wall of the cylinder 7. The division takes place with the aid of baffles 28 and 29. The baffles 28, 29 can be suitably shaped in space in order to guide the respective cooling air flows to the areas to be cooled.

In den ersten Kühlluftkanal 26 wird ein erster Kühlluftstrom geführt und zu einer Abgasanlage 30 des Verbrennungsmotors 1, insbesondere zu einem Schalldämpfer geführt.A first cooling air flow is led into the first cooling air duct 26 and is led to an exhaust system 30 of the internal combustion engine 1, in particular to a silencer.

Die Abgasanlage 30 mit dem Schalldämpfer wird im Betrieb des Hammers besonders heiß, so dass die vom Motor kommende Kühlluft, obwohl bereits erwärmt, immer noch zur Kühlung der Abgasanlage 30 beitragen kann. Dadurch wird insbesondere auch erreicht, dass die Abgasanlage 30 nicht ihrerseits andere Komponenten des Hammers, wie z. B. die Kraftstoffzuführung, den Tank oder den Vergaser bei längerem Betrieb des Hammers in unzulässiger Weise erwärmen kann.The exhaust system 30 with the muffler becomes particularly hot when the hammer is in operation, so that the cooling air coming from the engine, although already heated, can still contribute to cooling the exhaust system 30. This also ensures in particular that the exhaust system 30 does not in turn other components of the hammer, such as. B. the fuel supply, the tank or the carburetor can heat up in an impermissible manner when the hammer is used for a long time.

Der zweite Kühlluftkanal 27 führt den zweiten Kühlluftstrom als Kühlluft zu dem Schlagwerk 5, insbesondere an die Außenwand des Führungsgehäuses 13 des Schlagwerks 5 und dort zu einem Bereich des Schlagwerks 5, in dem eine Kompression der Luftfeder 15 stattfindet. Durch die Kompression der Luftfeder 15 wird eine starke Erwärmung im Schlagwerk 5 bewirkt. Diese Wärme kann durch den im zweiten Kühlluftkanal 27 herangeführten zweiten Kühlluftstrom abgeführt werden.The second cooling air duct 27 leads the second cooling air flow as cooling air to the striking mechanism 5, in particular to the outer wall of the guide housing 13 of the striking mechanism 5 and there to an area of the striking mechanism 5 in which the air spring 15 is compressed. The compression of the air spring 15 causes a strong heating in the striking mechanism 5. This heat can be dissipated by the second cooling air flow introduced in the second cooling air duct 27.

Darüber hinaus ist es bei geeigneter Gestaltung des Hammers möglich, den zweiten Kühlluftstrom nach Vorbeiströmen an dem Schlagwerk 5 auch noch zur Abgasanlage 30 zuführen, so dass der zweite Kühlluftstrom, der durch das Schlagwerk 5 nur verhältnismäßig gering zusätzlich erwärmt wurde, ebenfalls noch zur Kühlung des heißen Schalldämpfers in der Abgasanlage 30 genutzt werden kann.In addition, with a suitable design of the hammer, it is also possible, after flowing past the striking mechanism 5, to also feed the second cooling air stream to the exhaust system 30, so that the second cooling air stream, which was heated by the striking mechanism 5 only relatively slightly, also also for cooling the hot muffler can be used in the exhaust system 30.

Durch die oben beschriebene Optimierung der Motorluftkühlung durch Vergleichmäßigung der Strömungsgeschwindigkeit ist es möglich, die Temperatur der Motorkühlabluft so weit zu senken, dass sie zur Kühlung von weitern Komponenten des Hammers verwendet werden kann.By optimizing the engine air cooling by equalizing the flow velocity as described above, it is possible to lower the temperature of the engine cooling exhaust air to such an extent that it can be used to cool other components of the hammer.

Durch eine gezielte Führung und Verteilung der Motorkühlabluft kann erreicht werden, dass diese nur in Bereiche geführt wird, deren Temperatur so hoch ist, dass sie trotz der bereits relativ warmen Motorkühlabluft noch gekühlt werden können. Beispielsweise kann eine 80°C heiße Motorkühlabluft immer noch den 300°C heißen Schalldämpfer problemlos abkühlen.Through targeted guidance and distribution of the engine cooling exhaust air, it can be achieved that it is only led into areas whose temperature is so high that it can still be cooled despite the already relatively warm engine cooling exhaust air. For example, an 80 ° C engine cooling exhaust air can still cool down the 300 ° C hot silencer without any problems.

Dadurch, dass die Motorkühlabluft nach Vorbeistreichen an der Außenwand des Zylinders 7 direkt an die weitern heißen Wärmequellen des Hammers geleitet wird und dort kühlend wirkt, werden indirekt auch Bereiche am Hammer weiter abgekühlt, deren Temperatur unterhalb der Motorkühlabluft liegt. Dies wird dadurch erreicht, dass durch eine Kühlung nahe der Wärmequelle weniger Wärme in umgebende Komponenten bzw. Bauteile geleitet wird, so dass diese ebenfalls kühler bleiben.As a result of the fact that the engine cooling exhaust air is passed directly past the further hot heat sources of the hammer and has a cooling effect there, areas on the hammer whose temperature is below the engine cooling exhaust air are also indirectly cooled. This is achieved in that less heat is conducted into surrounding components or components by cooling near the heat source, so that these also remain cooler.

Wie in der Beschreibungseinleitung ausführlich beschrieben, ist es auch möglich, den Kühlluftkanal derart auszugestalten, dass die Kühlluft nach Vorbeiströmen an dem Zylinder 7 zunächst zu der Außenwand des Führungsgehäuses 13 und nachfolgend entlang der Abgasanlage 30 geführt wird. Ebenso kann die Kühlluft auch ausschließlich zu der Abgasanlage 30 geleitet werden.As described in detail in the introduction to the description, it is also possible to design the cooling air duct in such a way that the cooling air, after flowing past the cylinder 7, is first led to the outer wall of the guide housing 13 and subsequently along the exhaust system 30. Likewise, the cooling air can also be directed exclusively to the exhaust system 30.

Claims (10)

  1. Hammer drill and/or percussion hammer, having
    - a combustion engine (1), having a cylinder (7) and a piston (8) which is movable in the cylinder (7);
    - a percussion mechanism (5) which is driven by the combustion engine (3);
    - a cooling air fan (16) for generating a cooling air flow; and having
    - a cooling air duct (20) for conducting the cooling air flow from the cooling air fan (16) along an outer wall of the cylinder (7);
    characterised in that
    - the percussion mechanism (5) is driven by the combustion engine via a transmission (3);
    - the cooling air duct (20) has a first duct section downstream of the outer wall of the cylinder (7) for conducting the cooling air flow to the percussion mechanism (5).
  2. Hammer drill and/or percussion hammer as claimed in claim 1, characterised in that
    - the cooling air duct (20) has a second duct section downstream of the percussion mechanism (5) for conducting the cooling air flow to an exhaust system (30) of the combustion engine (1).
  3. Hammer drill and/or percussion hammer as claimed in claim 1 or 2, characterised in that
    - the cooling air duct (20) is divided downstream of the outer wall of the cylinder (7) into a first cooling air duct (26) for a first cooling air flow and into a second cooling air duct (27) for a second cooling air flow;
    - the first cooling air duct (26) is used for conducting the first cooling air flow to the exhaust system (30) of the combustion engine (1); and in that
    - the second cooling air duct (27) is used to conduct the second cooling air flow to the percussion mechanism (5).
  4. Hammer drill and/or percussion hammer as claimed in claim 3, characterised in that
    - the percussion mechanism (5) has a guide housing (13) and a drive piston (12) which can be moved by the combustion engine (1) in the guide housing (13); and in that
    - the second cooling air duct (27) is used to conduct the second cooling air flow to an outer side of the guide housing (13).
  5. Hammer drill and/or percussion hammer as claimed in claim 3 or 4, characterised in that the second cooling air duct (27) is designed such that the second cooling air flow downstream of the percussion mechanism (5) can be conducted to the exhaust system (30) of the combustion engine (1).
  6. Hammer drill and/or percussion hammer as claimed in any one of claims 1 to 5, wherein
    - upstream of the outer wall of the cylinder (7), the cooling air duct (20) has a duct region, in which a plurality of partial cooling air flows are diverted from the cooling air flow; and wherein
    - the duct region is configured such that the cross-section of the duct region relative to a flow direction of the cooling air flow is tapered to the extent that partial cooling air flows are diverted from the cooling air flow and so the flow rate of the cooling air flow in the duct region remains substantially constant.
  7. Hammer drill and/or percussion hammer as claimed in claim 6, characterised in that
    - a plurality of cooling ribs (21) running in parallel with one another are formed on the outer wall of the cylinder (7); and in that
    - a partial duct (22) is formed between in each case two cooling ribs (21) which are adjacent to one another, in order to conduct a partial cooling air flow, wherein the partial cooling air flow is diverted from the cooling air flow introduced by the cooling air fan (16).
  8. Hammer drill and/or percussion hammer as claimed in claim 6 or 7, characterised in that the duct region passes the cooling ribs (21) and thus the partial ducts (22) upstream of the cooling ribs (21) and is configured such that the cross-section of the duct region is tapered in its course along the initial regions of the respective partial ducts to such an extent that partial cooling air flows are diverted from the cooling air flow, so that the flow rate of the cooling air flow in the duct region remains substantially constant.
  9. Hammer drill and/or percussion hammer as claimed in any one of claims 6 to 8, characterised in that the flow rate of the partial cooling air flows in the partial ducts (22) are substantially identical.
  10. Hammer drill and/or percussion hammer as claimed in any one of claims 6 to 9, characterised in that the cooling air fan (16) is driven by means of a crankshaft (10) of the combustion engine (1).
EP11700320.2A 2010-01-15 2011-01-13 Hammer drill and/or impact hammer having cooling of equipment components Active EP2523780B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010004724A DE102010004724A1 (en) 2010-01-15 2010-01-15 Drilling and / or hammer with cooling of device components
PCT/EP2011/000134 WO2011085989A1 (en) 2010-01-15 2011-01-13 Hammer drill and/or impact hammer having cooling of equipment components

Publications (2)

Publication Number Publication Date
EP2523780A1 EP2523780A1 (en) 2012-11-21
EP2523780B1 true EP2523780B1 (en) 2020-03-04

Family

ID=43662075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11700320.2A Active EP2523780B1 (en) 2010-01-15 2011-01-13 Hammer drill and/or impact hammer having cooling of equipment components

Country Status (5)

Country Link
US (1) US9272407B2 (en)
EP (1) EP2523780B1 (en)
CN (1) CN102770245B (en)
DE (1) DE102010004724A1 (en)
WO (1) WO2011085989A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201413008D0 (en) 2014-07-23 2014-09-03 Black & Decker Inc A range of power tools
CN106012787B (en) * 2016-05-31 2017-12-19 福州麦辽自动化设备有限公司 A kind of drill steel based on hydraulic valve control triggers quartering hammer
US10710923B2 (en) * 2017-10-26 2020-07-14 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Wheel cutter for cutting a flexible glass substrate and cutting method thereof
CN108890374A (en) * 2018-07-22 2018-11-27 苏州优康通信设备有限公司 A kind of drilling device of the communication apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB632560A (en) * 1944-07-13 1949-11-28 Carl Stanley Weyandt Improvements in or relating to a percussion tool

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE866633C (en) * 1950-04-29 1953-02-12 Gustav Albert Bergman Arrangement on combustion engines, especially for rock drilling machines
US2764138A (en) 1953-03-02 1956-09-25 Atlas Copco Ab Percussion tools having a reciprocable hammer piston actuated by combustion gases
US2857888A (en) * 1957-05-17 1958-10-28 Syntron Co Portable internal combustion percussion tools
DE2016964B2 (en) * 1970-04-09 1977-09-15 Robert Bosch Gmbh, 7000 Stuttgart HAND-HELD HAMMER WITH BUILT-IN ELECTRIC DRIVE MOTOR
US3718193A (en) * 1971-02-18 1973-02-27 Bosch Gmbh Robert Cooling system for portable impulse transmitting machines
JPS48111601U (en) * 1972-03-31 1973-12-21
US4094365A (en) * 1974-05-20 1978-06-13 Robert Bosch Gmbh Electrohydraulically operated portable power tool
DE2835570A1 (en) * 1978-08-14 1980-02-28 Hilti Ag DRILL AND CHISEL HAMMER WITH COMBUSTION ENGINE DRIVE
JP2000052277A (en) * 1998-08-12 2000-02-22 Hitachi Koki Co Ltd Impact tool
JP2000153473A (en) * 1998-11-19 2000-06-06 Makita Corp Hammering tool
ATE361182T1 (en) * 2001-10-15 2007-05-15 Hilti Ag COOLING AIR LINE FOR AN ELECTRICAL HAND TOOL WITH ELECTROPNEUMATIC IMPACT MACHINE
CN2688454Y (en) * 2004-03-25 2005-03-30 苏州宝时得电动工具有限公司 Cooling structure of electric tool
DE102004058696A1 (en) * 2004-12-06 2006-06-08 Hilti Ag Electric power tool
DE102005036560A1 (en) * 2005-08-03 2007-02-08 Wacker Construction Equipment Ag Drilling and / or percussion hammer with linear drive and air cooling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB632560A (en) * 1944-07-13 1949-11-28 Carl Stanley Weyandt Improvements in or relating to a percussion tool

Also Published As

Publication number Publication date
EP2523780A1 (en) 2012-11-21
US9272407B2 (en) 2016-03-01
CN102770245B (en) 2016-01-20
WO2011085989A1 (en) 2011-07-21
CN102770245A (en) 2012-11-07
DE102010004724A1 (en) 2011-07-21
US20130098650A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
EP1666213B1 (en) Electrical tool apparatus
DE2441045C2 (en) Soundproof housing for machine units with cooler
EP2523780B1 (en) Hammer drill and/or impact hammer having cooling of equipment components
DE112005001444T5 (en) Combined exhaust silencer / heat exchanger
DE10156179A1 (en) Cooling a screw vacuum pump
DE102016012796B4 (en) Vehicle with driving saddle
DE102005007546A1 (en) Power tool
DE102008037934B4 (en) Machine with cooling system and method therefor
DE3217064A1 (en) INTAKE PIPE CONSTRUCTION FOR INTERNAL COMBUSTION ENGINES
EP1503033A1 (en) Apparatus for generating an air current in a sound-isolated dust remover
DE10027350B4 (en) Compressor arrangement for the operation of a fuel cell system and a method for cooling and / or sound insulation of a compressor assembly
DE2757966A1 (en) AIR CONDUCTION FOR A MOTOR VEHICLE
DE202012101190U1 (en) Suction dredger for pneumatic intake of suction material
DE4339936A1 (en) Heat exchanger system on under carriage of vehicle
EP1075912B1 (en) Motorized hand tool with at least one hollow shaped hand grip
DE102005001959A1 (en) Cooling air duct of an internal combustion engine arranged in an engine compartment of a tractor
DE102012010681B4 (en) Arrangement for temperature control of the lubricant of an internal combustion engine
DE102011050323B3 (en) Cooling device for data processing system, has pressure chamber which is separated by boundary wall from heat exchanger such that overpressure is obtained in pressure chamber in operation of fan assembly
EP2942222A1 (en) Heat exchanger assembly for a drive unit of an agricultural machine
DE3110448C1 (en) Heat exchanger
DE838090C (en) Air-cooled internal combustion engine
DE1590143C3 (en) oil-filled, cooled high-voltage cable
DE102018111179B3 (en) Air intake device for a vehicle equipped with an internal combustion engine
DE102014208259A1 (en) Cooling device for cooling a fluid medium, exhaust gas recirculation system for an internal combustion engine and internal combustion engine
DE102008038373A1 (en) Shield plate arrangement for use in engine compartment of motor vehicle, has flow channel formed by area between heat sensitive component and plate for guiding air flow, where channel tapers from air inlet to air outlet in flow direction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150401

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191016

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1239844

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016516

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200605

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200704

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016516

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

26N No opposition filed

Effective date: 20201207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210122

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210113

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210113

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1239844

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110113

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230123

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 14