EP2520862B1 - Monitoring the presence of two flames in a fuel combustion device - Google Patents

Monitoring the presence of two flames in a fuel combustion device Download PDF

Info

Publication number
EP2520862B1
EP2520862B1 EP11164502.4A EP11164502A EP2520862B1 EP 2520862 B1 EP2520862 B1 EP 2520862B1 EP 11164502 A EP11164502 A EP 11164502A EP 2520862 B1 EP2520862 B1 EP 2520862B1
Authority
EP
European Patent Office
Prior art keywords
flame
voltage
detector
radiation
measurement signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11164502.4A
Other languages
German (de)
French (fr)
Other versions
EP2520862A1 (en
Inventor
Ulrich Hofmann
Erik Lang
Josef Lelle
Alexander Diebold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to ES11164502.4T priority Critical patent/ES2511067T3/en
Priority to EP11164502.4A priority patent/EP2520862B1/en
Priority to CA2775763A priority patent/CA2775763C/en
Priority to US13/462,377 priority patent/US9170020B2/en
Publication of EP2520862A1 publication Critical patent/EP2520862A1/en
Application granted granted Critical
Publication of EP2520862B1 publication Critical patent/EP2520862B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/02Pilot flame sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/04Flame sensors sensitive to the colour of flames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/14Flame sensors using two or more different types of flame sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/16Flame sensors using two or more of the same types of flame sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements

Definitions

  • the present invention generally relates to the technical field of fuel combustion devices which are used, for example, in heating and / or hot water technology and which are often referred to as burner control or burner.
  • the present invention relates to a monitoring device and a method for independently monitoring the presence of a first flame and the presence of a second flame in such a fuel combustion device.
  • Fuel combustion devices are used, inter alia, in heating and / or hot water technology and in industrial thermal processing systems, which are used for example for metal melting or for the firing of ceramics.
  • fuel combustion devices which are included for example in boilers or water heaters, usually work not only with a main flame, which provides the actual heat generation, but also with a so-called. Pilot flame, which also as ignition flame is called.
  • Fuel combustion devices which are referred to in this document as Feuerungsautomat, as a fuel burner or shortly as a burner may be, for example, gas burners or oil burners.
  • the pilot flame will not fire even if no heating power is required.
  • the pilot flame then serves only to open a fuel valve, which is the main flame is assigned to ensure rapid ignition of the main flame.
  • the pilot flame is temporarily deleted and only shortly before the ignition of the main flame, for example by means of an electric ignition, ignited again.
  • the burning pilot flame then ensures that the ignition of the main flame can take place in a controlled manner without any major "ignition".
  • UV detector for monitoring the presence of pilot flame and main flame.
  • a UV detector which is also referred to as UV flame sensor, consists of a series circuit of an ohmic resistor, a UV cell and a diode.
  • the UV cell of the UV detector has a glass bulb of a UV-transparent quartz glass, which is filled with inert gas. There are two electrodes in the glass bulb. When a voltage is applied between the two electrodes and this voltage is increased, a glow discharge (ignition) occurs when a critical voltage is reached. In this case, electrons emerge at the negative electrode, are accelerated to the positive electrode and ionize the noble gas. This leads to a flow of current through the UV cell.
  • the UV cells used for flame monitoring typically show this behavior of autoignition only from voltages of more than 700 V. The situation is different when the UV cell of the flame to be monitored is irradiated with UV light of approximately 190 to 260 nm wavelength In this case, the Ignition effect depending on the intensity of UV radiation already at effective voltages of about 200 V on.
  • the diode of the UV detector is used for half-wave rectification, so that when operating the UV detector with an AC voltage in the case of the presence of a flame, a pulsed DC voltage occurs.
  • the UV detector and thus the diode is bridged, so that when operating with an AC voltage also at the input of the UV detector downstream amplifier circuit instead of the pulsed DC voltage, an AC voltage occurs.
  • the presence of a flame is indicated by a pulsed DC voltage and a line short is indicated by an AC voltage.
  • the independent monitoring of main and pilot flame by means of a respective UV detector has the disadvantage that for each of the two UV detectors each (a) a connecting line (each with two connecting wires) and (b) an amplifier circuit is required. Thus, a relatively high expenditure on equipment is required for the monitoring of main and pilot flame by means of a respective UV detector.
  • the invention has for its object to simplify independent monitoring of two spatially separated flames by means of a respective flame detector in view of the necessary apparatus required.
  • a monitoring device for independently monitoring the presence of a first flame and the presence of a second flame in a fuel combustion device.
  • the monitoring device comprises (a) a first flame detector arranged and arranged to receive first radiation emitted by the first flame, (b) a second flame detector arranged and arranged to receive second radiation which emits from the second flame is, (c) a voltage supply device, which is connected to the two flame detectors and which is adapted to apply an AC voltage having a first half-wave and a second half-wave to the two flame detectors, and (d) an evaluation circuit, which with the two flame detectors via a common signal input is connected.
  • the two flame detectors are set up and switched in relation to the voltage supply device and to the evaluation circuit such that a first measurement signal present during the first half-wave is indicative at the common signal input for the intensity of the first radiation and a second measurement signal present during the second half-wave indicative of the common signal input for the intensity of the second radiation. Furthermore, the evaluation circuit is set up to evaluate the first measurement signal and the second measurement signal independently of each other.
  • the described monitoring device is based on the finding that, in the case of a suitable circuit of the two flame detectors, despite the use of a common signal input, both flame detectors can be read out independently of each other, provided that the first measurement signal is exclusively assigned to the first flame detector and the second measurement signal is exclusively assigned to the second flame detector.
  • the first measurement signal can only during the first half-wave of the applied to both flame detectors AC voltage occur.
  • the second measuring signal can occur only during the second half cycle of the alternating voltage.
  • the fuel combustion device may be any burner, which is used in particular in the heating and / or hot water technology.
  • the fuel to be combusted may be a solid, liquid or gaseous fuel under normal conditions.
  • the described monitoring device currently seems to be particularly suitable for burners which burn gas or possibly even oil.
  • the described monitoring device has the advantage over known flame monitoring devices that when using only one flame detector, to which the two flame detectors are connected and which besides a display device has the described voltage supply device and the described evaluation circuit, the two flames can be independently monitored for their presence , Thus, an efficient monitoring of a main flame and a pilot flame in a fuel combustion device can be realized without great equipment expense.
  • An additional terminal on the flame detector for the connection of the second flame detector is not required and to bridge the distance between the actual fuel combustion device in which burn the two flames, and a cabinet in which typically the Flame detector is arranged, only a two-wire flame detector connection cable is required.
  • the two mentioned flames can also be two partial flames of a so-called surface burner, which typically has a multiplicity of partial flames, wherein one partial flame is assigned to at least one opening of a fuel line.
  • a partial flame is usually ignited first, which then ignites the fuel which emerges from adjacent openings. In this way, all partial flames are ignited successively.
  • the fuel line can meander over a predetermined area.
  • the monitoring device further comprises (a) a common power supply line connecting the power supply to both the first flame detector and the second flame detector and / or (b) a common sense signal line connecting both the first flame detector and the first second flame detector connects to the common signal input of the evaluation circuit.
  • connection for the voltage supply of the two flame detectors and / or a common, in particular single-core (connection) line for the transmission of measurement signals, which were generated by the two flame detectors, to the evaluation circuit
  • a common in particular single-core (connection) line for the voltage supply of the two flame detectors and / or a common, in particular single-core (connection) line for the transmission of measurement signals, which were generated by the two flame detectors, to the evaluation circuit has the advantage that in each case a single connecting wire is sufficient to connect the two flame detectors to the power supply and / or to the evaluation circuit. This advantageously reduces the cabling effort between the voltage supply device and the two flame detectors and / or the cabling effort between the two flame detectors and the common signal input.
  • the common voltage supply line in each case connects one terminal of the two flame detectors to the voltage supply device, whereas the common measurement signal line connects the respective other terminals of the two flame detectors with the common signal input of the evaluation circuit.
  • the first flame detector has a first electrically rectifying element and the second flame detector has a second electrically rectifying element, wherein the two rectifying elements are connected in anti-parallel with respect to the voltage supply device and to the common signal input.
  • a separate evaluation of the two (half-wave) measurement signals can be achieved by a slight adaptation of a known evaluation circuit, such as e.g. the flame signal amplifier LME7 or the flame signal amplifier LMV Fa. Siemens.
  • a further amplifier circuit can be provided so that a separate amplifier circuit is used for each of the two (half-wave) measurement signals.
  • the rectifying element may for example be a tube.
  • the rectifying element is a diode made, for example, from a semiconductor material.
  • the first flame detector further comprises a first radiation detector and the second flame detector further comprises a second radiation detector, wherein at least one of the two radiation detectors for electromagnetic radiation in the region of the ultraviolet spectral range is sensitive.
  • the ultraviolet spectral sensitive radiation detector may, for example, the o.g. UV cell, which has a glass bulb made of a UV-transparent quartz glass, in which there are two electrodes. In the glass bulb is also a noble gas, which is ionized by incident UV radiation, so that the UV cell is at least partially electrically conductive.
  • a UV cell is particularly sensitive to radiation in the electromagnetic spectral range between 200 nm and 260 nm.
  • both radiation detectors are sensitive to electromagnetic radiation in the ultraviolet spectral range. It is further noted that although currently the same types of radiation detectors are preferably used, a combination of different types of radiation detectors and in particular ultraviolet spectral sensitive radiation detectors may also be used.
  • the evaluation circuit has a filter circuit.
  • This has the advantage that the (half-wave) measurement signals of the two flame detectors are smoothed such that instead of in each case a pulsed DC voltage signal, a smoothed DC voltage signal in the evaluation circuit can be further processed.
  • the filter circuit may preferably be connected directly downstream of the common signal input.
  • the filter circuit may, for example, be a so-called RC filter circuit which has one or more so-called RC elements, each having a resistor and a capacitor.
  • the evaluation circuit has (a) a first amplifier circuit which is set up for amplifying exclusively the first measuring signal, and (b) a second amplifier circuit which is set up for amplifying exclusively the second measuring signal.
  • a first amplifier circuit which is set up for amplifying exclusively the first measuring signal
  • a second amplifier circuit which is set up for amplifying exclusively the second measuring signal.
  • the evaluation circuit has a data processing unit which is set up to detect the presence of a fault of an electronic component of the evaluation circuit and, in particular, the faulty component based on a first output signal of the first amplifier circuit and on a second output signal of the second amplifier circuit identify.
  • the first amplifier circuit has a first diode on the input side
  • the second amplifier circuit has a second diode on the input side.
  • one of the two diodes is connected on the anode side to the common signal input and the other of the two diodes is connected on the cathode side to the common signal input.
  • connection of the anode or the cathode with the common signal input can be a direct or an indirect connection.
  • at least one further electronic component is located between the anode or the cathode and the common signal input.
  • the filter circuit described above can be located between the anode or the cathode and the common signal input.
  • the first diode is a first zener diode and / or the second diode is a second zener diode.
  • a Zener diode behaves in a known manner in the forward direction as a normal diode.
  • the usual diode behavior ensures that the two measuring signals are separated from each other and supplied to one of the two amplifier circuits.
  • the reverse direction is a voltage which is greater than a specific breakdown voltage for the respective zener diode, Then the zener diode becomes low in the reverse direction.
  • This behavior can be used in the described monitoring device by a suitable dimensioning of the zener diode, in particular by a suitable choice of the breakdown voltage, to detect a short circuit in the connection line, in particular a short circuit between the above-described voltage supply line and the common measurement signal line described above ,
  • the breakdown voltage of at least one of the two zener diodes is dimensioned such that the at least one zener diode (a) is operated in a voltage range which is smaller in the case of a fault-free connection of the two flame detectors to the voltage supply device and to the common signal input is operated as the breakdown voltage, and (b) in the event of a short circuit between the voltage supply device and the common signal input in a voltage range which is greater than the breakdown voltage.
  • Said voltage range which is greater than the blocking voltage, is also typically referred to as a passband.
  • the zener diode has lost its rectifying effect.
  • the alternating voltage provided by the voltage supply device in particular between the above-described common voltage supply line and the above-described common measurement signal line at the zener diode, will be present.
  • this short circuit in contrast to a faultless operating state of the monitoring device, in which the relevant flame detector itself is in the event of detection of radiation ensures at least a certain voltage drop at the zener diode is applied to a higher AC voltage, this short circuit can be detected by an optionally modified by the Zener diode characteristic AC voltage which is fed into the relevant amplifier circuit and output at an output of the amplifier circuit.
  • the presence of an output AC voltage can thus be regarded as a reliable indication that there is a short circuit in particular between the above-described common voltage supply line and the common measurement signal line described above.
  • a short circuit can thus be reliably detected in a simple yet effective manner and thus the reliability of the entire monitoring device can be significantly increased.
  • the magnitude of the voltage drop across the flame detector is critically dependent on the type of radiation detector used in the particular flame detector.
  • the voltage drop across the UV cell even if just a comparatively high intensity of UV radiation is detected, on the order of 100 volts.
  • the described method comprises (a) applying an AC voltage provided by a voltage supply means having a first half-wave and a second half-wave to a first flame detector and to a second flame detector, (b) receiving a first radiation emitted from the first flame by means of the first flame detector, (c) receiving a second radiation emitted by the second flame by means of the second flame detector, (d) applying a first measurement signal present during the first half wave from the first flame detector to a common signal input of one Evaluation circuit, wherein the first measurement signal for the intensity of the first radiation is indicative, (e) supplying a second measurement signal present during the second half wave from the second flame detector to the common signal input of the evaluation circuit, wherein the second measurement signal for the intensity of the zw radiation is indicative, and (f) monitoring the presence of the first flame and the presence of the second flame by means of the evaluation circuit based on the first measurement signal and the second measurement signal.
  • the described method is also based on the finding that, in the case of a suitable circuit of the two flame detectors, despite the use of a common signal input, both flame detectors can be read out independently of each other, provided that the first measurement signal can be exclusively assigned to the first flame detector and the second measurement signal can be assigned exclusively to the second flame detector ,
  • This assignment is made according to the invention with reference to the two half-waves of the alternating voltage, which is provided by the voltage supply device for both flame detectors together.
  • the first measurement signal only during the first half cycle the alternating voltage applied to both flame detectors occurs.
  • the second measuring signal can occur only during the second half cycle of the alternating voltage.
  • the method further comprises (g) erasing the first flame, (h) evaluating the first measurement signal, and (i) viewing the monitoring device as faulty if the evaluation of the first measurement signal erroneously indicates a presence of the first Flame indicates.
  • the at least temporary extinction of the first flame has the advantage that the functionality of the monitoring device can be checked in a simple manner.
  • a short circuit between the o.g. common power supply line and the o.g. common measurement signal line are detected, because only in such a short circuit even when an AC signal is applied to the common signal input when the first flame detector does not receive radiation.
  • the extinction of the first flame can be done, for example, by closing a valve for the fuel supply to the first flame.
  • at least a certain delay time should be waited with the evaluation of the first measurement signal, which corresponds to the expected time difference between the closing of the valve and the actual extinction of the first flame.
  • this delay time may be, for example, between 1 second and 10 seconds.
  • the deletion of the first flame can be carried out in an advantageous manner in the context of a so-called intermittent operation of the fuel combustion device.
  • a special turn off the first flame just for the purpose of checking the Functioning of the monitoring device is thus not required in an advantageous manner.
  • an operating mode in accordance with relevant product standards for fuel combustion devices, also referred to as automatic firing devices, an operating mode is to be understood in which the flames are turned off at least once (1x) in the course of 24 hours. In the area of normal heating applications for residential areas, this requirement is usually met. This is often the case with several burner starts per hour.
  • the fuel combustion device described can thus use the commissioning process to check its functionality and in particular to test the flame monitoring system. Thus, the flame monitoring system is tested relatively often in intermittent operation.
  • the monitoring device in which suitably dimensioned Zener diodes are used, in the case of a voltage breakdown at a half-wave (at the other half-wave, the zener diode is already conductive) and thus at an AC voltage to the relevant amplifier circuit of the Evaluation circuit to be closed on a short circuit between the common voltage supply line and the common measuring signal line.
  • FIG. 1 shows a monitoring device 100 according to a first embodiment of the invention.
  • the monitoring device 100 has two flame detectors, a first flame detector 110 and a second flame detector 120, on.
  • the first flame detector 110 monitors the presence of a main flame of a fuel combustion device
  • the second flame detector 120 monitors the presence of a pilot flame of the fuel combustion device.
  • each of the two flame detectors 110, 120 each have a resistor 112 or 122, a UV cell 114 or 124 and a rectifying diode 116 and 126, respectively.
  • the two diodes 116 and 126 are connected in anti-parallel with respect to each other to a common measuring signal line 134.
  • the two UV cells 114 and 124 each have a glass bulb of a UV-transparent quartz glass, which is filled with inert gas. There are two electrodes in the glass bulb. If a voltage is applied between the two electrodes and, in addition, the noble gas is irradiated with UV light which is emitted by the main flame or by the pilot flame, then the UV cell in question becomes at least partially electrically conductive and a current can flow through it corresponding flame detector 110, 120 flow.
  • the monitoring device 100 further comprises, arranged in a housing, not shown, designed as a transformer power supply device 130, which is connected via a resistor R, a common voltage output 131 and a common power supply line 132 with the two flame detectors 110 and 120.
  • the common voltage output is formed as a terminal contact 131 in the housing (not shown) of the monitoring device 100.
  • the transformer 130 performs a transformation in which a 50 Hz input signal with a mains voltage Unetz is transformed from 230V to a 50 Hz output signal with a sensor voltage Usensor of approximately 300V.
  • voltage transformations with other frequencies and / or with other values for the primary voltage and / or the secondary voltage possible are.
  • an input signal with an effective voltage of 120V and a frequency of 60 Hz is usually used.
  • the monitoring device 100 further has an evaluation circuit 150, which in turn comprises a first amplifier circuit 152 and a second amplifier circuit 154.
  • the first amplifier circuit 152 has on the input side a diode D10, which is connected to a common signal input 138.
  • the second amplifier circuit 154 has on the input side a diode D20, which is likewise connected to the common signal input 138.
  • the common signal input is designed as a connection contact 138 in the above-mentioned housing (not shown).
  • FIG. 1 As can be seen, in relation to the common measuring signal line 134, the two diodes 116 and D10 have the same "polarity". That is, a current flowing through the first flame detector 110 is exclusively processed by the first amplifier circuit 152. Similarly, with respect to the common sense signal line 134, the two diodes 126 and D20 are connected to the same "polarity”. That is, a current flowing through the second flame detector 120 is exclusively processed by the second amplifier circuit 154.
  • the first flame detector 110 can only become conductive during the positive half-cycle of the alternating voltage (with the main flame burning), whereas the second flame detector 120 (during burning pilot flame) only during the negative half-wave of the AC voltage can become conductive.
  • the transmitted via the common measurement signal line 134 to the evaluation circuit 150 measurement signal of both Flame detectors 110 and 120 are then separated from the two diodes D10 and D20, so that, as already described above, the first amplifier circuit 152 is associated with a first output A1 to the first flame detector 110 and the second amplifier circuit 154 with a second output A2 to the second Flame detector 120 is assigned.
  • the first amplifier circuit 152 has a first low-pass filter, which is formed by a resistor R10 and a capacitor C10.
  • the second amplifier circuit 154 has a second low-pass filter, which is formed by a resistor R20 and a capacitor C20.
  • These two filter circuits 152 and 154 have the effect that the pulsed DC voltage applied to the filter input is smoothed, so that a DC signal is output to a good approximation at the respective filter output. This DC signal is then amplified by the respective amplifier circuit 152 or 154.
  • the first amplifier circuit 152 has three resistors R11, R12 and R13 and a bipolar transistor T10.
  • the second amplifier circuit 154 has four resistors R21, R22, R23 and R24 and a bipolar transistor T20. According to the embodiment illustrated here, the two amplifier circuits 152 and 154 operate as shown FIG. 1 apparent, with two voltage levels of 5 volts and 0 volts (GND).
  • the second flame detector 120 Due to the presence of the resistor R24, if the second flame detector 120 at least partially becomes conductive upon receiving UV radiation (the pilot flame is on), a logic level of approximately 5 volts (High) is output at the second output A2. If the second flame detector 120 does not receive UV radiation (the pilot flame is off), the second flame detector 120 locks and the output A2 has a logic level of about 0 volts (low). By evaluating the two voltage levels, it is thus possible to monitor the presence of the main flame associated with the first flame detector 110 and the presence of the pilot flame associated with the second flame detector 120.
  • the measurement signals can be unambiguously assigned to the two flames due to the anti-parallel arrangement of the two flame detectors and an independent monitoring of the two flames is possible.
  • FIG. 2 shows a monitoring device 200 according to a second embodiment of the invention.
  • the monitoring device 200 has a voltage supply device 230 designed as an AC voltage source and a DC voltage source 260.
  • an evaluation circuit 250 of the monitoring device 200 differs from the in FIG. 1 evaluation circuit 150 shown only in that (a) instead of the ordinary diodes D10 and D20 each Zener diode ZD10 or ZD20 is used and that (b) in addition a two-stage low-pass filter circuit 240 is provided which two resistors R1 and R2 and two capacitors C1 and C2.
  • the separation between (a) the measurement signal from the first flame detector 110 and (b) the measurement signal from the second flame detector 120 is performed in the same manner as in FIG FIG. 1 therefore, will not be explained again in detail.
  • the two-stage low-pass filter circuit 240 ensures that the measurement signals from both flame detectors 110 and 120 are smoothed immediately after the common signal input 138.
  • the two Zener diodes ZD10 and ZD20 contribute to the fact that compared to the monitoring device 100 in the monitoring device 200 additionally a sensor short circuit between the common voltage supply line 132 and the common measurement signal line 134 can be detected.
  • the breakdown or zener voltages of the two Zener diodes ZD10 and ZD20 are dimensioned such that, in the event of a sensor short circuit, the input voltage applied to the common signal input 138 is greater than the Zener voltage of the two Zener diodes ZD10 and ZD20. It should be noted that, in the event of a sensor short circuit, the full AC voltage applied to the common signal input 138 is provided by the voltage supply device 130.
  • FIG. 2 a circuit diagram of the monitoring device 200 suitable for a simulation program is shown, with which the following operating states can be simulated: (A) The main flame is burning ⁇ Switch S1 is closed (B) The pilot flame is burning ⁇ Switch S2 is closed (C) Sensor short circuit before ⁇ Switch S3 is closed
  • the voltage signals applied to the two outputs A1 and A2 can be displayed for all possible operating states.
  • FIG. 3 shows for different flame constellations the logical output signals, which at the two outputs of the in FIG. 2 abut illustrated amplifier circuit.
  • the reference symbol AA1 denotes the output signal which corresponds to the in FIG. 2 assigned output A1 is assigned.
  • the reference character AA2 denotes the output signal which corresponds to the in FIG. 2 assigned output A2 is assigned. For reasons of clarity, the output signal AA1 is shown shifted by -2 volts.
  • the level of the output signal AA2 is "low” when the pilot flame is off. If the level of the output signal is "High”, then the pilot flame is burning. Further, the level of the output signal AA1 is "High” when the main flame is off. When the level of the output signal AA1 is "Low”, the main flame is burning.
  • FIG. 4 shows for different flame constellations and for the case of a sensor short circuit between the in FIG. 2 represented common voltage supply line 132 and the common measuring signal line 134, the output signals AA1 and AA2, which abut the two outputs A1 and A2 of the evaluation circuit 150. If there is no sensor short circuit, the levels of the output signals AA1 and AA2 assume the values "Low” and "High” which have already been described above (AA1 is also in FIG. 3 shown shifted by -2 volts).
  • both the output signal AA1 and the output signal AA2 are an AC signal which has the same frequency as the AC voltage source 230 (see FIG. FIG. 2 ) having.
  • FIG. 5 FIG. 10 is a timing diagram showing, as part of an intermittent operation of a fuel combustion apparatus having a main and a pilot flame, a sensor short between the in.
  • FIG. 2 shown common power supply line and the common measurement signal line can be detected.
  • This is not necessarily the in FIG. 2 shown monitoring device 200 with the two zener diodes ZD10 and ZD20 required. Rather, as explained below, a sensor short circuit with the in FIG. 1 monitoring device 100 are detected on the basis of a temporal correlation between a switching cycle of switched fuel supply valves and the resulting output at the outputs A1 and A2 (flame) signals.
  • a valve for supplying fuel to the main flame is opened at a time t1.
  • the opened main flame valve is in FIG. 5 represented by the bar 581. If the monitoring device operates correctly and then addresses the main flame, which is assumed below, the presence of the main flame is displayed at the time A1 at a time t2.
  • the corresponding flame signal is in FIG. 5 represented by the bar 581a.
  • the time delay t2-t1 depends i.a. from the time required for fuel transport from the valve exit to the location of the main flame. Accordingly, a maximum delay time TSA1 dependent on its design can be determined for each fuel combustion device within which the main flame must start at the latest. This delay time TSA1 may be between 1 second and 10 seconds, depending on the design of the fuel combustion device concerned. If, however, within this time period TSA1 from t1 the first flame signal is not addressed, then it can be assumed that the flame monitoring device is defective.
  • the main flame flame signal 581a is expected to go out within a certain time delay at a time t6. If this is not the case, then it can be assumed that there is a sensor short circuit.
  • the open pilot flame valve is represented by the bar 582.
  • the pilot flame signal 582a becomes the pilot flame appear at a time t4 and disappear again at a time t8. If the flame signal 582a is still present for a longer time even after the pilot flame valve has been closed, then it can also be assumed that there is a sensor short circuit. In this case also, in the case of a correctly functioning monitoring device, the time difference between t3 and t4 must not be greater than a characteristic delay time TSA2 for starting the pilot flame.
  • monitoring device 200 shown permits extensive error consideration. In this case, component errors of the evaluation circuit 150 can be reliably detected and the affected components even identified. Thus, for example, the requirements of the standards EN230 / EN298 regarding the behavior in case of component defects are met.
  • Table 1 shows various component errors of the monitoring device 200 and the associated output signals at the outputs A1 and A2.
  • C collector B: Base e: emitter L / H / W: Condition remains unchanged despite "component fault” when "Low”, “High” or “AC signal”
  • AC AC signal
  • FCS Sensor short circuit FS: flame signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Control Of Combustion (AREA)

Description

Die vorliegende Erfindung betrifft allgemein das technische Gebiet von Brennstoff-Verbrennungsvorrichtungen, die beispielsweise in der Heizungs- und/oder Warmwassertechnik eingesetzt werden und die häufig als Feuerungsautomaten oder als Brenner bezeichnet werden. Die vorliegende Erfindung betrifft insbesondere eine Überwachungsvorrichtung sowie ein Verfahren zum unabhängigen Überwachen des Vorhandenseins einer ersten Flamme und des Vorhandenseins einer zweiten Flamme in einer derartigen Brennstoff-Verbrennungsvorrichtung.The present invention generally relates to the technical field of fuel combustion devices which are used, for example, in heating and / or hot water technology and which are often referred to as burner control or burner. In particular, the present invention relates to a monitoring device and a method for independently monitoring the presence of a first flame and the presence of a second flame in such a fuel combustion device.

Brennstoff-Verbrennungsvorrichtungen kommen unter anderem in der Heizung- und/oder Warmwassertechnik und in industriellen Thermoprozessanlagen, welche beispielsweise zum Metallschmelzen oder zum Brennen von Keramiken verwendet werden, zum Einsatz. In der Heizungs- und/oder Warmwassertechnik verwendete Brennstoff-Verbrennungsvorrichtungen, welche beispielsweise in Heizkesseln oder Durchlauferhitzern enthalten sind, arbeiten in der Regel nicht nur mit einer Hauptflamme, welche für die eigentliche Wärmeentwicklung sorgt, sondern auch mit einer sog. Pilotflamme, welche auch als zündflamme bezeichnet wird. Brennstoff-Verbrennungsvorrichtungen, welche in diesem Dokument auch als Feuerungsautomat, als Brennstoffbrenner oder kurz als Brenner bezeichnet werden, können beispielsweise Gasbrenner oder Ölbrenner sein.Fuel combustion devices are used, inter alia, in heating and / or hot water technology and in industrial thermal processing systems, which are used for example for metal melting or for the firing of ceramics. In the heating and / or hot water technology used fuel combustion devices, which are included for example in boilers or water heaters, usually work not only with a main flame, which provides the actual heat generation, but also with a so-called. Pilot flame, which also as ignition flame is called. Fuel combustion devices, which are referred to in this document as Feuerungsautomat, as a fuel burner or shortly as a burner may be, for example, gas burners or oil burners.

Bei manchen Arten von Brennern kommt die Pilotflamme auch dann nicht zum Erlischen, wenn keine Heizleistung erforderlich ist. Die Pilotflamme dient dann lediglich dazu, beim Öffnen eines Brennstoffventils, welches der Hauptflamme zugeordnet ist, zügig ein zünden der Hauptflamme zu gewährleisten. Bei anderen Arten von Brennern wird die Pilotflamme zwischenzeitlich gelöscht und erst kurz vor dem Zünden der Hauptflamme, beispielsweise mittels einer elektrischen Zündung, wieder gezündet. Bei dem Aktivieren der Hauptflamme sorgt die brennende Pilotflamme dann dafür, dass der Zündvorgang der Hauptflamme kontrolliert ohne größeren "Zündstoß" stattfinden kann.In some types of burners, the pilot flame will not fire even if no heating power is required. The pilot flame then serves only to open a fuel valve, which is the main flame is assigned to ensure rapid ignition of the main flame. In other types of burners, the pilot flame is temporarily deleted and only shortly before the ignition of the main flame, for example by means of an electric ignition, ignited again. When the main flame is activated, the burning pilot flame then ensures that the ignition of the main flame can take place in a controlled manner without any major "ignition".

Aus Gründen der Betriebssicherheit ist es durch entsprechende Normen vorgeschrieben, das Vorhandensein von Haupt- und/oder Pilotflamme unabhängig voneinander detektieren zu können.For reasons of operational safety, it is prescribed by appropriate standards to be able to detect the presence of main and / or pilot flame independently.

Aus der technischen Grundlagendokumentation " Flammenüberwachung an Öl- und Gasbrennern", Siemens Building Technologies, CC1Z7302de, HVAC Products, 16.02.2005 ist bekannt, zur Überwachung des Vorhandenseins von Pilotflamme und Hauptflamme jeweils einen UV-Detektor zu verwenden. Ein derartiger UV-Detektor, welcher auch als UV Flammenfühler bezeichnet wird, besteht aus einer Serienschaltung aus einem ohm'schen Widerstand, einer UV-Zelle und einer Diode.From the basic technical documentation " Flame monitoring on oil and gas burners ", Siemens Building Technologies, CC1Z7302en, HVAC Products, 16.02.2005 It is known to use a UV detector for monitoring the presence of pilot flame and main flame. Such a UV detector, which is also referred to as UV flame sensor, consists of a series circuit of an ohmic resistor, a UV cell and a diode.

Die UV-Zelle des UV-Detektors weist einen Glaskolben aus einem UV-durchlässigen Quarzglas auf, der mit Edelgas gefüllt ist. In dem Glaskolben befinden sich zwei Elektroden. Wenn zwischen den beiden Elektroden eine Spannung angelegt und diese Spannung erhöht wird, so kommt es beim Erreichen einer kritischen Spannung zu einer Glimmentladung (Zündung). Dabei treten Elektronen an der negativen Elektrode aus, werden zur positiven Elektrode beschleunigt und ionisieren das Edelgas. Dies führt zu einem Stromfluss durch die UV-Zelle. Die zur Flammenüberwachung eingesetzten UV-Zellen zeigen dieses Verhalten der Selbstzündung typischerweise erst ab Spannungen von mehr als 700 V. Anders verhält es sich, wenn die UV-Zelle von der zu überwachenden Flamme mit UV-Licht von ca. 190 bis 260 nm Wellenlänge bestrahlt wird: In diesem Fall tritt der Zündeffekt abhängig von der Intensität der UV-Strahlung bereits bei effektiven Spannungen von ca. 200 V auf.The UV cell of the UV detector has a glass bulb of a UV-transparent quartz glass, which is filled with inert gas. There are two electrodes in the glass bulb. When a voltage is applied between the two electrodes and this voltage is increased, a glow discharge (ignition) occurs when a critical voltage is reached. In this case, electrons emerge at the negative electrode, are accelerated to the positive electrode and ionize the noble gas. This leads to a flow of current through the UV cell. The UV cells used for flame monitoring typically show this behavior of autoignition only from voltages of more than 700 V. The situation is different when the UV cell of the flame to be monitored is irradiated with UV light of approximately 190 to 260 nm wavelength In this case, the Ignition effect depending on the intensity of UV radiation already at effective voltages of about 200 V on.

Die Diode des UV-Detektors dient zur Einweggleichrichtung, so dass bei einem Betrieb des UV-Detektors mit einer Wechselspannung im Falle des Vorhandenseins einer Flamme eine gepulste Gleichspannung auftritt. Im Falle eines Kurzschlusses der Anschlussleitungen des UV-Detektors wird der UV-Detektor und damit auch die Diode überbrückt, so dass beim Betrieb mit einer Wechselspannung auch an dem Eingang einer dem UV-Detektor nachgeschalteten Verstärkerschaltung anstelle der gepulsten Gleichspannung eine Wechselspannung auftritt. Somit wird das Vorhandensein einer Flamme durch eine gepulste Gleichspannung angezeigt und ein Leitungskurzschluss wird durch eine Wechselspannung angezeigt.The diode of the UV detector is used for half-wave rectification, so that when operating the UV detector with an AC voltage in the case of the presence of a flame, a pulsed DC voltage occurs. In the case of a short circuit of the connection lines of the UV detector, the UV detector and thus the diode is bridged, so that when operating with an AC voltage also at the input of the UV detector downstream amplifier circuit instead of the pulsed DC voltage, an AC voltage occurs. Thus, the presence of a flame is indicated by a pulsed DC voltage and a line short is indicated by an AC voltage.

Darüber hinaus offenbart Druckschrift US 3548395 A1 den Oberbegriff des Anspruchs.In addition, publication discloses US 3548395 A1 the preamble of the claim.

Die voneinander unabhängige Überwachung von Haupt- und Pilotflamme mittels jeweils eines UV-Detektors hat den Nachteil, dass für jeden der beiden UV-Detektoren jeweils (a) eine Anschlussleitung (mit jeweils zwei Anschlussdrähten) und (b) eine Verstärkerschaltung benötigt wird. Somit ist für die Überwachung von Haupt- und Pilotflamme mittels jeweils eines UV-Detektors ein vergleichsweise hoher apparativer Aufwand erforderlich.The independent monitoring of main and pilot flame by means of a respective UV detector has the disadvantage that for each of the two UV detectors each (a) a connecting line (each with two connecting wires) and (b) an amplifier circuit is required. Thus, a relatively high expenditure on equipment is required for the monitoring of main and pilot flame by means of a respective UV detector.

Der Erfindung liegt die Aufgabe zugrunde, eine voneinander unabhängige Überwachung von zwei räumlich voneinander getrennten Flammen mittels jeweils eines Flammendetektors im Hinblick auf den dafür notwendigen apparativen Aufwand zu vereinfachen.The invention has for its object to simplify independent monitoring of two spatially separated flames by means of a respective flame detector in view of the necessary apparatus required.

Diese Aufgabe wird gelöst durch die Gegenstände der unabhängigen Patentansprüche. Vorteilhafte Ausführungsformen der vorliegenden Erfindung sind in den abhängigen Ansprüchen beschrieben.This object is solved by the subject matters of the independent claims. Advantageous embodiments of the present invention are described in the dependent claims.

Gemäß einem ersten Aspekt der Erfindung wird eine Überwachungsvorrichtung zum unabhängigen Überwachen des Vorhandenseins einer ersten Flamme und des Vorhandenseins einer zweiten Flamme in einer Brennstoff-Verbrennungsvorrichtung beschrieben. Die Überwachungsvorrichtung weist auf (a) einen ersten Flammendetektor, eingerichtet und angeordnet zum Empfangen von erster Strahlung, welche von der ersten Flamme emittiert wird, (b) einen zweiten Flammendetektor, eingerichtet und angeordnet zum Empfangen von zweiter Strahlung, welche von der zweiten Flamme emittiert wird, (c) eine Spannungsversorgungseinrichtung, welche mit den beiden Flammendetektoren verbunden ist und welche eingerichtet ist, eine Wechselspannung mit einer ersten Halbwelle und einer zweiten Halbwelle an die beiden Flammendetektoren anzulegen, und (d) eine Auswerteschaltung, welche mit den beiden Flammendetektoren über einen gemeinsamen Signaleingang verbunden ist. Die beiden Flammendetektoren sind derart eingerichtet und in Bezug zu der Spannungsversorgungseinrichtung und zu der Auswerteschaltung derart geschalten, dass ein während der ersten Halbwelle vorhandenes erstes Messsignal an dem gemeinsamen Signaleingang für die Intensität der ersten Strahlung indikativ ist und ein während der zweiten Halbwelle vorhandenes zweites Messsignal auf dem gemeinsamen Signaleingang für die Intensität der zweiten Strahlung indikativ ist. Ferner ist die Auswerteschaltung eingerichtet, das erste Messsignal und das zweite Messsignal unabhängig voneinander auszuwerten.According to a first aspect of the invention, a monitoring device for independently monitoring the presence of a first flame and the presence of a second flame in a fuel combustion device is described. The monitoring device comprises (a) a first flame detector arranged and arranged to receive first radiation emitted by the first flame, (b) a second flame detector arranged and arranged to receive second radiation which emits from the second flame is, (c) a voltage supply device, which is connected to the two flame detectors and which is adapted to apply an AC voltage having a first half-wave and a second half-wave to the two flame detectors, and (d) an evaluation circuit, which with the two flame detectors via a common signal input is connected. The two flame detectors are set up and switched in relation to the voltage supply device and to the evaluation circuit such that a first measurement signal present during the first half-wave is indicative at the common signal input for the intensity of the first radiation and a second measurement signal present during the second half-wave indicative of the common signal input for the intensity of the second radiation. Furthermore, the evaluation circuit is set up to evaluate the first measurement signal and the second measurement signal independently of each other.

Der beschriebenen Überwachungsvorrichtung liegt die Erkenntnis zugrunde, dass bei einer geeigneten Schaltung der beiden Flammendetektoren trotz der Verwendung eines gemeinsamen Signaleingangs beide Flammendetektoren unabhängig voneinander ausgelesen werden können, sofern das erste Messsignal exklusiv dem ersten Flammendetektor und das zweite Messsignal exklusiv dem zweiten Flammendetektor zugeordnet wird. Dabei kann das erste Messsignal lediglich während der ersten Halbwelle der an beide Flammendetektoren angelegten Wechselspannung auftreten. Entsprechend kann das zweite Messsignal lediglich während der zweiten Halbwelle der Wechselspannung auftreten.The described monitoring device is based on the finding that, in the case of a suitable circuit of the two flame detectors, despite the use of a common signal input, both flame detectors can be read out independently of each other, provided that the first measurement signal is exclusively assigned to the first flame detector and the second measurement signal is exclusively assigned to the second flame detector. In this case, the first measurement signal can only during the first half-wave of the applied to both flame detectors AC voltage occur. Accordingly, the second measuring signal can occur only during the second half cycle of the alternating voltage.

Anschaulich ausgedrückt bedeutet dies, dass eine Zuordnung der Messsignale der beiden Flammendetektoren zu der ersten (Pilot-) Flamme oder zu der zweiten (Haupt-) Flamme in der Auswerteschaltung durch eine Signaltrennung unter Berücksichtigung der positiven und der negativen Halbwelle erfolgt. Dadurch ist auf einfache und trotzdem effektive Weise eine separate Flammenintensitätsbewertung möglich.Expressed in clear terms, this means that an assignment of the measurement signals of the two flame detectors to the first (pilot) flame or to the second (main) flame in the evaluation circuit is effected by a signal separation taking into account the positive and the negative half-wave. As a result, a separate flame intensity evaluation is possible in a simple yet effective manner.

Die Brennstoff-Verbrennungsvorrichtung kann ein beliebiger Brenner sein, welcher insbesondere in der Heizungs- und/oder Warmwassertechnik zum Einsatz kommt. Der zu verbrennende Brennstoff kann ein bei Normalbedingungen fester, flüssiger oder gasförmiger Brennstoff sein. Die beschriebene Überwachungsvorrichtung scheint derzeit insbesondere für Brenner geeignet zu sein, welche Gas oder evtl. auch Öl verbrennen.The fuel combustion device may be any burner, which is used in particular in the heating and / or hot water technology. The fuel to be combusted may be a solid, liquid or gaseous fuel under normal conditions. The described monitoring device currently seems to be particularly suitable for burners which burn gas or possibly even oil.

Die beschriebene Überwachungsvorrichtung hat gegenüber bekannten Flammenüberwachungsvorrichtungen den Vorteil, dass bei Verwendung von lediglich einem Flammenwächter, an welchem die beiden Flammendetektoren angeschlossen sind und welcher neben einer Anzeigeeinrichtung die beschriebene Spannungsversorgungseinrichtung und die beschriebene Auswerteschaltung aufweist, die beiden Flammen unabhängig voneinander auf ihr Vorhandensein überwacht werden können. Somit kann ohne großen apparativen Aufwand eine effiziente Überwachung einer Hauptflamme und einer Pilotflamme in einer Brennstoff-Verbrennungsvorrichtung realisiert werden. Eine zusätzliche Anschlussklemme an dem Flammenwächter für den Anschluss des zweiten Flammendetektors ist dabei nicht erforderlich und zur Überbrückung der Entfernung zwischen der eigentlichen Brennstoff-Verbrennungsvorrichtung, in der die beiden Flammen brennen, und einem Schaltschrank, in dem typischerweise der Flammenwächter angeordnet ist, ist lediglich eine zweiadrige Flammendetektor-Anschlussleitung erforderlich.The described monitoring device has the advantage over known flame monitoring devices that when using only one flame detector, to which the two flame detectors are connected and which besides a display device has the described voltage supply device and the described evaluation circuit, the two flames can be independently monitored for their presence , Thus, an efficient monitoring of a main flame and a pilot flame in a fuel combustion device can be realized without great equipment expense. An additional terminal on the flame detector for the connection of the second flame detector is not required and to bridge the distance between the actual fuel combustion device in which burn the two flames, and a cabinet in which typically the Flame detector is arranged, only a two-wire flame detector connection cable is required.

Es wird darauf hingewiesen, dass die beiden genannten Flammen auch zwei Teilflammen eines sog. Flächenbrenners sein können, welcher typischerweise eine Vielzahl von Teilflammen aufweist, wobei jeweils eine Teilflamme zumindest einer Öffnung einer Brennstoffleitung zugeordnet ist. Beim Zünden von Flächenbrennern wird üblicherweise zunächst eine Teilflamme entzündet, welche anschließend den Brennstoff, der aus benachbarten Öffnungen austritt, entzündet. Auf diese Weise werden sukzessive alle Teilflammen entzündet. Die Brennstoffleitung kann beispielsweise mäanderförmig eine vorgegebene Fläche abdecken.It should be noted that the two mentioned flames can also be two partial flames of a so-called surface burner, which typically has a multiplicity of partial flames, wherein one partial flame is assigned to at least one opening of a fuel line. When igniting surface burners, a partial flame is usually ignited first, which then ignites the fuel which emerges from adjacent openings. In this way, all partial flames are ignited successively. For example, the fuel line can meander over a predetermined area.

Gemäß einem Ausführungsbeispiel der Erfindung weist die Überwachungsvorrichtung ferner auf (a) eine gemeinsame Spannungsversorgungsleitung, welche die Spannungsversorgungseinrichtung sowohl mit dem ersten Flammendetektor als auch mit dem zweiten Flammendetektor verbindet und/oder (b) eine gemeinsame Messsignalleitung, welche sowohl den ersten Flammendetektor als auch den zweiten Flammendetektor mit dem gemeinsamen Signaleingang der Auswerteschaltung verbindet.According to an embodiment of the invention, the monitoring device further comprises (a) a common power supply line connecting the power supply to both the first flame detector and the second flame detector and / or (b) a common sense signal line connecting both the first flame detector and the first second flame detector connects to the common signal input of the evaluation circuit.

Die Verwendung von einer gemeinsamen insbesondere einadrigen (Anschluss)Leitung für die Spannungsversorgung der beiden Flammendetektoren und/oder einer gemeinsamen insbesondere einadrigen (Anschluss)Leitung für die Weiterleitung von Messsignalen, die von den beiden Flammendetektoren erzeugt wurden, an die Auswerteschaltung hat den Vorteil, dass jeweils ein einziger Anschlussdraht ausreichend ist, um die beiden Flammendetektoren an die Spannungsversorgung und/oder an die Auswerteschaltung anzuschließen. Damit reduziert sich auf vorteilhafte Weise der Verkabelungsaufwand zwischen der Spannungsversorgungseinrichtung und den beiden Flammendetektoren und/oder der Verkabelungsaufwand zwischen den beiden Flammendetektoren und dem gemeinsamen Signaleingang.The use of a common in particular single-core (connection) line for the voltage supply of the two flame detectors and / or a common, in particular single-core (connection) line for the transmission of measurement signals, which were generated by the two flame detectors, to the evaluation circuit has the advantage that in each case a single connecting wire is sufficient to connect the two flame detectors to the power supply and / or to the evaluation circuit. This advantageously reduces the cabling effort between the voltage supply device and the two flame detectors and / or the cabling effort between the two flame detectors and the common signal input.

Es wird darauf hingewiesen, dass die gemeinsame Spannungsversorgungsleitung jeweils einen Anschluss der beiden Flammendetektoren mit der Spannungsversorgungseinrichtung verbindet, wohingegen die gemeinsame Messsignalleitung die jeweils anderen Anschlüsse der beiden Flammendetektoren mit dem gemeinsamen Signaleingang der Auswerteschaltung verbindet.It should be noted that the common voltage supply line in each case connects one terminal of the two flame detectors to the voltage supply device, whereas the common measurement signal line connects the respective other terminals of the two flame detectors with the common signal input of the evaluation circuit.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist der erste Flammendetektor ein erstes elektrisch gleichrichtendes Element auf und der zweite Flammendetektor weist ein zweites elektrisch gleichrichtendes Element auf, wobei die beiden gleichrichtenden Elemente in Bezug zu der Spannungsversorgungseinrichtung und zu dem gemeinsamen Signaleingang antiparallel geschalten sind. Dies hat den Vorteil, dass die beiden Halbwellen der Wechselspannung, welche beide an den beiden Flammendetektoren anliegen, auf einfache und effektive Weise zwischen den beiden Flammendetektoren separiert werden können. Bei beiden Flammendetektoren generiert damit jeweils nur eine Halbwelle der Wechselspannungsversorgung ein Messsignal, welches als positives oder negatives Halbwellensignal von der Auswerteschaltung unabhängig von dem jeweils anderen Halbwellensignal erfasst und ausgewertet werden kann.According to a further exemplary embodiment of the invention, the first flame detector has a first electrically rectifying element and the second flame detector has a second electrically rectifying element, wherein the two rectifying elements are connected in anti-parallel with respect to the voltage supply device and to the common signal input. This has the advantage that the two half-waves of the alternating voltage, both of which are applied to the two flame detectors, can be separated in a simple and effective manner between the two flame detectors. In both flame detectors so that in each case only one half-wave of the AC power supply generates a measurement signal which can be detected and evaluated as a positive or negative half-wave signal from the evaluation independently of the respective other half-wave signal.

Eine separate Auswertung der beiden (Halbwellen)-Messsignale kann durch eine geringfügige Anpassung einer bekannten Auswerteschaltung, wie z.B. dem Flammensignalverstärker LME7 oder dem Flammensignalverstärker LMV der Fa. Siemens, erreicht werden. Dabei kann beispielsweise eine weitere Verstärkerschaltung vorgesehen werden, so dass für jede der beiden (Halbwellen)-Messsignale eine eigene Verstärkerschaltung zum Einsatz kommt.A separate evaluation of the two (half-wave) measurement signals can be achieved by a slight adaptation of a known evaluation circuit, such as e.g. the flame signal amplifier LME7 or the flame signal amplifier LMV Fa. Siemens. In this case, for example, a further amplifier circuit can be provided so that a separate amplifier circuit is used for each of the two (half-wave) measurement signals.

Das gleichrichtende Element kann beispielsweise eine Röhre sein. Bevorzugt ist das gleichrichtende Element eine beispielsweise aus einem Halbleitermaterial hergestellte Diode.The rectifying element may for example be a tube. Preferably, the rectifying element is a diode made, for example, from a semiconductor material.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist der erste Flammendetektor ferner einen ersten Strahlungsdetektor auf und der zweite Flammendetektor weist ferner einen zweiten Strahlungsdetektor aufweist, wobei zumindest einer der beiden Strahlungsdetektoren für elektromagnetische Strahlung im Bereich des ultravioletten Spektralbereichs sensitiv ist. Dies hat den Vorteil, dass das Vorhandensein von zumindest einer Flamme anhand des UV Anteils im elektromagnetischen Emissionsspektrum der Flamme detektiert wird. Auf diese Weise können Störeinflüsse im Bereich des sichtbaren oder des infraroten Spektralbereichs effektiv eliminiert werden.According to a further embodiment of the invention, the first flame detector further comprises a first radiation detector and the second flame detector further comprises a second radiation detector, wherein at least one of the two radiation detectors for electromagnetic radiation in the region of the ultraviolet spectral range is sensitive. This has the advantage that the presence of at least one flame is detected on the basis of the UV component in the electromagnetic emission spectrum of the flame. In this way disturbances in the range of the visible or the infrared spectral range can be effectively eliminated.

Der im ultravioletten Spektralbereich sensitive Strahlungsdetektor kann beispielsweise die o.g. UV-Zelle sein, welche einen Glaskolben aus einem UV-durchlässigen Quarzglas aufweist, in dem sich zwei Elektroden befinden. In dem Glaskolben befindet sich ferner ein Edelgas, welches durch auftreffende UV-Strahlung ionisiert wird, so dass die UV-Zelle zumindest teilweise elektrisch leitfähig wird. Eine derartige UV-Zelle ist insbesondere für Strahlung in dem elektromagnetischen Spektralbereich zwischen 200 nm und 260 nm sensitiv.The ultraviolet spectral sensitive radiation detector may, for example, the o.g. UV cell, which has a glass bulb made of a UV-transparent quartz glass, in which there are two electrodes. In the glass bulb is also a noble gas, which is ionized by incident UV radiation, so that the UV cell is at least partially electrically conductive. Such a UV cell is particularly sensitive to radiation in the electromagnetic spectral range between 200 nm and 260 nm.

Es wird darauf hingewiesen, dass bevorzugt beide Strahlungsdetektoren für elektromagnetische Strahlung im ultravioletten Spektralbereich sensitiv sind. Es wird ferner darauf hingewiesen, dass auch wenn derzeit bevorzugt gleiche Arten von Strahlungsdetektoren verwendet werden, auch eine Kombination von verschiedenen Arten von Strahlungsdetektoren und insbesondere von im ultravioletten Spektralbereich empfindliche Strahlungsdetektoren verwendet werden können.It should be noted that preferably both radiation detectors are sensitive to electromagnetic radiation in the ultraviolet spectral range. It is further noted that although currently the same types of radiation detectors are preferably used, a combination of different types of radiation detectors and in particular ultraviolet spectral sensitive radiation detectors may also be used.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Auswerteschaltung eine Filterschaltung auf. Dies hat den Vorteil, dass die (Halbwellen)-Messsignale der beiden Flammendetektoren derart geglättet werden, dass anstelle von jeweils einem gepulsten Gleichspannungssignal ein geglättetes Gleichspannungssignal in der Auswerteschaltung weiter verarbeitet werden kann. Die Filterschaltung kann bevorzugt unmittelbar dem gemeinsamen Signaleingang nachgeschaltet sein.According to a further exemplary embodiment of the invention, the evaluation circuit has a filter circuit. This has the advantage that the (half-wave) measurement signals of the two flame detectors are smoothed such that instead of in each case a pulsed DC voltage signal, a smoothed DC voltage signal in the evaluation circuit can be further processed. The filter circuit may preferably be connected directly downstream of the common signal input.

Die Filterschaltung kann beispielsweise eine sog. RC-Filterschaltung sein, welche eine oder mehrere sog. RC-Glieder aufweist, die jeweils einen Widerstand und einen Kondensator aufweisen.The filter circuit may, for example, be a so-called RC filter circuit which has one or more so-called RC elements, each having a resistor and a capacitor.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Auswerteschaltung auf (a) eine erste Verstärkerschaltung, welche zum Verstärken exklusiv des ersten Messsignals eingerichtet ist, und (b) eine zweite Verstärkerschaltung, welche zum Verstärken exklusiv des zweiten Messsignals eingerichtet ist. Dies hat den Vorteil, dass die beiden Messsignale nicht nur unabhängig voneinander erfasst sondern auch unabhängig voneinander verstärkt und ausgewertet werden können. Bevorzugt weist jede der beiden Verstärkerschaltungen einen eigenen Ausgang auf, an dem ein Signal, insbesondere ein Gleichspannungssignal, ausgegeben wird, welches für das Vorhandensein der jeweiligen Flamme indikativ ist.According to a further exemplary embodiment of the invention, the evaluation circuit has (a) a first amplifier circuit which is set up for amplifying exclusively the first measuring signal, and (b) a second amplifier circuit which is set up for amplifying exclusively the second measuring signal. This has the advantage that the two measurement signals can not only be detected independently of each other but also amplified and evaluated independently of each other. Preferably, each of the two amplifier circuits has its own output, at which a signal, in particular a DC signal, is output, which is indicative of the presence of the respective flame.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Auswerteschaltung eine Datenverarbeitungseinheit auf, welche eingerichtet ist, basierend auf einem ersten Ausgangssignal der ersten Verstärkerschaltung und auf einem zweiten Ausgangssignal der zweiten Verstärkerschaltung das Vorhandensein eine Fehlers eines elektronischen Bauteils der Auswerteschaltung zu erkennen und insbesondere das fehlerhafte Bauteil zu identifizieren. Dies hat den Vorteil, dass auf einfache Weise eine automatische Fehlerdiagnose der Auswerteschaltung durchgeführt werden kann. Dadurch kann die Betriebssicherheit der gesamten Überwachungsvorrichtung erheblich verbessert werden.According to a further exemplary embodiment of the invention, the evaluation circuit has a data processing unit which is set up to detect the presence of a fault of an electronic component of the evaluation circuit and, in particular, the faulty component based on a first output signal of the first amplifier circuit and on a second output signal of the second amplifier circuit identify. This has the advantage that an automatic error diagnosis of the evaluation circuit can be carried out in a simple manner. As a result, the reliability of the entire monitoring device can be significantly improved.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die erste Verstärkerschaltung eingangsseitig eine erste Diode auf und die zweite Verstärkerschaltung weist eingangsseitig eine zweite Diode auf. Dabei ist eine der beiden Dioden anodenseitig mit dem gemeinsamen Signaleingang verbunden und die andere der beiden Dioden ist kathodenseitig mit dem gemeinsamen Signaleingang verbunden.According to a further exemplary embodiment of the invention, the first amplifier circuit has a first diode on the input side, and the second amplifier circuit has a second diode on the input side. In this case, one of the two diodes is connected on the anode side to the common signal input and the other of the two diodes is connected on the cathode side to the common signal input.

Durch die Verwendung von zwei entgegengesetzt geschalteten Dioden kann auf einfache und effiziente Weise eine Trennung der beiden mit unterschiedlichen Halbwellen verknüpften Messsignale erreicht werden, so dass das erste Messsignal ausschließlich der ersten Verstärkerschaltung zugeführt wird und das zweite Messsignal ausschließlich der zweiten Verstärkerschaltung zugeführt wird.By using two oppositely connected diodes, a separation of the two measuring signals associated with different half-waves can be achieved in a simple and efficient manner, so that the first measuring signal is supplied exclusively to the first amplifier circuit and the second measuring signal is supplied exclusively to the second amplifier circuit.

Es wird darauf hingewiesen, dass die beschriebene Verbindung der Anode bzw. der Kathode mit dem gemeinsamen Signaleingang eine direkte oder eine indirekte Verbindung sein kann. Im Falle einer indirekten Verbindung befindet sich zwischen der Anode bzw. der Kathode und dem gemeinsamen Signaleingang zumindest ein weiteres elektronisches Bauteil. Insbesondere kann sich die oben beschriebene Filterschaltung zwischen der Anode bzw. der Kathode und dem gemeinsamen Signaleingang befinden.It should be noted that the described connection of the anode or the cathode with the common signal input can be a direct or an indirect connection. In the case of an indirect connection, at least one further electronic component is located between the anode or the cathode and the common signal input. In particular, the filter circuit described above can be located between the anode or the cathode and the common signal input.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist die erste Diode eine erste zenerdiode und/oder die zweite Diode ist eine zweite zenerdiode.According to a further exemplary embodiment of the invention, the first diode is a first zener diode and / or the second diode is a second zener diode.

Eine Zenerdiode verhält sich in bekannter Weise in Durchlassrichtung wie eine normale Diode. Bei der beschriebenen Überwachungsvorrichtung sorgt das übliche Dioden-Verhalten dafür, dass die beiden Messsignale voneinander getrennt und jeweils einer der beiden Verstärkerschaltungen zugeführt werden. Liegt jedoch in Sperrrichtung eine Spannung an, welche größer ist als eine für die jeweilige zenerdiode spezifische Durchbruchsspannung, dann wird die zenerdiode in Sperrrichtung niederohmig. Dieses Verhalten kann bei der beschriebenen Überwachungsvorrichtung durch eine geeignete Dimensionierung der zenerdiode, insbesondere durch eine geeignete Wahl der Durchbruchsspannung, dazu genutzt werden, um einen Kurzschluss in der Anschlussleitung, insbesondere einen Kurzschluss zwischen der oben beschriebenen Spannungsversorgungsleitung und der oben beschriebenen gemeinsamen Messsignalleitung, zu erkennen.A Zener diode behaves in a known manner in the forward direction as a normal diode. In the described monitoring device, the usual diode behavior ensures that the two measuring signals are separated from each other and supplied to one of the two amplifier circuits. However, in the reverse direction is a voltage which is greater than a specific breakdown voltage for the respective zener diode, Then the zener diode becomes low in the reverse direction. This behavior can be used in the described monitoring device by a suitable dimensioning of the zener diode, in particular by a suitable choice of the breakdown voltage, to detect a short circuit in the connection line, in particular a short circuit between the above-described voltage supply line and the common measurement signal line described above ,

Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist die Durchbruchsspannung von zumindest einer der beiden Zenerdioden derart dimensioniert, dass die zumindest eine zenerdiode (a) bei einem fehlerfreien Anschluss der beiden Flammendetektoren an die Spannungsversorgungseinrichtung und an den gemeinsamen Signaleingang in einem Spannungsbereich betrieben wird, welcher kleiner ist als die Durchbruchsspannung, und (b) bei einem Kurzschluss zwischen der Spannungsversorgungseinrichtung und dem gemeinsamen Signaleingang in einem Spannungsbereich betrieben wird, welcher größer ist als die Durchbruchsspannung.According to a further exemplary embodiment of the invention, the breakdown voltage of at least one of the two zener diodes is dimensioned such that the at least one zener diode (a) is operated in a voltage range which is smaller in the case of a fault-free connection of the two flame detectors to the voltage supply device and to the common signal input is operated as the breakdown voltage, and (b) in the event of a short circuit between the voltage supply device and the common signal input in a voltage range which is greater than the breakdown voltage.

Der genannte Spannungsbereich, welcher größer ist als die Sperrspannung, wird typischerweise auch als Durchlassbereich bezeichnet. In diesem Durchlassbereich hat die zenerdiode ihre gleichrichtende Wirkung verloren.Said voltage range, which is greater than the blocking voltage, is also typically referred to as a passband. In this passband, the zener diode has lost its rectifying effect.

Bei der beschriebenen Überwachungsvorrichtung wird im Falle eines Kurzschlusses insbesondere zwischen der oben beschriebenen gemeinsamen Spannungsversorgungsleitung und der oben beschriebenen gemeinsamen Messsignalleitung an der zenerdiode die von der Spannungsversorgungseinrichtung bereit gestellte Wechselspannung, ggf. nach einer Glättung durch die ebenfalls oben beschriebene Filterschaltung, anliegen. Da bei einem Kurzschluss im Gegensatz zu einem fehlerfreien Betriebszustand der Überwachungsvorrichtung, bei dem der betreffende Flammendetektor selbst im Falle einer Detektion von Strahlung zumindest für einen gewissen Spannungsabfall sorgt, an der zenerdiode eine höhere Wechselspannung anliegt, kann dieser Kurzschluss durch eine ggf. durch die Zenerdioden-Charakteristik geringfügig modifizierte Wechselspannung erkannt werden, welche in die betreffende Verstärkerschaltung eingespeist und an einem Ausgang der Verstärkerschaltung ausgegeben wird. Das Vorhandensein einer Ausgangs-Wechselspannung kann somit als ein zuverlässiges Indiz dafür angesehen werden, dass ein Kurzschluss insbesondere zwischen der oben beschriebenen gemeinsamen Spannungsversorgungsleitung und der oben beschriebenen gemeinsamen Messsignalleitung vorliegt. Ein Kurzschluss kann somit auf einfache und zugleich effektive Weise zuverlässig erkannt und damit die Betriebssicherheit der gesamten Überwachungsvorrichtung erheblich erhöht werden.In the case of a short circuit, in particular between the above-described common voltage supply line and the above-described common measurement signal line at the zener diode, the alternating voltage provided by the voltage supply device, possibly after a smoothing by the filter circuit also described above, will be present. In the case of a short circuit, in contrast to a faultless operating state of the monitoring device, in which the relevant flame detector itself is in the event of detection of radiation ensures at least a certain voltage drop at the zener diode is applied to a higher AC voltage, this short circuit can be detected by an optionally modified by the Zener diode characteristic AC voltage which is fed into the relevant amplifier circuit and output at an output of the amplifier circuit. The presence of an output AC voltage can thus be regarded as a reliable indication that there is a short circuit in particular between the above-described common voltage supply line and the common measurement signal line described above. A short circuit can thus be reliably detected in a simple yet effective manner and thus the reliability of the entire monitoring device can be significantly increased.

Es wird darauf hingewiesen, dass die Stärke des Spannungsabfalls über dem Flammendetektor maßgeblich von der Art des Strahlungsdetektors abhängt, welcher bei dem betreffenden Flammendetektor zum Einsatz kommt. Im Falle einer derzeit als besonders geeignet angesehenen UV-Zelle liegt der Spannungsabfall über der UV-Zelle, selbst wenn gerade eine vergleichsweise hohe Intensität an UV-Strahlung nachgewiesen wird, in der Größenordnung von 100 Volt. Im Falle eines Kurzschlusses liegt somit eine um ca. 100 Volt höhere Spannung an dem gemeinsamen Signaleingang der Auswerteschaltung an. Diese erhöhte Spannung führt dann, ggf. nach einer gewissen Dämpfung durch die oben beschriebene Filterschaltung, dazu, dass sich die betreffende zenerdiode zumindest während einer der beiden Halbwellen der Wechselspannung in ihrem Durchbruchsbereich befindet. Selbstverständlich muss man, um die oben beschriebene Funktionalität der Kurzschlusserkennung anhand eines Wechselspannungs-Ausgangssignals der betreffenden Verstärkerschaltung zu erkennen, eine Zenerdiode mit einer geeigneten charakteristischen Durchbruchsspannung wählen. Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren zum unabhängigen Überwachen des Vorhandenseins einer ersten Flamme und des Vorhandenseins einer zweiten Flamme in einer Brennstoff-Verbrennungsvorrichtung beschrieben. Das beschriebene Verfahren weist auf (a) ein Anlegen einer von einer Spannungsversorgungseinrichtung bereitgestellten Wechselspannung mit einer ersten Halbwelle und einer zweiten Halbwelle an einen ersten Flammendetektor und an einen zweiten Flammendetektor, (b) ein Empfangen einer erster Strahlung, welche von der ersten Flamme emittiert wird, mittels des ersten Flammendetektors, (c) ein Empfangen einer zweiten Strahlung, welche von der zweiten Flamme emittiert wird, mittels des zweiten Flammendetektors, (d) ein Zuführen eines während der ersten Halbwelle vorhandenen ersten Messsignals von dem ersten Flammendetektor an einen gemeinsamen Signaleingang einer Auswerteschaltung, wobei das erste Messsignal für die Intensität der ersten Strahlung indikativ ist, (e) ein Zuführen eines während der zweiten Halbwelle vorhandenen zweiten Messsignals von dem zweiten Flammendetektor an den gemeinsamen Signaleingang der Auswerteschaltung, wobei das zweite Messsignal für die Intensität der zweiten Strahlung indikativ ist, und (f) ein Überwachen des Vorhandenseins der ersten Flamme und des Vorhandenseins der zweiten Flamme mittels der Auswerteschaltung basierend auf dem ersten Messsignal und dem zweiten Messsignal.It should be noted that the magnitude of the voltage drop across the flame detector is critically dependent on the type of radiation detector used in the particular flame detector. In the case of a currently considered particularly suitable UV cell, the voltage drop across the UV cell, even if just a comparatively high intensity of UV radiation is detected, on the order of 100 volts. In the case of a short circuit, therefore, there is a voltage of about 100 volts higher at the common signal input of the evaluation circuit. This increased voltage then leads, possibly after a certain attenuation by the above-described filter circuit, to the fact that the relevant zener diode is in its breakdown region at least during one of the two half-cycles of the alternating voltage. Of course, in order to detect the above-described functionality of the short-circuit detection on the basis of an AC output signal of the relevant amplifier circuit, one must select a Zener diode with a suitable characteristic breakdown voltage. In accordance with another aspect of the invention, a method for independently monitoring the presence of a first flame and the presence of a second flame in a fuel combustion apparatus is described. The described method comprises (a) applying an AC voltage provided by a voltage supply means having a first half-wave and a second half-wave to a first flame detector and to a second flame detector, (b) receiving a first radiation emitted from the first flame by means of the first flame detector, (c) receiving a second radiation emitted by the second flame by means of the second flame detector, (d) applying a first measurement signal present during the first half wave from the first flame detector to a common signal input of one Evaluation circuit, wherein the first measurement signal for the intensity of the first radiation is indicative, (e) supplying a second measurement signal present during the second half wave from the second flame detector to the common signal input of the evaluation circuit, wherein the second measurement signal for the intensity of the zw radiation is indicative, and (f) monitoring the presence of the first flame and the presence of the second flame by means of the evaluation circuit based on the first measurement signal and the second measurement signal.

Auch dem beschriebenen Verfahren liegt die Erkenntnis zugrunde, dass bei einer geeigneten Schaltung der beiden Flammendetektoren trotz der Verwendung eines gemeinsamen Signaleingangs beide Flammendetektoren unabhängig voneinander ausgelesen werden können, sofern das erste Messsignal exklusiv dem ersten Flammendetektor und das zweite Messsignal exklusiv dem zweiten Flammendetektor zugeordnet werden kann. Diese Zuordnung erfolgt erfindungsgemäß anhand der beiden Halbwellen der Wechselspannung, welche von der Spannungsversorgungseinrichtung für beide Flammendetektoren gemeinsam zur Verfügung gestellt wird. Dabei kann das erste Messsignal lediglich während der ersten Halbwelle der an beide Flammendetektoren angelegten Wechselspannung auftreten. Entsprechend kann das zweite Messsignal lediglich während der zweiten Halbwelle der Wechselspannung auftreten.The described method is also based on the finding that, in the case of a suitable circuit of the two flame detectors, despite the use of a common signal input, both flame detectors can be read out independently of each other, provided that the first measurement signal can be exclusively assigned to the first flame detector and the second measurement signal can be assigned exclusively to the second flame detector , This assignment is made according to the invention with reference to the two half-waves of the alternating voltage, which is provided by the voltage supply device for both flame detectors together. In this case, the first measurement signal only during the first half cycle the alternating voltage applied to both flame detectors occurs. Accordingly, the second measuring signal can occur only during the second half cycle of the alternating voltage.

Gemäß einem Ausführungsbeispiel der Erfindung weist das Verfahren ferner auf (g) ein Löschen der ersten Flamme, (h) ein Auswerten des ersten Messsignals, und (i) ein Betrachten der Überwachungsvorrichtung als fehlerhaft, wenn die Auswertung des ersten Messsignals fälschlicherweise ein Vorhandensein der ersten Flamme anzeigt.According to an embodiment of the invention, the method further comprises (g) erasing the first flame, (h) evaluating the first measurement signal, and (i) viewing the monitoring device as faulty if the evaluation of the first measurement signal erroneously indicates a presence of the first Flame indicates.

Das zumindest vorrübergehende Löschen der ersten Flamme hat den Vorteil, dass auf einfache Weise die Funktionsfähigkeit der Überwachungsvorrichtung überprüft werden kann. Insbesondere kann ein Kurzschluss zwischen der o.g. gemeinsamen Spannungsversorgungsleitung und der o.g. gemeinsamen Messsignalleitung erkannt werden, weil nur bei einem derartigen Kurzschluss auch dann ein Wechselspannungssignal an dem gemeinsamen Signaleingang anliegt, wenn der erste Flammendetektor gar keine Strahlung empfängt.The at least temporary extinction of the first flame has the advantage that the functionality of the monitoring device can be checked in a simple manner. In particular, a short circuit between the o.g. common power supply line and the o.g. common measurement signal line are detected, because only in such a short circuit even when an AC signal is applied to the common signal input when the first flame detector does not receive radiation.

Das Löschen der ersten Flamme kann beispielsweise durch ein Schließen eines Ventils für die Brennstoffzufuhr für die erste Flamme erfolgen. In diesem Fall sollte jedoch mit dem Auswerten des ersten Messsignals zumindest eine gewisse Verzögerungszeit gewartet werden, welche der zu erwartenden zeitdifferenz zwischen dem Schließen des Ventils und dem tatsächlichen Erlöschen der ersten Flamme entspricht. Abhängig von der Konstruktion der betreffenden Brennstoff-Verbrennungsvorrichtung kann diese Verzögerungszeit beispielsweise zwischen 1 Sekunde und 10 Sekunden liegen.The extinction of the first flame can be done, for example, by closing a valve for the fuel supply to the first flame. In this case, however, at least a certain delay time should be waited with the evaluation of the first measurement signal, which corresponds to the expected time difference between the closing of the valve and the actual extinction of the first flame. Depending on the design of the fuel combustion device concerned, this delay time may be, for example, between 1 second and 10 seconds.

Das Löschen der ersten Flamme kann auf vorteilhafte Weise im Rahmen eines sog. intermittierenden Betriebs der Brennstoff-Verbrennungsvorrichtung erfolgen. Ein spezielles Ausschalten der ersten Flamme lediglich zum Zwecke der Überprüfung der Funktionsfähigkeit der Überwachungsvorrichtung ist damit auf vorteilhafte Weise nicht erforderlich.The deletion of the first flame can be carried out in an advantageous manner in the context of a so-called intermittent operation of the fuel combustion device. A special turn off the first flame just for the purpose of checking the Functioning of the monitoring device is thus not required in an advantageous manner.

Unter einem intermittierenden Betrieb ist in Übereinstimmung mit einschlägigen Produktnormen für Brennstoff-Verbrennungsvorrichtungen, welche auch als Feuerungsautomaten bezeichnet werden, ein Betriebsmodus zu verstehen, bei dem die Flammen im Laufe von 24 Stunden mindestens ein mal (1x) abgeschaltet werden. Im Bereich normaler Heizungsanwendungen für den Wohnbereich ist diese Anforderung meist erfüllt. Hier finden nämlich oft mehrere Brennerstarts pro Stunde statt. Die beschriebene Brennstoff-Verbrennungsvorrichtung kann den Inbetriebsetzungsvorgang also dazu nutzen, um seine Funktionstüchtigkeit zu prüfen und insbesondere das Flammenüberwachungssystem zu testen. Damit wird das Flammenüberwachungssystem im intermittierenden Betrieb relativ häufig getestet.By intermittent operation, in accordance with relevant product standards for fuel combustion devices, also referred to as automatic firing devices, an operating mode is to be understood in which the flames are turned off at least once (1x) in the course of 24 hours. In the area of normal heating applications for residential areas, this requirement is usually met. This is often the case with several burner starts per hour. The fuel combustion device described can thus use the commissioning process to check its functionality and in particular to test the flame monitoring system. Thus, the flame monitoring system is tested relatively often in intermittent operation.

Es wird darauf hingewiesen, dass das beschrieben Verfahren auf gleiche Weise auch mit der zweiten Flamme durchgeführt werden kann.It should be noted that the described method can be carried out in the same way with the second flame.

Es wird ferner darauf hingewiesen, dass auch bei Brennstoff-Verbrennungsvorrichtungen oder Brennern, bei denen zumindest eine Flamme (die Pilotflamme) immer an bleibt, eine Erkennung eines Fehlers, insbesondere eines Kurzschlusses, möglich sein kann. So kann beispielsweise bei der oben beschriebenen Ausführungsform der Überwachungsvorrichtung, bei der geeignet dimensionierte Zenerdioden verwendet werden, um im Falle eines Spannungsdurchbruchs bei einer Halbwelle (bei der anderen Halbwelle ist die zenerdiode ohnehin leitend) und damit bei einer Zuführung einer Wechselspannung an die betreffende Verstärkerschaltung der Auswerteschaltung auf einen Kurzschluss zwischen der gemeinsamen Spannungsversorgungsleitung und der gemeinsamen Messsignalleitung geschlossen werden.It is further pointed out that even with fuel combustion devices or burners in which at least one flame (the pilot flame) always remains on, detection of a fault, in particular a short circuit, may be possible. Thus, for example, in the embodiment described above, the monitoring device, in which suitably dimensioned Zener diodes are used, in the case of a voltage breakdown at a half-wave (at the other half-wave, the zener diode is already conductive) and thus at an AC voltage to the relevant amplifier circuit of the Evaluation circuit to be closed on a short circuit between the common voltage supply line and the common measuring signal line.

Es wird darauf hingewiesen, dass Ausführungsformen der Erfindung mit Bezug auf unterschiedliche Erfindungsgegenstände beschrieben wurden. Insbesondere sind einige Ausführungsformen der Erfindung mit Vorrichtungsansprüchen und andere Ausführungsformen der Erfindung mit Verfahrensansprüchen beschrieben. Dem Fachmann wird jedoch bei der Lektüre dieses Dokuments sofort klar werden, dass, sofern nicht explizit anders angegeben, zusätzlich zu einer Kombination von Merkmalen, die zu einem Typ von Erfindungsgegenstand gehören, auch eine beliebige Kombination von Merkmalen möglich ist, die zu unterschiedlichen Typen von Erfindungsgegenständen gehören.It should be noted that embodiments of the invention have been described with reference to different subject matters. In particular, some embodiments of the invention are described with apparatus claims and other embodiments of the invention with method claims. However, it will be readily apparent to those skilled in the art upon reading this document that, unless explicitly stated otherwise, in addition to a combination of features associated with a type of subject matter, any combination of features that may result in different types of features are also possible Subject matters belong.

Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der folgenden beispielhaften Beschreibung derzeit bevorzugter Ausführungsformen.

  • Figur 1 zeigt eine Überwachungsvorrichtung gemäß einem ersten Ausführungsbeispiel der Erfindung, bei dem zur Separation der von zwei Flammendetektoren bereitgestellten Messsignale gleichrichtende Dioden verwendet werden.
  • Figur 2 zeigt eine Überwachungsvorrichtung gemäß einem zweiten Ausführungsbeispiel der Erfindung, bei dem zur Separation der beiden Messsignale Zenerdioden verwendet werden, so dass auch ein Fühlerkurzschluss erkannt werden kann.
  • Figur 3 zeigt für unterschiedliche Flammenkonstellationen die logischen Ausgangssignale, welche an den beiden Ausgängen der in Figur 2 dargestellten Verstärkerschaltung anliegen.
  • Figur 4 zeigt für unterschiedliche Flammenkonstellationen und für den Fall eines Fühlerkurzschlusses zwischen der in Figur 2 dargestellten gemeinsamen Spannungsversorgungsleitung und der gemeinsamen Messsignalleitung die Ausgangssignale, welche an den beiden Ausgängen der Auswerteschaltung anliegen.
  • Figur 5 zeigt ein Zeitdiagramm, wie im Rahmen eines intermittierenden Betriebs einer Brennstoff-Verbrennungsvorrichtung, welche eine Haupt- und eine Pilotflamme aufweist, ein Fühlerkurzschluss zwischen der in Figur 2 dargestellten gemeinsamen Spannungsversorgungsleitung und der gemeinsamen Messsignalleitung erkannt werden kann.
Further advantages and features of the present invention will become apparent from the following exemplary description of presently preferred embodiments.
  • FIG. 1 shows a monitoring device according to a first embodiment of the invention, in which rectifying diodes are used to separate the measurement signals provided by two flame detectors.
  • FIG. 2 shows a monitoring device according to a second embodiment of the invention, in which Zener diodes are used for the separation of the two measurement signals, so that a sensor short circuit can be detected.
  • FIG. 3 shows for different flame constellations the logical output signals, which at the two outputs of the in FIG. 2 abut illustrated amplifier circuit.
  • FIG. 4 shows for different flame constellations and for the case of a sensor short circuit between the in FIG. 2 represented common voltage supply line and the common measuring signal line, the output signals which are applied to the two outputs of the evaluation circuit.
  • FIG. 5 FIG. 10 is a timing diagram showing, as part of an intermittent operation of a fuel combustion apparatus having a main and a pilot flame, a sensor short between the in. FIG FIG. 2 shown common power supply line and the common measurement signal line can be detected.

Es wird darauf hingewiesen, dass Merkmale bzw. Komponenten von unterschiedlichen Ausführungsformen, die mit den entsprechenden Merkmalen bzw. Komponenten der Ausführungsform nach gleich oder zumindest funktionsgleich sind, mit den gleichen Bezugszeichen oder mit einem Bezugszeichen versehen sind, welches sich lediglich in seiner ersten ziffer von dem Bezugszeichen eines (funktional) entsprechenden Merkmals oder einer (funktional) entsprechenden Komponente unterscheidet. Zur Vermeidung von unnötigen Wiederholungen werden bereits anhand einer vorher beschriebenen Ausführungsform erläuterte Merkmale bzw. Komponenten an späterer Stelle nicht mehr im Detail erläutert.It should be noted that features of different embodiments, which are the same or at least functionally identical to the corresponding features or components of the embodiment, are provided with the same reference numerals or with a reference numeral, which is only in its first digit of the reference number of a (functionally) corresponding feature or a (functional) corresponding component. In order to avoid unnecessary repetitions, features or components already explained on the basis of a previously described embodiment will not be explained in detail later.

Ferner wird darauf hingewiesen, dass die nachfolgend beschriebenen Ausführungsformen lediglich eine beschränkte Auswahl an möglichen Ausführungsvarianten der Erfindung darstellen. Insbesondere ist es möglich, die Merkmale einzelner Ausführungsformen in geeigneter Weise miteinander zu kombinieren, so dass für den Fachmann mit den hier explizit dargestellten Ausführungsvarianten eine Vielzahl von verschiedenen Ausführungsformen als offensichtlich offenbart anzusehen sind.It should also be noted that the embodiments described below represent only a limited selection of possible embodiments of the invention. In particular, it is possible to suitably combine the features of individual embodiments with one another, so that a multiplicity of different embodiments are to be regarded as obviously disclosed to the person skilled in the art with the embodiment variants explicitly illustrated here.

Figur 1 zeigt eine Überwachungsvorrichtung 100 gemäß einem ersten Ausführungsbeispiel der Erfindung. Die Überwachungsvorrichtung 100 weist zwei Flammendetektoren, einen ersten Flammendetektor 110 und einen zweiten Flammendetektor 120, auf. Gemäß dem hier dargestellten Ausführungsbeispiel dient der erste Flammendetektor 110 dem Überwachen der Präsenz einer Hauptflamme einer Brennstoff-Verbrennungsvorrichtung und der zweite Flammendetektor 120 dient dem Überwachen der Präsenz einer Pilotflamme der Brennstoff-Verbrennungsvorrichtung. Wie aus Figur 1 ersichtlich, weist jeder der beiden Flammendetektoren 110, 120 jeweils einen Widerstand 112 bzw. 122, eine UV-Zelle 114 bzw. 124 und eine gleichrichtende Diode 116 bzw. 126 auf. Die beiden Dioden 116 und 126 sind in Bezug zueinander antiparallel an eine gemeinsame Messsignalleitung 134 angeschlossen. FIG. 1 shows a monitoring device 100 according to a first embodiment of the invention. The monitoring device 100 has two flame detectors, a first flame detector 110 and a second flame detector 120, on. According to the embodiment shown here is used the first flame detector 110 monitors the presence of a main flame of a fuel combustion device, and the second flame detector 120 monitors the presence of a pilot flame of the fuel combustion device. How out FIG. 1 it can be seen, each of the two flame detectors 110, 120 each have a resistor 112 or 122, a UV cell 114 or 124 and a rectifying diode 116 and 126, respectively. The two diodes 116 and 126 are connected in anti-parallel with respect to each other to a common measuring signal line 134.

Die beiden UV-Zellen 114 und 124 weisen jeweils einen Glaskolben aus einem UV-durchlässigen Quarzglas auf, der mit Edelgas gefüllt ist. In dem Glaskolben befinden sich zwei Elektroden. Wenn zwischen den beiden Elektroden eine Spannung angelegt und zudem das Edelgas mit UV-Licht, welches von der Hauptflamme bzw. von der Pilotflamme emittiert wird, bestrahlt wird, dann wird die betreffende UV-Zelle zumindest teilweise elektrisch leitend und es kann ein Strom durch den entsprechenden Flammendetektor 110, 120 fließen.The two UV cells 114 and 124 each have a glass bulb of a UV-transparent quartz glass, which is filled with inert gas. There are two electrodes in the glass bulb. If a voltage is applied between the two electrodes and, in addition, the noble gas is irradiated with UV light which is emitted by the main flame or by the pilot flame, then the UV cell in question becomes at least partially electrically conductive and a current can flow through it corresponding flame detector 110, 120 flow.

Die Überwachungsvorrichtung 100 weist ferner, in einem nicht dargestellten Gehäuse angeordnet, eine als Transformator ausgebildete Spannungsversorgungseinrichtung 130 auf, welche über einen Widerstand R, einem gemeinsamen Spannungsausgang 131 und einer gemeinsamen Spannungsversorgungsleitung 132 mit den beiden Flammendetektoren 110 und 120 verbunden ist. Der gemeinsame Spannungsausgang ist als Anschlusskontakt 131 in dem (nicht dargestellten) Gehäuse der Überwachungsvorrichtung 100 ausgebildet. Gemäß dem hier dargestellten Ausführungsbeispiel führt der Transformator 130 eine Transformation durch, bei der ein 50Hz Eingangssignal mit einer Netzspannung Unetz von 230V auf ein 50Hz Ausgangssignal mit einer Sensorspannung Usensor von ca. 300V hoch transformiert wird. Es wird darauf hingewiesen, dass selbstverständlich auch Spannungstransformationen mit anderen Frequenzen und/oder mit anderen Werten für die Primärspannung und/oder die Sekundärspannung möglich sind. Beispielsweise wird in den USA in der Regel ein Eingangssignal mit einer effektiven Spannung von 120V und einer Frequenz von 60 Hz verwendet.The monitoring device 100 further comprises, arranged in a housing, not shown, designed as a transformer power supply device 130, which is connected via a resistor R, a common voltage output 131 and a common power supply line 132 with the two flame detectors 110 and 120. The common voltage output is formed as a terminal contact 131 in the housing (not shown) of the monitoring device 100. According to the exemplary embodiment illustrated here, the transformer 130 performs a transformation in which a 50 Hz input signal with a mains voltage Unetz is transformed from 230V to a 50 Hz output signal with a sensor voltage Usensor of approximately 300V. It should be noted that of course also voltage transformations with other frequencies and / or with other values for the primary voltage and / or the secondary voltage possible are. For example, in the US, an input signal with an effective voltage of 120V and a frequency of 60 Hz is usually used.

Die Überwachungsvorrichtung 100 weist ferner eine Auswerteschaltung 150 auf, welche wiederum eine erste Verstärkerschaltung 152 und eine zweite Verstärkerschaltung 154 umfasst. Die erste Verstärkerschaltung 152 weist eingangsseitig eine Diode D10 auf, die mit einem gemeinsamen Signaleingang 138 verbunden ist. Die zweite Verstärkerschaltung 154 weist eingangsseitig eine Diode D20 auf, die ebenfalls mit dem gemeinsamen Signaleingang 138 verbunden ist. Gemäß dem hier dargestellten Ausführungsbeispiel ist der gemeinsame Signaleingang als Anschlusskontakt 138 in dem oben genannten (nicht dargestellten) Gehäuse ausgebildet.The monitoring device 100 further has an evaluation circuit 150, which in turn comprises a first amplifier circuit 152 and a second amplifier circuit 154. The first amplifier circuit 152 has on the input side a diode D10, which is connected to a common signal input 138. The second amplifier circuit 154 has on the input side a diode D20, which is likewise connected to the common signal input 138. According to the exemplary embodiment shown here, the common signal input is designed as a connection contact 138 in the above-mentioned housing (not shown).

Wie aus Figur 1 ersichtlich, weisen in Bezug zu der gemeinsamen Messsignalleitung 134 die beiden Dioden 116 und D10 die gleiche "Polarität" auf. Dies bedeutet, dass ein Strom, welcher durch den ersten Flammendetektor 110 fließt, ausschließlich von der ersten Verstärkerschaltung 152 weiterverarbeitet wird. In entsprechender Weise sind in Bezug zu der gemeinsamen Messsignalleitung 134 die beiden Dioden 126 und D20 mit der gleichen "Polarität" geschalten. Dies bedeutet, dass ein Strom, welcher durch den zweiten Flammendetektor 120 fließt, ausschließlich von der zweiten Verstärkerschaltung 154 weiterverarbeitet wird.How out FIG. 1 As can be seen, in relation to the common measuring signal line 134, the two diodes 116 and D10 have the same "polarity". That is, a current flowing through the first flame detector 110 is exclusively processed by the first amplifier circuit 152. Similarly, with respect to the common sense signal line 134, the two diodes 126 and D20 are connected to the same "polarity". That is, a current flowing through the second flame detector 120 is exclusively processed by the second amplifier circuit 154.

Da die beiden Flammendetektoren 110 und 120 über die gemeinsame Spannungsversorgungsleitung 132 mit einer Wechselspannung beaufschlagt werden, kann der erste Flammendetektor 110 (bei brennender Hauptflamme) nur während der positiven Halbwelle der Wechselspannung leitend werden, wohingegen der zweite Flammendetektor 120 (bei brennender Pilotflamme) nur während der negativen Halbwelle der Wechselspannung leitend werden kann. Das über die gemeinsame Messsignalleitung 134 an die Auswerteschaltung 150 übertragene Messsignal von beiden Flammendetektoren 110 und 120 wird dann von den beiden Dioden D10 und D20 separiert, so dass, wie oben bereits beschrieben, die erste Verstärkerschaltung 152 mit einem ersten Ausgang A1 dem ersten Flammendetektor 110 zugeordnet ist und die zweite Verstärkerschaltung 154 mit einem zweiten Ausgang A2 dem zweiten Flammendetektor 120 zugeordnet ist.Since the two flame detectors 110 and 120 are supplied with an alternating voltage via the common voltage supply line 132, the first flame detector 110 can only become conductive during the positive half-cycle of the alternating voltage (with the main flame burning), whereas the second flame detector 120 (during burning pilot flame) only during the negative half-wave of the AC voltage can become conductive. The transmitted via the common measurement signal line 134 to the evaluation circuit 150 measurement signal of both Flame detectors 110 and 120 are then separated from the two diodes D10 and D20, so that, as already described above, the first amplifier circuit 152 is associated with a first output A1 to the first flame detector 110 and the second amplifier circuit 154 with a second output A2 to the second Flame detector 120 is assigned.

Wie aus Figur 1 ersichtlich, weist die erste Verstärkerschaltung 152 einen ersten Tiefpassfilter auf, welcher von einem Widerstand R10 und einem Kondensator C10 gebildet wird. In entsprechender Weise weist die zweite Verstärkerschaltung 154 einen zweiten Tiefpassfilter auf, welcher von einem Widerstand R20 und einem Kondensator C20 gebildet wird. Diese beiden Filterschaltungen 152 und 154 haben die Wirkung, dass die am Filtereingang anliegende gepulste Gleichspannung geglättet wird, so dass am jeweiligen Filterausgang in guter Näherung ein Gleichspannungssignal ausgegeben wird. Dieses Gleichspannungssignal wird dann von der jeweiligen Verstärkerschaltung 152 oder 154 verstärkt. Wie aus Figur 1 ersichtlich, weist die erste Verstärkerschaltung 152 drei Widerstände R11, R12 und R13 sowie einen bipolaren Transistor T10 auf. Die zweite Verstärkerschaltung 154 weist vier Widerstände R21, R22, R23 und R24 sowie einen bipolaren Transistor T20 auf. Gemäß dem hier dargestellten Ausführungsbeispiel arbeiten die beiden Verstärkerschaltungen 152 und 154, wie aus Figur 1 ersichtlich, mit zwei Spannungspegeln von 5 Volt und 0 Volt (GND).How out FIG. 1 As can be seen, the first amplifier circuit 152 has a first low-pass filter, which is formed by a resistor R10 and a capacitor C10. In a corresponding manner, the second amplifier circuit 154 has a second low-pass filter, which is formed by a resistor R20 and a capacitor C20. These two filter circuits 152 and 154 have the effect that the pulsed DC voltage applied to the filter input is smoothed, so that a DC signal is output to a good approximation at the respective filter output. This DC signal is then amplified by the respective amplifier circuit 152 or 154. How out FIG. 1 As can be seen, the first amplifier circuit 152 has three resistors R11, R12 and R13 and a bipolar transistor T10. The second amplifier circuit 154 has four resistors R21, R22, R23 and R24 and a bipolar transistor T20. According to the embodiment illustrated here, the two amplifier circuits 152 and 154 operate as shown FIG. 1 apparent, with two voltage levels of 5 volts and 0 volts (GND).

Da derartige Verstärkerschaltungen dem Fachmann geläufig sind, wird an dieser Stelle deren Funktionsweise nicht im Detail erläutert. Dem Fachmann wird jedoch aus den beiden in Figur 1 dargestellten Verstärkerschaltungen 152 und 154 sofort klar, dass sofern der erste Flammendetektor 110 zumindest teilweise leitend wird (die Hauptflamme ist an), an dem ersten Ausgang A1 ein logischer Pegel von ca. 0 Volt (Low) ausgegeben wird. Falls der erste Flammendetektor 110 keine UV-Strahlung empfängt (die Hauptflamme ist aus), sperrt der erste Flammendetektor 110 und am Ausgang A1 liegt ein logischer Pegel von ca. 5 Volt (High) an. Aufgrund des Vorhandenseins des Widerstandes R24 wird, sofern der zweite Flammendetektor 120 beim Empfang von UV-Strahlung (die Pilotflamme ist an) zumindest teilweise leitend wird, an dem zweiten Ausgang A2 ein logischer Pegel von ca. 5 Volt (High) ausgegeben. Falls der zweite Flammendetektor 120 keine UV-Strahlung empfängt (die Pilotflamme ist aus), sperrt der zweite Flammendetektor 120 und am Ausgang A2 liegt ein logischer Pegel von ca. 0 Volt (Low) an. Durch eine Auswertung der beiden Spannungspegel kann also das Vorhandensein der dem ersten Flammendetektor 110 zugeordneten Hauptflamme und das Vorhandensein der dem zweiten Flammendetektor 120 zugeordneten Pilotflamme überwacht werden. Trotz der Verwendung einer gemeinsamen Spannungsversorgungsleitung 132 und einer gemeinsamen Messsignalleitung 134 können aufgrund der antiparallelen Anordnung der beiden Flammendetektoren deren Messsignale eindeutig den beiden Flammen zugeordnet werden und eine unabhängige Überwachung der beiden Flammen ist möglich.Since such amplifier circuits are familiar to the person skilled in the art, their mode of operation will not be explained in detail here. The skilled person will, however, from the two in FIG. 1 Amplifier circuits 152 and 154 shown immediately clear that if the first flame detector 110 is at least partially conductive (the main flame is on), at the first output A1, a logic level of about 0 volts (Low) is output. If the first flame detector 110 does not receive UV radiation (the main flame is off), the first flame detector 110 and at the output A1 is a logic level of about 5 volts (high) on. Due to the presence of the resistor R24, if the second flame detector 120 at least partially becomes conductive upon receiving UV radiation (the pilot flame is on), a logic level of approximately 5 volts (High) is output at the second output A2. If the second flame detector 120 does not receive UV radiation (the pilot flame is off), the second flame detector 120 locks and the output A2 has a logic level of about 0 volts (low). By evaluating the two voltage levels, it is thus possible to monitor the presence of the main flame associated with the first flame detector 110 and the presence of the pilot flame associated with the second flame detector 120. Despite the use of a common voltage supply line 132 and a common measurement signal line 134, the measurement signals can be unambiguously assigned to the two flames due to the anti-parallel arrangement of the two flame detectors and an independent monitoring of the two flames is possible.

Figur 2 zeigt eine Überwachungsvorrichtung 200 gemäß einem zweiten Ausführungsbeispiel der Erfindung. Die Überwachungsvorrichtung 200 weist eine als Wechselspannungsquelle ausgebildete Spannungsversorgungseinrichtung 230 und eine Gleichspannungsquelle 260 auf. Wie aus einem Vergleich zwischen den beiden Figuren 1 und 2 ersichtlich, unterscheidet sich eine Auswerteschaltung 250 der Überwachungsvorrichtung 200 von der in Figur 1 dargestellten Auswerteschaltung 150 lediglich darin, dass (a) anstelle der gewöhnlichen Dioden D10 und D20 jeweils eine Zenerdiode ZD10 bzw. ZD20 verwendet wird und dass (b) zusätzlich eine zweistufige Tiefpass-Filterschaltung 240 vorgesehen ist, welche zwei Widerstände R1 und R2 sowie zwei Kondensatoren C1 und C2 aufweist. Die Separation zwischen (a) des Messsignals von dem ersten Flammendetektor 110 und (b) des Messsignals von dem zweiten Flammendetektor 120 erfolgt auf gleiche Weise wie bei der in Figur 1 dargestellten Überwachungsvorrichtung 100 und wird deshalb nicht noch einmal im Detail erläutert. FIG. 2 shows a monitoring device 200 according to a second embodiment of the invention. The monitoring device 200 has a voltage supply device 230 designed as an AC voltage source and a DC voltage source 260. Like a comparison between the two FIGS. 1 and 2 can be seen, an evaluation circuit 250 of the monitoring device 200 differs from the in FIG. 1 evaluation circuit 150 shown only in that (a) instead of the ordinary diodes D10 and D20 each Zener diode ZD10 or ZD20 is used and that (b) in addition a two-stage low-pass filter circuit 240 is provided which two resistors R1 and R2 and two capacitors C1 and C2. The separation between (a) the measurement signal from the first flame detector 110 and (b) the measurement signal from the second flame detector 120 is performed in the same manner as in FIG FIG. 1 therefore, will not be explained again in detail.

Bei der Überwachungsvorrichtung 200 sorgt die zweistufige Tiefpass-Filterschaltung 240 dafür, dass die Messsignale von beiden Flammendetektoren 110 und 120 unmittelbar nach dem gemeinsamen Signaleingang 138 geglättet werden.In the monitoring device 200, the two-stage low-pass filter circuit 240 ensures that the measurement signals from both flame detectors 110 and 120 are smoothed immediately after the common signal input 138.

Die beiden Zenerdioden ZD10 und ZD20 tragen dazu bei, dass im Vergleich zu der Überwachungsvorrichtung 100 bei der Überwachungsvorrichtung 200 zusätzlich noch ein Fühlerkurzschluss zwischen der gemeinsamen Spannungsversorgungsleitung 132 und der gemeinsamen Messsignalleitung 134 erkannt werden kann. Zu diesem Zweck sind die Durchbruchs- oder Zenerspannungen der beiden Zenerdioden ZD10 und ZD20 so dimensioniert, dass bei einem Fühlerkurzschluss die an dem gemeinsamen Signaleingang 138 anliegende Eingangsspannung größer ist als die Zenerspannung der beiden Zenerdioden ZD10 und ZD20. Dabei ist zu bedenken, dass bei einem Fühlerkurzschluss an dem gemeinsamen Signaleingang 138 die volle Wechselspannung anliegt, welche von der Spannungsversorgungseinrichtung 130 bereitgestellt wird. Im Gegensatz dazu fällt bei dem üblichen Betrieb der Überwachungsvorrichtung 200 bei brennenden Flammen über den nicht dargestellten UV-Zellen der beiden Flammendetektoren 110 und 120 zumindest eine gewisse Spannung ab, so dass die an dem gemeinsamen Signaleingang 138 anliegende Spannung kleiner ist als die bei einem Fühlerkurzschluss anliegenden Wechselspannung. Somit wird den beiden Transistoren T10 und T20 bei einem Fühlerkurzschluss ein Wechselspannungssignal zugeführt. Damit ergeben sich folgende Ausgangssignale: Ausgang A1 : Low Hautflamme an High Hautflamme aus Wechselsp. Fühlerkurzschluss Ausgang A1 : Low Pilotflamme an High Pilotflamme aus Wechselsp. Fühlerkurzschluss The two Zener diodes ZD10 and ZD20 contribute to the fact that compared to the monitoring device 100 in the monitoring device 200 additionally a sensor short circuit between the common voltage supply line 132 and the common measurement signal line 134 can be detected. For this purpose, the breakdown or zener voltages of the two Zener diodes ZD10 and ZD20 are dimensioned such that, in the event of a sensor short circuit, the input voltage applied to the common signal input 138 is greater than the Zener voltage of the two Zener diodes ZD10 and ZD20. It should be noted that, in the event of a sensor short circuit, the full AC voltage applied to the common signal input 138 is provided by the voltage supply device 130. In contrast, in the usual operation of the monitoring device 200 at burning flames over the UV cells of the two flame detectors 110 and 120, not shown, at least a certain voltage drops, so that the voltage applied to the common signal input 138 voltage is smaller than that at a sensor short circuit applied AC voltage. Thus, the two transistors T10 and T20, an AC signal is supplied at a sensor short circuit. This results in the following output signals: Exit A1: low Skin flame on High Skin Flame off Wechselsp. Sensor short circuit Exit A1: low Pilot flame on High Pilot flame off Wechselsp. Sensor short circuit

Es wird darauf hingewiesen, dass in Figur 2 ein für eine Simulationsprogramm geeignetes Schaltbild der Überwachungsvorrichtung 200 dargestellt ist, mit dem folgende Betriebszustände simuliert werden können: (A) Die Hauptflamme brennt Schalter S1 ist geschlossen (B) Die Pilotflamme brennt Schalter S2 ist geschlossen (C) Fühlerkurzschluss vor Schalter S3 ist geschlossen It should be noted that in FIG. 2 a circuit diagram of the monitoring device 200 suitable for a simulation program is shown, with which the following operating states can be simulated: (A) The main flame is burning Switch S1 is closed (B) The pilot flame is burning Switch S2 is closed (C) Sensor short circuit before Switch S3 is closed

An dem schematisch als Oszilloskop dargestellten Auswerteeinheit 270 können die an den beiden Ausgängen A1 und A2 anliegenden Spannungssignale für alle möglichen Betriebszustände dargestellt werden.At the evaluation unit 270, shown schematically as an oscilloscope, the voltage signals applied to the two outputs A1 and A2 can be displayed for all possible operating states.

Figur 3 zeigt für unterschiedliche Flammenkonstellationen die logischen Ausgangssignale, welche an den beiden Ausgängen der in Figur 2 dargestellten Verstärkerschaltung anliegen. Mit dem Bezugszeichen AA1 ist das Ausgangssignal gekennzeichnet, welches dem in Figur 2 dargestellten Ausgang A1 zugeordnet ist. Mit dem Bezugszeichen AA2 ist das Ausgangssignal gekennzeichnet, welches dem in Figur 2 dargestellten Ausgang A2 zugeordnet ist. Aus Gründen der Übersichtlichkeit ist das Ausgangssignal AA1 um -2 Volt verschoben dargestellt. FIG. 3 shows for different flame constellations the logical output signals, which at the two outputs of the in FIG. 2 abut illustrated amplifier circuit. The reference symbol AA1 denotes the output signal which corresponds to the in FIG. 2 assigned output A1 is assigned. The reference character AA2 denotes the output signal which corresponds to the in FIG. 2 assigned output A2 is assigned. For reasons of clarity, the output signal AA1 is shown shifted by -2 volts.

Wie bereits oben erläutert, ist der Pegel des Ausgangssignals AA2 "Low", wenn die Pilotflamme aus ist. Wenn der Pegel des Ausgangssignals "High" ist, dann brennt die Pilotflamme. Ferner ist der Pegel des Ausgangssignals AA1 "High", wenn die Hauptflamme aus ist. Wenn der Pegel des Ausgangssignals AA1 bei "Low" ist, dann brennt die Hauptflamme.As already explained above, the level of the output signal AA2 is "low" when the pilot flame is off. If the level of the output signal is "High", then the pilot flame is burning. Further, the level of the output signal AA1 is "High" when the main flame is off. When the level of the output signal AA1 is "Low", the main flame is burning.

Figur 4 zeigt für unterschiedliche Flammenkonstellationen und für den Fall eines Fühlerkurzschlusses zwischen der in Figur 2 dargestellten gemeinsamen Spannungsversorgungsleitung 132 und der gemeinsamen Messsignalleitung 134 die Ausgangssignale AA1 und AA2, welche an den beiden Ausgängen A1 und A2 der Auswerteschaltung 150 anliegen. Sofern kein Fühlerkurzschlusses vorliegt, nehmen die Pegel der Ausgangssignale AA1 und AA2 die Werte "Low" und "High" an, die bereits oben beschrieben wurden (AA1 ist auch in Figur 3 um -2 Volt verschoben dargestellt). FIG. 4 shows for different flame constellations and for the case of a sensor short circuit between the in FIG. 2 represented common voltage supply line 132 and the common measuring signal line 134, the output signals AA1 and AA2, which abut the two outputs A1 and A2 of the evaluation circuit 150. If there is no sensor short circuit, the levels of the output signals AA1 and AA2 assume the values "Low" and "High" which have already been described above (AA1 is also in FIG. 3 shown shifted by -2 volts).

Bei dem in Figur 4 dargestellten beispielhaften Szenario liegt in zwei Zeitfenstern ein Fühlerkurzschluss vor. Der erste Fühlerkurzschluss beginnt bei ta und endet bei tb, der zweite Fühlerkurzschluss beginnt bei tc und endet bei td = 12,8 Sekunden. Wie bereits oben beschrieben, ist in diesen beiden Fühlerkurzschluss-Zeitfenstern sowohl das Ausgangssignal AA1 als auch das Ausgangssignal AA2 ein Wechselspannungssignal, welches die gleiche Frequenz wie die Wechselspannungsquelle 230 (vgl. Figur 2) aufweist.At the in FIG. 4 illustrated exemplary scenario is in two windows a sensor short circuit before. The first sensor short circuit starts at ta and ends at tb, the second sensor short circuit starts at tc and ends at td = 12.8 seconds. As already described above, in both of these sensor short-circuit time windows, both the output signal AA1 and the output signal AA2 are an AC signal which has the same frequency as the AC voltage source 230 (see FIG. FIG. 2 ) having.

Figur 5 zeigt ein Zeitdiagramm, wie im Rahmen eines intermittierenden Betriebs einer Brennstoff-Verbrennungsvorrichtung, welche eine Haupt- und eine Pilotflamme aufweist, ein Fühlerkurzschluss zwischen der in Figur 2 dargestellten gemeinsamen Spannungsversorgungsleitung und der gemeinsamen Messsignalleitung erkannt werden kann. Dazu ist nicht zwingend die in Figur 2 dargestellte Überwachungsvorrichtung 200 mit den beiden Zenerdioden ZD10 und ZD20 erforderlich. Vielmehr kann, wie nachfolgend erläutert, ein Fühlerkurzschluss auch mit der in Figur 1 dargestellten Überwachungsvorrichtung 100 anhand einer zeitlichen Korrelation zwischen einem Schaltzyklus von geschalteten Brennstoff-Zufuhrventilen und den resultierenden an den Ausgängen A1 und A2 ausgegebenen (Flammen)Signalen erkannt werden. FIG. 5 FIG. 10 is a timing diagram showing, as part of an intermittent operation of a fuel combustion apparatus having a main and a pilot flame, a sensor short between the in. FIG FIG. 2 shown common power supply line and the common measurement signal line can be detected. This is not necessarily the in FIG. 2 shown monitoring device 200 with the two zener diodes ZD10 and ZD20 required. Rather, as explained below, a sensor short circuit with the in FIG. 1 monitoring device 100 are detected on the basis of a temporal correlation between a switching cycle of switched fuel supply valves and the resulting output at the outputs A1 and A2 (flame) signals.

Gemäß dem hier dargestellten Ausführungsbeispiel wird zu einer Zeit t1 ein Ventil zur Brennstoffzufuhr für die Hauptflamme geöffnet. Das geöffnete Hauptflammen-Ventil ist in Figur 5 durch den Balken 581 dargestellt. Sofern die Überwachungsvorrichtung korrekt arbeitet und die Hauptflamme daraufhin angeht, wovon im Folgenden ausgegangen wird, wird zu einem Zeitpunkt t2 am Ausgang A1 das Vorhandensein der Hauptflamme angezeigt. Das entsprechende Flammensignal ist in Figur 5 durch den Balken 581a dargestellt.According to the embodiment shown here, a valve for supplying fuel to the main flame is opened at a time t1. The opened main flame valve is in FIG. 5 represented by the bar 581. If the monitoring device operates correctly and then addresses the main flame, which is assumed below, the presence of the main flame is displayed at the time A1 at a time t2. The corresponding flame signal is in FIG. 5 represented by the bar 581a.

Die zeitliche Verzögerung t2-t1 hängt u.a. von der Zeitdauer ab, die für den Brennstofftransport von dem Ventilausgang bis zu dem Ort der Hauptflamme benötigt wird. Für jede Brennstoff-Verbrennungsvorrichtung kann demzufolge eine von deren Konstruktion abhängige maximale Verzögerungszeit TSA1 ermittelt werden, innerhalb der die Hauptflamme spätestens angehen muss. Diese Verzögerungszeit TSA1 kann je nach Konstruktion der betreffenden Brennstoff-Verbrennungsvorrichtung zwischen 1 Sekunde und 10 Sekunden liegen. Sollte jedoch innerhalb dieser Zeitspanne TSA1 ab t1 das erste Flammensignal nicht angehen, dann kann davon ausgegangen werden, dass die Flammen-Überwachungsvorrichtung defekt ist.The time delay t2-t1 depends i.a. from the time required for fuel transport from the valve exit to the location of the main flame. Accordingly, a maximum delay time TSA1 dependent on its design can be determined for each fuel combustion device within which the main flame must start at the latest. This delay time TSA1 may be between 1 second and 10 seconds, depending on the design of the fuel combustion device concerned. If, however, within this time period TSA1 from t1 the first flame signal is not addressed, then it can be assumed that the flame monitoring device is defective.

Wenn das Ventil für die Hauptflamme zu einem Zeitpunkt t5 geschlossen wird, dann wird bei einer korrekt funktionierenden Überwachungsvorrichtung erwartet, dass das Flammensignal 581a für die Hauptflamme innerhalb einer gewissen zeitlichen Verzögerung zu einem Zeitpunkt t6 aus geht. Sollte dies nicht der Fall sein, dann kann davon ausgegangen werden, dass ein Fühlerkurzschluss vorliegt.If the main flame valve is closed at a time t5, then with a properly functioning monitor, the main flame flame signal 581a is expected to go out within a certain time delay at a time t6. If this is not the case, then it can be assumed that there is a sensor short circuit.

Entsprechendes gilt für das Öffnen (zu einem Zeitpunkt t3) und Schließen (zu einem Zeitpunkt t7) des Ventils für die Brennstoffzufuhr für die Pilotflamme. In Figur 5 ist das geöffnete Pilotflammen-Ventil durch den Balken 582 dargestellt. Bei einer korrekt funktionierenden Überwachungsvorrichtung wird das Flammensignal 582a für die Pilotflamme zu einem Zeitpunkt t4 erscheinen und zu einem Zeitpunkt t8 wieder verschwinden. Sollte das Flammensignal 582a auch nach dem Schließen des Pilotflammen-Ventils noch längere zeit vorhanden sein, dann kann ebenfalls davon ausgegangen werden, dass ein Fühlerkurzschluss vorliegt. Auch in diesem Fall darf bei einer korrekt funktionierenden Überwachungsvorrichtung die zeitdifferenz zwischen t3 und t4 nicht größer sein als eine charakteristische Verzögerungszeit TSA2 für das Angehen der Pilotflamme.The same applies to the opening (at a time t3) and closing (at a time t7) of the valve for the fuel supply to the pilot flame. In FIG. 5 the open pilot flame valve is represented by the bar 582. In a properly functioning monitoring device, the pilot flame signal 582a becomes the pilot flame appear at a time t4 and disappear again at a time t8. If the flame signal 582a is still present for a longer time even after the pilot flame valve has been closed, then it can also be assumed that there is a sensor short circuit. In this case also, in the case of a correctly functioning monitoring device, the time difference between t3 and t4 must not be greater than a characteristic delay time TSA2 for starting the pilot flame.

Die in Figur 2 dargestellte Überwachungsvorrichtung 200 ermöglicht aufgrund ihrer prinzipiell drei verschiedenen Ausgangssignale ("Low", "High" und "Wechselspannung"), die an jedem der beiden Ausgänge A1 und A2 anliegen können, eine umfangreiche Fehlerbetrachtung. Dabei können Bauteilfehler der Auswerteschaltung 150 zuverlässig erkannt und die betroffenen Bauteile sogar identifiziert werden. Damit sind z.B. die Anforderungen durch die Normen EN230/EN298 bezüglich des Verhaltens bei Bauteilefehlern erfüllt.In the FIG. 2 Because of its basically three different output signals ("Low", "High" and "AC voltage"), which can be present at each of the two outputs A1 and A2, monitoring device 200 shown permits extensive error consideration. In this case, component errors of the evaluation circuit 150 can be reliably detected and the affected components even identified. Thus, for example, the requirements of the standards EN230 / EN298 regarding the behavior in case of component defects are met.

Die folgende Tabelle 1 zeigt verschiedene Bauteilefehler der Überwachungsvorrichtung 200 und die zugehörigen Ausgangssignale an den Ausgängen A1 und A2. Folgende Abkürzungen sind in der Tabelle 1 verwendet: C: Kollektor B: Basis E: Emitter L/H/W: Zustand bleibt trotz auftretenden Bauteilfehler un-verändert bei "Low", "High" oder "Wechselspannungs-signal" AC: Wechselspannungssignal FKS: Fühlerkurzschluss FS: Flammensignal The following Table 1 shows various component errors of the monitoring device 200 and the associated output signals at the outputs A1 and A2. The following abbreviations are used in Table 1: C: collector B: Base e: emitter L / H / W: Condition remains unchanged despite "component fault" when "Low", "High" or "AC signal" AC: AC signal FCS: Sensor short circuit FS: flame signal

Bei dem Ausgang A1 bedeutet "High", dass kein Flammensignal von der Hautflamme vorliegt, und "Low", dass ein Flammensignal von der Hautflamme vorliegt.At the output A1, "high" means that there is no flame signal from the skin flame, and "low" means that there is a flame signal from the skin flame.

Bei dem Ausgang A2 bedeutet "High", dass ein Flammensignal von der Hautflamme vorliegt, und "Low", dass kein Flammensignal von der Hautflamme vorliegt. Tabelle1: Fehlerart Ausgang A1 Ausgang A2 R1 Unterbruch "High" "Low" R2 Unterbruch "High" "Low" R10 Unterbruch "High" L/H/W R11 Unterbruch "High" L/H/W R12 Unterbruch L/H/W L/H/W R13 Unterbruch "Low" L/H/W R20 Unterbruch L/H/W "Low" R21 Unterbruch L/H/W "Low" R22 Unterbruch L/H/W L/H/W R23 Unterbruch L/H/W "Low" R24 Unterbruch L/H/W "High" C1 Unterbruch AC (FKS) AC (FKS) Kurzschluss "High" "Low" C2 Unterbruch AC (FKS) AC (FKS) Kurzschluss "High" "Low" C10 Unterbruch L/H/W L/H/W kein FS wenn A2 aktiv Kurzschluss "High" L/H/W C20 Unterbruch L/H/W L/H/W kein FS wenn A1 aktiv Kurzschluss L/H/W "Low" D10 Unterbruch "High" L/H/W Kurzschluss L/H/W L/H/W D20 Unterbruch L/H/W "Low" Kurzschluss L/H/W L/H/W T10 Unterbruch C "High" L/H/W Unterbruch B "High" L/H/W Unterbruch E "High" L/H/W Kurzschluss CE "Low" L/H/W Kurzschluss EB "High" L/H/W Kurzschluss CB "Low" L/H/W T20 Unterbruch C L/H/W "Low" Unterbruch B L/H/W "High" Unterbruch E L/H/W "High" Kurzschluss CE L/H/W "Low" Kurzschluss EB L/H/W "High" Kurzschluss CB L/H/W "Low" At output A2, "high" means that there is a flame signal from the skin flame, and "low" means that there is no flame signal from the skin's flame. Table 1: Error type Exit A1 Output A2 R1 interruption "High" "Low" R2 interruption "High" "Low" R10 interruption "High" L / H / W R11 interruption "High" L / H / W R12 interruption L / H / W L / H / W R13 interruption "Low" L / H / W R20 interruption L / H / W "Low" R21 interruption L / H / W "Low" R22 interruption L / H / W L / H / W R23 interruption L / H / W "Low" R24 interruption L / H / W "High" C1 interruption AC (FCS) AC (FCS) short circuit "High" "Low" C2 interruption AC (FCS) AC (FCS) short circuit "High" "Low" C10 interruption L / H / W L / H / W no FS if A2 active short circuit "High" L / H / W C20 interruption L / H / W L / H / W no FS if A1 is active short circuit L / H / W "Low" D10 interruption "High" L / H / W short circuit L / H / W L / H / W D20 interruption L / H / W "Low" short circuit L / H / W L / H / W T10 Interruption C "High" L / H / W Interruption B "High" L / H / W Interruption E "High" L / H / W Short circuit CE "Low" L / H / W Short circuit EB "High" L / H / W Short circuit CB "Low" L / H / W T20 Interruption C L / H / W "Low" Interruption B L / H / W "High" Interruption E L / H / W "High" Short circuit CE L / H / W "Low" Short circuit EB L / H / W "High" Short circuit CB L / H / W "Low"

BezugszeichenlisteLIST OF REFERENCE NUMBERS

100100
Überwachungsvorrichtungmonitoring device
110110
erster Flammendetektorfirst flame detector
112112
Widerstandresistance
114114
Strahlungsempfindliches Sensorelement (z.B. UV-Zelle, Fotoelement, ...)Radiation sensitive sensor element (e.g., UV cell, photo element, ...)
116116
Diodediode
120120
zweiter Flammendetektorsecond flame detector
122122
Widerstandresistance
124124
Strahlungsempfindliches Sensorelement (z.B. UV-Zelle, Fotoelement, ...)Radiation sensitive sensor element (e.g., UV cell, photo element, ...)
126126
Diodediode
130130
Spannungsversorgungseinrichtung / TransformatorVoltage supply device / transformer
131131
gemeinsamer Spannungsausgang / Anschlusskontaktcommon voltage output / connection contact
132132
gemeinsame Spannungsversorgungsleitungcommon power supply line
134134
gemeinsame Messsignalleitungcommon measuring signal line
138138
gemeinsamer Signaleingang / Anschlusskontaktcommon signal input / connection contact
150150
Auswerteschaltungevaluation
152152
erste Verstärkerschaltungfirst amplifier circuit
154154
zweite Verstärkerschaltungsecond amplifier circuit
RR
Widerstandresistance
D10,D20D10, D20
Diodediode
R10,R20R10, R20
Widerstandresistance
R11,R21R11, R21
Widerstandresistance
C10,C20C10, C20
Kondensatorcapacitor
R12,R22R12, R22
Widerstandresistance
T10,T20T10, T20
bipolarer Transistorbipolar transistor
R13,R23R13, R23
Widerstandresistance
R24R24
Widerstandresistance
GNDGND
MasseDimensions
A1A1
erster Ausgangfirst exit
A2A2
zweiter Ausgangsecond exit
UnetzUnetwork
Netzspannungmains voltage
UsensorUsensor
Sensorspannungsensor voltage
200200
Überwachungsvorrichtungmonitoring device
230230
Spannungsversorgungseinrichtung / WechselspannungsquellePower supply / AC source
240240
Tiefpass-Filterschaltung (zweistufig)Low-pass filter circuit (two-stage)
250250
Auswerteschaltungevaluation
260260
GleichspannungsquelleDC voltage source
270270
Oszilloskoposcilloscope
S1,S2,S3S1, S2, S3
Schalterswitch
R1,R2R1, R2
Widerstandresistance
C1,C2C1, C2
Kondensatorcapacitor
ZD10,ZD20ZD10, ZD20
ZenerdiodeZener diode
AA1AA1
Ausgangssignal A1Output signal A1
AA2AA2
Ausgangssignal A2Output signal A2
581581
Ventil für Pilotflamme (Flamme 1) geöffnetValve for pilot flame (flame 1) opened
581a581a
Flammensignal für Hauptflamme (AA1 = "Low")Flame signal for main flame (AA1 = "Low")
582582
Ventil für Hauptflamme (Flamme 2) geöffnetValve for main flame (flame 2) open
582a582a
Flammensignal für Pilotflamme (AA2 = "Low")Flame signal for pilot flame (AA2 = "Low")
TSA1TSA 1
Verzögerungszeit für Zünden der HauptflammeDelay time for ignition of the main flame
TSA2TSA2
Verzögerungszeit für Zünden der PilotflammeDelay time for igniting the pilot flame

Claims (12)

  1. Monitoring device for the independent monitoring of the presence of a first flame and of a second flame in a fuel combustion device, said monitoring device (100, 200) having
    a first flame detector (110), configured and arranged to receive first radiation, which is emitted by the first flame,
    a second flame detector (120), configured and arranged to receive second radiation, which is emitted by the second flame,
    a voltage supply device (130, 230) that is connected to the two flame detectors (110, 120) and is configured to apply an alternating voltage with a first half wave and a second half wave to the two flame detectors (110, 120), and
    an evaluation circuit (150, 250),
    characterised in that
    the evaluation circuit (150, 250) is connected to the two flame detectors (110, 120) via a common signal input (138),
    the two flame detectors (110, 120) are configured in such way, and are wired in such a way in relation to the voltage supplying device (130, 230) and to the evaluation circuit (150, 250), that
    - a first measurement signal that is present at the common signal input (138) during the first half wave is indicative of the intensity of the first radiation and
    - a second measurement signal that is present at the common signal input (138) during the second half wave is indicative of the intensity of the second radiation, and
    the evaluation circuit (150, 250) is configured to evaluate the first measurement signal and the second measurement signal independently of one another.
  2. Monitoring device according to the previous claim having, in addition,
    a common voltage supply line (132) that connects the voltage supplying device (130, 230) to both the first flame detector (110) and the second flame detector (120) and/or
    a common measurement signal line (134) that connects both the first flame detector (110) and the second flame detector (120) to the common signal input (138) of the evaluation circuit (150, 250).
  3. Monitoring device according to one of the previous claims, wherein
    the first flame detector (110) has a first electrically rectifying element (116) and
    the second flame detector (120) has a second electrically rectifying element (126), wherein
    the two rectifying elements (116, 126) are wired antiparallel to one another in relation to the voltage supplying device (130) and to the common signal input (138).
  4. Monitoring device according to the previous claim, wherein
    the first flame detector (110) also has a first radiation detector (114) and
    the second flame detector (120) also has a second radiation detector (124),
    wherein at least one of the two radiation detectors (114, 124) is sensitive to electromagnetic radiation in the region of the ultraviolet spectral range.
  5. Monitoring device according to one of the previous claims, wherein
    the evaluation circuit (150, 250) has a filter circuit (R20, C20; R10, C10; 240).
  6. Monitoring device according to one of the previous claims, wherein
    the evaluation circuit (150, 250) has
    a first amplifier circuit (152) that is configured to amplify the first measurement signal exclusively and
    a second amplifier circuit (154) that is configured to amplify the second measurement signal exclusively.
  7. Monitoring device according to the previous claim, wherein the evaluation circuit (250) has a data processing unit that is configured to detect the presence of a fault in an electronic component of the evaluation circuit (250) and, in particular, to identify the faulty component, on the basis of a first output signal (AA1) from the first amplifier circuit (152) and of a second output signal (AA2) from the second amplifier circuit (154).
  8. Monitoring device according to the two previous claims, 6 and 7, wherein
    the first amplifier circuit (152) has a first diode (D10, ZD10) on the input side and
    the second amplifier circuit (154) has a second diode (D20, ZD20) on the input side, wherein
    one of the two diodes is connected to the common signal input (138) on the anode side and the other is connected to the common signal input (138) on the cathode side.
  9. Monitoring device according to the previous claim, wherein the first diode is a first Zener diode (ZD10) and/or
    the second diode is a second Zener diode (ZD20).
  10. Monitoring device according to claim 9, wherein
    the breakdown voltage of at least one of the two Zener diodes (ZD10, ZD20) is of such a magnitude that the at least one Zener diode
    (a) is operated within a voltage range that is lower than the breakdown voltage if the connection of the two flame detectors (110, 120) to the voltage supplying device (230) and to the common signal input (138) is fault-free and
    (b) is operated within a voltage range that is higher than the breakdown voltage if a short circuit occurs between the voltage supplying device (230) and the common signal input (138).
  11. Method for the independent monitoring of the presence of a first flame and of a second flame in a fuel combustion device, said method consisting in
    applying an alternating voltage supplied by a voltage supplying device (130, 230) with a first half wave and a second half wave to a first flame detector (110) and a second flame detector (120),
    receiving first radiation, which is emitted by the first flame, by means of the first flame detector (110),
    receiving second radiation, which is emitted by the second flame, by means of the second flame detector (120),
    directing a first measurement signal present during the first half wave from the first flame detector (110) to a common signal input (138) of an evaluation circuit (150, 250), wherein the first measurement signal is indicative of the intensity of the first radiation,
    directing a second measurement signal present during the second half wave from the second flame detector (120) to the common signal input (138) of the evaluation circuit (150, 250), wherein the second measurement signal is indicative of the intensity of the second radiation, and
    monitoring the presence of the first flame and of the second flame by means of the evaluation circuit (150, 250), on the basis of the first measurement signal and the second measurement signal.
  12. Method according to the previous claim, said method also consisting in
    extinguishing the first flame,
    evaluating the first measurement signal and
    considering the monitoring device (100, 200) to be faulty if the evaluation of the first measurement signal incorrectly indicates the presence of the first flame.
EP11164502.4A 2011-05-02 2011-05-02 Monitoring the presence of two flames in a fuel combustion device Not-in-force EP2520862B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES11164502.4T ES2511067T3 (en) 2011-05-02 2011-05-02 Monitoring of the presence of two flames in a fuel combustion device
EP11164502.4A EP2520862B1 (en) 2011-05-02 2011-05-02 Monitoring the presence of two flames in a fuel combustion device
CA2775763A CA2775763C (en) 2011-05-02 2012-04-30 Monitoring of the presence of two flames in a fuel combustion device
US13/462,377 US9170020B2 (en) 2011-05-02 2012-05-02 Monitoring of the presence of two flames in a fuel combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11164502.4A EP2520862B1 (en) 2011-05-02 2011-05-02 Monitoring the presence of two flames in a fuel combustion device

Publications (2)

Publication Number Publication Date
EP2520862A1 EP2520862A1 (en) 2012-11-07
EP2520862B1 true EP2520862B1 (en) 2014-08-13

Family

ID=44883516

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11164502.4A Not-in-force EP2520862B1 (en) 2011-05-02 2011-05-02 Monitoring the presence of two flames in a fuel combustion device

Country Status (4)

Country Link
US (1) US9170020B2 (en)
EP (1) EP2520862B1 (en)
CA (1) CA2775763C (en)
ES (1) ES2511067T3 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2511067T3 (en) 2011-05-02 2014-10-22 Siemens Aktiengesellschaft Monitoring of the presence of two flames in a fuel combustion device
US20140287369A1 (en) * 2013-03-20 2014-09-25 Bruce George Yates Dual/Redundant Self Check Ultraviolet Flame Sensor and Combustion Safeguard Control
US10088426B2 (en) 2014-05-06 2018-10-02 United Technologies Corporation Chemiluminescence imaging system and method of monitoring a combustor flame of a turbine engine
US9784449B2 (en) * 2014-05-30 2017-10-10 Jed Margolin Flame sensing system
US10690057B2 (en) 2017-04-25 2020-06-23 General Electric Company Turbomachine combustor end cover assembly with flame detector sight tube collinear with a tube of a bundled tube fuel nozzle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1267776B (en) * 1962-12-18 1968-05-09 Electronics Corp America Device for monitoring firing processes
US3548395A (en) * 1966-02-14 1970-12-15 Combustion Eng Flame condition sensing device
US3384439A (en) * 1966-04-05 1968-05-21 Fenwal Inc Pulsed spark gas ignition and flame monitoring system
SE331148B (en) * 1968-04-29 1970-12-14 Kockums Mekaniska Verkstads Ab
GB1314185A (en) * 1969-08-28 1973-04-18 United Gas Industries Ltd Apparatus for controlling the operation of fuel burners
EP0334027B1 (en) * 1988-03-25 1994-04-27 Hartmann & Braun Leipzig GmbH Dynamic auto-controlling circuit for flame detection
US6794771B2 (en) * 2002-06-20 2004-09-21 Ranco Incorporated Of Delaware Fault-tolerant multi-point flame sense circuit
ES2471967T3 (en) * 2005-05-06 2014-06-27 Igor Sergeevich Korolyov Procedure and device for preventing the occurrence of a possible fire due to interference in electrical networks and electrical installations
ES2511067T3 (en) 2011-05-02 2014-10-22 Siemens Aktiengesellschaft Monitoring of the presence of two flames in a fuel combustion device

Also Published As

Publication number Publication date
US9170020B2 (en) 2015-10-27
CA2775763C (en) 2015-06-23
ES2511067T3 (en) 2014-10-22
EP2520862A1 (en) 2012-11-07
US20120280134A1 (en) 2012-11-08
CA2775763A1 (en) 2012-11-02

Similar Documents

Publication Publication Date Title
EP2520862B1 (en) Monitoring the presence of two flames in a fuel combustion device
EP1719947B1 (en) Method and device for flame monitoring
DE19930122C1 (en) Method for preventing switching on to existing electrical short circuits in branches and associated arrangement
EP0515977B1 (en) Electronic ballast for high pressure discharge lamps used in automotive applications
DE1943328A1 (en) Flame detector
DE676589C (en) Arrangement to protect pipes with screen grids against overcurrents
EP0614052B1 (en) Automatic ignition device
DE3049741C2 (en) Device for supplying and monitoring the correct operation of a railway signal
DE1551954A1 (en) Control device for a furnace
DE3126130A1 (en) ELECTRIC IGNITION SYSTEM FOR A BURNER
DE102006016827A1 (en) Circuit arrangement for high-pressure gas discharge lamps
DE69918628T2 (en) IGNITION SWITCHING FOR DISCHARGE LAMPS
DE1913715A1 (en) Control device for a furnace
DE69315640T2 (en) Delay means in a starting circuit of a ballast
DE19645555A1 (en) Monitoring of oil or gas burner for detecting flame failure
DE1955338C2 (en) UV FLAME GUARD
DE2853677C2 (en) Circuit for an ionization vacuum meter
EP4102136B1 (en) Method for the verification of a flame monitoring device for a heater, heater, computer program and storage medium
DE3723278C2 (en)
DE3101967A1 (en) INTRINSICALLY SAFE FLAME GUARD
DE1764238C2 (en) Switching arrangement for the simultaneous or sequential ignition and extinguishing of high-voltage fluorescent tube systems from several fluorescent tube systems located in the same supply circuit and containing one or more fluorescent tubes
EP3106753A1 (en) Flame monitoring
DE1551964A1 (en) Ignition spark test and utilization circuit, especially for burners
DE10205198B4 (en) Two-pole flame detector
DE2809994C3 (en) Electronic safety timer for gas or oil burners

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130107

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RIC1 Information provided on ipc code assigned before grant

Ipc: F23N 5/24 20060101ALI20130822BHEP

Ipc: F23N 5/08 20060101AFI20130822BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131022

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 682475

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011004009

Country of ref document: DE

Effective date: 20140918

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2511067

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20141022

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141113

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141213

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011004009

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150502

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150502

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110502

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 682475

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170810

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20180521

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180529

Year of fee payment: 8

Ref country code: NL

Payment date: 20180517

Year of fee payment: 8

Ref country code: FR

Payment date: 20180516

Year of fee payment: 8

Ref country code: TR

Payment date: 20180502

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20180514

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180516

Year of fee payment: 8

Ref country code: DE

Payment date: 20180719

Year of fee payment: 8

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011004009

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190502

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190502

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190502

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190502