EP2517300B1 - Broadband directional coupler - Google Patents
Broadband directional coupler Download PDFInfo
- Publication number
- EP2517300B1 EP2517300B1 EP10793148.7A EP10793148A EP2517300B1 EP 2517300 B1 EP2517300 B1 EP 2517300B1 EP 10793148 A EP10793148 A EP 10793148A EP 2517300 B1 EP2517300 B1 EP 2517300B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resistor
- connection
- directional coupler
- broadband directional
- coupler according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
- H01P5/16—Conjugate devices, i.e. devices having at least one port decoupled from one other port
- H01P5/18—Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
- H01P5/183—Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers at least one of the guides being a coaxial line
Definitions
- the invention relates to a directional coupler for measuring the power of a leading and a returning high frequency signal on a coaxial line in a wide frequency range, e.g. in the range of 9 kHz to 250 MHz.
- the broadband directional coupler is e.g. designed for outputs of up to 250 watts.
- Directional couplers are often used in conjunction with power amplifiers to quickly and reliably detect if there is a mismatch or not. If the power of the leading and the returning high-frequency signal can be detected, the power amplifier can be automatically switched off before any damage to the return high-frequency signal is exceeded.
- the broadbandness of such a directional coupler is just necessary for immunity tests in order to examine the functionality of the device under test in a wide frequency range.
- different antennas and equipment are used for coupling interfering signals into the test object. Cable breaks, faulty connectors or defective antennas are just a few of the ways that can lead to mismatch.
- the necessary output power of the power amplifier changes significantly over the frequency range to be tested.
- a generic arrangement of a directional coupler is from the US 6,066,994 known.
- the directional coupler is symmetrical constructed, wherein the outer conductor of the coaxial conductor is separated at two points and is connected via a respective shunt resistor to the outer conductor of the coaxial conductor at the input and output.
- a ferrite core ensures that both ends of the outer conductor are insulated against each other for low frequencies.
- Above the shunt resistor a measurement voltage proportional to the inner conductor current drops, which poles differently depending on the direction in which the power flows.
- a capacitive voltage divider which is connected to the inner conductor, generates a measuring voltage that is proportional to the inner conductor voltage. This measurement voltage is applied to the gate of a field effect transistor (FET).
- FET field effect transistor
- the source and drain of the FET are connected to a DC voltage source via a plurality of resistors.
- the decoupled at the source terminal, proportional to the inner conductor voltage measurement voltage is added or subtracted via a capacitor, a resistor and a coaxial cable to the falling across a shunt resistor, proportional to the inner conductor current measurement voltage.
- this adds both voltages in one branch, whereas they subtract to zero in the other branch. In the case of a mismatch, the voltage difference does not become zero.
- VSWR Voltage Standing Wave Ratio
- a disadvantage of the arrangement of US 6,066,994 is the complicated structure to integrate all components into the overall system.
- the necessary resistors are mainly designed as wired resistors.
- the bending of the connecting legs of the resistors, or the coaxial cable, as well as the soldering process itself, must be done by hand.
- This causes everyone Directional coupler has slightly different properties.
- Another disadvantage is the capacitive voltage divider. So that the directional coupler can even work in the low frequency range, this capacitive voltage divider may hardly be loaded.
- the use of a FET as an impedance converter is essential.
- two additional voltage sources are required, which further increase the already high cabling effort and additionally require an external power supply.
- Broadband directional couplers for measuring the power of a leading and / or a returning high frequency signal on a line are also from the WO 2005/048396 A1 and the US 2005/0264374 A1 known.
- the invention is therefore based on the object to provide a broadband directional coupler, which is constructed much simpler and dispenses with active components.
- the broadband directional coupler is preferably to be used in a wide frequency range of e.g. 9 kHz to 250 MHz work reliably and can detect powers of preferably up to 250 W.
- the broadband directional coupler is used to measure the power of a leading and / or a returning high frequency signal on a line.
- the broadband directional coupler has a voltage divider connected to an inner conductor of the line and a first resistor connected to an outer conductor of the line.
- the voltage divider has ohmic resistances and a first terminal of a second resistor is connected to the inner conductor of the line and a second terminal of the second resistor is connected to connected to a first terminal of a third resistor.
- a second terminal of the third resistor is directly or indirectly connected to a first terminal of the first resistor and at the same time to the outer conductor of the lead.
- a measuring voltage is tapped off at the second terminal of the second resistor or at the first terminal of the third resistor.
- the broadband directional coupler according to the invention has an ohmic voltage divider instead of a capacitive one.
- This voltage divider may be much more heavily loaded, so that no active components are required as an impedance converter. This not only reduces the wiring complexity within the Breitbandrichtkopplers, but it can also be dispensed with an external power supply.
- the adjustment of the broadband directional coupler according to the invention is therefore much simpler, so that on the one hand the production time is shortened and on the other hand the individual broadband directional couplers do not differ in their properties.
- Fig. 1 shows a simplified circuit diagram of the Breitbandrichtkopkopers invention.
- the circuit diagram is constructed exactly symmetrical about the axis 21 around.
- the broadband directional coupler is constructed by two independent measuring units 22 and 23. At the input terminal 13 of the first measuring unit 22, both the signal source, as well as a complex load over a coaxial cable can be connected. The same applies to the input terminal 13 of the second measuring unit 23. About the running through both measuring units 22, 23 inner conductor 1, a high frequency signal is transmitted from the power amplifier to the complex load.
- Each measuring unit 22, 23 has two four-poles 19, 20 each.
- the first quadrupole 19 comprises a voltage divider, consisting of the ohmic resistors 4 and 6, which serves to divide a high RF voltage as frequency independent as possible to a small measurement voltage.
- the first resistor 4 is directly galvanically connected to the inner conductor 1 at its first connection. Its second terminal is connected to the first terminal of a second resistor 6. Between two resistors 4, 6, the divided measuring voltage can be tapped off at node 12.
- the first resistor 4 must be designed with high resistance (eg 30k ohms). However, it should be noted here that the resistor 4 has a resistance value of, for example, 30 k ohms only at a DC voltage up to a low-frequency AC voltage. For high-frequency alternating voltages (of eg 250 MHz), the resistor 4 has by design only an ohmic resistance of eg 500 ohms and a total of a complex impedance. As the frequency increases, this increases the current flowing through the resistor 4 by a multiple. For this reason, the resistor 4 must be able to release the absorbed heat energy again. This is best achieved by choosing a resistor with as large a surface as possible.
- all resistors and capacitors are preferably designed as SMD components (surface-mounted device). On the one hand, this allows automatic assembly and, on the other hand, the heat energy can be released directly to the board material, whereby the heat transfer is significantly better than with air.
- the resistor 4 is e.g. realized in the design 2512. Due to the necessarily large design, the cap capacity forms stronger than resistors with smaller designs.
- the cap capacity of the resistor 4 is visible as a capacitance 5 in the circuit diagram. This capacitance 5 is a purely parasitic capacitance which, due to its size of e.g. up to 0.1 pF.
- the resistor 6 has a significantly smaller design (eg 0402). As a result, a smaller cap capacity is formed, which results in that the time constant T 1 consisting of the resistor 4 and its cap capacity 5 differs significantly from the time constant T 2 consisting of the resistor 6 and its cap capacity. For this reason, in the exemplary embodiment, a capacitor 7 is connected with its terminals parallel to the terminals of the resistor 6.
- the capacitor 7 is a capacitor whose capacitance can be variably adjusted (trimming capacitor). This takes into account the fact that the cap capacity 5 of the resistor 4 can vary in size from component to component.
- a further adjustable capacitor 10 (trimming capacitor) is preferably connected with its first terminal. His second connection however, it is connected to ground.
- the first terminal of the capacitor 10 is connected to the decoupling terminal 15 via the resistor 11.
- the trim capacitor 10 serves to equalize the frequency response in the forward direction.
- the capacitance of the trimming capacitor 7 is adjusted such that a time constant T 2 results from the trimming capacitor 7 and the resistor 6, which is as exactly as possible the further time constant T 1 , which results from the resistor 4 together with its cap capacity 5.
- the resistor 11 serves to ensure that the trim capacitor 10 only has to have a small final capacity.
- the second terminals of the trim capacitor 7 and the resistor 6 are connected to the node 17. Also connected to the potential of the node 17 via the node 18, a first terminal of the resistor 8. At the same potential and a first terminal of the capacitor 9 is connected. The second terminals of the capacitor 9 and the resistor 8 are connected to ground.
- the resistor 8 is preferably made very low impedance.
- the outer conductor of the coaxial line connected to the input terminal 13 is in the broadband directional coupler in an inner 3 and a in Fig. 1 divided outer outer conductor 38, not shown, wherein the inner outer conductor 3 is connected only at one end directly to the outer outer conductor 38 and thus to ground.
- the second end of the inner outer conductor 3 is directly or indirectly via the node 18 and thus over the first terminal of the resistor 8 to the outer outer conductor 38 and thus connected to ground.
- Between the inner 3 and the outer outer conductor 38 at least one high-permeability ring band core 2 is arranged. This ensures that a significant current flows through the resistor 8.
- the voltage drop across the resistor 8 is proportional to the internal conductor current, as long as the resistor 8 has no parasitic inductances. This is not the case in reality, so that a capacitor 9 must be connected in parallel to the terminals of the resistor 8.
- This capacitor 9 compensates the parasitic inductance of the resistor 8 at a reference frequency of 250 MHz.
- a positive or a negative voltage drops across the resistor 8.
- the measurement voltages occurring at both four-poles 19, 20 have the same value, the same phase response and are frequency-independent. Depending on the sign of the two measuring voltages, these are vectorially added or subtracted at node 12. The voltage resulting therefrom at the node 12 can then be tapped off at the coupling-out connection 15.
- Each measuring unit 22, 23 has at least one input terminal 13 and at least one decoupling terminal 15. Both the input terminal and the decoupling terminal can be connected to a source or to a complex load.
- the arrangement is operated in the forward direction when the signal source at the input terminal 13 of the first measuring unit 22 and the complex load at the input terminal 13 of the second measuring unit 23 is connected.
- a voltage proportional to the root of the power of the leading high-frequency signal is available, whereas at the decoupling connection 15 of the second measuring unit 23, a voltage proportional to the root of the power of the returning high-frequency signal is provided.
- the broadband directional coupler can also be operated in the reverse direction without the attenuation changing.
- the signal source at the input terminal 13 of the second measuring unit 23 and the complex load at the input terminal 13 of the first measuring unit 22 are connected.
- a voltage proportional to the root of the power of the leading high-frequency signal is available, whereas at the coupling-out terminal 15 of the first measuring unit 22, a voltage proportional to the root of the power of the returning high-frequency signal is provided.
- Fig. 2A explains the parasitic effects caused by the fact that the outer conductor must be opened in order to attach the ohmic voltage divider consisting of the resistors 4 and 6 to the inner conductor and the resistor 8 to the outer conductor can.
- Fig. 2A shows the first measuring unit 22 of the Breitbandrichtkopkopers invention. Dashed lines indicate the second measuring unit 23, which is constructed exactly mirror-symmetrical to the first measuring unit 22. In the embodiment in Fig. 2A is connected to the input terminal 13 of the first measuring unit 22, a signal source, not shown. The input terminal 13 of the second measuring unit 23 is with connected to a complex load, not shown.
- a current flow along the inner conductor 1 in the direction of arrow 36 from the input terminal 13 of the first measuring unit 22 to the input terminal 13 of the second measuring unit 23 is shown.
- the inner conductor 1 is guided by a not shown recess 40 on the board 30 through this.
- the first resistor 4 is galvanically connected to the inner conductor 1 via the solder connection 37.
- the second terminal of the first resistor 4 is connected via the node 12 to the first terminal of a second resistor 6, as well as from the circuit diagram Fig. 1 evident.
- a connection is made from the node 12 via the resistor 11, not shown, to the coupling-out connection 15 to which a coaxial plug connection 60 is connected.
- the second terminal of the second resistor 6 is connected to the node 17. Via a via 37, the node 17, which is located on the input terminal 13 facing side 31 of the board 30, with the node 18, which is located on the side facing away from the input terminal 13 32 of the board 30, respectively.
- the length of the via 37 is equal to the thickness of the board 30 and is 1.6 mm in a two-layer FR 4 multilayer board, for example.
- the node 18 is as in Fig. 1 can be seen directly connected to the first terminal of the resistor 8. How out Fig. 2A it can be seen, the resistance 8 in the embodiment not only of a single resistor, but of several individual resistors, which the inner outer conductor 3 with connect to the outer outer conductor 38.
- the further capacitors 5, 7, 9, 10 and the resistor 15 are in for clarity FIGS. 2A and 2B not shown.
- the dotted surface is a measuring loop 39.
- This consists of the second resistor 6 of the voltage divider and the coaxial connector 60 on the first side 31 of the board 30.
- the signal line from the node 12 to the coaxial connector 60 is on the first side 31 board 30 and has only spaced from the board 30 for clarity.
- the node 17 on the first side 31 of the board 30 is connected to the node 18 on the second side 32 of the board 30.
- On the second side of the board is the resistor 8.
- the second terminal of the resistor 8 is connected to the outer conductor 38.
- Via contacts, not shown, on the board 30, the outer conductor 38 is connected to the coaxial connector 60 and to the outer conductor 31 on the first side 31 of the board 30.
- the measuring loop 39 is closed.
- a current flowing in the direction of arrow 36 on the inner conductor 1 causes a magnetic field whose field lines extend in a circle around the inner conductor 1.
- the magnetic field lines run in the direction of the arrow 33. At point 34 they exit and at point 35 they enter again.
- the area spanned by the measuring loop 39 is traversed by the field lines of the magnetic field, wherein a voltage is induced in the measuring loop 39.
- This coupling takes place with an angle error of 90 °. That to the root of the power of the leading high-frequency signal proportional measuring voltage, which has a forward damping on average of 57.5 dB, for example, is greatly disturbed by the induced voltage.
- the proportional to the root of the power of the returning high-frequency signal measurement voltage which has a return loss on average of, for example 95 dB, is superimposed by the induced voltage such that it can no longer be measured.
- Fig. 2B shows the preferred solution according to the invention for avoiding parasitic couplings into the measuring loop.
- the structure and the current direction are essentially the same as in Fig. 2A , so here's the description of Fig. 2A is referenced.
- Both resistors 4 and 6 of the voltage divider should therefore not be arranged on the same side of the board 30. Therefore, the resistor 6 of the voltage divider is no longer arranged on the first side 31 of the circuit board 30, but on the side facing away from the input terminal 13 side 32 of the board 30, where the resistor 8 is arranged.
- the signal line from the node 12 to the coaxial connector 60 is located on the second side 32 of the circuit board 30 and has been drawn only for clarity spaced from the board 30.
- This type of arrangement means that no closed measuring loop builds up over the outer conductor, via which a voltage can be induced by a magnetic field. All resistors 4,6,8,11 and / or Capacitors 7, 9, 10 of a measuring unit 22, 23 are arranged on a circuit board 30.
- Fig. 3A shows the first side 31 of the board 30.
- the board 30 has in the middle of a circular recess 40 through which the inner conductor 1 is passed.
- the inner conductor 1 is connected via a solder connection 37 and / or a screw connection with the first side 31 of the circuit board 30 in such a way that a low-resistance electrical contact between the inner conductor 1 and the conductor 41 is produced.
- This conductor 41 electrically connects the first terminal of the resistor 4 to the inner conductor 1.
- the second terminal of the resistor 4 is connected to the first terminals of the trim capacitors 7 and 10. Between the first terminals of the trim capacitors 7 and 10 is the via 37, which connects the first side 31 with the second side 32 of the board 30.
- the second terminal of the capacitor 10 is connected to ground.
- the second terminal of the capacitor 7 is connected via a further via, which is not shown, to the second terminal of the resistor 6.
- Fig. 3B shows the second side 32, and the input terminal 13 facing away from the side 32 of the board 30.
- the inner conductor 1 is guided on the second side 32 through the recess 40 of the board 30.
- the surface 44 between the two rings shows the bearing surface of the spring element 45, which is connected to the second side 32 of the board 30 via the support surface such that a low-resistance electrical contact between the spring element 45 and the board 30 is made. This is advantageously done by a soldering process.
- the spring element 45 is additionally over not shown holes in the board 30 anchored with this, so that the spring element 45 remains fixed to the board 30 even with radial forces. Annularly 45 different components are arranged around the spring element.
- the resistor 1 is composed of a plurality of individual resistors connected in parallel, which are arranged in a ring around the spring element 45 and contact this.
- the resistors in the exemplary embodiment are 42 individual resistors 8 1 to 8 42 .
- Its second terminal is connected to the outer outer conductor 38 of the Breitbandrichtkopplers.
- the resistance ring which consists of the annularly arranged resistors, is interrupted at the decoupling connection, whereby a ring segment with two ends is formed. It is desirable that the current on the inner outer conductor 3 flows evenly across all resistors 8 1 to 8 42 against the outer outer conductor 38.
- Each resistor has a resistance value of about 12.1 ohms in the embodiment, with the nominal resistance decreasing in principle toward the ends of the resistor ring.
- the resistors 8 1 and 8 42 have a resistance of 10 ohms.
- the inductance associated with each resistor should be reduced by the parallel circuit so that no phase errors in the measured value arise.
- the inductance of the resistors 8 1 to 8 42 connected in parallel differs in reality from the calculated model such that additional compensation makes sense.
- the capacity 9 is off Fig. 1 formed from up to four individual capacitors 9 1 to 9 4 , of which two capacitors with their terminals in parallel to each end of the resistor ring are switched.
- the capacitance of the parallel-connected capacitors 9 1 to 9 4 is selected so that the inductance of the resistors 8 1 to 8 42 connected in parallel is compensated, for example, at a frequency of 250 MHz.
- the resistor 6 of the voltage divider Between the two ends of the resistor ring is the resistor 6 of the voltage divider. Immediately adjacent and connected via its first terminal to the first terminal of the resistor 6 is the resistor 11, at the second terminal of a measuring voltage is tapped, which is proportional to the root of the power of the leading or returning high-frequency signal.
- the resistor 11 has a resistance value of about 160 ohms in the embodiment.
- This measuring voltage is conducted with a coaxial connector, preferably a SMP or SMA coaxial connector, from the broadband directional coupler, which is attached to the coupling-out connection 15.
- Fig. 4 shows the housing body 38 of the Breitbandrichtkoppler invention.
- the housing body 38 is made of a solid conductive metal, preferably aluminum.
- two cylindrical recesses are formed on the left and right sides, the walls of which form an inner 3 and an outer outer conductor 38.
- the outer outer conductor 38 is at the same potential as the housing body 38 and therefore has the same reference numerals.
- These cylindrical recesses have an inner radius 58 and an outer radius 57.
- the outer radius 57 is slightly larger than the outer radius of the ring band core 2 designed as a hollow cylinder.
- the inner radius 58 is slightly smaller than the inner radius of the hollow cylinder As a result, the toroidal core 2 can be inserted into the housing body 38 of the broadband directional coupler.
- the first recess which is made on both sides of the housing body 38 may only be so deep that the toroidal core 2 can be inserted straight and at the same time the board can be screwed onto both ends of the housing body 38.
- the first left and right recesses are separated by a metallic partition 71.
- the recess itself can preferably be done by a milling.
- the solid cylinder and thus the inner outer conductor 3, which remains standing along the longitudinal axis 51 of the housing body 38 is extended by a further left and right cylindrical recess to the hollow cylinder.
- the inner radius of the hollow cylinder must be so large that an inner conductor 1 can be inserted without causing contact of the inner conductor 1 with the inner outer conductor 3, either by direct contact or due to a flashover due to excessive electric field strengths.
- This second recess extends in contrast to the first recess along the longitudinal axis 51 through the entire housing body 38.
- the recess is advantageously carried out by a bore or milling. As a result, two independent measuring units 22 and 23 are formed for the leading and the returning high-frequency signal.
- the inner conductor 1 may be provided at its ends with a threaded hole so that it can be screwed to the circuit board 30.
- a part of a screw 53 is exemplified in Fig. 4 located.
- the housing body 38 has four threaded holes 54 at each end, each having the same distance to a corner. About these threaded holes 54, a circuit board 30 and a housing cover 62 is screwed onto each end of the housing body 38 of the Breitbandrichtkopplers, the boards 30 are preferably constructed identically.
- the housing body 38 further includes a side indentation 52 that is shaped to mate with an SMP or SMA coaxial connector secured to the circuit board 30.
- a recess 55 Centered at the top of the housing body 38 at the edge in each case a recess 55, whose shape corresponds to half a solid cylinder. At the bottom of this recess 55 each have a further threaded bore 56 is formed. About this threaded hole 56, the housing body 38 of the Breitbandrichtkopplers be permanently fixed in another housing or device.
- Fig. 5 shows the interior view of the Breitbandrichtkoppler without the housing body 38.
- the inner conductor 1 depending on the embodiment of a continuous conductor, as in Fig. 5 represented, or from conductor segments, in each end a thread is formed, via which two conductors can be connected to a corresponding screw 53.
- the inner conductor 1 is made of three conductor segments constructed, with a conductor segment is located in each case on the first side 31 of the board 30 of each measuring unit 22,23.
- Another conductor segment connects the second side 32 of the first circuit board 30 of the first measuring unit 22 with the second side 32 of the second circuit board 30 of the second measuring unit 23.
- the inner conductor 1 is guided concentrically through the left- and right-side recess.
- the diameter of the inner conductor 1 is adapted such that a characteristic impedance of the broadband coupler is adapted to a system impedance of, in particular, 50 ohms.
- the diameter of the inner conductor 1 may change several times. This is possible both with a continuous inner conductor 1, as well as with an inner conductor 1 consisting of a plurality of inner conductor segments.
- the spring element 45 which is arranged on the second side 32 of the board 30.
- the spring element 45 consists of individual separate spring segments, which can be bent radially outward under the action of a force.
- the spring element 45 is arranged on the side facing away from the input terminal 13 side of the boards 30 so that it surrounds the inner outer conductor 3 such that a low-resistance electrical contact is made and at the same time no radial movements of the inner outer conductor 3 are possible.
- each board 30 has at least one SMP or SMA coaxial connector 60, which is connected to the Auskoppelan gleich 15 and the outer outer conductor 38.
- corresponding recesses 52 are made in the housing cover 62 and in the housing body 38.
- Fig. 6 shows the shows the complete broadband directional coupler consisting of the housing cover 62, the board 30 and the housing body 38.
- the housing body has, as in Fig. 4 shown, two recesses 55, which each have a threaded bore 56.
- the housing cover 62 has at the corners four lowered threaded holes, so that the housing cover 62 can be firmly fixed together with the screws 61 together with the board 30 to the housing body 38.
- Another bore in the housing cover 62 serves to allow the inner conductor 1 to be guided out of the broadband directional coupler.
- a Koaxialsteckitati can be attached.
- Fig. 7 shows to illustrate the structure of a section along the longitudinal axis 51 through the broadband directional coupler according to the invention.
- the individual components of the broadband directional coupler consisting of the housing cover 62, the circuit board 30 and the housing body 38, which are firmly connected to one another via the screws 61, can be seen particularly well here.
- the inner conductor 1 is passed through the through hole through the broadband directional coupler.
- the non-conductive centering elements 70 serve to keep the inner conductor 1 in position.
- the resistor 4 of the voltage divider to the inner conductor 1 is electrically connected. Good to see next to the mirror-symmetrical structure of the arrangement along the axis 21 and the cylindrical recesses on the left and the right side, in which the toroidal cores 2 are inserted.
- the cylindrical recesses are separated from one another by the metallic dividing wall 71, whereby two independent measuring units 22 and 23 form for the leading and the returning high-frequency signal and, on the other hand, the inner outer conductor 3 with the outer outer conductor 38 and thus via this metallic dividing wall 71 connected to the housing body 38.
- This can already be clearly recognized by means of Fig. 3B and Fig. 5 described spring element 45 through which the inner outer conductor 3 is contacted electrically low resistance to the board 30.
- the spring element 45 serves at the same time for fixing the ring band cores 2, so that no movements in the axial direction are possible.
- Via the circuit board 30, the current flows through the resistor 8 from the inner outer conductor 3 back to the outer outer conductor 38.
- the board 30 is in the region of the outer outer conductor 38 coated on both sides with copper and repeatedly plated through. About the tightened screw 61, the outer outer conductor 38 is electrically connected via the circuit board 30 with low impedance to the housing cover.
- the power is positive at a positive half-wave of the high-frequency signal and under the condition that the power is exclusive from the power amplifier to the complex load and no reflections take place, a current profile corresponding to the direction of the arrow 72 on the inner conductor 1 a.
- a measuring voltage which is proportional to the root of the power of the leading high-frequency signal is available at the coupling-out terminal 15 of the first measuring unit 22, and a measuring voltage which is proportional to the root of the power of the returning high-frequency signal is available at the coupling-out terminal 15 of the second measuring unit 23.
- the voltage drop across the voltage divider of each measuring unit 22 and 23 is the same and in this example positive.
- the current flow of the current flowing back in this example via the housing cover 62, the board 30 and the housing body 38 corresponds to the direction of arrow 73.
- the current splits, with only a small part along the outer outer conductor 38 back to the power amplifier flows.
- the largest part flows via the resistor 8 of the second measuring unit 23 against the inner outer conductor 3 of the second measuring unit 23.
- a negative voltage drops across the resistor 8 of the second measuring unit 23.
- This voltage is supplied to the node 12 of the second measuring unit 23 of the positive voltage of the voltage divider. Both voltages have the same amplitude, but different signs.
- no voltage is measured in this case.
- a portion of the current flows from the inner outer conductor 3 of the second measuring unit 23 via the metallic partition wall 71 back into the outer outer conductor 38.
- a part of Current from the inner outer conductor 3 of the second measuring unit 23 flows together with part of the current coming from the outer outer conductor 38, into the inner outer conductor 3 of the first measuring unit 22.
- This current flows through the resistor 8 of the first measuring unit 22 back to the outer outer conductor 38th According to the wiring diagram Fig. 1
- a positive voltage drops across the resistor 8 of the first measuring unit 22.
- This voltage is added to the node 12 of the first measuring unit 22 to the positive voltage of the voltage divider. Both voltages have the same amplitude, and the same sign.
- a voltage is measured in this case which is proportional to the root of the power of the leading high-frequency signal.
- a voltage can be measured at both outcoupling connections 15. From these two voltages, the power of the leading and the returning high-frequency signal can be calculated.
- the high permeability annular band cores 2 ensure that the majority of the current flows through the resistor 8. Without the toroidal cores 2, an inductance would build up in the then empty cylindrical recess, via which the resistor 8 would be shorted. As a result, no appreciable voltage drop across the resistor 8 could be measured.
- the permeability of the toroidal core 2 determines the lower operating frequency of the Breitbandrichtkopplers.
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Description
Die Erfindung betrifft einen Richtkoppler zum Messen der Leistung eines vorlaufenden und eines rücklaufenden Hochfrequenzsignals auf einer Koaxialleitung in einem breiten Frequenzbereich, z.B. im Bereich von 9 kHz bis 250 MHz. Der Breitbandrichtkoppler ist dabei z.B. für Leistungen von bis zu 250 Watt ausgelegt.The invention relates to a directional coupler for measuring the power of a leading and a returning high frequency signal on a coaxial line in a wide frequency range, e.g. in the range of 9 kHz to 250 MHz. The broadband directional coupler is e.g. designed for outputs of up to 250 watts.
Richtkoppler werden oft zusammen mit Leistungsverstärkern verwendet, um schnell und sicher erkennen zu können, ob eine Fehlanpassung vorliegt oder nicht. Kann die Leistung des vorlaufenden und rücklaufenden Hochfrequenzsignals erfasst werden, so kann der Leistungsverstärker bei Überschreiten eines Richtwerts für das rücklaufende Hochfrequenzsignal automatisch abgeschaltet werden, bevor eine Schädigung eintritt. Die Breitbandigkeit eines solchen Richtkopplers ist gerade für Störfestigkeitsprüfungen notwendig, um die Funktionsfähigkeit des Prüflings in einem breiten Frequenzbereich untersuchen zu können. Dabei kommen je nach Frequenzbereich und Prüfnorm unterschiedliche Antennen und Apparaturen zum Einkoppeln von Störsignalen in den Prüfling zur Anwendung. Kabelbrüche, fehlerhafte Steckverbindungen oder defekte Antennen sind nur einige Möglichkeiten, die zur Fehlanpassung führen können. Abhängig von Kabeldämpfungen und der Antennencharakteristik, ändert sich die notwendige Ausgangsleistung des Leistungsverstärkers signifikant über den zu prüfenden Frequenzbereich.Directional couplers are often used in conjunction with power amplifiers to quickly and reliably detect if there is a mismatch or not. If the power of the leading and the returning high-frequency signal can be detected, the power amplifier can be automatically switched off before any damage to the return high-frequency signal is exceeded. The broadbandness of such a directional coupler is just necessary for immunity tests in order to examine the functionality of the device under test in a wide frequency range. Depending on the frequency range and test standard, different antennas and equipment are used for coupling interfering signals into the test object. Cable breaks, faulty connectors or defective antennas are just a few of the ways that can lead to mismatch. Depending on the cable attenuation and the antenna characteristics, the necessary output power of the power amplifier changes significantly over the frequency range to be tested.
Eine gattungsgemäße Anordnung eines Richtkopplers ist aus der
Nachteilig an der Anordnung der
Breitbandrichtkoppler zur Messung der Leistung eines vorlaufenden und/oder eines rücklaufenden Hochfrequenzsignals auf einer Leitung sind auch aus der
Ein weiterer Breitbandrichtkoppler ist aus dem
Der Erfindung liegt daher die Aufgabe zugrunde, einen Breitbandrichtkoppler zu schaffen, welcher deutlich einfacher aufgebaut ist und dabei auf aktive Komponenten verzichtet. Der Breitbandrichtkoppler soll bevorzugt in einem breiten Frequenzbereich von z.B. 9 kHz bis 250 MHz zuverlässig arbeiten und Leistungen von bevorzugt bis zu 250 W detektieren können.The invention is therefore based on the object to provide a broadband directional coupler, which is constructed much simpler and dispenses with active components. The broadband directional coupler is preferably to be used in a wide frequency range of e.g. 9 kHz to 250 MHz work reliably and can detect powers of preferably up to 250 W.
Die Aufgabe wird durch den erfindungsgemäßen Breitbandrichtkoppler mit den Merkmalen des Anspruchs 1 gelöst. Die Unteransprüche enthalten vorteilhafte Weiterbildungen der Erfindung.The object is achieved by the broadband directional coupler according to the invention with the features of
Der Breitbandrichtkoppler dient zur Messung der Leistung eines vorlaufenden und/oder eines rücklaufenden Hochfrequenzsignals auf einer Leitung. Der Breitbandrichtkoppler weist einen Spannungsteiler auf, der mit einem Innenleiter der Leitung verbunden ist, und einen ersten Widerstand, der mit einem Außenleiter der Leitung verbunden ist. Der Spannungsteiler weist ohmsche Widerstände auf und ein erster Anschluss eines zweiten Widerstands ist mit dem Innenleiter der Leitung verbunden und ein zweiter Anschluss des zweiten Widerstands ist mit einem ersten Anschluss eines dritten Widerstands verbunden. Ein zweiter Anschluss des dritten Widerstands ist mit einem ersten Anschluss des ersten Widerstands und gleichzeitig mit dem Außenleiter der Leitung direkt oder indirekt verbunden.The broadband directional coupler is used to measure the power of a leading and / or a returning high frequency signal on a line. The broadband directional coupler has a voltage divider connected to an inner conductor of the line and a first resistor connected to an outer conductor of the line. The voltage divider has ohmic resistances and a first terminal of a second resistor is connected to the inner conductor of the line and a second terminal of the second resistor is connected to connected to a first terminal of a third resistor. A second terminal of the third resistor is directly or indirectly connected to a first terminal of the first resistor and at the same time to the outer conductor of the lead.
Dabei ist an dem zweiten Anschluss des zweiten Widerstands bzw. an dem ersten Anschluss des dritten Widerstands eine Messspannung abgegriffen.In this case, a measuring voltage is tapped off at the second terminal of the second resistor or at the first terminal of the third resistor.
Der erfindungsgemäße Breitbandrichtkoppler weist statt einem kapazitiven einen ohmschen Spannungsteiler auf. Dieser Spannungsteiler darf deutlich stärker belastet werden, so dass keine aktiven Bauelemente als Impedanzwandler notwendig sind. Dadurch verringert sich nicht nur der Beschaltungsaufwand innerhalb des Breitbandrichtkopplers, sondern es kann zusätzlich auf eine externe Spannungsversorgung verzichtet werden. Der Abgleich des erfindungsgemäßen Breitbandrichtkopplers ist daher deutlich einfacher, so dass sich einerseits die Produktionszeit verkürzt und sich andererseits dabei die einzelnen Breitbandrichtkoppler in ihrer Eigenschaft nicht unterscheiden.The broadband directional coupler according to the invention has an ohmic voltage divider instead of a capacitive one. This voltage divider may be much more heavily loaded, so that no active components are required as an impedance converter. This not only reduces the wiring complexity within the Breitbandrichtkopplers, but it can also be dispensed with an external power supply. The adjustment of the broadband directional coupler according to the invention is therefore much simpler, so that on the one hand the production time is shortened and on the other hand the individual broadband directional couplers do not differ in their properties.
Verschiedene Ausführungsbeispiele der Erfindung werden nachfolgend unter Bezugnahme auf die Zeichnung beispielhaft beschrieben. Gleiche Gegenstände weisen dieselben Bezugszeichen auf. Die entsprechenden Figuren der Zeichnung zeigen im Einzelnen:
- Fig. 1
- einen vereinfachten Schaltplan der erfindungsgemäßen Anordnung des Breitbandrichtkopplers;
- Fig. 2A
- die parasitäre Einkopplung des Magnetfelds in die Messschleife bei ungünstiger Anordnung der Bauteile;
- Fig. 2B
- die bevorzugte Anordnung der Bauteile zur Vermeidung einer parasitären Einkopplung des Magnetfelds in die Messschleife;
- Fig. 3A
- ein Ausführungsbeispiel der Platinenoberseite des erfindungsgemäßen Breitbandrichtkopplers;
- Fig. 3B
- ein Ausführungsbeispiel der Platinenunterseite des erfindungsgemäßen Breitbandrichtkopplers;
- Fig. 4
- ein Ausführungsbeispiel der Gehäusekonstruktion mit Blick auf die Leiterstrukturen des erfindungsgemäßen Breitbandrichtkopplers;
- Fig. 5
- eine Innenansicht des erfindungsgemäßen Breitbandrichtkopplers;
- Fig. 6
- den vollständigen erfindungsgemäßen Breitbandrichtkoppler mit beiden Platinen und Gehäusedeckeln;
- Fig. 7
- einen Schnitt entlang der Längsachse durch den erfindungsgemäßen Breitbandrichtkoppler.
- Fig. 1
- a simplified circuit diagram of the inventive arrangement of the Breitbandrichtkopplers;
- Fig. 2A
- the parasitic coupling of the magnetic field in the measuring loop in unfavorable arrangement of the components;
- Fig. 2B
- the preferred arrangement of the components to avoid parasitic coupling of the magnetic field in the measuring loop;
- Fig. 3A
- an embodiment of the board top of the Breitbandrichtkoppler invention;
- Fig. 3B
- an embodiment of the sinker underside of the Breitbandrichtkopkopers invention;
- Fig. 4
- an embodiment of the housing construction with a view of the conductor structures of the Breitbandrichtkopkopers invention;
- Fig. 5
- an interior view of the Breitbandrichtkoppler invention;
- Fig. 6
- the complete broadband directional coupler according to the invention with both boards and housing covers;
- Fig. 7
- a section along the longitudinal axis through the broadband directional coupler according to the invention.
Im Folgenden wird näher auf die Messeinheit 22 eingegangen. Jede Messeinheit 22, 23 weist jeweils zwei Vierpole 19, 20 auf. Der erste Vierpol 19 umfasst einen Spannungsteiler, bestehend aus den ohmschen Widerständen 4 und 6, welcher dazu dient, eine hohe Hochfrequenzspannung möglichst frequenzunabhängig auf eine kleine Messspannung herunterzuteilen. Der erste Widerstand 4 ist hierbei an seinem ersten Anschluss direkt galvanisch mit dem Innenleiter 1 verbunden. Sein zweiter Anschluss ist mit dem ersten Anschluss eines zweiten Widerstands 6 verbunden. Zwischen beiden Widerständen 4,6 kann am Knoten 12 die heruntergeteilte Messspannung abgegriffen werden.In the following, the measuring
Der erste Widerstand 4 muss hochohmig (z.B. 30k Ohm) ausgeführt sein. Allerdings ist hierbei zu beachten, dass der Widerstand 4 ausschließlich bei einer Gleichspannung bis hin zu einer niederfrequenten Wechselspannung einen Widerstandswert von z.B. 30k Ohm aufweist. Für hochfrequente Wechselspannungen (von z.B. 250 MHz) hat der Widerstand 4 konstruktionsbedingt nur noch einen ohmschen Widerstandswert von z.B. 500 Ohm und insgesamt eine komplexe Impedanz. Bei zunehmender Frequenz erhöht sich dadurch der durch den Widerstand 4 fließende Strom um ein Vielfaches. Aus diesem Grund muss der Widerstand 4 in der Lage sein, die aufgenommene Wärmeenergie wieder abzugeben. Dies gelingt am besten dadurch, dass ein Widerstand mit einer möglichst großen Oberfläche gewählt wird.The
In der vorliegenden Erfindung sind alle Widerstände und Kondensatoren bevorzugt als SMD-Bauteile (surface-mounted device, Oberflächen-montierbares Bauteil) ausgeführt. Dies erlaubt zum einen eine automatische Bestückung und zum anderen kann die Wärmeenergie direkt an das Platinenmaterial abgegeben werden, wodurch der Wärmeübergang deutlich besser als bei Luft ist. Der Widerstand 4 ist dabei z.B. in der Bauform 2512 realisiert. Aufgrund der notwendigerweise großen Bauform bildet sich die Kappenkapazität stärker aus, als bei Widerständen mit kleineren Bauformen. Die Kappenkapazität des Widerstands 4 ist als Kapazität 5 im Schaltplan sichtbar. Bei dieser Kapazität 5 handelt es sich um eine rein parasitäre Kapazität, die aufgrund ihrer Größe von z.B. bis zu 0,1 pF berücksichtigt werden muss.In the present invention, all resistors and capacitors are preferably designed as SMD components (surface-mounted device). On the one hand, this allows automatic assembly and, on the other hand, the heat energy can be released directly to the board material, whereby the heat transfer is significantly better than with air. The
Der Widerstand 6 hat eine deutlich kleinere Bauform (z. B. 0402). Dadurch bildet sich eine kleinere Kappenkapazität aus, welche dazu führt, dass sich die Zeitkonstante T1 bestehend aus dem Widerstand 4 und seiner Kappenkapazität 5 deutlich von der Zeitkonstante T2 bestehend aus dem Widerstand 6 und seiner Kappenkapazität unterscheidet. Aus diesem Grund wird im Ausführungsbeispiel ein Kondensator 7 mit seinen Anschlüssen parallel zu den Anschlüssen des Widerstands 6 hinzugeschaltet. Bei dem Kondensator 7 handelt es sich um einen Kondensator, dessen Kapazität variabel eingestellt werden kann (Trimmkondensator). Dadurch wird dem Umstand Rechnung getragen, dass die Kappenkapazität 5 des Widerstands 4 von Bauteil zu Bauteil unterschiedlich groß sein kann.The
Am Potential des Knotens 12 wird bevorzugt ein weiterer einstellbarer Kondensator 10 (Trimmkondensator) mit seinem ersten Anschluss angeschlossen. Sein zweiter Anschluss hingegen wird mit Masse verbunden. Über den Widerstand 11 wird der erste Anschluss des Kondensators 10 mit dem Auskoppelanschluss 15 verbunden. Der Trimmkondensator 10 dient dabei dazu, den Frequenzgang in Vorlaufrichtung abzugleichen. Die Kapazität des Trimmkondensators 7 wird derart eingestellt, dass sich eine Zeitkonstante T2 aus dem Trimmkondensator 7 und dem Widerstand 6 ergibt, welche möglichst genau gleich der weiteren Zeitkonstante T1 ist, welche sich aus dem Widerstand 4 zusammen mit seiner Kappenkapazität 5 ergibt. Dadurch wird das Richtverhältnis abgeglichen und dafür gesorgt, dass nur eine minimale Spannung in Rücklaufrichtung am Auskoppelanschluss 15 anliegt, wenn am jeweiligen Ausgang Anpassung (VSWR = 1) herrscht.At the potential of the
Der Widerstand 11 dient dazu, dass der Trimmkondensator 10 nur über eine kleine Endkapazität verfügen muss. Die zweiten Anschlüsse des Trimkondensators 7 und des Widerstands 6 sind mit dem Knoten 17 verbunden. Ebenfalls mit dem Potential des Knoten 17 ist über den Knoten 18 ein erster Anschluss des Widerstands 8 verbunden. Am selben Potential wird auch ein erster Anschluss des Kondensators 9 angeschlossen. Die zweiten Anschlüsse des Kondensators 9 und des Widerstands 8 sind mit Masse verbunden. Der Widerstand 8 ist bevorzugt sehr niederohmig ausgeführt.The
Der Außenleiter der am Eingangsanschluss 13 angeschlossenen Koaxialleitung wird in dem Breitbandrichtkoppler in einen inneren 3 und einen in
Dieser Kondensator 9 kompensiert die parasitäre Induktivität des Widerstands 8 bei einer Bezugsfrequenz von 250 MHz. Je nachdem ob das Hochfrequenzsignal vom Eingangsanschluss 13 der ersten Messeinheit 22 zum Eingangsanschluss 13 der zweiten Messeinheit 23 läuft oder umgekehrt, fällt über dem Widerstand 8 eine positive oder eine negative Spannung ab. Bei entsprechender Anpassung haben die an beiden Vierpolen 19, 20 anfallenden Messspannungen den gleichen Wert, den gleichen Phasengang und sind frequenzunabhängig. Je nach Vorzeichen der beiden Messspannungen werden diese am Knoten 12 vektoriell addiert oder subtrahiert. Die daraus am Knoten 12 resultierende Spannung kann anschließend am Auskoppelanschluss 15 abgegriffen werden.This
Jede Messeinheit 22,23 verfügt über zumindest einen Eingangsanschluss 13 und über zumindest einen Auskoppelanschluss 15. Sowohl der Eingangsanschluss, als auch der Auskoppelanschluss können mit einer Quelle oder einer komplexen Last verbunden werden. Die Anordnung wird in Vorwärtsrichtung betrieben, wenn die Signalquelle am Eingangsanschluss 13 der ersten Messeinheit 22 und die komplexe Last am Eingangsanschluss 13 der zweiten Messeinheit 23 angeschlossen wird. Am Auskoppelanschluss 15 der ersten Messeinheit 22 steht eine der Wurzel der Leistung des vorlaufenden Hochfrequenzsignals proportionale Spannung bereit, wohingegen am Auskoppelanschluss 15 der zweiten Messeinheit 23 eine der Wurzel der Leistung des rücklaufenden Hochfrequenzsignals proportionale Spannung bereit gestellt ist.Each measuring
Der Breitbandrichtkoppler kann allerdings auch in Rückwärtsrichtung betrieben werden, ohne dass sich dabei die Dämpfung ändert. In diesem Fall wird die Signalquelle am Eingangsanschluss 13 der zweiten Messeinheit 23 und die komplexe Last am Eingangsanschluss 13 der ersten Messeinheit 22 angeschlossen. Am Auskoppelanschluss 15 der zweiten Messeinheit 23 steht eine der Wurzel der Leistung des vorlaufenden Hochfrequenzsignals proportionale Spannung bereit, wohingegen am Auskoppelanschluss 15 der ersten Messeinheit 22 eine der Wurzel der Leistung des rücklaufenden Hochfrequenzsignals proportionale Spannung bereit gestellt ist.However, the broadband directional coupler can also be operated in the reverse direction without the attenuation changing. In this case, the signal source at the
Auf einer dem Eingangsanschluss 13 zugewandten Seite 31 der Platine 30, wird der erste Widerstand 4 über die Lötverbindung 37 galvanisch mit dem Innenleiter 1 verbunden. Auf derselben Seite 31 der Platine 30 wird der zweite Anschluss des ersten Widerstands 4 über den Knoten 12 mit dem ersten Anschluss eines zweiten Widerstands 6 verbunden, wie dies auch aus dem Schaltbild aus
Der zweite Anschluss des zweiten Widerstands 6 ist mit dem Knoten 17 verbunden. Über eine Durchkontaktierung 37 wird der Knoten 17, welcher auf der dem Eingangsanschluss 13 zugewandten Seite 31 der Platine 30 liegt, mit dem Knoten 18, welcher auf der dem Eingangsanschluss 13 abgewandten Seite 32 der Platine 30 liegt, verbunden. Die Länge der Durchkontaktierung 37 ist gleich der Dicke der Platine 30 und beträgt bei einer zweilagigen FR4 Multilayerplatine z.B. 1,6 mm. Der Knoten 18 ist wie in
Die gepunktete Fläche stellt eine Messschleife 39 dar. Diese besteht aus dem zweiten Widerstand 6 des Spannungsteilers und der Koaxialsteckverbindung 60 auf der ersten Seite 31 der Platine 30. Die Signalleitung vom Knoten 12 zur Koaxialsteckverbindung 60 liegt auf der ersten Seite 31 Platine 30 und wurde nur zur Verdeutlichung beabstandet von der Platine 30 eingezeichnet. Über die Durchkontaktierung 37 ist der Knoten 17 auf der ersten Seite 31 der Platine 30 mit dem Knoten 18 auf der zweiten Seite 32 der Platine 30 verbunden. Auf der zweiten Seite der Platine befindet sich der Widerstand 8. Der zweite Anschluss des Widerstands 8 ist mit dem Außenleiter 38 verbunden. Über nicht dargestellte Durchkontaktierungen auf der Platine 30 ist der Außenleiter 38 mit der Koaxialsteckverbindung 60 und mit dem Außenleiter auf der ersten Seite 31 der Platine 30 verbunden. Die Messschleife 39 ist geschlossen.The dotted surface is a measuring
Wie aus
Auch bei Anschluss der Signalquelle an den Eingangsanschluss 13 der zweiten Messeinheit 23 und der komplexen Last an den Eingangsanschluss 13 der ersten Messeinheit 22 erfolgt die parasitäre Einkopplung gemäß dem dargestellten Sachverhalt.Even when the signal source is connected to the
Jeder Widerstand weist einen Widerstandswert von im Ausführungsbeispiel ungefähr 12,1 Ohm auf, wobei der nominelle Widerstandswert prinzipbedingt zu den Enden des Widerstandrings hin abnimmt. Die Widerstände 81 und 842 weisen einen Widerstandswert von 10 Ohm auf. Die mit jedem Widerstand einhergehende Induktivität soll sich durch die Parallelschaltung derart verkleinern, dass sich keine Phasenfehler in den Messwert ergeben. Allerdings unterscheidet sich die Induktivität der parallel geschalteten Widerstände 81 bis 842 in der Realität derart von dem berechneten Modell, dass eine zusätzliche Kompensation sinnvoll ist. Hierzu wird die Kapazität 9 aus
Zwischen den beiden Enden des Widerstandrings befindet sich der Widerstand 6 des Spannungsteilers. Unmittelbar daneben und über seinen ersten Anschluss mit dem ersten Anschluss des Widerstands 6 verbunden liegt der Widerstand 11, an dessen zweiten Anschluss eine Messspannung abgegriffen ist, die zu der Wurzel der Leistung des vorlaufenden oder rücklaufenden Hochfrequenzsignals proportional ist. Der Widerstand 11 weist im Ausführungsbeispiel einen Widerstandwert von ungefähr 160 Ohm auf. Diese Messspannung wird mit einem Koaxialstecker, vorzugsweise einer SMP- oder SMA-Koaxialsteckverbindung, aus dem Breitbandrichtkoppler geführt, welcher am Auskoppelanschluss 15 angebracht ist.Between the two ends of the resistor ring is the
Entlang der Längsachse 51 des Gehäusekörpers 38 bleibt nach der ersten Ausnehmung noch ein Vollzylinder mit einem Außenradius stehen, der dem inneren Radius 58 der ersten zylinderförmigen Ausnehmung entspricht. Die erste Ausnehmung, die auf beiden Seiten des Gehäusekörpers 38 vorgenommen wird, darf nur so tief sein, dass der Ringbandkern 2 gerade eingeführt werden kann und gleichzeitig die Platine auf beide Enden des Gehäusekörpers 38 geschraubt werden kann. Die ersten links- und rechtsseitigen Ausnehmungen sind dabei durch eine metallische Trennwand 71 getrennt. Die Ausnehmung selbst kann vorzugsweise durch eine Fräsung geschehen.Along the
Der Vollzylinder und damit der innere Außenleiter 3, welcher entlang der Längsachse 51 des Gehäusekörpers 38 stehen bleibt, wird durch eine weitere links- und rechtsseitige zylinderförmige Ausnehmung zum Hohlzylinder erweitert. Der innere Radius des Hohlzylinders muss so groß sein, dass ein Innenleiter 1 eingeführt werden kann, ohne dass es zu einem Kontakt des Innenleiters 1 mit dem inneren Außenleiter 3 kommt, sei es durch direkte Berührung oder infolge eines Überschlags aufgrund zu hoher elektrischer Feldstärken. Diese zweite Ausnehmung verläuft im Gegensatz zu der ersten Ausnehmung entlang der Längsachse 51 durch den gesamten Gehäusekörper 38. Die Ausnehmung erfolgt vorteilhafterweise durch eine Bohrung oder Fräsung. Dadurch werden zwei unabhängige Messeinheiten 22 und 23 für das vorlaufende und das rücklaufende Hochfrequenzsignal gebildet.The solid cylinder and thus the inner
Der Innenleiter 1 kann an seinen Enden mit einer Gewindebohrung versehen sein, damit er an die Platine 30 geschraubt werden kann. Ein Teil einer Schraube 53 ist exemplarisch in
Weiterhin ist in
Weiterhin sind mehrere Befestigungselemente 61, vorzugsweise Schrauben, zu sehen, die den Gehäusedeckel 62 mit der Platine 30 und dem Gehäusekörper 38 derart verbinden, dass ein niederohmiger elektrischer Kontakt und damit ein durchgehender äußerer Außenleiter 38 hergestellt ist. Weiterhin weist jede Platine 30 zumindest eine SMP-oder SMA-Koaxialsteckverbindung 60 auf, die mit dem Auskoppelanschluss 15 und dem äußeren Außenleiter 38 verbunden ist. Hierzu werden im Gehäusedeckel 62 und im Gehäusekörper 38 entsprechende Aussparungen 52 vorgenommen.Furthermore, a plurality of
Durch die metallische Trennwand 71 sind zum einen die zylinderförmigen Ausnehmungen voneinander getrennt, wodurch sich zwei unabhängige Messeinheiten 22 und 23 für das vorlaufende und das rücklaufende Hochfrequenzsignal bilden und zum anderen ist über diese metallische Trennwand 71 der innere Außenleiter 3 mit dem äußeren Außenleiter 38 und damit mit dem Gehäusekörper 38 verbunden. Gut zu erkennen ist das bereits anhand von
Wird das Ende des Innenleiters 1 der ersten Messeinheit 22 mit dem Ausgang eines Leistungsverstärkers und das zweite Ende des Innenleiters 1 der zweiten Messeinheit 23 mit einer komplexen Last verbunden, so stellt sich bei einer positiven Halbwelle des Hochfrequenzsignals und unter der Bedingung, dass die Leistung ausschließlich vom Leistungsverstärker in die komplexe Last übertragen wird und keine Reflexionen stattfinden, ein Stromverlauf entsprechend der Pfeilrichtung 72 auf dem Innenleiter 1 ein. In diesem Anschlussbeispiel steht am Auskoppelanschluss 15 der ersten Messeinheit 22 eine Messspannung bereit, die proportional zur Wurzel der Leistung des vorlaufenden Hochfrequenzsignals ist, und am Auskoppelanschluss 15 der zweiten Messeinheit 23 steht eine Messspannung bereit, die proportional zur Wurzel der Leistung des rücklaufenden Hochfrequenzsignals ist.When the end of the
Die über dem Spannungsteiler einer jeden Messeinheit 22 und 23 abfallende Messspannung ist gleich groß und in diesem Beispiel positiv. Der Stromverlauf des in diesem Beispiel über den Gehäusedeckel 62, die Platine 30 und den Gehäusekörper 38 zurückfließenden Stroms entspricht der Pfeilrichtung 73. Am Eingang der zweiten Messeinheit 23 teilt sich der Strom auf, wobei nur ein kleiner Teil entlang des äußeren Außenleiters 38 zum Leistungsverstärker zurück fließt. Der größte Teil fließt über den Widerstand 8 der zweiten Messeinheit 23 gegen den inneren Außenleiter 3 der zweiten Messeinheit 23 ab. Entsprechend dem Schaltplan aus
Es fließt ein Teil des Stroms vom inneren Außenleiter 3 der zweiten Messeinheit 23 über die metallische Trennwand 71 zurück in den äußeren Außenleiter 38. Ein Teil des Stroms vom inneren Außenleiter 3 der zweiten Messeinheit 23 fließt zusammen mit einem Teil des Stroms, kommend vom äußeren Außenleiter 38, in den inneren Außenleiter 3 der ersten Messeinheit 22. Dieser Strom fließt über den Widerstand 8 der ersten Messeinheit 22 zurück auf den äußeren Außenleiter 38. Entsprechend dem Schaltplan aus
Dasselbe gilt für die negative Halbwelle des Hochfrequenzsignals, nur dass in diesem Fall die Vorzeichen bei Spannung und Strom vertauscht sind. Selbiges gilt für den Fall, dass die Signalquelle an den Eingangsanschluss 13 der zweiten Messeinheit 23 angeschlossen ist und die komplexe Last mit dem Eingangsanschluss 13 der ersten Messeinheit 22 verbunden ist.The same applies to the negative half-wave of the high-frequency signal, except that in this case the signs for voltage and current are reversed. The same applies to the case where the signal source is connected to the
Bei einem Stehwellenverhältnis größer als eins, kann an beiden Auskoppelanschlüssen 15 eine Spannung gemessen werden. Aus diesen beiden Spannungen lässt sich die Leistung des vorlaufenden und des rücklaufenden Hochfrequenzsignals berechnen. Die hochpermeablen Ringbandkerne 2 sorgen dafür, dass der Großteil des Stroms über den Widerstand 8 fließt. Ohne die Ringbandkerne 2 würde sich in der dann leeren zylinderförmigen Ausnehmung eine Induktivität aufbauen, über die der Widerstand 8 kurzgeschlossen würde. Dadurch könnte kein nennenswerter Spannungsabfall über dem Widerstand 8 gemessen werden. Die Permeabilität des Ringbandkerns 2 bestimmt dabei die untere Arbeitsfrequenz des Breitbandrichtkopplers.With a standing wave ratio greater than one, a voltage can be measured at both
Die Erfindung ist nicht auf das dargestellte Ausführungsbeispiel beschränkt. Alle beschriebenen und/oder gezeichneten Elemente sind im Rahmen der Erfindung beliebig miteinander kombinierbar.The invention is not limited to the illustrated embodiment. All described and / or drawn elements can be combined with one another in the context of the invention as desired.
Claims (14)
- Broadband directional coupler for measuring the power of a forward and/or a return high-frequency signal on a line,
wherein the broadband directional coupler exhibits a voltage divider which is connected with an inner conductor (1) of the line, and exhibits a first resistor (8) the first connection of which is connected directly or indirectly with an outer conductor of the line and the second connection of which is connected with ground, wherein the voltage divider exhibits ohmic resistors, wherein a first connection of a second resistor (4) is connected with the inner conductor (1) of the line and wherein a second connection of the second resistor (4) is connected with a first connection of a third resistor (6),
wherein a second connection of the third resistor (6) is connected with the first connection of the first resistor (8),
and wherein a voltage to be measured is tapped at the second connection of the second resistor (4) or at the first connection of the third resistor (6), characterised in that
all the resistors (4, 6, 8) are mounted on a circuit board (3) and
in that the second and the third resistor (4, 6) are not arranged on the same side of the circuit board (30), in that the third resistor (6) is arranged on the same side of the circuit board (30) as the first resistor (8), and in that the broadband directional coupler exhibits a conducting housing body (38) in which in each case two cylindrical recesses are formed on the left-hand side and the right-hand side, the walls of which form an internal and an external outer conductor (3, 38) between which is arranged at least one highly permeable toroidal tape core (2). - Broadband directional coupler according to claim 1,
characterised in that
at least one capacitor (9, 7) is connected parallel to the connections of the first and/or of the third resistor (8, 6) and/or in that a second connection of the first resistor (8) is connected with ground. - Broadband directional coupler according to one of claims 1 to 2,
characterised in that
a first connection of a further capacitor (10) and a first connection of a first resistor (11) are connected with the second connection of the second resistor (4) and with the first connection of the third resistor (6) respectively,
in that a second connection of the further capacitor (10) is connected with ground and
in that a signal to be measured is made available at a second connection of the fourth resistor (11). - Broadband directional coupler according to claim 1,
characterised in that
the inner conductor (1) is soldered and/or screwed to the circuit board (30). - Broadband directional coupler according to one of claims 1 to 4,
characterised in that
the line is a coaxial line. - Broadband directional coupler according to one of claims 1 to 5,
characterised in that
two cylindrical recesses are separated by a metal dividing wall (71), through which two independent measuring units (22, 23) are formed for the forward and the return high-frequency signal. - Broadband directional coupler according to claim 6,
characterised in that
each measuring unit (22, 23) has at least one input connection (13) and at least one decoupling connection (15) and each input connection (13) can be connected with a source or with a load and
in that a signal to be measured proportional to the root of the power of the forward high-frequency signal or a signal to be measured proportional to the root of the power of the return high-frequency signal is present at the decoupling connection (15). - Broadband directional coupler according to one of claims 1 to 7,
characterised in that
a circuit board (30) and a housing cover (62) are mounted on each of the two ends of the housing body (38) of the broadband directional coupler and
in that the circuit boards (30) are identical in construction. - Broadband directional coupler according to one of claims 1 to 8,
characterised in that
the inner conductor (1) is guided concentrically through two cylindrical recesses of the housing body (38), its diameter being adjusted so that a wave resistance of the broadband coupler is matched to a predetermined system wave resistance of in particular 50 Ohms. - Broadband directional coupler according to claim 7,
characterised in that
arranged on the side (32) of the circuit board (30) remote from the input connection (13) there is in each case a spring element (45) which surrounds the internal outer conductor (3) in such a way that an electrical contact is produced and at the same time no further radial movements of the internal outer conductor (3) are possible any more. - Broadband directional coupler according to claim 10,
characterised in that
the first resistor (8) consists of a plurality of individual parallel connected separate Ohmic resistors which are arranged in the form of a ring around the spring element (45) and contact the latter. - Broadband directional coupler according to claim 11,
characterised in that
a ring of resistors consisting of the separate resistors arranged in the form of a ring is interrupted at the decoupling connection (15) and as a result a ring segment is produced with two ends and at least one capacitor (9) is connected in parallel at each end. - Broadband directional coupler according to claim 12,
characterised in that
the third resistor (6) is arranged centrally at a point of interruption of the ring of resistors. - Broadband directional coupler according to claim 2,
characterised in that
the capacitor (7) which is connected parallel to the connections of the third resistor (6) is a trimming capacitor (7) the capacitance of which is set in such a way that a time constant is obtained from the capacitance of the trimming capacitor (7) and the resistance value of the third resistor (6) which is at least approximately the same as a further time constant which is obtained from the resistance value of the second resistor (4) together with its cap capacitance (5).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009060157 | 2009-12-23 | ||
DE102010009227A DE102010009227A1 (en) | 2009-12-23 | 2010-02-25 | Breitbandrichtkoppler |
PCT/EP2010/007136 WO2011076328A1 (en) | 2009-12-23 | 2010-11-24 | Broadband directional coupler |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2517300A1 EP2517300A1 (en) | 2012-10-31 |
EP2517300B1 true EP2517300B1 (en) | 2016-01-27 |
Family
ID=43598540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10793148.7A Not-in-force EP2517300B1 (en) | 2009-12-23 | 2010-11-24 | Broadband directional coupler |
Country Status (4)
Country | Link |
---|---|
US (1) | US9105954B2 (en) |
EP (1) | EP2517300B1 (en) |
DE (1) | DE102010009227A1 (en) |
WO (1) | WO2011076328A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012211738A1 (en) | 2012-04-02 | 2013-10-02 | Rohde & Schwarz Gmbh & Co. Kg | Breitbandrichtkoppler |
DE112013004185B4 (en) | 2013-05-06 | 2023-03-30 | Rohde & Schwarz GmbH & Co. Kommanditgesellschaft | directional coupler |
DE102013213981A1 (en) | 2013-07-17 | 2015-01-22 | Rohde & Schwarz Gmbh & Co. Kg | Coil for switching device with high RF power |
US9461755B2 (en) | 2014-01-17 | 2016-10-04 | Viasat, Inc. | Enhanced voltage standing wave ratio measurement |
CN109004322B (en) * | 2018-07-09 | 2023-10-03 | 北京格润海泰科技有限公司 | Small-size high-power bent coupler in severe environment |
EP3787105A1 (en) | 2019-08-30 | 2021-03-03 | Rohde & Schwarz GmbH & Co. KG | Wideband coupler |
CN115458895B (en) * | 2022-10-20 | 2024-01-30 | 成都华络通信科技有限公司 | High-power high-directionality double directional coupler |
CN117393981B (en) * | 2023-12-12 | 2024-03-22 | 西南应用磁学研究所(中国电子科技集团公司第九研究所) | Low-frequency high-power high-reliability double directional coupler |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050264374A1 (en) * | 2004-06-01 | 2005-12-01 | Podell Allen F | Resistive voltage divider |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6066994A (en) | 1998-05-18 | 2000-05-23 | Amplifier Research Corporation | Broadband directional coupler including amplifying, sampling and combining circuits |
KR100841616B1 (en) * | 2001-12-31 | 2008-06-27 | 엘지디스플레이 주식회사 | Driving apparatus and its driving method of liquid crystal panel |
DE10352784A1 (en) * | 2003-11-12 | 2005-06-16 | Rohde & Schwarz Gmbh & Co. Kg | Directional coupler in coaxial line technology |
DE102012211738A1 (en) * | 2012-04-02 | 2013-10-02 | Rohde & Schwarz Gmbh & Co. Kg | Breitbandrichtkoppler |
-
2010
- 2010-02-25 DE DE102010009227A patent/DE102010009227A1/en not_active Withdrawn
- 2010-11-24 US US13/513,171 patent/US9105954B2/en not_active Expired - Fee Related
- 2010-11-24 WO PCT/EP2010/007136 patent/WO2011076328A1/en active Application Filing
- 2010-11-24 EP EP10793148.7A patent/EP2517300B1/en not_active Not-in-force
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050264374A1 (en) * | 2004-06-01 | 2005-12-01 | Podell Allen F | Resistive voltage divider |
Also Published As
Publication number | Publication date |
---|---|
WO2011076328A1 (en) | 2011-06-30 |
US9105954B2 (en) | 2015-08-11 |
WO2011076328A8 (en) | 2011-10-06 |
EP2517300A1 (en) | 2012-10-31 |
US20120262249A1 (en) | 2012-10-18 |
DE102010009227A1 (en) | 2011-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2517300B1 (en) | Broadband directional coupler | |
DE102013213981A1 (en) | Coil for switching device with high RF power | |
DE102006061923A1 (en) | Rogowski sensor and method for measuring a current | |
DE837404C (en) | Connection piece for connecting an earth symmetrical circuit with an earth asymmetrical one | |
DE102011108316A1 (en) | RF power divider | |
DE102010021958A1 (en) | Through capacitor arrangements | |
DE112013004185B4 (en) | directional coupler | |
EP1743396B1 (en) | Broadband balance-to-unbalance transformer | |
WO2013149930A1 (en) | Broadband directional coupler | |
DE112017007128B4 (en) | ELECTROMAGNETIC FIELD PROBE | |
DE102015201963B4 (en) | magnetic resonance apparatus | |
DE2227076A1 (en) | PROBE ARRANGEMENT FOR IMPEDANCE MEASUREMENT | |
DE102005005751B4 (en) | Test device with reflection-poor signal distribution | |
EP2122745B1 (en) | High-performance coupler | |
WO2001054222A1 (en) | Circuit for dividing or bringing together high-frequency performances | |
DE19810837C2 (en) | High frequency antenna for a magnetic resonance device | |
EP2438645B1 (en) | Forward coupler comprising strip conductors | |
EP1885016B1 (en) | Overvoltage protection for a coax cable | |
EP2438646B1 (en) | Measuring coupler using strip conductor technology | |
DE102023119685A1 (en) | CURRENT MONITORING THAT COMBINES A SHUNT RESISTOR WITH A ROGOWSKI COIL | |
DE202014106223U1 (en) | High-frequency test probe | |
EP1623479A1 (en) | Symmetrizing arrangement | |
WO2019211425A1 (en) | Current sensor | |
DE20316584U1 (en) | Reduced-size, full-wave quad antenna, includes additional wire and capacitor connected across its geometric center, and is fed by quarter wave coaxial transformer | |
DE202016104892U1 (en) | Planar transformer with switchable secondary winding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110725 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20130822 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150706 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 773087 Country of ref document: AT Kind code of ref document: T Effective date: 20160215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010011014 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160428 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160527 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160527 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010011014 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20161028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20161124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161124 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161124 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 773087 Country of ref document: AT Kind code of ref document: T Effective date: 20161124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161124 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101124 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20191127 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502010011014 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210601 |