EP2510190A2 - Wirelessly actuated hydrostatic set module - Google Patents
Wirelessly actuated hydrostatic set moduleInfo
- Publication number
- EP2510190A2 EP2510190A2 EP11732214A EP11732214A EP2510190A2 EP 2510190 A2 EP2510190 A2 EP 2510190A2 EP 11732214 A EP11732214 A EP 11732214A EP 11732214 A EP11732214 A EP 11732214A EP 2510190 A2 EP2510190 A2 EP 2510190A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- assembly
- well
- module
- oilfield
- wireless communications
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002706 hydrostatic effect Effects 0.000 title claims abstract description 31
- 230000007246 mechanism Effects 0.000 claims abstract description 54
- 238000004891 communication Methods 0.000 claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 claims abstract description 37
- 238000001514 detection method Methods 0.000 claims abstract description 23
- 238000004458 analytical method Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 17
- 239000012530 fluid Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 238000002955 isolation Methods 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 2
- 230000003213 activating effect Effects 0.000 claims 3
- 230000000644 propagated effect Effects 0.000 claims 2
- 230000000977 initiatory effect Effects 0.000 claims 1
- 230000004913 activation Effects 0.000 abstract description 6
- 230000001960 triggered effect Effects 0.000 description 13
- 238000007789 sealing Methods 0.000 description 9
- 230000004888 barrier function Effects 0.000 description 8
- 230000004044 response Effects 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B41/00—Equipment or details not covered by groups E21B15/00 - E21B40/00
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B23/00—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
- E21B23/04—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
- E21B23/0412—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion characterised by pressure chambers, e.g. vacuum chambers
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B23/00—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
- E21B23/04—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
- E21B23/0414—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion using explosives
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B23/00—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
- E21B23/06—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting packers
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B23/00—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
- E21B23/06—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting packers
- E21B23/065—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting packers setting tool actuated by explosion or gas generating means
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/06—Valve arrangements for boreholes or wells in wells
- E21B34/08—Valve arrangements for boreholes or wells in wells responsive to flow or pressure of the fluid obtained
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
Definitions
- Embodiments described relate to hydrostatic setting modules for use in downhole environments.
- equipment and techniques for triggering a hydrostatic setting module are described. More specifically, wireless equipment and techniques may be utilized for such triggering without reliance on potentially more costly or stressful hydraulic triggering modes.
- the well may be of a fairly sophisticated architecture.
- the well may be tens of thousands of feet deep, traversing various formation layers, and zonally isolated throughout. That is to say, packers may be intermittently disposed about production tubing which runs through the well so as to isolate various well regions or zones from one another. Thus, production may be extracted from certain zones through the production tubing, but not others.
- production tubing that terminates adjacent a production region is generally anchored or immobilized in place thereat by a mechanical packer, irrespective of any zonal isolation.
- a packer such as the noted mechanical packer, may be secured near the terminal end of the production tubing and equipped with a setting mechanism.
- the setting mechanism may be configured to drive the packer from a lower profile to a radially enlarged profile.
- the tubing may be advanced within the well and into position with the packer in a reduced or lower profile. Subsequently, the packer may be enlarged to secure the tubing in place adjacent the production region.
- the mechanism may be equipped with a trigger that is responsive to a given degree of pressure induced within the production tubing. So, for example, surface equipment and pumps adjacent the well head may be employed to induce a pressure differential of between about 3,000 and 4,000 PSI into the well. Depending on the location of the trigger for the setting mechanism, this driving up of pressure may take place through the bore of the production tubing or through the annulus between the tubing and the wall of the well.
- the noted hydraulic manner of driving up pressure for triggering of the setting mechanism may place significant stress on the production tubing.
- the strain on the tubing may lead to ballooning.
- the strain on the tubing may have long term effects. That is to say, even long after setting the packer, strain placed on the tubing during the hydraulic setting of the packer may result in failure, for example, during production operations.
- the entire production tubing string and packer assembly may be removed, examined, and another deployment of production equipment undertaken. Ultimately, this may eat up a couple of days' time and upwards of $100,000 in expenses.
- pressurization of the annulus as a means to trigger the setting mechanism requires that the lower, generally open-hole, completions assembly be isolated. Generally this would involve the closing of a formation isolation valve or other barrier valve above the lower completions. Unfortunately, such a valve may not always be present. Once more, such valves come with their own inherent expense, installation cost, and failure modes, not to mention the activation time and techniques which must be dedicated to operation of the valve.
- a setting mechanism may be employed that is hydraulically wired to the surface.
- a hydrostatic set module may be utilized that includes a dedicated hydraulic control line run all the way to surface.
- a dedicated hydraulic line for the setting mechanism only shifts the concerns over hydraulic deployment from potential production tubing stressors, plug placements, or barrier valve issues to issues with other downhole production equipment.
- a dedicated hydraulic line is itself an added piece of production equipment.
- a new piece of equipment is introduced, the possibility of defective production string equipment is inherently increased even before a setting application is run. Once more, where such defectiveness results in a failure, the same amount of time and expenses may be lost in removal and re-deployment of the production string.
- the advantages obtained from protecting the production tubing by utilization of a dedicated hydraulic line for the setting mechanism may be negligible at best.
- a downhole system includes a hydraulically actuated mechanism along with a hydrostatic set module.
- the module is hydraulically coupled to the mechanism for its actuation. Additionally, the module is outfitted with a wireless trigger to initiate its own activation to attain the noted actuation of the mechanism.
- FIG. 1 depicts a front view of an embodiment of a wirelessly triggered hydrostatic set module in conjunction with a packer assembly.
- Fig. 3 A is an enlarged view of the module and assembly taken from 3-3 of Fig. 2 and revealing wireless pressure pulse communication through the well.
- Fig. 3B reveals the module and assembly of Fig. 3A with the packer of the assembly set in the well by the module in response to the wireless communication.
- FIG. 4A is a schematic view of an embodiment of a wirelessly triggered hydrostatic set module and downhole actuatable tool such as a packer assembly.
- Fig. 4B is a schematic view of the module and assembly of Fig 4B following wireless actuation of the module.
- Fig. 5 is a schematic view of an alternate embodiment of a wirelessly triggered hydrostatic set module employing redundant wireless triggering.
- FIG. 6 is a flow-chart summarizing an embodiment of employing a wirelessly triggered hydrostatic set module.
- Embodiments herein are described with reference to certain downhole setting applications.
- embodiments depicted herein are of a packer being set downhole as part of a production assembly.
- a variety of alternate applications utilizing a hydrostatic set module may employ wireless triggering and techniques as detailed herein.
- wireless is meant to refer to any communication that takes place without the requirement of an optical or electrical wire, hydraulic line, or any other form of hard line substantially dedicated to supporting communications.
- a downhole system 100 which includes an embodiment of a wirelessly triggered hydrostatic set module 150.
- the module 150 is provided in conjunction with a packer 175 which may be utilized in sealing and anchoring production tubing 110 at a downhole location (see Fig. 2).
- the packer 175 is outfitted with sealing elements 177 which may be hydraulically set via a hydraulic line 160 running from the module 150. In alternate embodiments, however, this line 160 may lead to hydraulically set devices other than packers.
- the module 150 is wireless in nature. As shown in Fig. 1, the module 150 is equipped with a wireless trigger mechanism 130. With added reference to Fig. 2, the trigger 130 is configured to detect a wireless communication from surface 200. The communication may be in the form of a pressure pulse 201 or other signal emanating from surface 201 and transmitted downhole through the well 280. Regardless, the trigger mechanism 130 is configured to actuate the hydrostatic set module 150 in response to the detection of the wireless signal.
- the trigger mechanism 130 may include a pressure sensor 480 as depicted in Figs. 4A and 4B.
- a host of different signature types may be utilized in communicating with a processor 470 of the trigger mechanism 130 as described below.
- a low pressure signature may be most suitable for communications.
- the trigger mechanism 130 may be equipped with different types of sensors. For example, an acoustic sensor, flow meter or strain gauge may be utilized for respective detection of sonic transmission, fluid flow, or physical tension directed at the system 100 from the oilfield surface 200.
- a radio frequency identification (RFID) or pip tag detector may be utilized for detection of an RFID or radioactively marked projectile, respectively.
- RFID radio frequency identification
- pip tag detector may be utilized for detection of an RFID or radioactively marked projectile, respectively.
- a projectile may be dropped downhole from the oilfield surface 201 for activation of the trigger mechanism 130, once detected by the sensor thereof.
- FIG. 2 an overview of an oilfield 201 accommodating a well 280 is shown.
- the above noted system 100 with module 150 and packer 175, is disposed within the well 280 providing isolation above a production region 287.
- the well 280 is defined by a casing 285 traversing various formation layers 290, 295 eventually reaching an uncased production region 287 with perforations 289 to encourage production therefrom.
- the production region 287 may be cased, for example with casing perforations also present.
- a hydrocarbon production flow may ultimately be directed through production tubing 110 of the system 100 and diverted through a line 255 at the well head 250.
- a host of surface equipment 225 is disposed at the oilfield surface 200.
- a rig 230 is even provided to support additional equipment for well interventions or other applications beyond the packer setting described herein.
- a control unit 260 is provided along with a pulse generator 265 to direct communications with the triggering mechanism 130 as described below.
- the pulse generator may be a pump. In other embodiments, however, alternate forms of wireless signal regulators may be employed as alluded to above.
- the sealing elements 177 of the packer 175 are shown in an expanded state as directed by the hydrostatic set module 150 in response to actuation by the trigger mechanism 130.
- the trigger mechanism 130 may be responsive to a wireless signal such as the noted pressure pulses 201, thereby actuating the module 150 until the packer 175 is set. Indeed, as the packer 175 is set, wireless communication with the trigger mechanism 130 are eventually cut off. Of course, this only takes place once the trigger mechanism 130 and module 150 are no longer needed due to the completion of the setting application.
- the wireless communication signal may be sent through casing annulus as depicted between tubing 110 outside diameter and casing 285 inside diameter or alternately through the bore of the tubing 110 itself.
- FIG. 3A an enlarged view of the system 100 is shown taken from 3-3 of Fig. 2 with focus on the hydrostatic set module 150 and packer 175.
- the packer 175 is not yet set by the module 150. This is apparent as the sealing elements 177 of the packer 175 are shown in an undeployed state and displaying no sealing engagement with the casing 285 of the well 280.
- Fig. 3B the system 100 is now shown with the packer 175 set following the above-noted activation of the module 150 by the trigger mechanism 130. As shown, the sealing elements 177 are now in full sealing engagement with the well casing 285 and the pulses 201 apparent in Fig. 3A have ceased. In an alternate embodiment the triggering mechanism 130 may be located uphole of the isolated location, perhaps along with the module 150 as well.
- a wirelessly triggered hydrostatic set module 150 may be utilized for shifting sliding sleeves. For example, this may be done to expose or close perforations 289 such as those shown in Fig. 2. or for opening and/or closing of a circulating valve for displacement of fluids.
- multiple modules 150 may be employed such that shifting open or closed may be undertaken, for example, depending upon the particular wireless signature employed by the regulator as directed by the control unit 260.
- a valve such as a formation isolation valve, may be linked to wirelessly triggered hydrostatic set modules 150 for opening or closing thereof according to the techniques described hereinabove.
- Fig. 4 A a schematic view of the system 100 detailed hereinabove is shown.
- the hydraulic connection 420 to the hydrostatic set module 150 is also shown along with the hydraulic line 160 disposed between the module 150 and the packer 175 as referenced above.
- production tubing 110 is centrally disposed relative to the overall system 100.
- the entire system 100 is disposed within a well 280 such as that of Fig. 2 which is defined by casing 285.
- illustration of the casing 285 is limited to portions located adjacent the packer 175.
- the casing 285 defines a substantial majority of the well 280 as shown in Fig. 2.
- the trigger mechanism 130 includes a sensor 480.
- the sensor 480 may be a pressure sensor configured to detect pressure pulses directed from an oilfield surface 201 and/or pressure pulse generator 265.
- a variety of alternate sensor types may be utilized for detection of surface directed communications. These may include acoustic sensors, flow meters, strain gauges, and RFID or pip tag detectors, to name a few.
- a pH or more chemical specific detector may even be employed for detection of an introduced fluid of a given characteristic. Such detectable fluid may even consist of the present wellbore fluid that is altered by the introduction of a pH altering or chemical presentation slug.
- the processor 470 is ultimately wired to a charge 400 that may be fired by the processor 470 as a means of triggering.
- the charge 400 remains unfired and isolated at one side of charge barrier 450.
- the charge 400 is configured to break this barrier 450 along with a chamber barrier 440, ultimately exposing a chamber 430 to wellbore pressure thereby actuating the hydrostatic set module 150 as described below.
- FIG. 4B a schematic view of the system 100 is shown in which the charge 400 of Fig. 4A has been set off.
- the trigger of the trigger mechanism 130 has been pulled, so to speak. That is, based on analysis by the processor 470 of data obtained from the sensor 480, the charge 400 of Fig. 4A has been directed to go off, either upon being obtained or perhaps following a predetermined period of time.
- this data obtained by the processor 470 relates to wireless surface communications detected by the sensor 480.
- FIG. 5 an alternate embodiment of a wirelessly triggered HSM system 100 is shown in schematic form.
- redundancy has been built into the system 100 with the addition of a second trigger mechanism 535, a second hydraulic connection 520 to the HSM 150 and perhaps even a second line 560 therefrom to the packer 175.
- This added redundancy may be employed to help ensure that complete triggering and packer setting takes place.
- wireless communications through the wellbore may face interference challenges such as the presence of air in the case of pressure pulses 201 (see Fig. 2). Nevertheless, the presence of multiple trigger mechanisms 130, 530 increases the likelihood of wireless communication detection.
- wireless communications may take the form of different signature patterns, independently tailored to each of the mechanisms 130, 530 to further increase the likelihood of processed detection. That is to say, the initial sensor 480 and processor 470 may be tuned to pick up a particular signature of wireless communications for analysis that differs from another signature geared toward the second sensor 580 and processor 575. Thus, where the initial signature fails to fully propagate downhole to its respective sensor 480 and processor 470, the other signature may nevertheless reach the second sensor 580 and processor 575 (or vice versa). Thus, another port 590 may be formed, chamber 530 exposed and the HSM 150 actuated.
- a flow-chart summarizing an embodiment of employing a wirelessly triggered hydrostatic set module is shown.
- a downhole system may be deployed into a well.
- a production tubing system is described.
- other types of systems may utilize wirelessly triggered hydrostatic set modules, such as completion systems utilizing sliding sleeves.
- wireless communication signatures such as pressure pulses, may be directed downhole as indicated at 635 and 655.
- a sensor of a trigger mechanism incorporated into the system may detect downhole communications as indicated at 675.
- a hydrostatic set module of the system may be triggered by the mechanism based on processing of the wireless detection (see 695). This in turn may result in setting of a packer, shifting of a sliding sleeve or any number of downhole actuations as detailed herein.
- Embodiments described hereinabove reduce the likelihood of having to remove and re-deploy an entire production string as a result of hydraulic strain induced on tubing due to packer setting. This is achieved in a manner that does not require the presence of a dedicated hydraulic line ran from surface to the hydrostatic set module. As a result, concern over the introduction of new failure modes is eliminated. Furthermore, techniques detailed herein utilize wireless communications in conjunction with a hydrostatic set module that may be employed for a variety of applications beyond packer setting. Therefore, the value of the systems and techniques detailed herein may be appreciated across a variety of different downhole application settings.
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Remote Sensing (AREA)
- Geophysics (AREA)
- Measuring Fluid Pressure (AREA)
- Earth Drilling (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29335510P | 2010-01-08 | 2010-01-08 | |
PCT/US2011/020538 WO2011085215A2 (en) | 2010-01-08 | 2011-01-07 | Wirelessly actuated hydrostatic set module |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2510190A2 true EP2510190A2 (en) | 2012-10-17 |
EP2510190A4 EP2510190A4 (en) | 2017-10-11 |
EP2510190B1 EP2510190B1 (en) | 2020-12-02 |
Family
ID=44257624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11732214.9A Active EP2510190B1 (en) | 2010-01-08 | 2011-01-07 | Wirelessly actuated hydrostatic set module |
Country Status (3)
Country | Link |
---|---|
US (1) | US20110168403A1 (en) |
EP (1) | EP2510190B1 (en) |
WO (1) | WO2011085215A2 (en) |
Families Citing this family (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8389862B2 (en) | 2008-10-07 | 2013-03-05 | Mc10, Inc. | Extremely stretchable electronics |
US8261817B2 (en) * | 2009-11-13 | 2012-09-11 | Baker Hughes Incorporated | Modular hydraulic operator for a subterranean tool |
US10441185B2 (en) | 2009-12-16 | 2019-10-15 | The Board Of Trustees Of The University Of Illinois | Flexible and stretchable electronic systems for epidermal electronics |
GB201012175D0 (en) | 2010-07-20 | 2010-09-01 | Metrol Tech Ltd | Procedure and mechanisms |
US8813857B2 (en) | 2011-02-17 | 2014-08-26 | Baker Hughes Incorporated | Annulus mounted potential energy driven setting tool |
WO2013003841A1 (en) * | 2011-06-30 | 2013-01-03 | The Johns Hopkins University | Whole-body pletysmography system for the continuous characterization of sleep and breathing in a mouse |
US8881798B2 (en) | 2011-07-20 | 2014-11-11 | Baker Hughes Incorporated | Remote manipulation and control of subterranean tools |
US20130020097A1 (en) * | 2011-07-21 | 2013-01-24 | Schlumberger Technology Corporation | Downhole fluid-flow communication technique |
WO2013149181A1 (en) | 2012-03-30 | 2013-10-03 | The Board Of Trustees Of The University Of Illinois | Appendage mountable electronic devices conformable to surfaces |
WO2014031092A1 (en) | 2012-08-20 | 2014-02-27 | Halliburton Energy Services, Inc. | Hydrostatic pressure actuated stroke amplifier for downhole force generator |
US10030513B2 (en) | 2012-09-19 | 2018-07-24 | Schlumberger Technology Corporation | Single trip multi-zone drill stem test system |
BR112015008678B1 (en) | 2012-10-16 | 2021-10-13 | Weatherford Technology Holdings, Llc | METHOD OF CONTROLLING FLOW IN AN OIL OR GAS WELL AND FLOW CONTROL ASSEMBLY FOR USE IN AN OIL OR GAS WELL |
US10030473B2 (en) | 2012-11-13 | 2018-07-24 | Exxonmobil Upstream Research Company | Method for remediating a screen-out during well completion |
US9068445B2 (en) * | 2012-12-17 | 2015-06-30 | Baker Hughes Incorporated | Sensing indicator having RFID tag, downhole tool, and method thereof |
US10480308B2 (en) | 2012-12-19 | 2019-11-19 | Exxonmobil Upstream Research Company | Apparatus and method for monitoring fluid flow in a wellbore using acoustic signals |
WO2014100275A1 (en) | 2012-12-19 | 2014-06-26 | Exxonmobil Upstream Research Company | Wired and wireless downhole telemetry using a logging tool |
US9631485B2 (en) | 2012-12-19 | 2017-04-25 | Exxonmobil Upstream Research Company | Electro-acoustic transmission of data along a wellbore |
WO2014100274A1 (en) | 2012-12-19 | 2014-06-26 | Exxonmobil Upstream Research Company | Apparatus and method for detecting fracture geometry using acoustic telemetry |
WO2014100266A1 (en) | 2012-12-19 | 2014-06-26 | Exxonmobil Upstream Research Company | Apparatus and method for relieving annular pressure in a wellbore using a wireless sensor network |
WO2014100262A1 (en) | 2012-12-19 | 2014-06-26 | Exxonmobil Upstream Research Company | Telemetry for wireless electro-acoustical transmission of data along a wellbore |
US10024131B2 (en) | 2012-12-21 | 2018-07-17 | Exxonmobil Upstream Research Company | Fluid plugs as downhole sealing devices and systems and methods including the same |
WO2014099208A1 (en) | 2012-12-21 | 2014-06-26 | Exxonmobil Upstream Research Company | Systems and methods for stimulating a multi-zone subterranean formation |
WO2014099306A2 (en) | 2012-12-21 | 2014-06-26 | Exxonmobil Upstream Research Company | Flow control assemblies for downhole operations and systems and methods including the same |
WO2014099206A1 (en) | 2012-12-21 | 2014-06-26 | Exxonmobil Upstream Research Company | Flow control assemblies for downhole operations and systems and methods inclucding the same |
WO2014109748A1 (en) | 2013-01-10 | 2014-07-17 | Halliburton Energy Services, Inc. | Boost assisted force balancing setting tool |
WO2015039248A1 (en) | 2013-09-18 | 2015-03-26 | Packers Plus Energy Services Inc. | Hydraulically actuated tool with pressure isolator |
WO2015080754A1 (en) | 2013-11-26 | 2015-06-04 | Exxonmobil Upstream Research Company | Remotely actuated screenout relief valves and systems and methods including the same |
US9790762B2 (en) | 2014-02-28 | 2017-10-17 | Exxonmobil Upstream Research Company | Corrodible wellbore plugs and systems and methods including the same |
US9574439B2 (en) | 2014-06-04 | 2017-02-21 | Baker Hughes Incorporated | Downhole vibratory communication system and method |
WO2016028414A1 (en) | 2014-08-21 | 2016-02-25 | Exxonmobil Upstream Research Company | Bidirectional flow control device for facilitating stimulation treatments in a subterranean formation |
CA2955381C (en) | 2014-09-12 | 2022-03-22 | Exxonmobil Upstream Research Company | Discrete wellbore devices, hydrocarbon wells including a downhole communication network and the discrete wellbore devices and systems and methods including the same |
US9951596B2 (en) | 2014-10-16 | 2018-04-24 | Exxonmobil Uptream Research Company | Sliding sleeve for stimulating a horizontal wellbore, and method for completing a wellbore |
US9863222B2 (en) | 2015-01-19 | 2018-01-09 | Exxonmobil Upstream Research Company | System and method for monitoring fluid flow in a wellbore using acoustic telemetry |
US10408047B2 (en) | 2015-01-26 | 2019-09-10 | Exxonmobil Upstream Research Company | Real-time well surveillance using a wireless network and an in-wellbore tool |
US9850725B2 (en) | 2015-04-15 | 2017-12-26 | Baker Hughes, A Ge Company, Llc | One trip interventionless liner hanger and packer setting apparatus and method |
EP3304430A4 (en) | 2015-06-01 | 2019-03-06 | The Board of Trustees of the University of Illionis | Miniaturized electronic systems with wireless power and near-field communication capabilities |
BR112017025616A2 (en) | 2015-06-01 | 2018-08-07 | Univ Illinois | alternative approach to uv capture |
US10060256B2 (en) | 2015-11-17 | 2018-08-28 | Baker Hughes, A Ge Company, Llc | Communication system for sequential liner hanger setting, release from a running tool and setting a liner top packer |
US10196886B2 (en) | 2015-12-02 | 2019-02-05 | Exxonmobil Upstream Research Company | Select-fire, downhole shockwave generation devices, hydrocarbon wells that include the shockwave generation devices, and methods of utilizing the same |
US20170159419A1 (en) | 2015-12-02 | 2017-06-08 | Randy C. Tolman | Selective Stimulation Ports, Wellbore Tubulars That Include Selective Stimulation Ports, And Methods Of Operating The Same |
US10309195B2 (en) | 2015-12-04 | 2019-06-04 | Exxonmobil Upstream Research Company | Selective stimulation ports including sealing device retainers and methods of utilizing the same |
US20170350203A1 (en) * | 2016-06-06 | 2017-12-07 | Baker Hughes Incorporated | Electrically-Actuated Slip Devices |
US10487647B2 (en) | 2016-08-30 | 2019-11-26 | Exxonmobil Upstream Research Company | Hybrid downhole acoustic wireless network |
US10590759B2 (en) * | 2016-08-30 | 2020-03-17 | Exxonmobil Upstream Research Company | Zonal isolation devices including sensing and wireless telemetry and methods of utilizing the same |
US10697287B2 (en) | 2016-08-30 | 2020-06-30 | Exxonmobil Upstream Research Company | Plunger lift monitoring via a downhole wireless network field |
US10344583B2 (en) | 2016-08-30 | 2019-07-09 | Exxonmobil Upstream Research Company | Acoustic housing for tubulars |
US10526888B2 (en) | 2016-08-30 | 2020-01-07 | Exxonmobil Upstream Research Company | Downhole multiphase flow sensing methods |
US10465505B2 (en) | 2016-08-30 | 2019-11-05 | Exxonmobil Upstream Research Company | Reservoir formation characterization using a downhole wireless network |
US10364669B2 (en) | 2016-08-30 | 2019-07-30 | Exxonmobil Upstream Research Company | Methods of acoustically communicating and wells that utilize the methods |
US10415376B2 (en) | 2016-08-30 | 2019-09-17 | Exxonmobil Upstream Research Company | Dual transducer communications node for downhole acoustic wireless networks and method employing same |
CN106321076B (en) * | 2016-10-19 | 2021-05-04 | 中国石油化工股份有限公司 | Water injection well starting pressure testing method |
US10883363B2 (en) | 2017-10-13 | 2021-01-05 | Exxonmobil Upstream Research Company | Method and system for performing communications using aliasing |
CN111201727B (en) | 2017-10-13 | 2021-09-03 | 埃克森美孚上游研究公司 | Method and system for hydrocarbon operations using a hybrid communication network |
US10837276B2 (en) | 2017-10-13 | 2020-11-17 | Exxonmobil Upstream Research Company | Method and system for performing wireless ultrasonic communications along a drilling string |
WO2019074657A1 (en) | 2017-10-13 | 2019-04-18 | Exxonmobil Upstream Research Company | Method and system for performing operations using communications |
US10697288B2 (en) | 2017-10-13 | 2020-06-30 | Exxonmobil Upstream Research Company | Dual transducer communications node including piezo pre-tensioning for acoustic wireless networks and method employing same |
US11035226B2 (en) | 2017-10-13 | 2021-06-15 | Exxomobil Upstream Research Company | Method and system for performing operations with communications |
US12000273B2 (en) | 2017-11-17 | 2024-06-04 | ExxonMobil Technology and Engineering Company | Method and system for performing hydrocarbon operations using communications associated with completions |
WO2019099188A1 (en) | 2017-11-17 | 2019-05-23 | Exxonmobil Upstream Research Company | Method and system for performing wireless ultrasonic communications along tubular members |
US10690794B2 (en) | 2017-11-17 | 2020-06-23 | Exxonmobil Upstream Research Company | Method and system for performing operations using communications for a hydrocarbon system |
US10844708B2 (en) | 2017-12-20 | 2020-11-24 | Exxonmobil Upstream Research Company | Energy efficient method of retrieving wireless networked sensor data |
US11156081B2 (en) | 2017-12-29 | 2021-10-26 | Exxonmobil Upstream Research Company | Methods and systems for operating and maintaining a downhole wireless network |
MX2020005766A (en) | 2017-12-29 | 2020-08-20 | Exxonmobil Upstream Res Co | Methods and systems for monitoring and optimizing reservoir stimulation operations. |
WO2019156966A1 (en) | 2018-02-08 | 2019-08-15 | Exxonmobil Upstream Research Company | Methods of network peer identification and self-organization using unique tonal signatures and wells that use the methods |
US11268378B2 (en) | 2018-02-09 | 2022-03-08 | Exxonmobil Upstream Research Company | Downhole wireless communication node and sensor/tools interface |
US10364659B1 (en) | 2018-09-27 | 2019-07-30 | Exxonmobil Upstream Research Company | Methods and devices for restimulating a well completion |
US11952886B2 (en) | 2018-12-19 | 2024-04-09 | ExxonMobil Technology and Engineering Company | Method and system for monitoring sand production through acoustic wireless sensor network |
US11293280B2 (en) | 2018-12-19 | 2022-04-05 | Exxonmobil Upstream Research Company | Method and system for monitoring post-stimulation operations through acoustic wireless sensor network |
US11808110B2 (en) | 2019-04-24 | 2023-11-07 | Schlumberger Technology Corporation | System and methodology for actuating a downhole device |
GB2607510B (en) | 2020-02-18 | 2024-01-03 | Schlumberger Technology Bv | Electronic rupture disc with atmospheric chamber |
NO20220855A1 (en) | 2020-02-18 | 2022-08-05 | Schlumberger Technology Bv | Hydraulic trigger for isolation valves |
US11774002B2 (en) | 2020-04-17 | 2023-10-03 | Schlumberger Technology Corporation | Hydraulic trigger with locked spring force |
BR112023019716A2 (en) * | 2021-03-26 | 2024-03-12 | Schlumberger Technology Bv | REDUNDANT TRIGGER SYSTEM |
US20230088359A1 (en) * | 2021-09-21 | 2023-03-23 | Baker Hughes Oilfield Operations Llc | Remote set tool with contingency trigger and system |
US11993991B2 (en) | 2022-03-31 | 2024-05-28 | Schlumberger Technology Corporation | System and method for electronically controlling downhole valve system |
US11952861B2 (en) * | 2022-03-31 | 2024-04-09 | Schlumberger Technology Corporation | Methodology and system having downhole universal actuator |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3233674A (en) * | 1963-07-22 | 1966-02-08 | Baker Oil Tools Inc | Subsurface well apparatus |
US4856595A (en) * | 1988-05-26 | 1989-08-15 | Schlumberger Technology Corporation | Well tool control system and method |
US5893413A (en) * | 1996-07-16 | 1999-04-13 | Baker Hughes Incorporated | Hydrostatic tool with electrically operated setting mechanism |
US6450263B1 (en) * | 1998-12-01 | 2002-09-17 | Halliburton Energy Services, Inc. | Remotely actuated rupture disk |
US6915848B2 (en) * | 2002-07-30 | 2005-07-12 | Schlumberger Technology Corporation | Universal downhole tool control apparatus and methods |
US7562712B2 (en) | 2004-04-16 | 2009-07-21 | Schlumberger Technology Corporation | Setting tool for hydraulically actuated devices |
US7337850B2 (en) * | 2005-09-14 | 2008-03-04 | Schlumberger Technology Corporation | System and method for controlling actuation of tools in a wellbore |
US8056628B2 (en) * | 2006-12-04 | 2011-11-15 | Schlumberger Technology Corporation | System and method for facilitating downhole operations |
-
2011
- 2011-01-07 US US12/986,637 patent/US20110168403A1/en not_active Abandoned
- 2011-01-07 WO PCT/US2011/020538 patent/WO2011085215A2/en active Application Filing
- 2011-01-07 EP EP11732214.9A patent/EP2510190B1/en active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2011085215A2 * |
Also Published As
Publication number | Publication date |
---|---|
EP2510190A4 (en) | 2017-10-11 |
WO2011085215A3 (en) | 2011-10-06 |
EP2510190B1 (en) | 2020-12-02 |
US20110168403A1 (en) | 2011-07-14 |
WO2011085215A2 (en) | 2011-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2510190B1 (en) | Wirelessly actuated hydrostatic set module | |
EP3851631B1 (en) | Swellable material activation and monitoring in a subterranean well | |
US20120168152A1 (en) | Dissolvable barrier for downhole use and method thereof | |
EP3726004B1 (en) | Single trip multi-zone completion systems and methods | |
US20120061095A1 (en) | Apparatus and Method For Remote Actuation of A Downhole Assembly | |
US8985215B2 (en) | Single trip multi-zone completion systems and methods | |
US20170335644A1 (en) | Smart frac ball | |
AU2013402083A1 (en) | Intelligent cement wiper plugs and casing collars | |
US20130043048A1 (en) | Systems and Methods for Selective Electrical Isolation of Downhole Tools | |
WO2015152907A1 (en) | Using dynamic underbalance to increase well productivity | |
US20130020097A1 (en) | Downhole fluid-flow communication technique | |
US8733458B2 (en) | Method and apparatus for setting a packer | |
CA3054380C (en) | Perforation tool and methods of use | |
WO2018182578A1 (en) | Measuring strain in a work string during completion operations | |
US12060768B2 (en) | Pressure-activated valve assemblies and methods to remotely activate a valve | |
US11371317B2 (en) | Remote-open barrier valve | |
US11268356B2 (en) | Casing conveyed, externally mounted perforation concept | |
US20200003024A1 (en) | Casing conveyed, externally mounted perforation concept |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120711 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20170912 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E21B 43/00 20060101ALI20170906BHEP Ipc: E21B 23/04 20060101ALI20170906BHEP Ipc: E21B 47/12 20120101AFI20170906BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190715 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200706 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1341144 Country of ref document: AT Kind code of ref document: T Effective date: 20201215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011069504 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20201202 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201202 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1341144 Country of ref document: AT Kind code of ref document: T Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210405 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602011069504 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210402 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210107 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210131 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210202 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
26N | No opposition filed |
Effective date: 20210903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210803 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110107 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231116 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20240108 Year of fee payment: 14 Ref country code: IT Payment date: 20231212 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |