US20230088359A1 - Remote set tool with contingency trigger and system - Google Patents

Remote set tool with contingency trigger and system Download PDF

Info

Publication number
US20230088359A1
US20230088359A1 US17/685,008 US202217685008A US2023088359A1 US 20230088359 A1 US20230088359 A1 US 20230088359A1 US 202217685008 A US202217685008 A US 202217685008A US 2023088359 A1 US2023088359 A1 US 2023088359A1
Authority
US
United States
Prior art keywords
arrangement
trigger
tool
contingency
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/685,008
Inventor
Andrew John Vissotski
Rafael Ramirez
Thomas Beard
Agustin Velasco Suarez
Edward Kossa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Oilfield Operations LLC
Original Assignee
Baker Hughes Oilfield Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Oilfield Operations LLC filed Critical Baker Hughes Oilfield Operations LLC
Priority to US17/685,008 priority Critical patent/US20230088359A1/en
Assigned to BAKER HUGHES OILFIELD OPERATIONS LLC reassignment BAKER HUGHES OILFIELD OPERATIONS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BEARD, THOMAS, KOSSA, EDWARD, RAMIREZ, RAFAEL, SUAREZ, AGUSTIN VELASCO, VISSOTSKI, ANDREW JOHN
Priority to PCT/US2022/076519 priority patent/WO2023049659A1/en
Publication of US20230088359A1 publication Critical patent/US20230088359A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/08Introducing or running tools by fluid pressure, e.g. through-the-flow-line tool systems
    • E21B23/10Tools specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/06Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting packers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/063Valve or closure with destructible element, e.g. frangible disc
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/14Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools

Definitions

  • Hydrostatically set tools are common, using such things as burst disks to determine the location for setting based upon hydrostatic pressure reaching a threshold level that is related to depth. Remote setting of tools is desirable and the art is always receptive to improvements in this area.
  • An embodiment of a remote set tool arrangement including a tool, a primary trigger operatively connected to the tool, and a contingency trigger operatively connected to the tool.
  • An embodiment of a borehole system including a borehole in a subsurface formation, a string in the borehole, and the remote setting tool arrangement disposed within or as a part of the string.
  • FIG. 1 is a side view of a tool with primary trigger
  • FIG. 2 is a cross sectional view illustrating the trigger portion of FIG. 1 and a contingency trigger in a closed position;
  • FIG. 3 is the view of FIG. 2 illustrating the contingency trigger in an open position
  • FIG. 4 is an enlarged view of FIG. 3 ;
  • FIG. 5 is a cross sectional view illustrating the trigger portion of FIG. 1 and an alternate contingency trigger in a closed position
  • FIG. 6 is an enlarged view of a break-off plug
  • FIG. 7 is the view of FIG. 5 illustrating the contingency trigger in an intermediate position
  • FIG. 8 is the view of FIG. 5 illustrating the contingency trigger in an open position
  • FIG. 9 is a cross sectional view illustrating the trigger portion of FIG. 1 and an alternate contingency trigger arrangement in a closed position
  • FIG. 10 is a cross sectional view of a prior art punch tool that is employable to open the contingency trigger illustrated in FIG. 9 ;
  • FIG. 11 is a view of a prior art cutting tool that is employable to open the contingency trigger illustrated in FIG. 9 ;
  • FIG. 12 is a cross sectional view illustrating the trigger portion of FIG. 1 and an alternate contingency trigger arrangement in a closed position;
  • FIG. 13 is a view related to FIG. 1 that shows a fluid path from the trigger to the pressure chamber of a tool
  • FIG. 14 is a cross section view showing passthroughs that are used for the fluid path illustrated in FIG. 13 ;
  • FIGS. 15 and 16 are slightly rotated cross sectional views of the tool of FIG. 1 where the fluid path can be additionally understood.
  • FIG. 17 is a view of a borehole system including the remote set tool with contingency trigger disclosed herein.
  • the arrangement 10 includes a tool 12 to be set, a primary trigger 14 to set the tool, and a contingency trigger 16 visible in FIGS. 2 - 9 .
  • the tool 12 may be a packer or any other settable tool and particularly a settable tool that responds to hydraulic pressure.
  • the hydraulic pressure may be hydrostatic pressure.
  • the primary trigger 14 is a remotely actuatable trigger that upon signal opens a port.
  • trigger 14 is an e-trigger such as that commercially available from Wellbor Technology, Houston Tex.
  • Trigger 14 may respond to an electric signal, an acoustic signal, an identification chip (RF, Nuclear, etc.), a gravity or fluid conveyed object, pressure cycles, etc.
  • the contingency trigger 16 comprises a separate fluid pathway that is controlled and is openable upon command if the primary trigger does not function as designed.
  • Contingent trigger 16 a is disposed within the same housing 18 as is trigger 14 but need not be in that location solely. It is contemplated that the contingent trigger 16 a may be anywhere between the primary trigger and the tool to be set.
  • the trigger 16 a provides access to pressure (hydrostatic or hydraulic) from another fluid pathway 20 .
  • Fluid pathway 20 is connectable to an inside diameter (ID) 22 of the arrangement 10 , which is distinct from the primary fluid pathway 24 in this embodiment that extends into fluid contact with an annulus 26 about the arrangement 10 .
  • the fluid pathway 20 is segregated from the ID 22 by a sliding sleeve 28 that is sealed within the arrangement 10 by seals 30 such as o-rings.
  • the sleeve 28 includes a port 32 that can be aligned with the fluid pathway 20 upon movement of the sleeve 28 .
  • the sleeve 28 may be moved by conveying an object onto a seat therein, by a shifting tool, etc. Once the port 32 is aligned with the pathway 20 .
  • fluid pressure from the ID is connected to a primary actuation pathway 34 that leads to the tool 12 .
  • FIG. 2 depicts a closed position of the sliding sleeve 28 and
  • FIG. 3 depicts an open position of the sliding sleeve 28 .
  • FIG. 4 is simply an enlarged view of FIG. 2 for clarity.
  • Contingency trigger 16 b comprises a break-off plug 38 that defines an opening 40 therein. When a tip 42 is broken off the plug 38 , fluid may flow through the opening 40 .
  • the plug 38 is disposed in a fluid pathway 44 that is otherwise similar to pathway 20 .
  • a sliding plug breaker 46 similar to sleeve 28 but which requires no seals and whose port 48 also acts as a cleaver to shear off the tip 42 . It can be appreciated by comparing FIGS. 5 and 6 that the tip 42 is in a different portion of the port 48 but not yet severed and then compare to FIG.
  • the port 48 has moved beyond the plug 38 and has severed the tip 42 .
  • the port 48 is in fluid communication with the opening 40 because of a manifold area 50 that bridges features 40 and 48 when the sliding member 46 is in the position where the tip 42 has already been sheared.
  • the sliding member 46 can be moved in the same ways contemplated above for sleeve 28 .
  • a pathway 52 similar to pathway 20 is closed off by a thin wall 54 or a disk (would look the same so not numbered or separately shown).
  • no seals are needed because there is no pressure path without the thin wall or disk being disrupted.
  • the embodiment is sometimes provided with a location profile 56 to ensure a tool to open the thin wall/disk 54 will be properly registered.
  • Tools that may be used to open the thin wall/disk include those illustrated in FIGS. 10 and 11 both of which represent prior art devices that may be run to depth to open the thin wall/disk 54 . Respectively, these are a punch tool and a rotary pipe cutter tool. Both tools are available commercially from Baker Hughes and need not be explained in detail.
  • an incremental movement mechanism 56 is employed.
  • a detailed explanation of such a mechanism is not needed since the mechanism itself is commercially available from Baker Hughes, Houston Tex. and is colloquially known as a Cyclic Trigger. Its employment as a part of the contingency 16 d in combination with other elements of the invention is new.
  • the mechanism 56 is ported to the inside diameter 22 of the arrangement 10 by pathway 57 . Pressure cycles in the ID 22 will increment the mechanism 56 until a secondary pathway 58 fluidly links the annulus 26 around arrangement 10 to a connector pathway 59 that connects to the primly actuation pathway 34 .
  • triggering occurs from a position downhole of the tool to be set.
  • a full-length feedthrough 60 is used and a partial length feedthrough 62 is used for the setting operation of the arrangement 10 .
  • FIGS. 13 - 16 are useful in understanding the particular construction. While a control line extends all the way through the feedthrough 60 , the partial length feedthrough 62 is fluid containing without a control line extending all the way therethrough but rather only a couple of inches into the partial feedthrough 62 . Sealing of the control lines is accomplished at nuts 64 , 66 , and 70 .
  • Nut 64 is at the trigger, nut 66 is at an uphole end of the feedthrough 60 adjacent nut 70 , which seals the control line to partial feedthrough 62 .
  • the partial feedthrough 62 then conveys fluid to the pressure chamber 68 , which may be an atmospheric pressure chamber in some embodiments, of tool 12 .
  • a borehole system 80 is illustrated.
  • the system 80 includes a borehole 82 in a subsurface formation 84 .
  • a string 86 is disposed in the borehole 82 .
  • a remote set tool arrangement 10 is disposed within or as a part of the string 86 .
  • Embodiment 1 A remote set tool arrangement including a tool, a primary trigger operatively connected to the tool, and a contingency trigger operatively connected to the tool.
  • Embodiment 2 The arrangement as in any prior embodiment wherein the primary trigger is an e-trigger.
  • Embodiment 3 The arrangement as in any prior embodiment wherein the contingency trigger comprises a redundant flow path and a valve.
  • Embodiment 4 The arrangement as in any prior embodiment wherein the redundant flow path accesses an actuation flow path between and including a housing of the primary trigger and the tool.
  • Embodiment 5 The arrangement as in any prior embodiment wherein the valve is a sliding sleeve.
  • Embodiment 6 The arrangement as in any prior embodiment wherein the contingency trigger comprises a break-off plug.
  • Embodiment 7 The arrangement as in any prior embodiment wherein the contingency trigger further comprises a sliding plug breaker.
  • Embodiment 8 The arrangement as in any prior embodiment wherein the contingency trigger comprises a redundant flow path and a rupturable closure.
  • Embodiment 9 The arrangement as in any prior embodiment wherein the closure is a thin wall portion covering the redundant flow path.
  • Embodiment 10 The arrangement as in any prior embodiment wherein the closure is a burst disk.
  • Embodiment 11 The arrangement as in any prior embodiment wherein the contingency trigger comprises a cyclic trigger.
  • Embodiment 12 The arrangement as in any prior embodiment wherein the tool includes a plurality of control line feedthroughs.
  • Embodiment 13 The arrangement as in any prior embodiment wherein the plurality of control line feedthroughs include one that begins at an end of the tool and terminates at an actuation pressure chamber of the tool.
  • Embodiment 14 The arrangement as in any prior embodiment wherein the end is an uphole end.
  • Embodiment 15 The arrangement as in any prior embodiment wherein an actuation pathway begins downhole of the tool, extends through a first of the plurality of control lines, reverses direction and extends through the one of the plurality of control lines.
  • Embodiment 16 The arrangement as in any prior embodiment wherein a control line of the plurality of control lines extending through the one feedthrough is sealingly terminated at the actuation pressure chamber.
  • Embodiment 17 A borehole system including a borehole in a subsurface formation, a string in the borehole, and the remote setting tool arrangement as in any prior embodiment disposed within or as a part of the string.
  • the teachings of the present disclosure may be used in a variety of well operations. These operations may involve using one or more treatment agents to treat a formation, the fluids resident in a formation, a borehole, and/or equipment in the borehole, such as production tubing.
  • the treatment agents may be in the form of liquids, gases, solids, semi-solids, and mixtures thereof.
  • Illustrative treatment agents include, but are not limited to, fracturing fluids, acids, steam, water, brine, anti-corrosion agents, cement, permeability modifiers, drilling muds, emulsifiers, demulsifiers, tracers, flow improvers etc.
  • Illustrative well operations include, but are not limited to, hydraulic fracturing, stimulation, tracer injection, cleaning, acidizing, steam injection, water flooding, cementing, etc.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

A remote set tool arrangement including a tool, a primary trigger operatively connected to the tool, and a contingency trigger operatively connected to the tool. A borehole system including a borehole in a subsurface formation, a string in the borehole, and the remote setting tool arrangement disposed within or as a part of the string.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of an earlier filing date from U.S. Provisional Application Ser. No. 63/246,533 filed Sep. 21, 2021, the entire disclosure of which is incorporated herein by reference.
  • BACKGROUND
  • In the resource recovery and fluid sequestration industries, it is often necessary to set tools in a downhole environment. Hydrostatically set tools are common, using such things as burst disks to determine the location for setting based upon hydrostatic pressure reaching a threshold level that is related to depth. Remote setting of tools is desirable and the art is always receptive to improvements in this area.
  • SUMMARY
  • An embodiment of a remote set tool arrangement including a tool, a primary trigger operatively connected to the tool, and a contingency trigger operatively connected to the tool.
  • An embodiment of a borehole system including a borehole in a subsurface formation, a string in the borehole, and the remote setting tool arrangement disposed within or as a part of the string.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
  • FIG. 1 is a side view of a tool with primary trigger;
  • FIG. 2 is a cross sectional view illustrating the trigger portion of FIG. 1 and a contingency trigger in a closed position;
  • FIG. 3 is the view of FIG. 2 illustrating the contingency trigger in an open position;
  • FIG. 4 is an enlarged view of FIG. 3 ;
  • FIG. 5 is a cross sectional view illustrating the trigger portion of FIG. 1 and an alternate contingency trigger in a closed position;
  • FIG. 6 is an enlarged view of a break-off plug;
  • FIG. 7 is the view of FIG. 5 illustrating the contingency trigger in an intermediate position;
  • FIG. 8 is the view of FIG. 5 illustrating the contingency trigger in an open position;
  • FIG. 9 is a cross sectional view illustrating the trigger portion of FIG. 1 and an alternate contingency trigger arrangement in a closed position;
  • FIG. 10 is a cross sectional view of a prior art punch tool that is employable to open the contingency trigger illustrated in FIG. 9 ;
  • FIG. 11 is a view of a prior art cutting tool that is employable to open the contingency trigger illustrated in FIG. 9 ;
  • FIG. 12 is a cross sectional view illustrating the trigger portion of FIG. 1 and an alternate contingency trigger arrangement in a closed position;
  • FIG. 13 is a view related to FIG. 1 that shows a fluid path from the trigger to the pressure chamber of a tool;
  • FIG. 14 is a cross section view showing passthroughs that are used for the fluid path illustrated in FIG. 13 ;
  • FIGS. 15 and 16 are slightly rotated cross sectional views of the tool of FIG. 1 where the fluid path can be additionally understood; and
  • FIG. 17 is a view of a borehole system including the remote set tool with contingency trigger disclosed herein.
  • DETAILED DESCRIPTION
  • A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
  • Referring to FIG. 1 , a remote set tool arrangement 10 is illustrated. The arrangement 10 includes a tool 12 to be set, a primary trigger 14 to set the tool, and a contingency trigger 16 visible in FIGS. 2-9 . The tool 12 may be a packer or any other settable tool and particularly a settable tool that responds to hydraulic pressure. In embodiments, the hydraulic pressure may be hydrostatic pressure. The primary trigger 14 is a remotely actuatable trigger that upon signal opens a port. In an embodiment, trigger 14 is an e-trigger such as that commercially available from Wellbor Technology, Houston Tex. Trigger 14 may respond to an electric signal, an acoustic signal, an identification chip (RF, Nuclear, etc.), a gravity or fluid conveyed object, pressure cycles, etc. The contingency trigger 16 comprises a separate fluid pathway that is controlled and is openable upon command if the primary trigger does not function as designed.
  • Referring to FIGS. 2-4 , a first embodiment of contingent trigger 16 a is illustrated. Contingent trigger 16 a is disposed within the same housing 18 as is trigger 14 but need not be in that location solely. It is contemplated that the contingent trigger 16 a may be anywhere between the primary trigger and the tool to be set. The trigger 16 a provides access to pressure (hydrostatic or hydraulic) from another fluid pathway 20. Fluid pathway 20 is connectable to an inside diameter (ID) 22 of the arrangement 10, which is distinct from the primary fluid pathway 24 in this embodiment that extends into fluid contact with an annulus 26 about the arrangement 10. The fluid pathway 20 is segregated from the ID 22 by a sliding sleeve 28 that is sealed within the arrangement 10 by seals 30 such as o-rings. The sleeve 28 includes a port 32 that can be aligned with the fluid pathway 20 upon movement of the sleeve 28. The sleeve 28 may be moved by conveying an object onto a seat therein, by a shifting tool, etc. Once the port 32 is aligned with the pathway 20. fluid pressure from the ID is connected to a primary actuation pathway 34 that leads to the tool 12. FIG. 2 depicts a closed position of the sliding sleeve 28 and FIG. 3 depicts an open position of the sliding sleeve 28. FIG. 4 , is simply an enlarged view of FIG. 2 for clarity.
  • Referring to FIGS. 5-8 , another embodiment of the contingency trigger 16 b is illustrated. Contingency trigger 16 b comprises a break-off plug 38 that defines an opening 40 therein. When a tip 42 is broken off the plug 38, fluid may flow through the opening 40. The plug 38 is disposed in a fluid pathway 44 that is otherwise similar to pathway 20. Also similar to the foregoing embodiment is a sliding plug breaker 46 similar to sleeve 28 but which requires no seals and whose port 48 also acts as a cleaver to shear off the tip 42. It can be appreciated by comparing FIGS. 5 and 6 that the tip 42 is in a different portion of the port 48 but not yet severed and then compare to FIG. 8 where the port 48 has moved beyond the plug 38 and has severed the tip 42. The port 48 is in fluid communication with the opening 40 because of a manifold area 50 that bridges features 40 and 48 when the sliding member 46 is in the position where the tip 42 has already been sheared. The sliding member 46 can be moved in the same ways contemplated above for sleeve 28.
  • in yet another embodiment of the contingency trigger 16 c, referring to FIG. 9 , a pathway 52, similar to pathway 20 is closed off by a thin wall 54 or a disk (would look the same so not numbered or separately shown). In this embodiment, no seals are needed because there is no pressure path without the thin wall or disk being disrupted. The embodiment is sometimes provided with a location profile 56 to ensure a tool to open the thin wall/disk 54 will be properly registered. Tools that may be used to open the thin wall/disk include those illustrated in FIGS. 10 and 11 both of which represent prior art devices that may be run to depth to open the thin wall/disk 54. Respectively, these are a punch tool and a rotary pipe cutter tool. Both tools are available commercially from Baker Hughes and need not be explained in detail.
  • In yet another embodiment of the contingency trigger 16 d, referring to FIG. 12 , an incremental movement mechanism 56 is employed. A detailed explanation of such a mechanism is not needed since the mechanism itself is commercially available from Baker Hughes, Houston Tex. and is colloquially known as a Cyclic Trigger. Its employment as a part of the contingency 16 d in combination with other elements of the invention is new. The mechanism 56 is ported to the inside diameter 22 of the arrangement 10 by pathway 57. Pressure cycles in the ID 22 will increment the mechanism 56 until a secondary pathway 58 fluidly links the annulus 26 around arrangement 10 to a connector pathway 59 that connects to the primly actuation pathway 34.
  • In an embodiment of the arrangement described herein, triggering occurs from a position downhole of the tool to be set. In order to enhance and simplify sealing requirements, a full-length feedthrough 60 is used and a partial length feedthrough 62 is used for the setting operation of the arrangement 10. FIGS. 13-16 are useful in understanding the particular construction. While a control line extends all the way through the feedthrough 60, the partial length feedthrough 62 is fluid containing without a control line extending all the way therethrough but rather only a couple of inches into the partial feedthrough 62. Sealing of the control lines is accomplished at nuts 64, 66, and 70. Nut 64 is at the trigger, nut 66 is at an uphole end of the feedthrough 60 adjacent nut 70, which seals the control line to partial feedthrough 62. The partial feedthrough 62 then conveys fluid to the pressure chamber 68, which may be an atmospheric pressure chamber in some embodiments, of tool 12.
  • Referring to FIG. 17 , a borehole system 80 is illustrated. The system 80 includes a borehole 82 in a subsurface formation 84. A string 86 is disposed in the borehole 82. A remote set tool arrangement 10 is disposed within or as a part of the string 86.
  • Set forth below are some embodiments of the foregoing disclosure:
  • Embodiment 1: A remote set tool arrangement including a tool, a primary trigger operatively connected to the tool, and a contingency trigger operatively connected to the tool.
  • Embodiment 2: The arrangement as in any prior embodiment wherein the primary trigger is an e-trigger.
  • Embodiment 3: The arrangement as in any prior embodiment wherein the contingency trigger comprises a redundant flow path and a valve.
  • Embodiment 4: The arrangement as in any prior embodiment wherein the redundant flow path accesses an actuation flow path between and including a housing of the primary trigger and the tool.
  • Embodiment 5: The arrangement as in any prior embodiment wherein the valve is a sliding sleeve.
  • Embodiment 6: The arrangement as in any prior embodiment wherein the contingency trigger comprises a break-off plug.
  • Embodiment 7: The arrangement as in any prior embodiment wherein the contingency trigger further comprises a sliding plug breaker.
  • Embodiment 8: The arrangement as in any prior embodiment wherein the contingency trigger comprises a redundant flow path and a rupturable closure.
  • Embodiment 9: The arrangement as in any prior embodiment wherein the closure is a thin wall portion covering the redundant flow path.
  • Embodiment 10: The arrangement as in any prior embodiment wherein the closure is a burst disk.
  • Embodiment 11: The arrangement as in any prior embodiment wherein the contingency trigger comprises a cyclic trigger.
  • Embodiment 12: The arrangement as in any prior embodiment wherein the tool includes a plurality of control line feedthroughs.
  • Embodiment 13: The arrangement as in any prior embodiment wherein the plurality of control line feedthroughs include one that begins at an end of the tool and terminates at an actuation pressure chamber of the tool.
  • Embodiment 14: The arrangement as in any prior embodiment wherein the end is an uphole end.
  • Embodiment 15: The arrangement as in any prior embodiment wherein an actuation pathway begins downhole of the tool, extends through a first of the plurality of control lines, reverses direction and extends through the one of the plurality of control lines.
  • Embodiment 16: The arrangement as in any prior embodiment wherein a control line of the plurality of control lines extending through the one feedthrough is sealingly terminated at the actuation pressure chamber.
  • Embodiment 17: A borehole system including a borehole in a subsurface formation, a string in the borehole, and the remote setting tool arrangement as in any prior embodiment disposed within or as a part of the string.
  • The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Further, it should be noted that the terms “first,” “second,” and the like herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. The terms “about”, “substantially” and “generally” are intended to include the degree of error associated with measurement of the particular quantity based upon the equipment available at the time of filing the application. For example, “about” and/or “substantially” and/or “generally” can include a range of ±8% or 5%, or 2% of a given value.
  • The teachings of the present disclosure may be used in a variety of well operations. These operations may involve using one or more treatment agents to treat a formation, the fluids resident in a formation, a borehole, and/or equipment in the borehole, such as production tubing. The treatment agents may be in the form of liquids, gases, solids, semi-solids, and mixtures thereof. Illustrative treatment agents include, but are not limited to, fracturing fluids, acids, steam, water, brine, anti-corrosion agents, cement, permeability modifiers, drilling muds, emulsifiers, demulsifiers, tracers, flow improvers etc. Illustrative well operations include, but are not limited to, hydraulic fracturing, stimulation, tracer injection, cleaning, acidizing, steam injection, water flooding, cementing, etc.
  • While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited.

Claims (17)

1. A remote set tool arrangement comprising:
a tool having an atmospheric chamber;
a primary trigger operatively connected to the tool and configured to communicate a pressure source to the atmospheric chamber upon triggering; and
a contingency trigger operatively connected to the tool and configured to communicate the pressure source to the atmospheric chamber upon triggering.
2. The arrangement as claimed in claim 1 wherein the primary trigger is an e-trigger.
3. The arrangement as claimed in claim 1 wherein the contingency trigger comprises a redundant flow path and a valve.
4. The arrangement as claimed in claim 3 wherein the redundant flow path accesses an actuation flow path between and including a housing of the primary trigger and the tool.
5. The arrangement as claimed in claim 3 wherein the valve is a sliding sleeve.
6. The arrangement as claimed in claim 1 wherein the contingency trigger comprises a break-off plug.
7. The arrangement as claimed in claim 6 wherein the contingency trigger further comprises a sliding plug breaker.
8. The arrangement as claimed in claim 1 wherein the contingency trigger comprises a redundant flow path and a rupturable closure.
9. The arrangement as claimed in claim 8 wherein the closure is a thin wall portion covering the redundant flow path.
10. The arrangement as claimed in claim 8 wherein the closure is a burst disk.
11. The arrangement as claimed in claim 1 wherein the contingency trigger comprises a cyclic trigger.
12. The arrangement as claimed in claim 1 wherein the tool includes a plurality of control line feedthroughs.
13. The arrangement as claimed in claim 12 wherein the plurality of control line feedthroughs include one that begins at an end of the tool and terminates at an actuation pressure chamber of the tool.
14. The arrangement as claimed in claim 13 wherein the end is an uphole end.
15. The arrangement as claimed in claim 14 wherein an actuation pathway begins downhole of the tool, extends through a first of the plurality of control lines, reverses direction and extends through the one of the plurality of control lines.
16. The arrangement as claimed in claim 13 wherein a control line of the plurality of control lines extending through the one feedthrough is sealingly terminated at the actuation pressure chamber.
17. A borehole system comprising:
a borehole in a subsurface formation;
a string in the borehole; and
the remote setting tool arrangement as claimed in claim 1 disposed within or as a part of the string.
US17/685,008 2021-09-21 2022-03-02 Remote set tool with contingency trigger and system Abandoned US20230088359A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/685,008 US20230088359A1 (en) 2021-09-21 2022-03-02 Remote set tool with contingency trigger and system
PCT/US2022/076519 WO2023049659A1 (en) 2021-09-21 2022-09-16 Remote set tool with contingency trigger and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163246533P 2021-09-21 2021-09-21
US17/685,008 US20230088359A1 (en) 2021-09-21 2022-03-02 Remote set tool with contingency trigger and system

Publications (1)

Publication Number Publication Date
US20230088359A1 true US20230088359A1 (en) 2023-03-23

Family

ID=85573370

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/685,008 Abandoned US20230088359A1 (en) 2021-09-21 2022-03-02 Remote set tool with contingency trigger and system

Country Status (2)

Country Link
US (1) US20230088359A1 (en)
WO (1) WO2023049659A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5819854A (en) * 1996-02-06 1998-10-13 Baker Hughes Incorporated Activation of downhole tools
US20130105149A1 (en) * 2011-04-12 2013-05-02 Halliburton Energy Services, Inc. Safety valve with electrical actuator and tubing pressure balancing
US20160108701A1 (en) * 2014-10-20 2016-04-21 Weatherford Technology Holdings, Llc Failsafe subsurface controlled safety valve
US20170159398A1 (en) * 2015-11-10 2017-06-08 Ncs Multistage Inc. Apparatuses and methods for enabling multistage hydraulic fracturing
US20180010407A1 (en) * 2015-02-26 2018-01-11 Halliburton Energy Services, Inc. Downhole Activation of Seismic Tools
US20190195048A1 (en) * 2016-05-25 2019-06-27 Tco As Self Calibrating Toe Valve
US20200011155A1 (en) * 2017-03-16 2020-01-09 Schlumberger Technology Corporation System and methodology for controlling fluid flow
US20210301610A1 (en) * 2020-03-25 2021-09-30 Baker Hughes Oilfield Operations Llc Casing exit anchor with redundant activation system
US20230088984A1 (en) * 2020-02-18 2023-03-23 Schlumberger Technology Corporation Electronic rupture disc with atmospheric chamber

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7681652B2 (en) * 2007-03-29 2010-03-23 Baker Hughes Incorporated Packer setting device for high-hydrostatic applications
WO2011085215A2 (en) * 2010-01-08 2011-07-14 Schlumberger Canada Limited Wirelessly actuated hydrostatic set module
US8910717B2 (en) * 2011-11-01 2014-12-16 Baker Hughes Incorporated Frangible pressure control plug, actuatable tool including the plug, and method thereof
US10030472B2 (en) * 2014-02-25 2018-07-24 Halliburton Energy Services, Inc. Frangible plug to control flow through a completion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5819854A (en) * 1996-02-06 1998-10-13 Baker Hughes Incorporated Activation of downhole tools
US20130105149A1 (en) * 2011-04-12 2013-05-02 Halliburton Energy Services, Inc. Safety valve with electrical actuator and tubing pressure balancing
US20160108701A1 (en) * 2014-10-20 2016-04-21 Weatherford Technology Holdings, Llc Failsafe subsurface controlled safety valve
US20180010407A1 (en) * 2015-02-26 2018-01-11 Halliburton Energy Services, Inc. Downhole Activation of Seismic Tools
US20170159398A1 (en) * 2015-11-10 2017-06-08 Ncs Multistage Inc. Apparatuses and methods for enabling multistage hydraulic fracturing
US20190195048A1 (en) * 2016-05-25 2019-06-27 Tco As Self Calibrating Toe Valve
US20200011155A1 (en) * 2017-03-16 2020-01-09 Schlumberger Technology Corporation System and methodology for controlling fluid flow
US20230088984A1 (en) * 2020-02-18 2023-03-23 Schlumberger Technology Corporation Electronic rupture disc with atmospheric chamber
US20210301610A1 (en) * 2020-03-25 2021-09-30 Baker Hughes Oilfield Operations Llc Casing exit anchor with redundant activation system

Also Published As

Publication number Publication date
WO2023049659A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
US6199633B1 (en) Method and apparatus for intersecting downhole wellbore casings
US10458221B2 (en) Pressure activated completion tools and methods of use
US10450835B2 (en) Flow control system
US10626703B2 (en) Safety valve coupling and method of manufacturing valve
US20230088359A1 (en) Remote set tool with contingency trigger and system
US11655682B2 (en) Fluid storage and production
US11118687B2 (en) Plug system
US10822910B2 (en) Packer and system
US10975646B2 (en) Object removal enhancement arrangement and method
US11359442B2 (en) Tubular for downhole use, a downhole tubular system and method of forming a fluid passageway at a tubular for downhole use
US20160273306A1 (en) Flapper valve
US20210010347A1 (en) Choke system for a downhole valve
US11946347B2 (en) Cross-over tool, method, and system
US10544629B2 (en) Debris management assembly
US11761280B2 (en) Interlock for a downhole tool
US11208850B1 (en) Downhole tubular system, downhole tubular and method of forming a control line passageway at a tubular
US7621331B2 (en) Fluid communication nipple having an interior passageway with an interior wall section that may be opened to establish fluid communication with the passageway
US20200018137A1 (en) Sliding sleeve including a self-holding connection

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAKER HUGHES OILFIELD OPERATIONS LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VISSOTSKI, ANDREW JOHN;RAMIREZ, RAFAEL;BEARD, THOMAS;AND OTHERS;REEL/FRAME:059154/0463

Effective date: 20220302

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION