EP2510131B1 - Method for manufacturing inconel 718 nickel superalloys - Google Patents

Method for manufacturing inconel 718 nickel superalloys Download PDF

Info

Publication number
EP2510131B1
EP2510131B1 EP10801646.0A EP10801646A EP2510131B1 EP 2510131 B1 EP2510131 B1 EP 2510131B1 EP 10801646 A EP10801646 A EP 10801646A EP 2510131 B1 EP2510131 B1 EP 2510131B1
Authority
EP
European Patent Office
Prior art keywords
temperature
superalloy
forging
grains
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10801646.0A
Other languages
German (de)
French (fr)
Other versions
EP2510131A1 (en
Inventor
Jean-Michel Patrick Maurice Franchet
Gilbert Michel Marin Leconte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP2510131A1 publication Critical patent/EP2510131A1/en
Application granted granted Critical
Publication of EP2510131B1 publication Critical patent/EP2510131B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%

Definitions

  • the present invention relates to a process for manufacturing nickel superalloys of the Inconel 718 type.
  • the Nickel base superalloy Inconel 718 (NC19FeNb) is commonly used for the manufacture of parts in advanced applications, in particular in aeronautics for rotating parts of turbomachines, housings, rings.
  • the mechanical characteristics of use of these parts depend on the intrinsic characteristics of the alloy (chemical composition) of this part but also on the microstructure of the part, in particular on the grain size.
  • the grain size governs in particular the characteristics of oligo-cyclic fatigue, of tensile strength, and of creep.
  • a microstructure of which the grains are fine makes it possible to obtain the best fatigue and tensile properties, while guaranteeing good creep resistance.
  • This fine grain size is currently achieved by means of ranges of heat treatments and part forgings which produce grain recrystallization mechanisms.
  • the invention aims to provide a manufacturing method which makes it possible to limit the appearance of coarse grains during the manufacture of the part.
  • the nickel superalloy also undergoes tempering directly after the quenching following the last forging step.
  • the tempering operation takes place at a sufficiently low temperature so that coarse grains do not recreate within the superalloy.
  • nickel superalloys of the Inconel 718 type are considered.
  • thermomechanical treatments intended to give this billet a structure and a shape conforming to the specifications.
  • the coarse equiaxial grains which result from a static enlargement of the fine grains, for example because the alloy is maintained at a temperature higher than the temperature ⁇ -solvus.
  • magnification can be avoided by performing the forging operations of the alloy processing range at temperatures below the ⁇ -solvus temperature.
  • the inventors have also observed the presence within the alloy of coarse “split” grains, the contours of which are very irregular. It is assumed that these grains are generally formed at temperatures below the temperature of ⁇ -solvus, and that this is the energy stored following the work hardening during the previous forging operation, when the deformation is carried out. at temperatures below the temperature of ⁇ -solvus (for example below 1000 ° C), which causes this bursting of the grains. This stored energy is then "released” in the form of an early and uncontrolled migration of grain boundaries, which generates these "burst” grains.
  • the last forging step (referenced 1 on the figure 1 ) is carried out at a temperature T lower than the ⁇ -solvus temperature, and furthermore that at any point M of this nickel superalloy the local deformation rate D is at least equal to a minimum value D m .
  • the condition that the local deformation rate D is at least equal to a minimum value D m in a region of the superalloy makes it possible to recrystallize the “split” grains into fine grains in this region.
  • certain regions of this part may undergo greater deformations than other regions.
  • the fact that the above condition on the local strain rate D is valid at any point M of the superalloy makes it possible to ensure that the "burst" grains are recrystallized into fine grains throughout the volume of the superalloy.
  • the minimum value D m is equal to 0.7.
  • the minimum value D m is equal to 0.8 or 0.9.
  • the superalloy undergoes quenching from the forging temperature T to ambient temperature T A.
  • the quenching is advantageously carried out at a speed of the order of 15 ° C./min, the tests carried out by the inventors having demonstrated that the mechanical characteristics were best optimized at this quenching speed.
  • a water quenching is carried out.
  • the superalloy does not undergo heat treatment at a temperature above a threshold temperature T s equal to 750 ° C.
  • the superalloy does not undergo dissolution because this takes place at a temperature above the threshold temperature T s .
  • the superalloy can directly undergo tempering (step referenced 2 on the figure 1 ) after quenching following the last forging.
  • the superalloy is heated to a temperature of 720 ° C for 8 hours, then cooled to a temperature of 620 ° C for 8 hours, before being cooled to room temperature. This situation is shown on the figure 2 .
  • the superalloy Before the last forging step according to the invention, the superalloy may have undergone no other, another, or several other forging steps, with for each, several, one, or none of these steps a forging temperature higher than the temperature. ⁇ -solvus.
  • all the forging steps preceding the last forging step are carried out at temperatures below the ⁇ -solvus temperature.
  • the size of all the grains of the superalloy is between 5 and 30 ⁇ m.
  • the size of all the grains of the superalloy is between 5 and 20 ⁇ m. This finer average grain size results in a superalloy whose fatigue life and elastic limit are further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

La présente invention concerne un procédé de fabrication de superalliages de nickel de type Inconel 718.The present invention relates to a process for manufacturing nickel superalloys of the Inconel 718 type.

Le superalliage base Nickel Inconel 718 (NC19FeNb) est couramment utilisé pour la fabrication de pièces dans des applications de pointe, notamment en aéronautique pour des pièces tournantes de turbomachines, des carters, des anneaux. Les caractéristiques mécaniques d'usage de ces pièces dépendent des caractéristiques intrinsèques de l'alliage (composition chimique) de cette pièce mais aussi de la microstructure de la pièce, en particulier de la taille de grain. En effet, la taille de grain gouverne notamment les caractéristiques de fatigue oligo-cyclique, de résistance à la traction, et de fluage. Une microstructure dont les grains sont fins (par exemple avec une taille de grains comprise sensiblement entre 5 à 20 µm) permet d'obtenir les meilleures propriétés de fatigue et de traction, tout en garantissant une bonne tenue en fluage.The Nickel base superalloy Inconel 718 (NC19FeNb) is commonly used for the manufacture of parts in advanced applications, in particular in aeronautics for rotating parts of turbomachines, housings, rings. The mechanical characteristics of use of these parts depend on the intrinsic characteristics of the alloy (chemical composition) of this part but also on the microstructure of the part, in particular on the grain size. In fact, the grain size governs in particular the characteristics of oligo-cyclic fatigue, of tensile strength, and of creep. A microstructure of which the grains are fine (for example with a grain size of substantially between 5 to 20 μm) makes it possible to obtain the best fatigue and tensile properties, while guaranteeing good creep resistance.

Cette taille de grain fine est obtenue actuellement au moyen de gammes de traitements thermiques et de forgeages de la pièce qui produisent des mécanismes de recristallisation des grains.This fine grain size is currently achieved by means of ranges of heat treatments and part forgings which produce grain recrystallization mechanisms.

Cependant, avec les gammes actuelles, on observe fréquemment sur des pièces en superalliage de nickel des zones de grains grossiers (c'est-à-dire des grains dont la taille est bien supérieure à la taille des grains fins). Ces zones sont indésirables car elles sont à l'origine d'une diminution des propriétés mécaniques de ces pièces. D'autres exemples de gammes sont décrits dans les documents FR 2 089 069 , EP 792 945 et la publication D. U. Furrer : « Forging of Nickel-Base Alloys » in : « Metalworking : Bulk Forming », 1er janvier 2005, ASM international, XP055581727, ISBN : 978-1-62708-185-6, pages 324-330, DOI : 10.31399/asm.hb.v14a.a0003999 .However, with the current ranges, one frequently observes on nickel superalloy parts areas of coarse grains (that is to say grains whose size is much greater than the size of fine grains). These areas are undesirable because they are the cause of a reduction in the mechanical properties of these parts. Other examples of ranges are described in the documents FR 2,089,069 , EP 792 945 and publication DU Furrer: "Forging of Nickel-Base Alloys" in: "Metalworking: Bulk Forming", January 1, 2005, ASM international, XP055581727, ISBN: 978-1-62708-185-6, pages 324-330, DOI: 10.31399 / asm.hb.v14a.a0003999 .

Ces zones de grains grossiers apparaissent même lorsque les gammes comprennent des opérations de forgeage en dessous de la température δ-solvus (température de remise en solution des précipités δ), alors que de telles opérations sont réputées sans effet sur la microstructure finale de l'alliage, car elles sont supposées en théorie garantir une absence de croissance des grains.These coarse-grained areas appear even when the ranges include forging operations below the δ-solvus temperature (temperature for re-dissolving the precipitates δ), when such operations are deemed to have no effect on the final microstructure of the alloy, because they are supposed in theory to guarantee an absence of grain growth.

L'invention vise à proposer un procédé de fabrication qui permette de limiter l'apparition de grains grossiers pendant la fabrication de la pièce.The invention aims to provide a manufacturing method which makes it possible to limit the appearance of coarse grains during the manufacture of the part.

Ce but est atteint grâce à un procédé selon la revendication 1, et notamment grâce au fait que la dernière étape de forgeage que subit ledit superalliage de nickel est telle qu'elle s'effectue à une température T inférieure à la température δ-solvus, qu'en tout point M de ce superalliage de nickel le taux de déformation local D, défini par D = Ln δi δf

Figure imgb0001
où δi est la distance initiale entre le point M et un point M' voisin de M et δf est la distance entre les points M et M' après forgeage, est au moins égal à une valeur minimale Dm égale à 0,7, et en ce que ledit superalliage de nickel ne subit pas de traitement thermique à une température supérieure à une température seuil Ts égale à 750°C après ladite trempe.This object is achieved by means of a method according to claim 1, and in particular by virtue of the fact that the last forging step which the said nickel superalloy undergoes is such that it is carried out at a temperature T lower than the δ-solvus temperature, that at any point M of this superalloy of nickel the local deformation rate D, defined by D = Ln δi δf
Figure imgb0001
where δ i is the initial distance between point M and a point M 'close to M and δ f is the distance between points M and M' after forging, is at least equal to a minimum value D m equal to 0.7 , and in that said nickel superalloy does not undergo heat treatment at a temperature above a threshold temperature T s equal to 750 ° C. after said quenching.

Grâce à ces dispositions, les grains grossiers encore présents dans le superalliage sont retransformés en grains fins, et il ne se forme pas de nouveaux grains grossiers au sein du superalliage.Thanks to these arrangements, the coarse grains still present in the superalloy are transformed back into fine grains, and no new coarse grains are formed within the superalloy.

Avantageusement le superalliage de nickel subit en outre un revenu directement après la trempe suivant la dernière étape de forgeage.Advantageously, the nickel superalloy also undergoes tempering directly after the quenching following the last forging step.

Ainsi, les propriétés de résilience du superalliage sont améliorées tandis que ses autres propriétés mécaniques ne sont pas sensiblement diminuées. L'opération de revenu a lieu à une température suffisamment basse pour qu'il ne se recrée pas de grains grossiers au sein du superalliage.Thus, the resilience properties of the superalloy are improved while its other mechanical properties are not significantly reduced. The tempering operation takes place at a sufficiently low temperature so that coarse grains do not recreate within the superalloy.

L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit, d'un mode de réalisation représenté à titre d'exemple non limitatif. La description se réfère aux dessins annexés sur lesquels :

  • la figure 1 montre schématiquement le procédé de fabrication selon l'invention,
  • la figure 2 montre schématiquement un exemple du procédé de fabrication selon l'invention.
The invention will be well understood and its advantages will appear better on reading the following detailed description of an embodiment shown by way of non-limiting example. The description refers to the accompanying drawings in which:
  • the figure 1 schematically shows the manufacturing process according to the invention,
  • the figure 2 schematically shows an example of the manufacturing process according to the invention.

On considère dans la présente invention des superalliages de nickel de type Inconel 718.In the present invention, nickel superalloys of the Inconel 718 type are considered.

Dans le procédé selon l'invention, on part d'une billette qui a déjà subi des traitements thermomécaniques, destinés à donner à cette billette une structure et une forme conformes aux spécifications.In the process according to the invention, one starts with a billet which has already undergone thermomechanical treatments, intended to give this billet a structure and a shape conforming to the specifications.

En examinant des superalliages de nickel de l'art antérieur dont la microstructure présente des grains grossiers, les inventeurs ont constatés que ces grains grossiers étaient de deux natures différentes.By examining nickel superalloys of the prior art, the microstructure of which has coarse grains, the inventors have observed that these coarse grains were of two different types.

Ainsi, on distingue d'une part les grains équiaxes grossiers, qui résultent d'un grossissement statique des grains fins, par exemple parce que l'alliage est maintenu à une température supérieure à la température δ-solvus. Un tel grossissement peut être évité en effectuant les opérations de forgeage de la gamme de traitement de l'alliage à des températures inférieures à la température δ-solvus.Thus, one distinguishes on the one hand the coarse equiaxial grains, which result from a static enlargement of the fine grains, for example because the alloy is maintained at a temperature higher than the temperature δ-solvus. Such magnification can be avoided by performing the forging operations of the alloy processing range at temperatures below the δ-solvus temperature.

De façon inattendue, les inventeurs ont également constaté la présence au sein de l'alliage de grains grossiers "éclatés", dont les contours sont très irréguliers. Il est supposé que ces grains se forment en général à des températures inférieures à la température de δ-solvus, et que c'est l'énergie emmagasinée suite à l'écrouissage lors de l'opération de forge précédente, lorsque la déformation est réalisée à des températures inférieures à la température de δ-solvus (par exemple inférieures à 1000°C), qui provoque cet éclatement des grains. Cette énergie emmagasinée est alors "libérée" sous forme d'une migration précoce et non contrôlée des joints de grain, ce qui génère ces grains "éclatés".Unexpectedly, the inventors have also observed the presence within the alloy of coarse “split” grains, the contours of which are very irregular. It is assumed that these grains are generally formed at temperatures below the temperature of δ-solvus, and that this is the energy stored following the work hardening during the previous forging operation, when the deformation is carried out. at temperatures below the temperature of δ-solvus (for example below 1000 ° C), which causes this bursting of the grains. This stored energy is then "released" in the form of an early and uncontrolled migration of grain boundaries, which generates these "burst" grains.

Selon l'invention, comme représenté en figure 1, on fait en sorte que dans la gamme de forgeage que subit le superalliage, la dernière étape de forgeage (référencée 1 sur la figure 1) s'effectue à une température T inférieure à la température δ-solvus, et en outre qu'en tout point M de ce superalliage de nickel le taux de déformation local D est au moins égal à une valeur minimale Dm.According to the invention, as shown in figure 1 , we ensure that in the forging range that the superalloy undergoes, the last forging step (referenced 1 on the figure 1 ) is carried out at a temperature T lower than the δ-solvus temperature, and furthermore that at any point M of this nickel superalloy the local deformation rate D is at least equal to a minimum value D m .

Le taux de déformation local D caractérise la déformation locale en un point M d'un matériau. Il est défini par la relation D = Ln δi δf

Figure imgb0002
où δi est la distance initiale entre ce point M et un point M' voisin de M, et δf est la distance entre les points M et M' après forgeage.The local strain rate D characterizes the local strain at a point M of a material. It is defined by the relation D = Ln δi δf
Figure imgb0002
where δ i is the initial distance between this point M and a point M 'close to M, and δ f is the distance between points M and M' after forging.

La réalisation de cette dernière étape de forgeage à une température T inférieure à la température δ-solvus permet d'éviter la formation de grains équiaxes grossiers.Carrying out this last forging step at a temperature T below the δ-solvus temperature makes it possible to avoid the formation of coarse equiaxial grains.

De plus, la condition que le taux de déformation local D est au moins égal à une valeur minimale Dm dans une région du superalliage permet de recristalliser les grains "éclatés" en grains fins dans cette région. Lors de l'étape de forgeage, selon la forme finale donnée à la pièce, certaines régions de cette pièce peuvent subir des déformations plus importantes que d'autres régions. Le fait que la condition ci-dessus sur le taux de déformation local D soit valable en tout point M du superalliage permet de s'assurer que les grains "éclatés" sont recristallisés en grains fins dans tout le volume du superalliage.In addition, the condition that the local deformation rate D is at least equal to a minimum value D m in a region of the superalloy makes it possible to recrystallize the “split” grains into fine grains in this region. During the forging step, depending on the final shape given to the part, certain regions of this part may undergo greater deformations than other regions. The fact that the above condition on the local strain rate D is valid at any point M of the superalloy makes it possible to ensure that the "burst" grains are recrystallized into fine grains throughout the volume of the superalloy.

La valeur minimale Dm est égale à 0,7.The minimum value D m is equal to 0.7.

Alternativement, la valeur minimale Dm est égale à 0,8 ou 0,9.Alternatively, the minimum value D m is equal to 0.8 or 0.9.

Après ce forgeage, le superalliage subit une trempe depuis la température de forgeage T jusqu'à température ambiante TA.After this forging, the superalloy undergoes quenching from the forging temperature T to ambient temperature T A.

Avantageusement la trempe est effectuée à une vitesse de l'ordre de 15°C/min, les essais réalisés par les inventeurs ayant démontré que les caractéristiques mécaniques étaient le mieux optimisées à cette vitesse de trempe. De préférence il est effectué une trempe à eau.The quenching is advantageously carried out at a speed of the order of 15 ° C./min, the tests carried out by the inventors having demonstrated that the mechanical characteristics were best optimized at this quenching speed. Preferably, a water quenching is carried out.

De plus, après cette trempe suivant cette étape finale de forgeage, le superalliage ne subit pas traitement thermique à une température supérieure à une température seuil Ts égale à 750°C.In addition, after this quenching following this final forging step, the superalloy does not undergo heat treatment at a temperature above a threshold temperature T s equal to 750 ° C.

En effet, un traitement thermique à une température supérieure à la température seuil Ts est susceptible de créer des grains "éclatés" au sein du superalliage.In fact, a heat treatment at a temperature above the threshold temperature T s is likely to create “split” grains within the superalloy.

En particulier, le superalliage ne subit pas de mise en solution car celle-ci a lieu à une température supérieure à la température seuil Ts.In particular, the superalloy does not undergo dissolution because this takes place at a temperature above the threshold temperature T s .

En revanche, le superalliage peut subir directement un revenu (étape référencée 2 sur la figure 1) après la trempe suivant le dernier forgeage.On the other hand, the superalloy can directly undergo tempering (step referenced 2 on the figure 1 ) after quenching following the last forging.

Par exemple, le superalliage est chauffé à une température de 720°C pendant 8 heures, puis refroidit jusqu'à une température de 620°C pendant 8 heures, avant d'être refroidi jusqu'à température ambiante. Cette situation est représentée sur la figure 2.For example, the superalloy is heated to a temperature of 720 ° C for 8 hours, then cooled to a temperature of 620 ° C for 8 hours, before being cooled to room temperature. This situation is shown on the figure 2 .

Avant la dernière étape de forgeage selon l'invention, le superalliage peut avoir subi aucun autre, une autre, ou plusieurs autres étapes de forgeage, avec pour chacune, plusieurs, une, ou aucune de ces étapes une température de forgeage supérieure à la température δ-solvus.Before the last forging step according to the invention, the superalloy may have undergone no other, another, or several other forging steps, with for each, several, one, or none of these steps a forging temperature higher than the temperature. δ-solvus.

Avantageusement, toutes les étapes de forgeage précédant la dernière étape de forgeage sont réalisées à des températures inférieures à la température δ-solvus.Advantageously, all the forging steps preceding the last forging step are carried out at temperatures below the δ-solvus temperature.

Des simulations numériques ont été réalisées par les inventeurs et montrent que, à l'issue du procédé selon l'invention, la taille des grains est effectivement réduite.Numerical simulations were carried out by the inventors and show that, at the end of the method according to the invention, the size of the grains is effectively reduced.

Par exemple, à l'issue du procédé selon l'invention, la taille de tous les grains du superalliage est comprise entre 5 et 30 µm.For example, at the end of the process according to the invention, the size of all the grains of the superalloy is between 5 and 30 μm.

Avantageusement, à l'issue du procédé selon l'invention, la taille de tous les grains du superalliage est comprise entre 5 et 20 µm. Cette taille moyenne des grains plus fine se traduit par un superalliage dont la durée de vie en fatigue et la limite élastique sont encore améliorées.Advantageously, at the end of the process according to the invention, the size of all the grains of the superalloy is between 5 and 20 μm. This finer average grain size results in a superalloy whose fatigue life and elastic limit are further improved.

Claims (3)

  1. A fabrication method of fabricating Inconel 718 type nickel superalloys characterized in that the last forging step to which said nickel superalloy is subjected is such that it takes place at a temperature T lower than the δ-solvus temperature, that at all points M of the nickel superalloy the local deformation ratio D, defined as D = Ln δi δf
    Figure imgb0005
    where δi is the initial distance between the point M and a point M' neighboring the point M, and δf is the distance between the points M and M' after forging, is not less than a minimum value Dm equal to 0.7, and in that said nickel superalloy is subjected to quenching after following that final forging step and is not subjected to any heat treatment at a temperature higher than a threshold temperature Ts equal to 750°C after said quenching.
  2. A fabrication method according to claim 1 characterized in that said nickel superalloy is also subjected to tempering directly after the quenching following said forging step.
  3. A fabrication method according to claim 1 characterized in that all of the forging steps preceding said last forging step are performed at temperatures lower than the δ-solvus temperature.
EP10801646.0A 2009-12-10 2010-12-09 Method for manufacturing inconel 718 nickel superalloys Active EP2510131B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0958815A FR2953860B1 (en) 2009-12-10 2009-12-10 METHOD FOR MANUFACTURING INCONEL 718 TYPE NICKEL SUPERBORTS
PCT/FR2010/052658 WO2011070302A1 (en) 2009-12-10 2010-12-09 Method for manufacturing inconel 718 nickel superalloys

Publications (2)

Publication Number Publication Date
EP2510131A1 EP2510131A1 (en) 2012-10-17
EP2510131B1 true EP2510131B1 (en) 2021-03-24

Family

ID=42313893

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10801646.0A Active EP2510131B1 (en) 2009-12-10 2010-12-09 Method for manufacturing inconel 718 nickel superalloys

Country Status (9)

Country Link
US (1) US20120247626A1 (en)
EP (1) EP2510131B1 (en)
JP (1) JP5951499B2 (en)
CN (1) CN102652179B (en)
BR (1) BR112012013752A2 (en)
CA (1) CA2782460A1 (en)
FR (1) FR2953860B1 (en)
RU (1) RU2567968C2 (en)
WO (1) WO2011070302A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9310081B2 (en) 2012-05-14 2016-04-12 Delavan Inc. Methods of fabricating fuel injectors using laser additive deposition
CN106536781B (en) 2014-07-23 2018-04-13 株式会社Ihi The manufacture method of Ni alloy parts
CN104625607B (en) * 2014-12-09 2017-07-14 抚顺特殊钢股份有限公司 Glisten weld-ring INCO718 process for making profiles
US10077714B2 (en) 2015-11-06 2018-09-18 Rolls-Royce Plc Repairable fuel injector
CN111118423B (en) * 2019-11-27 2020-12-15 北京钢研高纳科技股份有限公司 GH4282 nickel-based high-temperature alloy bar and preparation method thereof
CN115323298B (en) * 2022-08-11 2023-03-03 江苏大学 Physical simulation method for nickel-based superalloy forging process

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3660177A (en) * 1970-05-18 1972-05-02 United Aircraft Corp Processing of nickel-base alloys for improved fatigue properties
JP3369627B2 (en) * 1993-04-08 2003-01-20 日立金属株式会社 Method of manufacturing fine crystal grain super heat resistant alloy member
JPH08311626A (en) * 1995-05-17 1996-11-26 Japan Steel Works Ltd:The Production of superalloy material
FR2745588B1 (en) * 1996-02-29 1998-04-30 Snecma METHOD FOR THE HEAT TREATMENT OF A NICKEL-BASED SUPERALLOY
JP3909406B2 (en) * 2002-02-06 2007-04-25 大同特殊鋼株式会社 Method for producing Ni-based alloy material
US6730264B2 (en) * 2002-05-13 2004-05-04 Ati Properties, Inc. Nickel-base alloy
US7531054B2 (en) * 2005-08-24 2009-05-12 Ati Properties, Inc. Nickel alloy and method including direct aging
FR2937654A1 (en) * 2008-10-28 2010-04-30 Snecma Treatment of metal pieces for improving fatigue life, comprises determining, on the piece, zones with hard gradient of constraints and compression of zones for confining inclusions in a field of compression constraints

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Metalworking: Bulk Forming", 1 January 2005, ASM INTERNATIONAL, ISBN: 978-1-62708-185-6, article D. U. FURRER: "Forging of Nickel-Base Alloys", pages: 324 - 330, XP055581727, DOI: 10.31399/asm.hb.v14a.a0003999 *
D D KRUEGER: "THE DEVELOPMFNT OF DIRECT AGE 718 FOR GAS TURBINE ENGINE DISK APPLICATIONS", METALS & MATERIALS SOCIETY, 1 January 1989 (1989-01-01), pages 279, XP055579530, Retrieved from the Internet <URL:http://www.tms.org/Superalloys/10.7449/1989/Superalloys_1989_279_296.pdf> [retrieved on 19890101] *
W. HORVATH ET AL: "The Effectiveness of Direct Aging on INCONEL 718 Forgings Produced at High Strain Rates as Obtained on a Screw Press", SUPERALLOYS 718, 625, 706 AND VARIOUS DERIVATIVES : PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON SUPERALLOYS 718, 625, 706 AND VARIOUS DERIVATIVES ; HELD JUNE 17 - 20, 2001, 1 January 2001 (2001-01-01), Warrendale, Pa., pages 223 - 228, XP055579520, ISBN: 978-0-87339-510-6, DOI: 10.7449/2001/Superalloys_2001_223_228 *
Y DESVALL&ES ET AL: "DELTA PHASE IN INCONEL 718: MECHANICAL PROPERTIES AND FORGING PROCESS REQUIREMENTS Background", 2 January 1994 (1994-01-02), XP055402560, Retrieved from the Internet <URL:http://www.tms.org/superalloys/10.7449/1994/Superalloys_1994_281_291.pdf> [retrieved on 20170830] *

Also Published As

Publication number Publication date
BR112012013752A2 (en) 2016-03-15
CN102652179B (en) 2015-11-25
EP2510131A1 (en) 2012-10-17
WO2011070302A1 (en) 2011-06-16
FR2953860A1 (en) 2011-06-17
CN102652179A (en) 2012-08-29
JP2013513728A (en) 2013-04-22
RU2567968C2 (en) 2015-11-10
US20120247626A1 (en) 2012-10-04
FR2953860B1 (en) 2015-05-15
CA2782460A1 (en) 2011-06-16
RU2012128876A (en) 2014-01-20
JP5951499B2 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
EP2510131B1 (en) Method for manufacturing inconel 718 nickel superalloys
JP6057363B1 (en) Method for producing Ni-base superalloy
EP0971041B1 (en) Single crystal nickel-based superalloy with high solvus gamma prime phase
EP2393951A2 (en) Method for producing a piece made from a superalloy based on nickel and corresponding piece
KR102325136B1 (en) Grain refinement in in706 using laves phase precipitation
FR2503188A1 (en) MONOCRYSTALLINE SUPERALLIAGE WITH MATRIX MATRIX BASED ON NICKEL, PROCESS FOR IMPROVING WORKPIECES IN THIS SUPERALLIATION AND PARTS OBTAINED THEREBY
WO2010031985A1 (en) Method for manufacturing a titanium part through initial β forging
KR20200002965A (en) Precipitation Hardening Cobalt-Nickel Base Superalloys and Articles Made therefrom
Šmíd et al. High cycle fatigue of nickel-based superalloy MAR-M 247 at high temperatures
WO2015136094A1 (en) Precipitation hardening nickel alloy, part made of said alloy, and manufacturing method thereof
EP3942082A2 (en) Superalloy with optimized properties and a limited density
JP6718219B2 (en) Method for manufacturing heat resistant aluminum alloy material
US8906174B2 (en) Ni-base alloy and method of producing the same
JP7518344B2 (en) Titanium alloy rod and its manufacturing method
EP0184949B2 (en) Process for the rejuvenation of nickel-based superalloy articles being at the end of their service life
JP6245728B2 (en) Fatigue life recovery heat treatment method
WO1997032052A1 (en) Method for heat treating a nickel superalloy
TWI675921B (en) Nickel-based austenitic alloy and method of forming the same
EP4031689A1 (en) Titanium alloy fastener and manufacturing method
FR2952559A1 (en) Manufacturing a titanium alloy part, which is useful in aeronautical industry, comprises performing N-successive treatment cycles of hot forging treatment at a specified temperature until the part obtains a uniform temperature
FR3117507A1 (en) METHOD FOR MANUFACTURING A MONOCRYSTALLINE SUPERALLOY PART
EP0841107B1 (en) Process for manufacturing by cold spinning a workpiece made of inconel 718 alloy
FR3117506A1 (en) METHOD FOR MANUFACTURING A MONOCRYSTALLINE SUPERALLOY PART
FR2729675A1 (en) Heat-resistant nickel@-based alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120703

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: LECONTE, GILBERT, MICHEL, MARIN

Inventor name: FRANCHET, JEAN-MICHEL, PATRICK, MAURICE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170914

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN AIRCRAFT ENGINES

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201007

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LECONTE, GILBERT, MICHEL, MARIN

Inventor name: FRANCHET, JEAN-MICHEL, PATRICK, MAURICE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010066656

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1374584

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210625

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210324

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1374584

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210724

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210726

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010066656

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

26N No opposition filed

Effective date: 20220104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211209

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101209

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 14

Ref country code: DE

Payment date: 20231121

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324