EP2509156B1 - Electric PCB track - Google Patents

Electric PCB track Download PDF

Info

Publication number
EP2509156B1
EP2509156B1 EP12161739.3A EP12161739A EP2509156B1 EP 2509156 B1 EP2509156 B1 EP 2509156B1 EP 12161739 A EP12161739 A EP 12161739A EP 2509156 B1 EP2509156 B1 EP 2509156B1
Authority
EP
European Patent Office
Prior art keywords
conductive trace
electric conductive
fractal
iteration
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12161739.3A
Other languages
German (de)
French (fr)
Other versions
EP2509156A1 (en
Inventor
Alexander Popugaev
Rainer Wansch
Lars Weisgerber
Bernhart Pelger-Alzner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2509156A1 publication Critical patent/EP2509156A1/en
Application granted granted Critical
Publication of EP2509156B1 publication Critical patent/EP2509156B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith

Definitions

  • Embodiments according to the invention relate to an electrical trace and its application as an antenna or line or in a distributed circuit as defined in the appended set of claims.
  • FIG. 2 shows US Pat. No. 6,476,766 B1 a well-known fractal antenna and a fractal circuit that uses a classic fractal structure.
  • a fractal antenna is in Fig. 2 shown.
  • This type of known antennas have the disadvantage that strong reflections can occur at the corners and kinks in the high-frequency range (HF range). By using such curves, for example, delay lines can be miniaturized.
  • the patent US 2008/0084352 A1 shows a device with a non-conductive and a conductive material that forms an antenna.
  • the antenna has the shape determined by a fractal curve based on a modified Peano-Gosper curve.
  • Such a Gosper curve is defined in particular by the fact that in each case 60 ° angle segments and 120 ° angle segments are used.
  • the patent EP 1 699 110 A2 3 shows a space-filling curve geometry without curved elements.
  • the patent US 2010/0177001 A1 shows an antenna structure based on polygons.
  • the patent US 6,452,553 shows a fractal antenna and arcuate segments. It is the object of the present invention to provide an electrical trace which allows a reduction of reflections and / or losses in the electrical trace when the electrical trace is used for RF signals.
  • an electrical trace provides an arcuate modification of a shape of at least a portion of a fractal, at least a second iteration.
  • the fraction of the fractal is greater than twice a first iteration of the fractal.
  • the arcuate modified shape has a radius of curvature for directional changes that is greater than a predefined minimum radius of curvature.
  • Embodiments according to the invention are based on the core idea of using electrical conductor tracks which have a shape (at least a part) of a fractal sen, wherein the electrical conductor track instead of corners has arcuate pieces.
  • the use of fractal-shaped interconnects allows very space-saving interconnects of great length to be realized.
  • the arcuate modification the corners of the fractal
  • the reflections and losses in the electrical conductor track when used with RF signals high-frequency signals, eg greater than 1, 10, 100 or 1000 MHz
  • a Peano curve or box fractal is used as the shaping fractal.
  • the arcuate modified form fits on a grid of annular segments, which are arranged at a distance of their average diameter.
  • the electrical trace can be systematically given its shape without falling below the predefined minimum curve radius.
  • Fig. 1a shows a schematic representation of an electrical conductor 100 according to an embodiment of the invention.
  • the electrical trace 100 has at least partially an arcuate modification of a shape of at least a portion of a fractal at least second iteration.
  • the fraction of the fractal is greater than twice a first iteration of the fractal.
  • the arcuately modified form has a larger radius of curvature for changes in direction than a predefined minimum curve radius R min .
  • Fig. 1a shows an example of an electrical conductor 100 having the shape of a part of a second-course Peano curve, as in arcuate form in FIG Fig. 1b is shown.
  • the part of the Peano curve 150 used for the electrical conductor track 100 is marked by the drawn circle 160.
  • the electrical conductor may comprise, for example, copper, aluminum or another conductive material.
  • the electrical conductor track 100 can also have other parts with a different shape.
  • the electrical conductor 100 may, as in Fig. 1a shown have open ends, with which they can be connected, for example, to electrical circuits.
  • the electrical trace 100 may also form a closed curve and be connected at arbitrary points of the closed curve.
  • the fractal can in principle be any fractal and depends, for example, on the particular application of the electrical conductor 100.
  • the fractal property of the curve can be recognized, for example, by a self-similarity.
  • the fractal may be a Peano curve or a box fractal.
  • serpentine Peano curves can be used.
  • Fractals are preferably used in which the number of line segments at least triples between two iteration steps (ie in an iteration), which is the case with box fractals and peano curves (of the serpentine type).
  • the number of line segments changed in one iteration step is set to at least 3, for example.
  • Pólya curves the number of line segments only doubles for each iteration step.
  • the fractal may be, for example, a space-filling fractal, which in this context may also be called space-filling curve.
  • Such space-filling curves can be iteratively described by an initiator (initial figure, “base”) and a generator (formation specification, "motif”). By (infinitely) repeated application of this educational rule, the space-filling property of the curve described is achieved.
  • the structures used according to the described concept are fractal curves, for example, with the isotropic scaling necessary for exact self-similarity between the iterations. These then also differ, for example, from curves with quasi-self-similarity or statistical self-similarity.
  • fractal at least part of a fractal is meant that it can also be the entire fractal of a particular iteration.
  • the part of the fractal does not have to be a true subset of the fractal, but part of the fractal may also mean the entire fractal.
  • an entire fractal is part of a higher iteration fractal anyway (for example, an entire fractal of the third iteration is part of a fractal of the fourth iteration).
  • the fraction of the fractal must be greater than at least two times the first iteration of the fractal, since fractals in the first iteration often have very simple structures, and otherwise the advantage of space-saving routing in the use of fractals does not yet come to fruition.
  • the phrase "the fraction of the fractal is greater than twice a first iteration of the fractal” means that the electrical trace within the portion of the fractal more than twice takes the form of the first iteration of the fractal (in its arcuate variation). In other words, the part of the fractal contains more than twice (the shape) of the fractal in the first iteration.
  • the arcuate modified form has in comparison to these known forms of fractals a predefined minimum curve radius R min for changes in direction of the electrical conductor, which is not exceeded.
  • the predefined, minimum radius of curvature is at least three times (or 1 times, 1.5 times, twice, four times or more) the width of the electrical conductor track 100.
  • the radius of curvature of a change in direction of the electrical trace refers to the inner radius, the mean radius or the outer radius of the electrical trace in the corresponding portion of the change in direction.
  • a length of the electric wiring 100 is greater than 10 times (or 20x, 50x, 100x or more) a width of the electrical wiring 100 and greater than 10 times (or 20x, 50x, 100x or more) a height of the electrical trace.
  • the electrical conductor 100 takes in its longitudinal extent (direction of its largest extension) to the arc-shaped modified form.
  • the electrical trace 100 may have a constant width (or height) along its length, or alternatively have different widths (or heights) in different sections. This may vary depending on the requirement of the particular application.
  • the electrical conductor 100 is in a plane, so that the arcuate modified form is easily visible. By this is meant that the electrical conductor extends in its longitudinal extent and its width extension in the plane. However, it is also possible that a three-dimensional structure is formed with the electrical conductor track 100, so that parts of the electrical conductor track 100 can lie in different planes.
  • the electrical conductor track 100 may also have an arcuate modification of a shape of at least part of a fractal at least twice iteration. These can be parts of the same fractal or fractals. For example, to achieve a large space-saving effect, it may be determined that the electrical trace 100 is at least 50% (or 20%, 30%, 70%, 80% or more) of its length simply or multiply an arcuate variation of a shape of at least one Part of a fractal has at least second iteration.
  • the electrical trace has an arcuately modified shape that includes only direction changes with the same curve radius (which is greater than the predefined minimum curve radius). This may also relate to the entire electrical trace, if it is greater than that part corresponding to an arcuate modified form of at least a portion of a fractal at least second iteration.
  • One way to construct such structures is to adapt the electrical trace to a grid consisting of annular segments.
  • the arcuate modified form fits for example on a grid of annular segments (eg Fig. 1c ), which are arranged at a distance of their average diameter.
  • the mean diameter of the annular segment is the mean of the inner diameter (2 * R 1 ) and the outer diameter (2 * R 2 ) of the annular segment.
  • the annular segments of the grid are the same size.
  • Some embodiments according to the invention relate to an antenna, a line or a distributed circuit having an electrical conductor track according to the described concept.
  • an antenna or, for example, a delay line can be realized in a very space-saving manner and with little reflection and / or low loss.
  • Some other embodiments according to the invention relate to a method for producing an electrical conductor, wherein the electrical conductor is produced with the described shape (on a substrate).
  • Some embodiments according to the invention relate to antennas, lines and / or distributed circuits using space-filling curves and fractals (arcuate modification of the shape) modified on rounding gratings (raster with annular segments).
  • electrical conductor tracks are used according to the described concept.
  • the distributed circuits may be, for example, high frequency circuits.
  • the antennas, lines and / or passive high frequency circuits can be constructed using modified space filling curves and (or) fractals.
  • a delay line can be effectively miniaturized using fractal round segments.
  • the proposed concept allows e.g. the construction of fractal antennas and circuits, based on a Peano curve, which has been modified so that no kinks arise.
  • optimal transmission properties with respect to reflections can be ensured, for example, particularly in the case of microstrip line circuits.
  • a peano curve modified on a roundness grid shows, if you look at the grid Fig. 4 and 5 takes and draws the in Fig. 7 If you rotate the curve with the grid by 45 °, you can see that this curve is very similar to the Peano curve of the 1st iteration Fig. 8a and 8b is shown.
  • Fig. 8a shows a Peano curve first iteration
  • Fig. 8b shows a modified Peano curve first iteration.
  • the modified curve can be considered as an approximation of the Peano curve through arcuate segments.
  • Fig. 9A Serpentine type second 000,000,000 Peano curve and 9B (modified second-serpentine peano curve 000,000,000)
  • Fig. 10A (Peano curve of the second iteration of serpentine type 111 111 111) and 10B (modified Peano curve of the second iteration of serpentine type 111 111 111)
  • Fig. 11A (Peano curve of the second iteration of serpentine type 010 101 010) and 11B (modified Peano curve of the second iteration of serpentine type 010 101 010) show 2nd iterations of the three different variants.
  • a round box-modified box fractal (Vicsek fractal, Minkowski island) may be used.
  • the fractal antenna shown can also be modified on a rounding grid. The first three iterations are in Figs. 12A-12C illustrated.
  • a Butler matrix For a 2x2 antenna arrangement, a Butler matrix was developed and then miniaturized. The circuit should realize a uniform amplitude assignment and the following phase assignments (depending on the gate combination): -180 ° / -90 ° / -180 ° / -270 °; -90 ° / -180 ° / -270 ° / -180 °; -180 ° / -270 ° / -180 ° / -90 ° and -270 ° / -180 ° / -90 ° / -180 °.
  • FIG. 14a A direct comparison of the constructed Butler matrices is in Figs. 14a and 14b to see. It is in Fig. 14b an electrical trace 1400 having multiple arcuate modification of a shape of at least a portion 1410 of a fractal at least second iteration is shown.
  • the miniaturized feed network (in Fig. 14b ) is almost three times as small as the conventional design ( Fig. 14a ).
  • the circuits include 90 ° hybrids, cross couplers and delay lines.
  • the miniaturized cross-coupler was designed as two miniaturized 90 ° hybrids connected in series, with each miniaturized 90 ° hybrid (one part) following the modified Peano curve Fig. 11b represents. Measurement results of the manufactured Butler matrix are summarized in the following table.
  • Some embodiments according to the invention relate to antennas, lines, and / or distributed circuits created using space-filling fractal-arced curves, the fractal structure having exact self-similarity or scale invariance, at least one iteration step, or one or more Sections of such a fractal curve are used, and the resulting curve has been modified by means of a roundness grating so that a non-contact and uncut routing is achieved, so that line sections of the original fractal structure for a non-contact guidance need not be shortened manually, whereby compared to conventional Design a significantly simplified routing is possible, and optimum transmission properties can be ensured with respect to reflections.
  • aspects have been described in the context of a device, it will be understood that these aspects also constitute a description of the corresponding method, so that a block or a component of a device is also to be understood as a corresponding method step or as a feature of a method step. Similarly, aspects described in connection with or as a method step also represent a description of a corresponding block or detail or feature of a corresponding device.

Description

Ausführungsbeispiele gemäß der Erfindung beziehen sich auf eine elektrische Leiterbahn und deren Anwendung als Antenne oder Leitung oder in einer verteilten Schaltung, wie im anhängenden Anspruchssatz definiert.Embodiments according to the invention relate to an electrical trace and its application as an antenna or line or in a distributed circuit as defined in the appended set of claims.

Es sind Antennen mit vielen unterschiedlich geformten Leiterbahnen bekannt. Zum Beispiel zeigt die US 6,476,766 B1 eine bekannte fraktale Antenne und eine fraktale Schaltung, die eine klassische fraktale Struktur nutzt. Eine solche fraktale Antenne ist in Fig. 2 gezeigt. Ein anderes Beispiel für einen Rat-Race-Hybrid (Hybrid-Koppler) als ein Moor-Fraktal in der zweiten Verfeinerung nach " Ghali, H.; Moselhy, T. A. "Miniaturized Fractal Rat-Race, Branch-Line and Coupled-Line Hybrids", IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 11, Nov. 2004, pp. 2513-2520 " ist in Fig. 3 gezeigt.There are known antennas with many different shaped interconnects. For example, the shows US Pat. No. 6,476,766 B1 a well-known fractal antenna and a fractal circuit that uses a classic fractal structure. Such a fractal antenna is in Fig. 2 shown. Another example of a rat race hybrid (hybrid coupler) as a moor fractal in the second refinement after " Ghali, H .; Moselhy, TA "Miniaturized Fractal Rat-Race, Branch-Line and Coupled-Line Hybrids", IEEE Transactions on Microwave Theory and Techniques, Vol. 11, Nov. 2004, pp. 2513-2520 "is in Fig. 3 shown.

Ähnlich sehen Antennenstrukturen in US 2010/0177001 A1 aus. Diese stellen modifizierte polygonförmige Polya-Kurven dar, wie es beispielsweise in Fig. 6 in der zweiten bis sechsten Iteration (n=2-6) gezeigt ist. Diese Art von bekannten Antennen haben den Nachteil, dass an den Ecken und Knicken im Hochfrequenzbereich (HF-Bereich) starke Reflexionen entstehen können. Unter Verwendung von solchen Kurven können z.B. Verzögerungsleitungen miniaturisiert werden.Similarly see antenna structures in US 2010/0177001 A1 out. These represent modified polygonal polya curves, as for example in Fig. 6 in the second to sixth iteration (n = 2-6). This type of known antennas have the disadvantage that strong reflections can occur at the corners and kinks in the high-frequency range (HF range). By using such curves, for example, delay lines can be miniaturized.

Die Patentschrift US 2008/0084352 A1 zeigt eine Vorrichtung mit einem nicht leitenden und einem leitenden Material, das eine Antenne formt. Die Antenne hat die Form, welche durch eine fraktale Kurve basierend auf einer modifizierten Peano-Gosper-Kurve bestimmt ist. Eine derartige Gosper-Kurve ist insbesondere dadurch definiert, dass jeweils 60° Winkelsegmente und 120° Winkelsegmente genutzt sind.The patent US 2008/0084352 A1 shows a device with a non-conductive and a conductive material that forms an antenna. The antenna has the shape determined by a fractal curve based on a modified Peano-Gosper curve. Such a Gosper curve is defined in particular by the fact that in each case 60 ° angle segments and 120 ° angle segments are used.

Die Druckschrift mit dem Titel "A Novel Miniaturization Technique in Microstrip Feed Network Design" befasst sich mit Microstrip-Antennen mit S-Sektionen und nicht mit Fraktalen.The paper titled "A Novel Miniaturization Technique in Microstrip Feed Network Design" deals with microstrip antennas with S-sections and not with fractals.

Die Patentschrift EP 1 699 110 A2 3 zeigt eine raumfüllende Kurvengeometrie ohne bogenförmige Elemente.The patent EP 1 699 110 A2 3 shows a space-filling curve geometry without curved elements.

Die Patentschrift US 2010/0177001 A1 zeigt eine Antennenstruktur auf Basis von Polygonen.The patent US 2010/0177001 A1 shows an antenna structure based on polygons.

Die Druckschrift von Ghali et al. mit dem Titel "Miniaturized Fractal Rat-Race, Branch-Line, and Coupled-Line Hybrids " zeigt eine raumfüllende Kurve ohne fraktale Strukturen.The publication of Ghali et al. titled "Miniaturized Fractal Rat-Race, Branch-Line, and Coupled-Line Hybrids "shows a space-filling curve without fractal structures.

Die Patentschrift US 6 452 553 zeigt eine fraktale Antenne und bogenförmige Segmente. Es ist die Aufgabe der vorliegenden Erfindung eine elektrische Leiterbahn zu schaffen, die eine Reduktion von Reflexionen und/oder von Verlusten in der elektrischen Leiterbahn ermöglichen, wenn die elektrische Leiterbahn für HF-Signale verwendet wird.The patent US 6,452,553 shows a fractal antenna and arcuate segments. It is the object of the present invention to provide an electrical trace which allows a reduction of reflections and / or losses in the electrical trace when the electrical trace is used for RF signals.

Diese Aufgabe wird durch eine elektrische Leiterbahn gemäß Anspruch 1 gelöst.This object is achieved by an electrical conductor according to claim 1.

Gemäß der Erfindung schafft eine elektrische Leiterbahn, die eine bogenförmige Abwandlung einer Form zumindest eines Teils eines Fraktals zumindest zweiter Iteration aufweist. Dabei ist der Teil des Fraktals größer als ein Zweifaches einer ersten Iteration des Fraktals. Die bogenförmig abgewandelte Form weist für Richtungsänderungen einen Kurvenradius auf, der größer ist als ein vordefinierter minimaler Kurvenradius.According to the invention, an electrical trace provides an arcuate modification of a shape of at least a portion of a fractal, at least a second iteration. The fraction of the fractal is greater than twice a first iteration of the fractal. The arcuate modified shape has a radius of curvature for directional changes that is greater than a predefined minimum radius of curvature.

Ausführungsbeispiele gemäß der Erfindung basieren auf dem Kerngedanken elektrische Leiterbahnen zu verwenden, die eine Form (zumindest eines Teils) eines Fraktals aufwei sen, wobei die elektrische Leiterbahn anstelle von Ecken bogenförmige Stücke aufweist. Dadurch können einerseits durch die Nutzung von fraktalförmigen Leiterbahnen sehr platzsparend Leiterbahnen mit großer Länge realisiert werden. Andererseits können durch die bogenförmige Abwandlung (der Ecken des Fraktals) die Reflexionen und Verluste in der elektrischen Leiterbahn bei Verwendung mit HF-Signalen (Hochfrequenzsignale, z.B. größer 1, 10, 100 oder 1000 MHz) deutlich reduziert werden.Embodiments according to the invention are based on the core idea of using electrical conductor tracks which have a shape (at least a part) of a fractal sen, wherein the electrical conductor track instead of corners has arcuate pieces. As a result, on the one hand, the use of fractal-shaped interconnects allows very space-saving interconnects of great length to be realized. On the other hand, by the arcuate modification (the corners of the fractal), the reflections and losses in the electrical conductor track when used with RF signals (high-frequency signals, eg greater than 1, 10, 100 or 1000 MHz) can be significantly reduced.

Gemäß der Erfindung wird eine Peano-Kurve oder ein Box-Fraktal als formgebendes Fraktal verwendet.According to the invention, a Peano curve or box fractal is used as the shaping fractal.

Gemäß der Erfindung passt die bogenförmige abgewandelte Form auf ein Raster aus ringförmigen Segmenten, die in einem Abstand ihres mittleren Durchmessers angeordnet sind. Durch Verwendung eines solchen Rasters kann der elektrischen Leiterbahn systematisch ihre Form gegeben werden, ohne den vordefinierten minimalen Kurvenradius zu unterschreiten.According to the invention, the arcuate modified form fits on a grid of annular segments, which are arranged at a distance of their average diameter. By using such a grid, the electrical trace can be systematically given its shape without falling below the predefined minimum curve radius.

Ausführungsbeispiele gemäß der Erfindung werden nachfolgend Bezug nehmend auf die beiliegenden Figuren näher erläutert.

Fig. 1a
eine elektrische Leiterbahn;
Fig. 1b
eine bogenförmige Abwandlung der Form einer Peano-Kurve zweiter Iteration;
Fig. 1c
eine schematische Darstellung einer möglichen Definition für den vordefinierten minimalen Kurvenradius;
Fig. 2
eine bekannte Fraktal-Antenne;
Fig. 3
ein bekannter Rat-Race-Hybrid;
Fig. 4
ein Beispiel für eine bekannte Faltung einer geraden Leitung;
Fig. 5
ein weiteres Beispiel für eine Faltung einer geraden Leitung;
Fig. 6
eine modifizierte polygonförmige Polya-Kurve von zweiter bis sechster Iteration;
Fig. 7
eine Approximation einer Peano-Kurve erster Iteration durch bogenförmige Segmente;
Fig. 8a
eine Peano-Kurve erster Iteration;
Fig. 8b
eine modifizierte Peano-Kurve erster Iteration;
Fig. 9a
eine Peano-Kurve zweiter Iteration vom Serpentinentyp 000 000 000;
Fig. 9b
eine modifizierte Peano-Kurve zweiter Iteration vom Serpentinentyp 000 000 000;
Fig. 10a
eine Peano-Kurve zweiter Iteration vom Serpentinentyp 111 111 111;
Fig. 10b
eine modifizierte Peano-Kurve zweiter Iteration vom Serpentinentyp 111 111 111;
Fig. 11a
eine Peano-Kurve zweiter Iteration vom Serpentinentyp 010 101 010;
Fig. 11b
eine modifizierte Peano-Kurve zweiter Iteration vom Serpentinentyp 010 101 010;
Fig. 12a
ein modifiziertes Box-Fraktal erster Iteration;
Fig. 12b
ein modifiziertes Box-Fraktal zweiter Iteration;
Fig. 12c
ein modifiziertes Box-Fraktal dritter Iteration;
Fig. 13a
ein Box-Fraktal mit berührungsfreier Führung durch abgekürzte Leitungen;
Fig. 13b
ein Box-Fraktal mit berührungsfreier Leitungsführung durch Ausrichtung auf Rundungsgitter;
Fig. 14a
eine konventionelle Butler-Matrix; und
Fig. 14b
eine miniaturisierte Butler-Matrix.
Embodiments according to the invention are explained below with reference to the accompanying figures.
Fig. 1a
an electrical conductor;
Fig. 1b
an arcuate modification of the form of a Peano curve second iteration;
Fig. 1c
a schematic representation of a possible definition for the predefined minimum curve radius;
Fig. 2
a known fractal antenna;
Fig. 3
a well-known rat race hybrid;
Fig. 4
an example of a known convolution of a straight line;
Fig. 5
another example of a convolution of a straight line;
Fig. 6
a modified polygonal polya curve from second to sixth iteration;
Fig. 7
an approximation of a peano curve of the first iteration by arcuate segments;
Fig. 8a
a Peano curve first iteration;
Fig. 8b
a modified Peano curve first iteration;
Fig. 9a
a second-serpentine curve of the serpentine type 000 000 000;
Fig. 9b
a modified Peano curve of the second iteration of serpentine type 000 000 000;
Fig. 10a
a serpentine type second iteration peano curve 111 111 111;
Fig. 10b
a modified peano curve of the second iteration of the serpentine type 111 111 111;
Fig. 11a
a Peano curve of the second iteration of serpentine type 010 101 010;
Fig. 11b
a modified Peano curve of the second iteration of serpentine type 010 101 010;
Fig. 12a
a modified box fractal of the first iteration;
Fig. 12b
a modified box fractal second iteration;
Fig. 12c
a modified box fractal of third iteration;
Fig. 13a
a box fractal with non-contact guidance through shortened lines;
Fig. 13b
a box fractal with non-contact cable routing by aligning with a rounding grid;
Fig. 14a
a conventional Butler matrix; and
Fig. 14b
a miniaturized Butler matrix.

Im Folgenden werden teilweise für Objekte und Funktionseinheiten, die gleiche oder ähnliche funktionelle Eigenschaften aufweisen, gleiche Bezugszeichen verwendet. Des Weiteren können optionale Merkmale der verschiedenen Ausführungsbeispiele miteinander kombinierbar oder zueinander austauschbar sein. Fig. 1a zeigt eine schematische Darstellung einer elektrischen Leiterbahn 100 entsprechend einem Ausführungsbeispiel gemäß der Erfindung. Die elektrische Leiterbahn 100 weist zumindest teilweise eine bogenförmige Abwandlung einer Form zumindest eines Teils eines Fraktals zumindest zweiter Iteration auf. Der Teil des Fraktals ist dabei größer als ein Zweifaches einer ersten Iteration des Fraktals. Die bogenförmig abgewandelte Form weist für Richtungsänderungen einen größeren Kurvenradius als ein vordefinierter minimaler Kurvenradius Rmin auf.Hereinafter, the same reference numerals are used in part for objects and functional units having the same or similar functional properties. Furthermore, optional features of the various embodiments may be combined with each other or interchangeable. Fig. 1a shows a schematic representation of an electrical conductor 100 according to an embodiment of the invention. The electrical trace 100 has at least partially an arcuate modification of a shape of at least a portion of a fractal at least second iteration. The fraction of the fractal is greater than twice a first iteration of the fractal. The arcuately modified form has a larger radius of curvature for changes in direction than a predefined minimum curve radius R min .

Fig. 1a zeigt ein Beispiel für eine elektrische Leiterbahn 100 mit der Form eines Teils einer Peano-Kurve zweiter Iteration, wie sie in bogenförmig abgewandelter Form in Fig. 1b gezeigt ist. Dabei ist der für die elektrische Leiterbahn 100 genutzte Teil der Peano-Kurve 150 durch den eingezeichneten Kreis 160 markiert. Fig. 1a shows an example of an electrical conductor 100 having the shape of a part of a second-course Peano curve, as in arcuate form in FIG Fig. 1b is shown. In this case, the part of the Peano curve 150 used for the electrical conductor track 100 is marked by the drawn circle 160.

Durch die Verwendung einer auf einem Fraktal basierenden Form können lange elektrische Leiterbahnen unter geringem Platzbedarf realisiert werden. Durch die bogenförmige Abwandlung der Form des Fraktals oder eines Teils des Fraktals können Reflexionen oder Verluste an sonst vorhandenen Ecken oder Knicken deutlich reduziert oder gänzlich verhindert werden.By using a fractal-based mold long electrical conductors can be realized in a small footprint. By the arcuate modification of the shape of the fractal or a portion of the fractal reflections or losses to otherwise existing corners or kinks can be significantly reduced or completely prevented.

Die elektrische Leiterbahn kann beispielsweise Kupfer, Aluminium oder ein anderes leitfähiges Material aufweisen. Ferner kann die elektrische Leiterbahn 100 neben dem Teil, der als bogenförmige Abwandlung zumindest eines Teils eines Fraktals geformt ist, auch weitere Teile mit anderer Form aufweisen. Die elektrische Leiterbahn 100 kann, wie in Fig. 1a gezeigt, offene Enden haben, mit denen sie beispielsweise an elektrische Schaltungen angeschlossen werden kann. Alternativ kann die elektrische Leiterbahn 100 auch eine geschlossene Kurve bilden und an beliebigen Punkten der geschlossenen Kurve angeschlossen werden.The electrical conductor may comprise, for example, copper, aluminum or another conductive material. Furthermore, in addition to the part which is formed as an arcuate modification of at least one part of a fractal, the electrical conductor track 100 can also have other parts with a different shape. The electrical conductor 100 may, as in Fig. 1a shown have open ends, with which they can be connected, for example, to electrical circuits. Alternatively, the electrical trace 100 may also form a closed curve and be connected at arbitrary points of the closed curve.

Das Fraktal kann grundsätzlich ein beliebiges Fraktal sein und richtet sich beispielsweise nach der jeweiligen Anwendung der elektrischen Leiterbahn 100. Die fraktale Eigenschaft der Kurve kann z.B. durch eine Selbstähnlichkeit erkannt werden. Zum Beispiel kann das Fraktal eine Peano-Kurve oder ein Box-Fraktal sein. Beispielsweise können Peano-Kurven vom Serpentinentyp verwendet werden. Durch die Verwendung von Box-Fraktalen oder Peano-Kurven (vom Serpentinentyp) kann aus der Iteration heraus bereits eine rechteckige oder quadratische Fläche gefüllt werden, während bei Pòlya-Kurven lediglich eine Dreiecksfläche belegt wird.The fractal can in principle be any fractal and depends, for example, on the particular application of the electrical conductor 100. The fractal property of the curve can be recognized, for example, by a self-similarity. For example, the fractal may be a Peano curve or a box fractal. For example, serpentine Peano curves can be used. By using box fractals or peano curves (serpentine type), a rectangular or square area can already be filled out of the iteration, whereas in Pòlya curves only a triangular area is occupied.

Bevorzugt werden Fraktale verwendet, bei denen sich zwischen zwei Iterationsschritten ( also in einer Iteration) die Anzahl der Liniensegmente mindestens verdreifacht, was bei Box-Fraktalen und Peano-Kurven (vom Serpentinentyp) der Fall ist. In anderen Worten, die Anzahl der in einem Iterationsschritt veränderten Liniensegmente ist beispielsweise auf mindestens 3 festgelegt. Hingegen verdoppelt sich bei Pólya-Kurven die Anzahl der Liniensegmente bei jedem Iterationsschritt lediglich.Fractals are preferably used in which the number of line segments at least triples between two iteration steps (ie in an iteration), which is the case with box fractals and peano curves (of the serpentine type). In other words, the number of line segments changed in one iteration step is set to at least 3, for example. On the other hand, in Pólya curves, the number of line segments only doubles for each iteration step.

Um eine elektrische Leiterbahn 100 möglichst platzsparend zu realisieren, kann das Fraktal beispielsweise ein raumfüllendes Fraktal sein, das in diesem Zusammenhang auch raumfüllende Kurve genannt werden kann.In order to realize an electrical conductor 100 as space-saving as possible, the fractal may be, for example, a space-filling fractal, which in this context may also be called space-filling curve.

Allgemein handelt es sich bei einer raumfüllenden Kurve um eine stetige Abbildung f : I R 2

Figure imgb0001
aus dem Einheits-Intervall I = [0,1] in den Euklidischen Raum
Figure imgb0002
deren Bild f(I) eine Fläche ausfüllt, d.h. ein Jordan-Maß J(f(I)) > 0 besitzt.In general, a space-filling curve is a continuous image f : I R 2
Figure imgb0001
from the unit interval I = [0,1] into the Euclidean space
Figure imgb0002
whose image f (I) fills an area, ie has a Jordan measure J ( f ( I ))> 0.

Derartige raumfüllende Kurven lassen sich iterativ durch einen Initiator (Ausgangsfigur, "base") sowie einen Generator (Bildungsvorschrift, "motif") beschreiben. Durch (unendlich oft) wiederholte Anwendung dieser Bildungsvorschrift wird die raumfüllende Eigenschaft der beschriebenen Kurve erreicht.Such space-filling curves can be iteratively described by an initiator (initial figure, "base") and a generator (formation specification, "motif"). By (infinitely) repeated application of this educational rule, the space-filling property of the curve described is achieved.

Die Iteration muss in einer praktischen Anwendung nach N Stufen abgebrochen werden, wodurch die Kurve nach der Definition noch nicht raumfüllend ist. Mittels der Bildungsvorschrift ist es jedoch (theoretisch) möglich, die Iteration beliebig weit auf kleineren Skalenstufen fortzuführen. Das Vorhandensein einer derartigen Bildungsvorschrift ist daher entscheidend für die Frage, ob eine Kurve raumfüllende Eigenschaften besitzt.In a practical application, the iteration must be aborted after N levels, which means that the curve is not yet space-filling according to the definition. However, it is (theoretically) possible to continue the iteration as far as possible at smaller scale levels by means of the educational instruction. The presence of such a formation rule is therefore crucial to the question of whether a curve has room-filling properties.

Die raumfüllende Eigenschaft ist mittels dieser Iterationsvorschrift (bei unendlicher Fortsetzung) erfüllt. Die Kurve muss jedoch deshalb noch keine fraktale Eigenschaft besitzen, da möglicherweise keine Selbstähnlichkeit zwischen den Iterationsstufen besteht. Zwischen den Iterationsstufen kann auch lediglich eine anisotrope Skalierung in z.B. vertikaler Richtung stattfinden.The space-filling property is fulfilled by means of this iteration rule (with infinite continuation). However, the curve does not yet have to have a fractal property because there may not be self-similarity between the iteration steps. Also, between the iteration steps, only anisotropic scaling in e.g. vertical direction.

Bei den nach dem beschriebenen Konzept verwendeten Strukturen handelt es sich hingegen z.B. um fraktale Kurven, mit der für eine exakte Selbstähnlichkeit notwendigen isotropen Skalierung zwischen den Iterationen. Diese grenzen sich dann beispielsweise auch von Kurven mit Quasi-Selbstähnlichkeit oder statistischer Selbstähnlichkeit ab.By contrast, the structures used according to the described concept are fractal curves, for example, with the isotropic scaling necessary for exact self-similarity between the iterations. These then also differ, for example, from curves with quasi-self-similarity or statistical self-similarity.

Unter "zumindest einem Teil eines Fraktals" ist zu verstehen, dass es sich auch um das gesamte Fraktal einer bestimmten Iteration handeln kann. Anders ausgedrückt, bei dem Teil des Fraktals muss es sich nicht um eine echte Teilmenge des Fraktals handeln, sondern mit Teil des Fraktals kann auch das gesamte Fraktal gemeint sein. Anders betrachtet ist ein ganzes Fraktal ohnehin auch ein Teil eines Fraktals höherer Iteration (z.B. ein ganzes Fraktal dritter Iteration ist ein Teil eines Fraktals vierter Iteration).By "at least part of a fractal" is meant that it can also be the entire fractal of a particular iteration. In other words, the part of the fractal does not have to be a true subset of the fractal, but part of the fractal may also mean the entire fractal. In other words, an entire fractal is part of a higher iteration fractal anyway (for example, an entire fractal of the third iteration is part of a fractal of the fourth iteration).

Der Teil des Fraktals muss jedoch größer als zumindest ein Zweifaches der ersten Iteration des Fraktals sein, da Fraktale in erster Iteration oft sehr einfache Strukturen aufweisen und ansonsten der Vorteil der platzsparenden Leitungsführung bei der Nutzung von Fraktalen noch nicht zum Tragen kommt. Dabei bedeutet die Formulierung "der Teil des Fraktals größer ist als ein Zweifaches einer ersten Iteration des Fraktals", dass die elektrische Leiterbahn innerhalb des Teils des Fraktals mehr als zweimal die Form der ersten Iteration des Fraktals (in ihrer bogenförmigen Abwandlung) annimmt. In anderen Worten, der Teil des Fraktals enthält mehr als zweimal (die Form) des Fraktals in erster Iteration.However, the fraction of the fractal must be greater than at least two times the first iteration of the fractal, since fractals in the first iteration often have very simple structures, and otherwise the advantage of space-saving routing in the use of fractals does not yet come to fruition. Here, the phrase "the fraction of the fractal is greater than twice a first iteration of the fractal" means that the electrical trace within the portion of the fractal more than twice takes the form of the first iteration of the fractal (in its arcuate variation). In other words, the part of the fractal contains more than twice (the shape) of the fractal in the first iteration.

Viele Fraktale haben in ihrer bekannten Darstellung eine eckige Form. Die bogenförmig abgewandelte Form hat im Vergleich zu diesen bekannten Formen von Fraktalen einen vordefinierten minimalen Kurvenradius Rmin für Richtungsänderungen der elektrischen Leiterbahn, welcher nicht unterschritten wird. Dabei beträgt der vordefinierte, minimale Kurvenradius z.B. zumindest das Dreifache (oder das 1-fache, das 1,5-fache, ein Zweifaches, das Vierfache oder mehr) der Breite der elektrischen Leiterbahn 100. Alternativ kann der vordefinierte minimale Kurvenradius nach R min = W / 2 2 1 + D min / 2 2 1

Figure imgb0003
bestimmt werden, wobei W die Breite der elektrischen Leiterbahn und Dmin ein minimaler Abstand zwischen zwei in den Eckpunkten eines Quadrats, diagonal zu einander angeordneter Ringe eines Rasters, wie er in Fig. 1c gezeigt ist, ist und weiter unten noch ausführlicher beschrieben wird.Many fractals have an angular shape in their familiar presentation. The arcuate modified form has in comparison to these known forms of fractals a predefined minimum curve radius R min for changes in direction of the electrical conductor, which is not exceeded. In this case, the predefined, minimum radius of curvature is at least three times (or 1 times, 1.5 times, twice, four times or more) the width of the electrical conductor track 100. Alternatively, the predefined minimum curve radius can be R min = W / 2 2 - 1 + D min / 2 2 - 1
Figure imgb0003
where W is the width of the electrical trace and D min is a minimum distance between two rings of a grid arranged diagonally to one another in the corner points of a square, as shown in FIG Fig. 1c is shown, and will be described in more detail below.

Der Kurvenradius einer Richtungsänderung der elektrischen Leiterbahn bezieht sich zum Beispiel auf den Innenradius, den mittleren Radius oder den Außenradius der elektrischen Leiterbahn im entsprechenden Abschnitt der Richtungsänderung.The radius of curvature of a change in direction of the electrical trace, for example, refers to the inner radius, the mean radius or the outer radius of the electrical trace in the corresponding portion of the change in direction.

Dabei ist allgemein beispielsweise eine Länge der elektrischen Leiterbahn 100 größer als 10-Mal (oder 20x, 50x, 100x oder mehr) eine Breite der elektrischen Leiterbahn 100 und größer als 10-Mal (oder 20x, 50x, 100x oder mehr) eine Höhe der elektrischen Leiterbahn. Die elektrische Leiterbahn 100 nimmt dabei in ihrer Längsausdehnung (Richtung ihrer größten Ausdehnung) die bogenförmig abgewandelte Form an.In general, for example, a length of the electric wiring 100 is greater than 10 times (or 20x, 50x, 100x or more) a width of the electrical wiring 100 and greater than 10 times (or 20x, 50x, 100x or more) a height of the electrical trace. The electrical conductor 100 takes in its longitudinal extent (direction of its largest extension) to the arc-shaped modified form.

Die elektrische Leiterbahn 100 kann über ihre Länge eine konstante Breite (oder auch Höhe) aufweisen oder alternativ in unterschiedlichen Abschnitten unterschiedliche Breiten (oder Höhen) aufweisen. Dies kann je nach Anforderung der konkreten Anwendung unterschiedlich sein.The electrical trace 100 may have a constant width (or height) along its length, or alternatively have different widths (or heights) in different sections. This may vary depending on the requirement of the particular application.

Normalerweise liegt die elektrische Leiterbahn 100 in einer Ebene, so dass die bogenförmig abgewandelte Form leicht ersichtlich ist. Damit ist gemeint, dass sich die elektrische Leiterbahn in ihrer Längsausdehnung und ihrer Breitenausdehnung in der Ebene erstreckt. Allerdings ist es auch möglich, dass mit der elektrischen Leiterbahn 100 eine dreidimensionale Struktur ausgebildet wird, so dass Teile der elektrischen Leiterbahn 100 in unterschiedlichen Ebenen liegen können.Normally, the electrical conductor 100 is in a plane, so that the arcuate modified form is easily visible. By this is meant that the electrical conductor extends in its longitudinal extent and its width extension in the plane. However, it is also possible that a three-dimensional structure is formed with the electrical conductor track 100, so that parts of the electrical conductor track 100 can lie in different planes.

Die elektrische Leiterbahn 100 kann auch mehrfach eine bogenförmige Abwandlung einer Form zumindest eines Teils eines Fraktals zumindest zweiter Iteration aufweisen. Dabei kann es sich um Teile des gleichen Fraktals oder auch um unterschiedliche Fraktale handeln. Um einen großen platzsparenden Effekt zu erzielen, kann beispielsweise festgelegt werden, dass die elektrische Leiterbahn 100 auf zumindest 50% (oder 20%, 30%, 70%, 80% oder mehr) ihrer Länge einfach oder mehrfach eine bogenförmige Abwandlung einer Form zumindest eines Teils eines Fraktals zumindest zweiter Iteration aufweist.The electrical conductor track 100 may also have an arcuate modification of a shape of at least part of a fractal at least twice iteration. These can be parts of the same fractal or fractals. For example, to achieve a large space-saving effect, it may be determined that the electrical trace 100 is at least 50% (or 20%, 30%, 70%, 80% or more) of its length simply or multiply an arcuate variation of a shape of at least one Part of a fractal has at least second iteration.

In einigen Ausführungsbeispielen gemäß der Erfindung weist die elektrische Leiterbahn eine bogenförmig abgewandelte Form auf, die ausschließlich Richtungsänderungen mit gleichem Kurvenradius (der größer als der vordefinierte, minimale Kurvenradius ist) auf. Dies kann sich auch auf die gesamte elektrische Leiterbahn beziehen, wenn diese größer ist als jener Teil, der einen bogenförmigen abgewandelten Form zumindest eines Teils eines Fraktals zumindest zweiter Iteration entspricht.In some embodiments according to the invention, the electrical trace has an arcuately modified shape that includes only direction changes with the same curve radius (which is greater than the predefined minimum curve radius). This may also relate to the entire electrical trace, if it is greater than that part corresponding to an arcuate modified form of at least a portion of a fractal at least second iteration.

Eine Möglichkeit solche Strukturen zu konstruieren ist die elektrische Leiterbahn an ein Raster anzupassen, das aus ringförmigen Segmenten besteht. In anderen Worten, die bogenförmig abgewandelte Form passt beispielsweise auf ein Raster aus ringförmigen Segmenten (z.B. Fig. 1c), die in einem Abstand ihres mittleren Durchmessers angeordnet sind. Der mittlere Durchmesser des ringförmigen Segments ist dabei der Mittelwert des Innendurchmessers (2*R1) und des Außendurchmesseres (2*R2) des ringförmigen Segments. Die ringförmigen Segmente des Rasters sind dabei gleich groß.One way to construct such structures is to adapt the electrical trace to a grid consisting of annular segments. In other words, the arcuate modified form fits for example on a grid of annular segments (eg Fig. 1c ), which are arranged at a distance of their average diameter. The mean diameter of the annular segment is the mean of the inner diameter (2 * R 1 ) and the outer diameter (2 * R 2 ) of the annular segment. The annular segments of the grid are the same size.

Einige Ausführungsbeispiele gemäß der Erfindung beziehen sich auf eine Antenne, eine Leitung oder eine verteilte Schaltung, die eine elektrische Leiterbahn nach dem beschriebenen Konzept aufweist.Some embodiments according to the invention relate to an antenna, a line or a distributed circuit having an electrical conductor track according to the described concept.

Dadurch kann eine Antenne oder beispielsweise eine Verzögerungsleitung sehr platzsparend sowie reflexionsarm und/oder verlustarm realisiert werden.As a result, an antenna or, for example, a delay line can be realized in a very space-saving manner and with little reflection and / or low loss.

Einige andere Ausführungsbeispiele gemäß der Erfindung beziehen sich auf ein Verfahren zur Herstellung einer elektrischen Leiterbahn, wobei die elektrische Leiterbahn mit der beschriebenen Form (auf einem Substrat) hergestellt wird.Some other embodiments according to the invention relate to a method for producing an electrical conductor, wherein the electrical conductor is produced with the described shape (on a substrate).

Einige Ausführungsbeispiele gemäß der Erfindung beziehen sich auf Antennen, Leitungen und/oder verteilte Schaltungen unter Verwendung von auf Rundungsgittern (Raster mit ringförmigen Segmenten) modifizierten raumfüllenden Kurven und Fraktalen (bogenförmige Abwandlung der Form). Dabei finden elektrische Leiterbahnen nach dem beschriebenen Konzept Anwendung.Some embodiments according to the invention relate to antennas, lines and / or distributed circuits using space-filling curves and fractals (arcuate modification of the shape) modified on rounding gratings (raster with annular segments). In this case, electrical conductor tracks are used according to the described concept.

Die verteilten Schaltungen können beispielsweise Hochfrequenz-Schaltungen sein. In anderen Worten, die Antennen, Leitungen und/oder passiven Hochfrequenz-Schaltungen können unter Verwendung von modifizierten raumfüllenden Kurven und (oder) Fraktalen aufgebaut werden.The distributed circuits may be, for example, high frequency circuits. In other words, the antennas, lines and / or passive high frequency circuits can be constructed using modified space filling curves and (or) fractals.

Bei bekannten Schaltungen oder Antennen werden Leitungen so geführt, dass Knicke entstehen. Wenn die dadurch entstehenden Knicke nicht angeschrägt werden, wird das Übertragungsverhalten der Leitung gestört, was zusätzliche Verluste zur Folge hat. Am verlustärmsten ist ein (doppelseitig) bogenförmiger Übergang, wobei der Biegeradius z.B. mindestens das dreifache der Leiterbreite betragen sollte. Das hängt damit zusammen, dass sich der Wellenwiderstand des Bogens mit dem Radius, der den oben genannten Wert unterschreitet, merkbar ändert und eine Diskontinuität darstellt. In Popugaev, A. E.; Wansch, R. "A Novel Miniaturization Technique in Microstrip Feed Network Design", 3rd European Conference on Antennas and Propagation (EuCAP 2009), Proceedings, CD-ROM: 23 - 27 March 2009, Berlin, Germany, Berlin: VDE-Verlag, 2009, pp. 2309-2313 wurde gezeigt, dass zu miniaturisierende Schaltungen vollständig bogenförmig ausgeführt werden können, so dass keine Diskontinuitäten vom Typ gerade Leitung - Bogen entstehen. Als Hilfsmittel kann dabei ein Raster verwendet werden, das aus ringförmigen Segmenten besteht, die im Abstand ihres mittleren Durchmessers angeordnet sind, wobei jedes Segment in vier gleiche Viertelkreisringe unterteilt ist. Es sind einige Leitungsführungs-Kurven gezeigt, die auf einem Rundungsgitter ausgerichtet sind, die jedoch nicht Fraktale oder raumfüllende Kurven sind, noch ist eine Iterationsvorschrift angegeben. Diese Kurven wurden freihand erstellt, eine Iterationsvorschrift für den Übergang auf die nächstkleinere Skalenstufe ist weder angegeben noch erkennbar. Die gezeigten Kurven sind daher keine raumfüllenden Kurven. Fig. 4 und 5 veranschaulicht ein solches Raster zur Faltung gerader Leitungen.In known circuits or antennas lines are guided so that wrinkles arise. If the resulting kinks are not bevelled, the transmission behavior of the line is disturbed, resulting in additional losses. The lowest loss is a (double-sided) arcuate transition, the bending radius should be at least three times the width of the conductor. This is related to the fact that the characteristic impedance of the arc with the radius, which falls below the above-mentioned value, noticeably changes and represents a discontinuity. In Popugaev, AE; Wansch, R. "Novel Miniaturization Technique in Microstrip Feed Network Design", 3rd European Conference on Antennas and Propagation (EuCAP 2009), Proceedings, CD-ROM: 23 - 27 March 2009, Berlin, Germany, Berlin: VDE-Verlag, 2009, pp. 2309-2313 It has been shown that circuits to be miniaturized can be made completely arcuate, so that no discontinuities of the straight line - arc type arise. As an aid, a grid may be used which consists of annular segments which are arranged at a distance of their mean diameter, each segment being divided into four equal quarter-circle rings. There are some wire routing curves shown which are aligned on a rounding grid, but which are not fractals or space-filling curves, nor an iteration rule is specified. These curves were created freehand, an iteration rule for the transition to the next lower scale level is neither specified nor recognizable. The curves shown are therefore no space-filling curves. Fig. 4 and 5 illustrates such a grid for folding straight lines.

Z.B. kann eine Verzögerungsleitung unter Verwendung von runden Segmenten für Fraktale effektiv miniaturisiert werden.For example, For example, a delay line can be effectively miniaturized using fractal round segments.

Das vorgeschlagene Konzept ermöglicht z.B. den Aufbau von fraktalen Antennen und Schaltungen, basierend auf einer Peano-Kurve, welche so modifiziert wurde, dass keine Knicke entstehen. Dadurch können beispielsweise insbesondere bei Mikrostreifenleitungs-Schaltungen optimale Übertragungseigenschaften hinsichtlich Reflexionen gewährleistet werden.The proposed concept allows e.g. the construction of fractal antennas and circuits, based on a Peano curve, which has been modified so that no kinks arise. As a result, optimal transmission properties with respect to reflections can be ensured, for example, particularly in the case of microstrip line circuits.

Für eine auf einem Rundungsgitter modifizierte Peano-Kurve zeigt sich beispielsweise, wenn man das Raster nach Fig. 4 und 5 nimmt und zeichnet man die in Fig. 7 gezeigte Kurve, rotiert man die Kurve mit dem Raster um 45°, so kann man feststellen, dass diese Kurve der Peano-Kurve 1. Iteration sehr ähnelt, wie es in Fig. 8a und 8b gezeigt ist. Fig. 8a zeigt eine Peano-Kurve erster Iteration und Fig. 8b zeigt eine modifizierte Peano-Kurve erster Iteration. Die modifizierte Kurve kann man als Approximation der Peano-Kurve durch bogenförmige Segmente betrachten.For example, a peano curve modified on a roundness grid shows, if you look at the grid Fig. 4 and 5 takes and draws the in Fig. 7 If you rotate the curve with the grid by 45 °, you can see that this curve is very similar to the Peano curve of the 1st iteration Fig. 8a and 8b is shown. Fig. 8a shows a Peano curve first iteration and Fig. 8b shows a modified Peano curve first iteration. The modified curve can be considered as an approximation of the Peano curve through arcuate segments.

Durch fortgesetzte Neuteilung der in Fig. 8A und 8B gezeigten modifizierten Peano-Kurve 1. Iteration lassen sich auch modifizierte Peano-Kurven vom Serpentinentyp gewinnen. Fig. 9A (Peano-Kurve zweiter Iteration vom Serpentinentyp 000 000 000) und 9B (modifizierte Peano-Kurve zweiter Iteration vom Serpentinentyp 000 000 000), Fig. 10A (Peano-Kurve zweiter Iteration vom Serpentinentyp 111 111 111) und 10B (modifizierte Peano-Kurve zweiter Iteration vom Serpentinentyp 111 111 111) und Fig. 11A (Peano-Kurve zweiter Iteration vom Serpentinentyp 010 101 010) und 11B (modifizierte Peano-Kurve zweiter Iteration vom Serpentinentyp 010 101 010) zeigen 2. Iterationen von den drei verschiedenen Varianten.By continued redivision of the in Figs. 8A and 8B It is also possible to obtain modified serpentine-type peano curves using the modified Peano curve. Fig. 9A Serpentine type second 000,000,000 Peano curve and 9B (modified second-serpentine peano curve 000,000,000) Fig. 10A (Peano curve of the second iteration of serpentine type 111 111 111) and 10B (modified Peano curve of the second iteration of serpentine type 111 111 111) and Fig. 11A (Peano curve of the second iteration of serpentine type 010 101 010) and 11B (modified Peano curve of the second iteration of serpentine type 010 101 010) show 2nd iterations of the three different variants.

Alternativ kann zum Beispiel ein auf Rundungsgitter modifiziertes Box-Fraktal (Vicsek-Fraktal, Minkowski-Insel) verwendet werden. Die in Fig. 2 gezeigte fraktale Antenne lässt sich auch auf einem Rundungsgitter modifizieren. Die ersten drei Iterationen sind in Fig. 12A-12C veranschaulicht.Alternatively, for example, a round box-modified box fractal (Vicsek fractal, Minkowski island) may be used. In the Fig. 2 The fractal antenna shown can also be modified on a rounding grid. The first three iterations are in Figs. 12A-12C illustrated.

Mit der beschriebenen Technik (dem beschriebenen Konzept für elektrische Leiterbahnen) lassen sich Antennen, Leitungen und/oder komplexe Schaltungen bauen, die die Vorteile fraktaler Strukturen nutzen, aber sich einfacher, schneller und/oder vor allem reflexions- und/oder verlustärmer realisieren lassen. Durch die Ausrichtung auf einem Rundungsgitter lässt sich eine berührungsfreie Leitungsführung realisieren, ohne Leitungsabschnitte der ursprünglichen fraktalen Struktur manuell kürzen zu müssen (Fig. 13A und 13B).With the described technique (the described concept for electrical interconnects) it is possible to build antennas, lines and / or complex circuits which make use of the advantages of fractal structures, but which can be realized simpler, faster and / or above all reflection and / or low loss. By aligning on a rounding grid, it is possible to realize non-contact routing without having to manually shorten sections of the original fractal structure ( Figs. 13A and 13B ).

Z.B. wurde für eine 2x2 Antennenanordnung eine Butler-Matrix entwickelt und anschließend miniaturisiert. Die Schaltung sollte eine gleichmäßige Amplitudenbelegung und folgende Phasenbelegungen (je nach Torkombination) realisieren: -180°/-90°/-180°/-270°;-90°/-180°/-270°/-180°; -180°/-270°/-180°/-90° und -270°/-180°/-90°/-180°.For example, For a 2x2 antenna arrangement, a Butler matrix was developed and then miniaturized. The circuit should realize a uniform amplitude assignment and the following phase assignments (depending on the gate combination): -180 ° / -90 ° / -180 ° / -270 °; -90 ° / -180 ° / -270 ° / -180 °; -180 ° / -270 ° / -180 ° / -90 ° and -270 ° / -180 ° / -90 ° / -180 °.

Ein direkter Vergleich der aufgebauten Butler-Matrizen ist in Fig. 14a und 14b zu sehen. Dabei ist in Fig. 14b eine elektrische Leiterbahn 1400 mit mehrfach einer bogenförmigen Abwandlung einer Form zumindest eines Teils 1410 eines Fraktals zumindest zweiter Iteration gezeigt.A direct comparison of the constructed Butler matrices is in Figs. 14a and 14b to see. It is in Fig. 14b an electrical trace 1400 having multiple arcuate modification of a shape of at least a portion 1410 of a fractal at least second iteration is shown.

Die in Fig. 14a und Fig. 14b gezeigten elektrischen Leiterbahnen weisen in unterschiedlichen Abschnitten eine unterschiedliche Breite auf.In the Fig. 14a and Fig. 14b shown electrical conductor tracks have different widths in different sections.

Man sieht, dass das miniaturisierte Speisenetzwerk (in Fig. 14b) fast dreimal so klein ist wie die konventionelle Ausführung (Fig. 14a). Die Schaltungen weisen 90°-Hybride, Kreuzkoppler und Verzögerungsleitungen auf. Dabei wurde der miniaturisierte Kreuzkoppler als zwei hintereinander verschaltete miniaturisierte 90°-Hybride ausgeführt, wobei jeder miniaturisierte 90°-Hybrid (einen Teil) die modifizierte Peano-Kurve nach Fig. 11b darstellt. Messergebnisse der gefertigten Butler-Matrix sind in der folgenden Tabelle zusammengefasst.

Figure imgb0004
Figure imgb0005
It can be seen that the miniaturized feed network (in Fig. 14b ) is almost three times as small as the conventional design ( Fig. 14a ). The circuits include 90 ° hybrids, cross couplers and delay lines. The miniaturized cross-coupler was designed as two miniaturized 90 ° hybrids connected in series, with each miniaturized 90 ° hybrid (one part) following the modified Peano curve Fig. 11b represents. Measurement results of the manufactured Butler matrix are summarized in the following table.
Figure imgb0004
Figure imgb0005

Die erzielten Ergebnisse der konventionellen und der miniaturisierten Butler-Matrizen sind nahezu identisch, wobei der Flächenbedarf der miniaturisierten Butler-Matrix nur ein Drittel beträgt.The results of the conventional and miniaturized Butler matrices are almost identical, with the area requirement of the miniaturized Butler matrix being only one third.

Einige Ausführungsbeispiele gemäß der Erfindung beziehen sich auf Antennen, Leitungen und/oder verteilte Schaltungen, die unter Verwendung von raumfüllenden Kurven mit fraktaler Struktur erstellt wurden, wobei die fraktale Struktur eine exakte Selbstähnlichkeit oder Skaleninvarianz aufweist, mindestens eine Iterationsstufe durchgeführt wurde, oder einer oder mehrere Ausschnitte einer derartigen fraktalen Kurve verwendet werden, und die resultierende Kurve mittels eines Rundungsgitters so modifiziert wurde, dass eine berührungsfreie und ungeknickte Leitungsführung erreicht wird, so dass Leitungsabschnitte der ursprünglichen fraktalen Struktur für eine berührungsfreie Führung nicht manuell gekürzt werden müssen, wodurch im Vergleich zu herkömmlicher Ausführung eine deutlich vereinfachte Leitungsführung ermöglicht wird, und optimale Übertragungseigenschaften hinsichtlich Reflexionen gewährleistet werden können.Some embodiments according to the invention relate to antennas, lines, and / or distributed circuits created using space-filling fractal-arced curves, the fractal structure having exact self-similarity or scale invariance, at least one iteration step, or one or more Sections of such a fractal curve are used, and the resulting curve has been modified by means of a roundness grating so that a non-contact and uncut routing is achieved, so that line sections of the original fractal structure for a non-contact guidance need not be shortened manually, whereby compared to conventional Design a significantly simplified routing is possible, and optimum transmission properties can be ensured with respect to reflections.

Obwohl manche Aspekte im Zusammenhang mit einer Vorrichtung beschrieben wurden, versteht es sich, dass diese Aspekte auch eine Beschreibung des entsprechenden Verfahrens darstellen, sodass ein Block oder ein Bauelement einer Vorrichtung auch als ein entsprechender Verfahrensschritt oder als ein Merkmal eines Verfahrensschrittes zu verstehen ist. Analog dazu stellen Aspekte, die im Zusammenhang mit einem oder als ein Verfahrensschritt beschrieben wurden, auch eine Beschreibung eines entsprechenden Blocks oder Details oder Merkmals einer entsprechenden Vorrichtung dar.Although some aspects have been described in the context of a device, it will be understood that these aspects also constitute a description of the corresponding method, so that a block or a component of a device is also to be understood as a corresponding method step or as a feature of a method step. Similarly, aspects described in connection with or as a method step also represent a description of a corresponding block or detail or feature of a corresponding device.

Die oben beschriebenen Ausführungsbeispiele stellen lediglich eine Veranschaulichung der Prinzipien der vorliegenden Erfindung dar. Es versteht sich, dass Modifikationen und Variationen der hierin beschriebenen Anordnungen und Einzelheiten anderen Fachleuten einleuchten werden. Deshalb ist beabsichtigt, dass die Erfindung lediglich durch den Schutzumfang der nachstehenden Patentansprüche und nicht durch die spezifischen Einzelheiten, die anhand der Beschreibung und der Erläuterung der Ausführungsbeispiele hierin präsentiert wurden, beschränkt sei.The embodiments described above are merely illustrative of the principles of the present invention. It will be understood that modifications and variations of the arrangements and details described herein will be apparent to others of ordinary skill in the art. Therefore, it is intended that the invention be limited only by the scope of the appended claims and not by the specific details presented in the description and explanation of the embodiments herein.

Claims (8)

  1. Electric conductive trace (100) comprising an arch-shaped variation of a shape of at least a portion of a fractal of at least second iteration, wherein the arch-shaped variation consists of one or several ring-shaped segments,
    wherein the electric conductive trace within the portion of the fractal includes more than twice the shape of the first iteration of the fractal,
    wherein the shape varied to be arch-shaped fits onto a raster consisting of ring-shaped segments, arranged at the distance of their mean diameter,
    wherein the shape varied to be arch-shaped comprises, for changes of direction, a bending radius, that is larger than a predefined minimum bending radius (Rmin),
    wherein the predefined minimum bending radius is equal to R min = W 2 2 1 + D min 2 2 1 ,
    Figure imgb0007
    wherein W is the width of the electric conductive trace and Dmin is a minimum distance between two rings of the raster that are arranged by means of their centers in the corner points of a square and are diagonally arranged toward one another, and wherein the difference between an outer radius of the electric conductive trace (R2) and an inner radius of the electric conductive trace (R1) in a ring-shaped segment of the raster corresponds to the width W of the electric conductive trace, wherein the latitudinal extension and the longitudinal extension of the electric conductive trace extend in a common plane,
    wherein the fractal is a Peano curve or a box fractal.
  2. Electric conductive trace as claimed in claim 1, wherein the fractal is a space-filling fractal.
  3. Electric conductive trace as claimed in any of claims 1 or 2, wherein the electric conductive trace (100) lies in a plane.
  4. Electric conductive trace as claimed in any of claims 1 to 3, wherein a length of the electric conductive trace (100) is larger than 10 times a width of the electric conductive trace (100) and larger than 10 times a height of the electric conductive trace (100), wherein the electric conductive trace (100) comprises in its longitudinal extension the shape varied to be arch-shaped, wherein the latitudinal extension and the longitudinal extension of the electric conductive trace extend in a common plane.
  5. Electric conductive trace as claimed in any of claims 1 to 4, wherein the shape varied to be arch-shaped comprises exclusively changes of direction with a same bending radius.
  6. Electric conductive trace as claimed in any of claims 1 to 5, wherein the electric conductive trace (100) comprises several times an arch-shaped variation of a shape of at least a portion of a fractal of at least second iteration.
  7. Electric conductive trace as claimed in any of claims 1 to 6, wherein the electric conductive trace (100) comprises, over at least 50% of its length, one or several arch-shaped variations of a shape of at least a portion of a fractal of at least second iteration.
  8. Antenna, line or distributed circuit comprising an electric conductive trace (100) as claimed in any of claims 1 to 7.
EP12161739.3A 2011-04-08 2012-03-28 Electric PCB track Active EP2509156B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011007058A DE102011007058A1 (en) 2011-04-08 2011-04-08 Electrical trace

Publications (2)

Publication Number Publication Date
EP2509156A1 EP2509156A1 (en) 2012-10-10
EP2509156B1 true EP2509156B1 (en) 2016-04-27

Family

ID=46044341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12161739.3A Active EP2509156B1 (en) 2011-04-08 2012-03-28 Electric PCB track

Country Status (4)

Country Link
US (1) US8878729B2 (en)
EP (1) EP2509156B1 (en)
JP (1) JP5698176B2 (en)
DE (1) DE102011007058A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9613911B2 (en) 2013-02-06 2017-04-04 The Board Of Trustees Of The University Of Illinois Self-similar and fractal design for stretchable electronics
US10497633B2 (en) 2013-02-06 2019-12-03 The Board Of Trustees Of The University Of Illinois Stretchable electronic systems with fluid containment
KR20150115019A (en) * 2013-02-06 2015-10-13 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Stretchable electronic systems with containment chambers
GB2526972B (en) 2013-03-27 2020-04-29 Murata Manufacturing Co Wireless power transmission apparatus
JP6164288B2 (en) * 2013-03-27 2017-07-19 株式会社村田製作所 Wireless power supply device
US9706647B2 (en) * 2013-05-14 2017-07-11 Mc10, Inc. Conformal electronics including nested serpentine interconnects
DE202015105455U1 (en) 2014-11-19 2016-02-22 Sick Ag Line structure for a high-frequency signal
CN105891823B (en) * 2015-01-26 2018-10-23 东莞巨扬电器有限公司 Microwave induced Anneta module
EP3671951A1 (en) * 2018-12-21 2020-06-24 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Antenna device
DE102020128451B3 (en) 2020-10-29 2021-11-04 Alan E. Baklayan Fractal antenna, in particular for a therapy device for treating patients, a belt and a therapy device for treating patients with the aid of such a fractal antenna

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452553B1 (en) * 1995-08-09 2002-09-17 Fractal Antenna Systems, Inc. Fractal antennas and fractal resonators
US6476766B1 (en) 1997-11-07 2002-11-05 Nathan Cohen Fractal antenna ground counterpoise, ground planes, and loading elements and microstrip patch antennas with fractal structure
BR0017065A (en) * 2000-01-19 2003-11-04 Fractus Sa Space Filling Antenna and Antenna Set
EP2267838A3 (en) * 2000-01-19 2011-05-04 Fractus, S.A. Space-filling miniature antennas
BR0117125A (en) * 2001-09-13 2004-09-28 Fractus Sa Horizontal polarization for an antenna device and antenna device
ES2314295T3 (en) 2003-02-19 2009-03-16 Fractus S.A. MINIATURE ANTENNA THAT HAS A VOLUMETRIC STRUCTURE.
WO2006034940A1 (en) * 2004-09-27 2006-04-06 Fractus, S.A. Tunable antenna
KR100808811B1 (en) 2006-04-13 2008-03-03 (주)모토닉스 Multi band antenna for car
US7541981B2 (en) * 2006-10-04 2009-06-02 Broadcom Corporation Fractal antenna based on Peano-Gosper curve
US8570222B2 (en) 2009-01-15 2013-10-29 Broadcom Corporation Antenna structures and applications thereof
US8279128B2 (en) * 2010-05-07 2012-10-02 Bae Systems Information And Electronic Systems Integration Inc. Tapered slot antenna

Also Published As

Publication number Publication date
US8878729B2 (en) 2014-11-04
EP2509156A1 (en) 2012-10-10
JP2012222826A (en) 2012-11-12
JP5698176B2 (en) 2015-04-08
DE102011007058A1 (en) 2012-10-11
US20120306701A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
EP2509156B1 (en) Electric PCB track
DE60037247T2 (en) Waveguide filter with frequency-selective surface
DE69724469T2 (en) NARROW-BAND COUPLED DIRECTIONAL COUPLER IN A MULTILAYER PACK
DE1766787B1 (en) ARRANGEMENT FOR BROADBAND COUPLING BETWEEN A COLLECTOR AND A TRANSMISSION LINE
EP3220480A1 (en) Dipole-shaped radiator assembly
DE60037550T2 (en) Broadband balancing circuit for wireless and high-frequency applications
WO2016042061A1 (en) Multi-structure broadband monopole antenna for two frequency bands in the decimeter wave range separated by a frequency gap, for motor vehicles
DE102016105828A1 (en) Filter and electronic device
DE3118988A1 (en) "ANTENNA"
DE112019000449T5 (en) SURFACE MOUNTING CONNECTOR AND SURFACE MOUNTING CONNECTOR KIT
WO2012025100A1 (en) Multi-level circuit board for high-frequency applications
DE1030904B (en) Microwave transmission line in the manner of a printed circuit with a first strip-shaped conductor, which is arranged at a very small distance with respect to the wavelength and parallel to a second strip-shaped conductor separated by a dielectric layer and of equal or greater width
DE965141C (en) Microwave branching arrangement with at least three branches, of which at least one is a hollow conductor or coaxial conductor and at least one further belongs to a parallel conductor type
DE2944957A1 (en) MICROWAVE CONTROL
DE60027297T2 (en) TRANSITION BETWEEN A SYMETRIC AND AN ASYMETRIC STRIP LEADER
DE1926501C3 (en) Low-pass filter for electrical oscillations
DE1441117A1 (en) Coaxial line section with insulating support
EP2553757B1 (en) Coaxial conductor structure
DE4205577C2 (en) Broadband waveguide series parallel branching
DE60215204T2 (en) BROADBAND LOCKING ANTENNA AND ITS MANUFACTURING METHOD AND CONFIGURATION
DE102018009166A1 (en) DEVICE AND METHOD FOR OPERATING AN IMPEDANCE VARIABLE LOAD ON THE PLANAR TRANSFORMER IN HIGH FREQUENCY OPERATION II
DE19501329C1 (en) Device for EMI testing of electronic devices
DE19715206C2 (en) Planar antenna
DE1466505C1 (en) Guanella transmitter
DE102009049609A1 (en) Stripline balun

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130327

17Q First examination report despatched

Effective date: 20130725

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 795700

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012006866

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160728

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160829

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012006866

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

26N No opposition filed

Effective date: 20170130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170328

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 795700

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160827

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230320

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230323

Year of fee payment: 12

Ref country code: DE

Payment date: 20230320

Year of fee payment: 12