EP2553757B1 - Coaxial conductor structure - Google Patents

Coaxial conductor structure Download PDF

Info

Publication number
EP2553757B1
EP2553757B1 EP11718269.1A EP11718269A EP2553757B1 EP 2553757 B1 EP2553757 B1 EP 2553757B1 EP 11718269 A EP11718269 A EP 11718269A EP 2553757 B1 EP2553757 B1 EP 2553757B1
Authority
EP
European Patent Office
Prior art keywords
tem
conductor
mode
band
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11718269.1A
Other languages
German (de)
French (fr)
Other versions
EP2553757A1 (en
Inventor
Christoph Neumaier
Martin Lorenz
Natalie Spaeth
Kai Numssen
Josef Kreuzmair
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spinner GmbH
Original Assignee
Spinner GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spinner GmbH filed Critical Spinner GmbH
Publication of EP2553757A1 publication Critical patent/EP2553757A1/en
Application granted granted Critical
Publication of EP2553757B1 publication Critical patent/EP2553757B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/06Coaxial lines

Definitions

  • the invention relates to a method for producing a coaxial conductor structure for the interference-free transmission of a single propagatable TEM mode of an RF signal wave within at least one band of frequency bands forming in the context of a dispersion relation. Furthermore, a use of the coaxial conductor structure will be described.
  • the transmission quality of coaxial conductors for the TEM fundamental mode of RF signal waves decreases with increasing signal frequencies, especially as at higher frequencies by way of mode conversion processes along the coaxial line form undesirable, propagatable modes higher order, for example TE 11 , TE 21 modes, etc ., Which overlap with the TEM fundamental mode.
  • the idea underlying the invention is based on the consideration that by a suitable choice of constructive design parameters for the formation of a coaxial line with electrically conductive connection structures between outer and inner conductors, a targeted or controlled influence on the frequency-dependent layers of the above-mentioned frequency bands is taken in such a way in that at least one frequency band in which the basic TEM mode is capable of propagation is overlapped with a frequency band or range in which all higher order excitation modes are evanescent.
  • the measures according to the solution for creating a frequency window capable of propagating smoothly along a coaxial conductor structure for TEM mode can also be used successfully in a coaxial conductor structure in which the inner conductor and / or outer conductor cross section of the coaxial line deviates from the circular shape has the same characteristic impedance as the round coaxial line.
  • the outer and inner conductor cross-section can be formed n-angular. The further considerations, however, relate to each circular cross-sectional shapes.
  • the electrically conductive connection structures are preferably in the form of rod-shaped structures of a metallic material, preferably of the material of which the inner and / or outer conductor, they have a high thermal conductivity.
  • electrically conductive materials are suitable for these structures, which have a particularly high thermal conductivity.
  • FIG. 1 a section of a solution according manufactured coaxial conductor structure is shown.
  • the section represents a kind of unit cell for the construction of a coaxial line, which is ultimately characterized by a periodic return of the illustrated section.
  • an inner conductor IL of the length p with a circular conductor cross-section and an inner conductor diameter Di is inserted inside the transparently illustrated outer conductor AL, which has an outer conductor inner diameter Da.
  • an inner conductor IL of the length p with a circular conductor cross-section and an inner conductor diameter Di is inserted.
  • s 2 rod-shaped structures S are provided which produce an electrically conductive contact or an electrically conductive connection to the outer conductor AL.
  • the rod-shaped structures S are made of an electrically and thermally highly conductive material, preferably metal, preferably made of the same material from which the inner or outer conductor are made.
  • the structures S may have a circular or n-shaped cross section. For the further mathematical consideration, it is assumed that the structures have a diameter D S.
  • symmetrical unit cell has the advantage that their input impedances at the input E and output A are the same.
  • s is the number of radial bars.
  • the individual sections of the unit cell, L1, L, L2 can be described by ABCD matrices, which can be simply switched one after the other by matrix multiplication.
  • bands B and band gaps BL are generated by the periodic shunt inductance.
  • bands B a TEM wave propagates, but at frequencies within a band gap, the wave is evanescent and attenuated.
  • x n . O n ⁇ x n . u ⁇ n - 1 ⁇ ⁇ + 2 ⁇ a / n - 1 / ⁇ 1 + 2 ⁇ a / n - 1 2 / ⁇ 2 ⁇ n - 1 ⁇ ⁇ + 2 ⁇ a n - 1 ⁇ ⁇ ⁇
  • Bloch impedance Z B is the effective impedance of the periodic line - it is the input impedance of an infinitely long periodic structure. So that the periodic structure can be connected to a conventional coaxial line with the characteristic impedance Zw as free from reflection, Z B should be as close as possible to Z W.
  • the Bloch impedance can be calculated from the voltage and current of an elementary cell at periodic boundary conditions, ie the two components of the eigenvector of the eigenvalue problem (4):
  • Z B is purely imaginary, as it should be for a reactive load that does not absorb active power.
  • Z B is real and, in the higher bands, where the perturbation by the inductances is weaker, approaches the value of the undisturbed line Z TEM . It is also nice to see how in the even-numbered bands the Bloch impedance becomes negative, which is related to the negative group velocity (ie slope d ⁇ / d ⁇ ⁇ 0), so that the current changes its sign.
  • ⁇ r max 0.1. This is a constraint for determining or optimizing the geometric parameters.
  • the quintessence is thus:
  • the dispersions of TEM and TE11 modes in periodic structures with four interconnects are very closely linked.
  • the only parameter that allows for individual influencing of both modes is the cut-off frequency f co of the TE11 mode in the coaxial line, which shifts the TE11 bands upwards.
  • L Stab 1.68nH was extracted from a numerical model using CST (Computer Simulation Technique).

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)
  • Communication Cables (AREA)

Description

Technisches GebietTechnical area

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung einer Koaxialleiterstruktur zur störungsfreien Übertragung eines einzig ausbreitungsfähigen TEM-Modes einer HF-Signalwelle innerhalb wenigstens eines Bandes von sich im Rahmen einer-Dispersionsrelation ausbildenden Frequenzbändern. Ferner wird eine Verwendung der Koaxialleiterstruktur beschrieben.The invention relates to a method for producing a coaxial conductor structure for the interference-free transmission of a single propagatable TEM mode of an RF signal wave within at least one band of frequency bands forming in the context of a dispersion relation. Furthermore, a use of the coaxial conductor structure will be described.

Stand der TechnikState of the art

Die Übertragungsqualität von Koaxialleitern für den TEM-Grundmode von HF-Signalwellen nimmt mit zunehmenden Signalfrequenzen ab, zumal sich bei höheren Frequenzen im Wege von Modenkonversionsprozessen längs der Koaxialleitung unerwünschte, ausbreitungsfähige Moden höhere Ordnung ausbilden, bspw. TE11-, TE21-Moden etc., die in Überlagerung mit der TEM-Grundmode treten.The transmission quality of coaxial conductors for the TEM fundamental mode of RF signal waves decreases with increasing signal frequencies, especially as at higher frequencies by way of mode conversion processes along the coaxial line form undesirable, propagatable modes higher order, for example TE 11 , TE 21 modes, etc ., Which overlap with the TEM fundamental mode.

So geht bspw. aus einem Artikel von Douglas E. Mode, "Spurious Modes in Coaxial Transmission Line Filters", Proceedings of the I.R.E, Vol. 38, 1950, S. 176-180 , DOI 10.1109/JRPROC. 1950.230399 eine Untersuchung der unteren Grenzfrequenz einer sich als störend ausbildenden niedrigsten TE-Mode längs eine Koaxialleitung hervor, längs der sogenannte Shunt-Induktivitäten, in Form von den Innen- und Aussenleiter der Koaxialleitung verbindenden Stäben, angebracht sind. Zur analytischen Bestimmung der unteren Grenzfrequenz werden vereinfachende Annahmen getroffen, bspw. wird ein die Koaxialleitung repräsentierender modifizierter Rechteckshohlleiter zugrundegelegt. Es werden keine Dispersionrelationen für den TEM und TE11 Mode berechnet.So goes, for example, from an article by Douglas E. Mode, "Spurious Modes in Coaxial Transmission Line Filters," Proceedings of the IRE, Vol. 38, 1950, p. 176-180 , DOI 10.1109 / JRPROC. 1950.230399 a study of the lower limit frequency of a disturbing forming the lowest TE mode along a coaxial line forth, along the so-called shunt inductors, in the form of the inner and outer conductors of the coaxial line connecting rods attached. For the analytical determination of the lower limit frequency, simplifying assumptions are made, for example, a coaxial line representing the modified rectangular waveguide is used. No dispersion relations are calculated for the TEM and TE 11 modes.

Insbesondere in Hinblick auf künftige Ausweitungen bzw. Änderungen von bestehenden Übertragungsbereichen für HF-Signale, die im Frequenznutzungsplan für die Bundesrepublik Deutschland festgelegt sind, zu höheren Frequenzen, gilt es nach Maßnahmen zu suchen, mit denen eine möglichst störungsfreie, hochfrequente Signalübertragung des TEM-Grundmodes von HF-Signalen über Koaxialleitungen mit einem möglichst großen Durchmesser möglich wird.In particular, with regard to future extensions or changes of existing transmission ranges for RF signals, which are defined in the frequency usage plan for the Federal Republic of Germany to higher frequencies, it is necessary to look for measures with which a trouble-free, high-frequency signal transmission of the TEM basic mode of RF signals via coaxial cables with the largest possible diameter possible.

Die Lösung der gestellten Aufgabe ist im Anspruch 1 angeben. Vorteilhafte Aus- und Weiterbildungen des lösungsgemäßen Verfahrens zur Herstellung einer Koaxialleiterstrukturen sind in den Unteransprüchen angegeben sowie der weiteren Beschreibung unter Bezugnahme auf die Ausführungsbeispiele beschrieben.The solution of the problem is specified in claim 1. Advantageous embodiments and further developments of the method according to the invention for producing a coaxial conductor structures are specified in the subclaims and the further description with reference to the exemplary embodiments.

Das lösungsgemäße Verfahren zur Herstellung einer Koaxialleiterstruktur geht von der Erkenntnis aus, dass sich das Übertragungsverhalten von Koaxialleitungen für HF-Signalwellen signifikant ändert, sofern zwischen dem Aussen- und Innenleiter in jeweils periodisch äquidistanten Abständen längs zur Koaxialleitung elektrisch leitende Verbindungsstrukturen eingebracht sind. Betrachtet man das Ausbreitungsverhalten der TEM-Grundmode längs einer konventionellen Koaxialleitung, d.h. Aussen- und Innenleiter sind durch das zwischenliegende Dielektrikum elektrisch isoliert, im Rahmen eines Dispersions-Diagramms, so ist festzustellen, dass ein linearer Zusammenhang zwischen der Frequenz, bzw. Kreisfrequenz ω und der Ausbreitungskonstante β der HF-Signalwelle mit der Form e jtz) besteht, d.h. w = cβ. Dieser lineare Zusammenhang stellt sich in einem Dispersions-Diagramm ω(β) als so genannte Lichtgeschwindigkeits-Gerade dar. Ab einer unteren Grenzfrequenz - der so genannten cut-off-Frequenz (f) für die TE11-Mode - mit zunehmender Frequenzen bilden sich längs der konventionellen Koaxialleitung unerwünschte Ausbreitungsmoden höherer Ordnung aus, TE11, TE21, TE31, TE41, TM01, TM11 etc., so dass bei Frequenzen oberhalb f die TEM-Grundmode stets von Moden höherer Anregungsordnung überlagert ist.The solution according to the method for producing a Koaxialleiterstruktur based on the finding that the transmission behavior of coaxial lines for RF signal waves changes significantly, provided between the outer and inner conductors in each periodically equidistant intervals along the coaxial line electrically conductive connection structures are introduced. If one considers the propagation behavior of the TEM fundamental mode along a conventional coaxial line, ie the outer and inner conductors are electrically insulated by the interposed dielectric, in the context of a dispersion diagram, it can be established that a linear relationship between the frequency or angular frequency ω and the propagation constant β of the RF signal wave is of the form e jtz ) , ie, w = cβ. This linear relationship is represented in a dispersion diagram ω (β) as a so-called sky of light speed. From a lower limit frequency - the so-called cut-off frequency (f ) for the TE 11 mode - with increasing frequencies along the conventional coaxial line undesirable propagation modes of higher order, TE 11 , TE 21 , TE 31 , TE 41 , TM 01 , TM 11, etc., so that at frequencies above f the TEM fundamental mode is always superimposed by modes of higher excitation order.

Sieht man hingegen elektrisch leitende Strukturen in der vorstehend angedeuteten Weise zwischen dem Aussen- und Innenleiter der Koaxialleitung vor, so bilden sich Frequenzbänder aus, in denen der TEM-Grundmode ausbreitungsfähig ist, sowie auch zwischen den Frequenzbändern liegende Bandlücken aus, in denen der TEM-Grundmode evaneszent, d.h. nicht ausbreitungsfähig ist. Dieses Ergebnis erscheint auf den ersten Blick nachteilhaft, zumal der frequenzspezifische Übertragungsbereich für den TEM-Grundmode gegenüber einem konventionellen Koaxialleiter beschnitten wird, gleichwohl kann dieser Nachteil in lösungsgemäßer Weise genutzt werden.If, on the other hand, one sees electrically conductive structures in the manner indicated above between the outer and inner conductors of the coaxial line, frequency bands are formed in which the TEM fundamental mode is capable of propagation, as well as band gaps lying between the frequency bands, in which the TEM Basic mode evanescent, ie is not capable of spreading. This result appears disadvantageous at first glance, especially since the frequency-specific transmission range for the TEM fundamental mode is trimmed compared with a conventional coaxial conductor, although this disadvantage can be used in a solution-like manner.

Desweiteren ist erkannt worden, dass durch Hinzufügen der elektrisch leitenden Verbindungsstrukturen zwischen dem Aussen- und Innenleiter der Koaxialleitung die vorstehend skizzierte Frequenzfensterung der TEM-Grundmode in jeweils konkrete ausbreitungsfähige Frequenzbänder auch bei den Anregungsmoden höherer Ordnung auftritt, d.h. auch bei den höheren Anregungsmoden, TE11, TE21 etc. bilden sich Frequenzbereiche aus, in denen die Moden ausbreitungsfähig sind, und andere Frequenzbereiche, in denen sie evaneszent sind.Furthermore, it has been recognized that by adding the electrically conductive connection structures between the outer and inner conductors of the coaxial line the above outlined frequency windowing of the TEM fundamental mode in each concrete frequency bands capable of propagation also occurs in the higher order excitation modes, ie even in the higher excitation modes, TE 11th , TE 21, etc. form frequency ranges in which the modes are capable of propagation, and other frequency ranges in which they are evanescent.

Die der Erfindung zugrunde liegende Idee basiert auf der Überlegung, dass durch geeignete Wahl von konstruktiven Designparametern für die Ausbildung einer Koaxialleitung mit elektrisch leitenden Verbindungsstrukturen zwischen Aussen- und Innenleiter, ein gezielter bzw. kontrollierter Einfluss auf die frequenzabhängigen Lagen der vorstehend bezeichneten Frequenzbänder derart genommen wird, dass wenigstens ein Frequenzband, in der der TEM-Grundmode ausbreitungsfähig ist, in Deckung bzw. Überlapp gebracht wird mit einem Frequenzband- bzw. -bereich, in dem sämtliche Anregungsmoden höheren Ordnung evaneszent sind.The idea underlying the invention is based on the consideration that by a suitable choice of constructive design parameters for the formation of a coaxial line with electrically conductive connection structures between outer and inner conductors, a targeted or controlled influence on the frequency-dependent layers of the above-mentioned frequency bands is taken in such a way in that at least one frequency band in which the basic TEM mode is capable of propagation is overlapped with a frequency band or range in which all higher order excitation modes are evanescent.

Zur weiteren begrifflichen Festlegung wird davon ausgegangen, dass sich bei der zu beschreibenden lösungsgemäß hergestellten Koaxialleiterstruktur eine Anzahl "n" konkreter Frequenzbänder ausbildet, in denen der TEM-Grundmode ausbreitungsfähig ist. Hier beginnt der Zählparameter "n" bei eins und stellt eine natürliche positive Zahl dar. In gleicher Weise bilden sich "m" konkrete Frequenzbänder aus, in denen der TE11-Mode ausbreitungsfähig ist, wobei auch "m" eine positive natürliche Zahl als Zählparameter darstellt. Von einer weiterführenden Diskussion bezüglich des Auftretens von Anregungsmoden höherer Ordnung wird Abstand genommen, zumal diese bei Frequenzen auftreten, deren technische Anwendbarkeit zumindest gegenwärtig als weniger relevant angesehen wird, gleichwohl können auch diese Anregungsmoden in äquivalenter Anwendung des lösungsgemäßen Gedankens mit berücksichtigt werden.For further conceptual definition, it is assumed that a number "n" of concrete frequency bands in which the basic TEM mode is capable of propagation is formed in the coaxial conductor structure produced in accordance with the invention. Here, the counting parameter "n" starts at one and represents a natural positive number. In the same way, "m" form concrete ones Frequency bands in which the TE 11 mode is capable of propagation, where also "m" represents a positive natural number as a count parameter. A further discussion regarding the occurrence of higher-order excitation modes is discarded, especially since these occur at frequencies whose technical applicability is at least presently considered to be less relevant, nevertheless these excitation modes can also be taken into account in an equivalent application of the idea according to the solution.

Eine lösungsgemäß hergestellte Koaxialleiterstruktur zur störungsfreien Übertragung eines monomodigen TEM-Grundmodes einer HF-Signalwelle innerhalb wenigstens eines Bandes von sich im Rahmen einer Dispersionsrelation ausbildenden n Frequenzbändern, weist folgende Komponenten auf:

  1. a) einen kreisrunden Querschnitt aufweisenden Innenleiter mit einem Innenleiterdurchmesser Di, denkbar sind jedoch auch an die Kreisform angenäherte Querschnittsformen, bspw. mit einer n-eckigen Umfangskontur,
  2. b) einen Außenleiter, der den Innenleiter radial mit einem Außenleiterinnendurchmesser Da umgibt, vorzugsweise äquidistant radial umgibt, denkbar sind jedoch auch an die Kreisform angenäherte Querschnittsformen, bspw. mit einer n-eckigen Umfangskontur, und
  3. c) einen sich axial erstreckenden gemeinsamen Leiterabschnitt von Innen- und Außenleiter, längs dem in äquidistanten Abständen p jeweils s ≥ 1 den Innen- mit dem Außenleiter elektrisch verbindende stabförmige Strukturen mit einem Stabdurchmesser Ds vorgesehen sind. Vorzugsweise eignen sich im Querschnitt kreisrunde Stäbe, gleichwohl können die Stabquerschnitte auch n-eckig o.ä. ausgestaltet sein. Für eine von höheren Anregungsmoden, die sich zumindest in Form einer TE11-Mode innerhalb von m Frequenzbändern ausbilden, ungestörte Ausbreitung der TEM-Grundmode längs der Koaxialleiterstruktur sind die vorstehenden Parameter Di, Da, DS, p, s derart zu wählen, dass die folgenden beiden Bedingungen erfüllt sind:
    1. i) Eine untere Grenzfrequenz fu(TEM) des sich innerhalb eines n ≥ 2 2-ten Bandes ausbreitenden TEM-Modes ist gleich einer oberen Grenzfrequenz fo(TE11) des sich ausbildenden TE11-Modes im m-ten Band, und
    2. ii) eine obere Grenzfrequenz fo(TEM) des sich innerhalb des n ≥ 2-ten Bandes ausbreitenden TEM-Modes ist gleich einer unteren Grenzfrequenz fu(TE11) des sich innerhalb des (m+1)-ten Bandes ausbildenden TE11-Modes ist.
A coaxial conductor structure produced in accordance with the invention for the interference-free transmission of a monomode TEM fundamental mode of an RF signal wave within at least one band of n frequency bands forming in the context of a dispersion relationship has the following components:
  1. a) having a circular cross-section inner conductor with an inner conductor diameter D i , but are also conceivable to the circular shape approximate cross-sectional shapes, for example. With an octagonal peripheral contour,
  2. b) an outer conductor which surrounds the inner conductor radially with an outer conductor inner diameter Da, preferably equidistant radially surrounds, but are also conceivable to the circular shape approximate cross-sectional shapes, for example. With an n-angular peripheral contour, and
  3. c) an axially extending common conductor section of inner and outer conductors, along which the inner and the outer conductor electrically connecting rod-shaped structures with a rod diameter D s are provided at equidistant intervals p each s ≥ 1. Circular rods are preferably suitable in cross-section, however, the rod cross-sections can also be n-sided or similar. be designed. For one of higher excitation modes, which form at least in the form of a TE 11 mode within m frequency bands, undisturbed propagation of the TEM fundamental mode along the coaxial conductor structure, the above parameters D i , D a , D s , p, s are to be selected in such a way in that the following two conditions are met:
    1. i) A lower cutoff frequency f u (TEM) of the TEM mode propagating within an n ≥ 2 2-th band is equal to an upper cutoff frequency f o (TE 11 ) of the forming TE 11 mode in the mth band, and
    2. ii) an upper limit frequency f o (TEM) of the TEM mode propagating within the n ≥ 2-th band is equal to a lower limit frequency f u (TE 11 ) of the TE 11 forming within the (m + 1) th band -Modes is.

Die vorstehenden mathematischen Relationsforderungen gilt es im lösungsgemäßen Sinne etwas aufgeweicht zu verstehen, d.h. eine technisch akzeptable monomodige Ausbreitung des TEM-Modes kann auch dann genutzt werden, wenn gilt:

  1. i) f u TEM n - f o TE 11 , m < 1 3 f o TEM n - f u TEM n
    Figure imgb0001

    sowie
  2. ii) f o TEM n - f u TE 11 , m + 1 < 1 3 f o TEM n - f u TEM n
    Figure imgb0002
The above mathematical relational requirements are to be understood as somewhat softened in the sense of the solution, ie a technically acceptable single-mode propagation of the TEM mode can also be used if the following applies:
  1. i) f u TEM n - f O TE 11 . m < 1 3 f O TEM n - f u TEM n
    Figure imgb0001

    such as
  2. ii) f O TEM n - f u TE 11 . m + 1 < 1 3 f O TEM n - f u TEM n
    Figure imgb0002

Es hat sich gezeigt, dass in einem Bereich, in dem eine geringfügige Überlappung des ausbreitungsfähigen TEM-Modes und TE11-Modes besteht, eine technische Nutzung des TEM-Modes ohne nennenswerte Qualitätseinbuße möglich ist. Dieser Toleranzbereich Δf beträgt maximal 1/3 der n-ten TEM-Bandbreite.It has been found that in an area in which there is a slight overlap of the propagatable TEM mode and TE 11 modes, a technical use of the TEM mode without significant loss of quality is possible. This tolerance range Δf is at most 1/3 of the nth TEM bandwidth.

Ferner hat sich gezeigt, dass die lösungsgemäßen Massnahmen zur Schaffung eines für den TEM-Mode längs einer Koaxialleiterstruktur störungsfrei ausbreitungsfähigen Frequenzfensters auch bei einer Koaxialleiterstruktur erfolgreich anwendbar sind, bei der der Innenleiter- und/oder Außenleiter-Querschnitt der Koaxialleitung von der kreisrunden Form abweicht jedoch den gleichen Wellenwiderstand wie die runde Koaxialleitung aufweist. Beispielsweise können der Aussen- und Innenleiterquerschnitt dabei n-eckig ausgeformt sein. Die weiteren Betrachtungen beziehen sich allerdings auf jeweils kreisrunde Querschnittsformen.It has also been found that the measures according to the solution for creating a frequency window capable of propagating smoothly along a coaxial conductor structure for TEM mode can also be used successfully in a coaxial conductor structure in which the inner conductor and / or outer conductor cross section of the coaxial line deviates from the circular shape has the same characteristic impedance as the round coaxial line. For example, the outer and inner conductor cross-section can be formed n-angular. The further considerations, however, relate to each circular cross-sectional shapes.

Wie die weiteren Ausführungen zeigen werden, ist es möglich durch geeignete Wahl der konstruktiven Designparameter Di, Da, DS, p, s Koaxialleiterstrukturen festzulegen, die in Frequenzbereichen oberhalb der cut-off-Frequenz f der TE11-Mode eine vollständig störungsfreie Ausbreitung der TEM-Grundmode ermöglichen ohne jegliche Anregungsmoden höherer Ordnung und dies bei derart hohen Frequenzen, bei denen Anregungsmoden höherer Ordnung im Falle konventioneller Koaxialleiter unvermeidbar sind.As the further explanations will show, it is possible by appropriate choice of the design parameters D i , D a , D S , p, s to define coaxial conductor structures which in frequency ranges above the cut-off frequency f ∞ of the TE 11 mode a completely interference-free propagation of the TEM fundamental mode is possible without any higher-order excitation modes and this at such high frequencies at which higher-order excitation modes are unavoidable in the case of conventional coaxial conductors.

In gleicher Weise ist es möglich durch geeignete konstruktive Festlegung der lösungsgemäß hergestellten Koaxialleiterstruktur die cut-off-Frequenz f zu höheren Frequenzwerten zu verschieben und auf diese Weise das erste Frequenzband, in der der TEM-Grundmode monomodig ausbreitungsfähig ist, in Richtung höherer Frequenzen auszudehnen.In the same way, it is possible by suitable constructive definition of the coaxial conductor structure produced in accordance with the solution to shift the cut-off frequency f to higher frequency values and in this way to expand the first frequency band in which the basic TEM mode is capable of single-mode propagation in the direction of higher frequencies ,

Eine derartige lösungsgemäß hergestellte Koaxialleiterstruktur zeichnet sich durch die vorstehend erläuterten konstruktiven Parameter Di, Da, DS, p, s aus, wobei diese Parameter derart zu wählen sind, dass eine obere Grenzfrequenz fo(TEM) des sich innerhalb des ersten, d.h. n=1, Bandes ausbreitenden TEM-Modes kleiner gleich der unteren Grenzfrequenz fu(TE11) des sich ausbildenden TE11-Modes im ersten Band, d.h. m=1, ist, wobei gilt: f o TEM = c 2 p

Figure imgb0003
und f u TE 11 = 6 a 3 + a f 0 2 + f co 2 ,
Figure imgb0004
so dass gilt c 2 p 6 a 3 + a f 0 2 + f co 2 .
Figure imgb0005
Such a coaxial conductor structure produced in accordance with the invention is distinguished by the constructive parameters D i , D a , D s , p, s explained above, wherein these parameters are to be selected in such a way that an upper limit frequency f o (TEM) of the inside of the first, ie n = 1, band propagating TEM mode is less than or equal to the lower limit frequency f u (TE 11 ) of the forming TE 11 mode in the first band, ie m = 1, where: f O TEM = c 2 p
Figure imgb0003
and f u TE 11 = 6 a 3 + a f 0 2 + f co 2 .
Figure imgb0004
so that applies c 2 p 6 a 3 + a f 0 2 + f co 2 ,
Figure imgb0005

Hierbei gilt: f 0 = c 2 πp , f co c π 2 D a + D i

Figure imgb0006
und a = s Z TEM p 2 cL Stab
Figure imgb0007
und Z TEM = 1 2 π μ ε ln D a D i
Figure imgb0008
Where: f 0 = c 2 πp . f co c π 2 D a + D i
Figure imgb0006
and a = s Z TEM p 2 cL Rod
Figure imgb0007
and Z TEM = 1 2 π μ ε ln D a D i
Figure imgb0008

Für die vorstehenden Zusammenhänge sei vorausgesetzt, dass c die Lichtgeschwindigkeit im Dielektrikum, normalerweise Luft, darstellt. Man beachte, dass sich für diese lösungsgemäße Koaxialleiterstruktur die untere Grenzfrequenz des TE11-Modes im ersten Band und damit der monomodige TEM-Betrieb auf f u TE 11 = 6 a 3 + a f 0 2 + f co 2

Figure imgb0009
erhöht, vgl. mit fu(TE11) = fco einer konventionellen Koaxialleitung.For the above relationships, assume that c represents the speed of light in the dielectric, usually air. It should be noted that the lower limit frequency of the TE 11 mode in the first band and thus the single-mode TEM operation are the case for this coaxial conductor structure according to the invention f u TE 11 = 6 a 3 + a f 0 2 + f co 2
Figure imgb0009
increased, cf. with f u (TE 11 ) = f co of a conventional coaxial line.

Neben den vorstehend erläuterten Designkriterien für Koaxialleiterstrukturen, die ganz wesentlich den Einsatz von den Aussen- und Innenleiter verbindenden elektrisch leitenden Strukturen vorsehen und zumindest in bestimmten Frequenzbändern störungsfreie Übertragungseigenschaften ausschließlich für den TEM-Grundmode ermöglichen, tragen gerade die elektrisch leitenden Strukturen zu einer gezielten Entwärmung des Innenleiters bei, der insbesondere bei der Übertragung leistungsstarker HF-Signale einer erheblichen Erwärmung unterliegt. Da die elektrisch leitenden Verbindungsstrukturen vorzugsweise in Form stabförmiger Strukturen aus einem metallischen Werkstoff bestehen, vorzugsweise aus dem Werkstoff aus dem der Innen- und/oder Außenleiter besteht, verfügen sie über eine hohe Wärmeleitfähigkeit. Somit eignen sich elektrisch leitenden Materialen für diese Strukturen, die über eine besonders hohe Wärmeleitfähigkeit verfügen.In addition to the above-described design criteria for Koaxialleiterstrukturen that provide very much the use of the outer and inner conductors connecting electrically conductive structures and at least in certain frequency bands interference-free transmission characteristics exclusively for the TEM fundamental mode, just carry the electrically conductive structures to a targeted cooling of the Inner conductor, which is subject to considerable heat, especially in the transmission of high-power RF signals. Since the electrically conductive connection structures are preferably in the form of rod-shaped structures of a metallic material, preferably of the material of which the inner and / or outer conductor, they have a high thermal conductivity. Thus, electrically conductive materials are suitable for these structures, which have a particularly high thermal conductivity.

Kurze Beschreibung der ErfindungBrief description of the invention

Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben. Es zeigen:

Fig. 1
Darstellung eines Abschnittes einer lösungsgemäß ausgebildeten Koaxialleiterstruktur und
Fig. 2
TEM Dispersions-Diagramm,
Fig. 3
Diagrammdarstellung zur Bloch-Impedanz für TEM-Mode sowie
Fig. 4
Diagramm mit allen Dispersions-Relationen bis zu einer bestimmten Maximalfrequenz. Vergleich des Ersatz-Schaltbilds mit einer Vollwellen EM-Simulation.
The invention will now be described by way of example without limitation of the general inventive idea by means of embodiments with reference to the drawings. Show it:
Fig. 1
Representation of a portion of a solution according trained coaxial conductor structure and
Fig. 2
TEM dispersion diagram,
Fig. 3
Diagram showing the Bloch impedance for TEM mode as well
Fig. 4
Diagram with all dispersion relations up to a certain maximum frequency. Comparison of the replacement circuit diagram with a full wave EM simulation.

Wege zur Ausführung der Erfindung, gewerbliche VerwendbarkeitWays to carry out the invention, industrial usability

In Figur 1 ist ein Abschnitt einer lösungemäß hergestellten Koaxialleiterstruktur dargestellt. Der Abschnitt stellt eine Art Elementarzelle für den Aufbau einer Koaxialleitung dar, die sich letztlich durch eine periodische Wiederkehr des illustrierten Abschnittes auszeichnet. Innerhalb des transparent dargestellten Aussenleiters AL, der einen Aussenleiterinnendurchmesser Da aufweist, ist ein Innenleiter IL der Länge p mit einem kreisrunden Leiterquerschnitt und einem Innenleiterdurchmesser Di eingebracht. Mittig zur Längserstreckung p des Innenleiters IL ist sind s = 2 stabförmige Strukturen S vorgesehen, die einen elektrisch leitenden Kontakt bzw. eine elektrisch leitende Verbindung zum Aussenleiter AL herstellen. Die stabförmigen Strukturen S sind aus einem elektrisch und thermisch gut leitenden Material, vorzugsweise Metall, hergestellt, besonders vorzugsweise aus dem gleichen Material, aus dem der Innen- bzw. Aussenleiter gefertigt sind. Die Strukturen S können einen kreisrunden oder n-eckigen Querschnitt aufweisen. Für die weitere mathematische Betrachtung sei angenommen, dass die Strukturen einen Durchmesser DS besitzen.In FIG. 1 a section of a solution according manufactured coaxial conductor structure is shown. The section represents a kind of unit cell for the construction of a coaxial line, which is ultimately characterized by a periodic return of the illustrated section. Inside the transparently illustrated outer conductor AL, which has an outer conductor inner diameter Da, an inner conductor IL of the length p with a circular conductor cross-section and an inner conductor diameter Di is inserted. Central to the longitudinal extent p of the inner conductor IL are s = 2 rod-shaped structures S are provided which produce an electrically conductive contact or an electrically conductive connection to the outer conductor AL. The rod-shaped structures S are made of an electrically and thermally highly conductive material, preferably metal, preferably made of the same material from which the inner or outer conductor are made. The structures S may have a circular or n-shaped cross section. For the further mathematical consideration, it is assumed that the structures have a diameter D S.

Grundsätzlich ist es möglich eine einzige, d.h. s = 1, stabförmige Struktur S pro Elementarzelle vorzusehen. Weiterführende Überlegungen und entsprechende Rechnungen zeigen, dass besonders günstige Übertragungseigenschaften der Koaxialleitung erzielt werden, wenn s= 2, 3 oder 4 ist. Im Falle von s= 1 oder s=2 bietet es sich an die in jeweils äquidistanten Abständen p längs der Koaxialleitung angeordneten stabförmigen Strukturen relativ zur Umfangsrichtung des Innen- und Außenleiters derart anzuordnen, dass die stabförmigen Strukturen in einer axialen Projektion zu dem sich axial erstreckenden gemeinsamen Leiterabschnitt jeweils deckungsgleich hintereinander angeordnet sind, oder jeweils mit einem in Umfangsrichtung des Innen- und Außenleiters IL, AL orientierten, identischen Winkelversatz Δα versetzt angeordnet sind. Bspw. im Falle von s=1 oder 2 ist es vorteilhaft zwei axial aufeinander folgende stabförmige Strukturen jeweils um Δα = 90° um die Koaxialleiterlängsachse verdreht anzuordnen, um eventuelle magnetische Kopplungen zwischen den Stäben zu minimieren.Basically, it is possible a single, i. s = 1, to provide rod-shaped structure S per unit cell. Further considerations and corresponding calculations show that particularly favorable transmission properties of the coaxial line are achieved when s = 2, 3 or 4. In the case of s = 1 or s = 2, it is advisable to arrange the rod-shaped structures arranged at equidistant distances p along the coaxial line relative to the circumferential direction of the inner and outer conductors in such a way that the rod-shaped structures are in an axial projection to the axially extending common conductor section are each arranged congruently one behind the other, or in each case offset with an identical in the circumferential direction of the inner and outer conductor IL, AL oriented, identical angular offset .DELTA..alpha. For example. in the case of s = 1 or 2, it is advantageous to arrange two axially successive rod-shaped structures each rotated by Δα = 90 ° about the coaxial longitudinal axis to minimize any magnetic couplings between the rods.

Im Weiteren wird anhand der in Figur 1 dargestellten Elementarzelle für den Aufbau einer lösungsgemäß hergestellten Koaxialleitung das elektromagnetische Design einer derartigen Leitung beschrieben, um gewünschte Dispersionsrelationen des technisch verwendeten TEM-Grundmodes und des störenden TE11 Modes maßschneidern zu können. Ziel ist es, Koaxialleiterstrukturen mit relativ großen Durchmessern Da zu designen, die in einem gewünschten Frequenzbereich, begrenzt durch eine untere fu und obere Grenzfrequenz fo, nur einen einzigen ausbreitungsfähigen Mode haben, nämlich den TEM-Grundmode. Alle anderen Moden sollen in diesem Frequenzbereich evaneszent sein.Furthermore, based on the in FIG. 1 For the construction of a coaxial line produced in accordance with the invention, the unitary cell illustrated in the description of the electromagnetic design of such a line is described in order to obtain desired dispersion relations of the invention technically used TEM basic modes and the annoying TE11 mode tailoring. The aim is to design coaxial conductor structures with relatively large diameters Da, which in a desired frequency range, bounded by a lower f u and upper limit frequency f o , have only one single propagatable mode, namely the TEM fundamental mode. All other modes should be evanescent in this frequency range.

Die in Figur 1 dargestellte symmetrische Elementarzelle hat den Vorteil, dass ihre Eingangsimpedanzen am Eingang E und Ausgang A gleich sind. Die Zelle besteht aus zwei Leitungen L1, L2 mit der Impedanz Z = Z TEM = 1 2 π μ ε ln D a D i ,

Figure imgb0010
Ausbreitungskonstante γ = j ω c ,
Figure imgb0011
und der Länge l= p / 2 und einer zwischengeschalteten Shunt-Admittanz Y =1/ jωL. Die Stäbe kann man näherungsweise durch eine Induktivität L beschreiben mit L = L Stab s , L Stab D a - D i 2 μ 4 π ln D a D s ,
Figure imgb0012
wobei s die Anzahl der radialen Stäbe ist.In the FIG. 1 shown symmetrical unit cell has the advantage that their input impedances at the input E and output A are the same. The cell consists of two lines L1, L2 with the impedance Z = Z TEM = 1 2 π μ ε ln D a D i .
Figure imgb0010
propagation constant γ = j ω c .
Figure imgb0011
and the length l = p / 2 and an interposed shunt admittance Y = 1 / jωL. The rods can be approximately described by an inductance L with L = L Rod s . L Rod D a - D i 2 μ 4 π ln D a D s .
Figure imgb0012
where s is the number of radial bars.

Die einzelnen Sektionen der Elementarzelle, L1, L, L2, kann man durch ABCD-Matrizen beschreiben, die man per Matrix-Multiplikation einfach hintereinander schalten kann. Die ABCD-Matrix der Leitung L1, L2 ist gegeben durch ABCD TL = cosh γl Z sinh γl 1 Z sinh γl cosh γl ,

Figure imgb0013
und die Shunt-Induktivität L durch ABCD L = 1 0 1 j ω L 1 .
Figure imgb0014
The individual sections of the unit cell, L1, L, L2, can be described by ABCD matrices, which can be simply switched one after the other by matrix multiplication. The ABCD matrix of line L1, L2 is given by ABCD TL = cosh γl Z sinh γl 1 Z sinh γl cosh γl .
Figure imgb0013
and the shunt inductance L through ABCD L = 1 0 1 j ω L 1 ,
Figure imgb0014

Damit erhält man für die gesamte Elementarzelle ABCD cell = ABCD TL ABCD L ABCD TL

Figure imgb0015
This gives you for the entire unit cell ABCD cell = ABCD TL ABCD L ABCD TL
Figure imgb0015

Nun kann die Bloch-Analyse durchgeführt werden, wobei periodische Randbedingungen genutzt werden, d.h. Spannung+Strom am Ausgang ist gleich Spannung+Strom am Eingang multipliziert mit einem Phasenfaktor exp(jϕ). Damit erhält man U 1 I 1 = ABCD cell U 2 I 2 = e j ϕ U 2 I 2

Figure imgb0016
und erkennt ein Eigenwertproblem mit zwei Eigenwerten e jϕ k . Hier stellt sich heraus, däß gilt: ϕ1 = ϕ2 , d.h. man hat es mit je einer vor und einer rücklaufenden Welle zu tun. Für die Berechnung des Eigenwerts muß folgende Determinante verschwinden: A - e j ϕ B C D - e j ϕ = 0
Figure imgb0017
Now, the Bloch analysis can be performed using periodic boundary conditions, ie voltage + current at the output is equal to voltage + current at the input multiplied by a phase factor exp ( j φ). This gives you U 1 I 1 = ABCD cell U 2 I 2 = e j φ U 2 I 2
Figure imgb0016
and recognizes an eigenvalue problem with two eigenvalues e j φ k . Here it turns out that the following applies: φ 1 = φ 2 , ie one has to deal with one each before and one returning wave. The following determinant must disappear for the calculation of the eigenvalue: A - e j φ B C D - e j φ = 0
Figure imgb0017

Nach längerer Rechnung erhält man cos p ω c + Z 2 ω L sin p ω c = cos ϕ

Figure imgb0018
After a long calculation you get cos p ω c + Z 2 ω L sin p ω c = cos φ
Figure imgb0018

Hier bietet es sich an, die Frequenz zu normieren auf x = p c ω = 2 πp c f

Figure imgb0019
und man erhält cos x + a x sin x = cos ϕ
Figure imgb0020
wobei a = Zp 2 cL
Figure imgb0021
einen dimensionslosen Parameter für die so genannte Störung durch L darstellt. Diese Gleichung (7) kann man nach ϕ auflösen. Trägt man x über ϕ x = arccos cos x + a x sin x
Figure imgb0022
auf, so erhält man schließlich das in Figur 2 gezeigte TEM Dispersions-Diagramm, hier für verschiedene Werte von a gezeigt.Here it makes sense to normalize the frequency x = p c ω = 2 πp c f
Figure imgb0019
and you get cos x + a x sin x = cos φ
Figure imgb0020
in which a = Zp 2 cL
Figure imgb0021
represents a dimensionless parameter for the so-called disturbance by L. This equation (7) can be solved for φ. If you transfer x over φ x = arccos cos x + a x sin x
Figure imgb0022
on, so you finally get the in FIG. 2 shown TEM dispersion diagram, shown here for different values of a.

Deutlich ist zu erkennen, wie durch die periodische Shunt-Induktivität Bänder B und Bandlücken BL erzeugt werden. In den Bändern B ist eine TEM-Welle ausbreitungsfähig, hingegen bei Frequenzen innerhalb einer Bandlücke ist die Welle evaneszent und wird gedämpft.It can be clearly seen how bands B and band gaps BL are generated by the periodic shunt inductance. In bands B, a TEM wave propagates, but at frequencies within a band gap, the wave is evanescent and attenuated.

Für a=0 (d.h. L wird unendlich, Querstäbe verschwinden, gestrichelte Kurve) bekommt man die typische Lichtgeschwindigkeits-Gerade f = c 2 πp ϕ

Figure imgb0023
der ungestörten Koaxialleitung, die Zick-Zack in die erste Brillouin-Zone gefaltet wird. Der andere Extremfall ist bei α = ∞, L = 0: Dann erhält man ungekoppelte Leitungsresonatoren der Länge p mit den Resonanzfrequenzen x = nπ, d.h. λ/2-Resonatoren. Hier schrumpfen die Bänder auf Punktfrequenzen zusammen.For a = 0 (ie L becomes infinity, crossbars disappear, dashed curve) you get the typical speed of light line f = c 2 πp φ
Figure imgb0023
undisturbed coaxial line folded zig-zag into the first Brillouin zone . The other extreme case is at α = ∞, L = 0: Then one obtains uncoupled line resonators of length p with the resonance frequencies x = nπ, ie λ / 2 resonators. Here the bands shrink to point frequencies together.

Indem man die linke Seite der Gleichung (7) an den Stellen x = nπ bis zur 2. Ordnung reihenentwickelt und gleich (-1)" setzt, kann man näherungsweise für kleine Störungen a«3n die Grenzfrequenzen (fu, fo) der einzelnen Bänder berechnen und man erhält für das erste Band mit der niedrigsten Frequenz: x 1 , o = π x 1 , u 6 a 3 + a 2 a

Figure imgb0024
By extending the left-hand side of equation (7) up to the second order at the points x = n π and setting equal (-1) ", one can approximate for small perturbations a" 3n the cut-off frequencies (f u , f o ) calculate the individual bands and you get for the first band with the lowest frequency: x 1 . O = π x 1 . u 6 a 3 + a 2 a
Figure imgb0024

Und für das n-te Band mit n>1: x n , o = x n , u n - 1 π + 2 a / n - 1 / π 1 + 2 a / n - 1 2 / π 2 n - 1 π + 2 a n - 1 π

Figure imgb0025
And for the nth band with n> 1: x n . O = x n . u n - 1 π + 2 a / n - 1 / π 1 + 2 a / n - 1 2 / π 2 n - 1 π + 2 a n - 1 π
Figure imgb0025

Für sehr große Störungen a»3n ergibt sich hingegen für das n-te Band (n>=1): x n , o = x n , u - nπa n 2 π 2 + 2 a 1 + 8 a + 4 n 2 π 2 a 2 - 1 - 2 a

Figure imgb0026
For very large perturbations a »3n, on the other hand, for the nth band (n> = 1) we obtain: x n . O = x n . u - nπa n 2 π 2 + 2 a 1 + 8th a + 4 n 2 π 2 a 2 - 1 - 2 a
Figure imgb0026

Damit ist die TEM-Dispersion vollständig charakterisiert und kann in Abhängigkeit von der Geometrie maßgeschneidert werden. Typischerweise wird man ein Band zur Übertragung so verwenden, dass der tatsächlich verwendbare Frequenzbereich deutlich größer ist als der geforderte. Damit können Fertigungstoleranzen ausgeglichen werden, hohe Einfügedämpfungen aufgrund der verschwindenden Gruppengeschwindigkeit (Steigung=0) an den Bandgrenzen minimiert werden und hohe Reflexionen aufgrund der zunehmenden Abweichung der frequenzabhängigen Bloch-Impedanz von der Zielimpedanz an den Bandgrenzen minimiert werden.Thus, the TEM dispersion is fully characterized and can be tailored depending on the geometry. Typically, one will use a band for transmission so that the actual usable frequency range is significantly greater than the required one. Thus, manufacturing tolerances can be compensated, high insertion losses due to the vanishing group speed (slope = 0) are minimized at the band limits and high reflections due to the increasing deviation of the frequency-dependent Bloch impedance from the target impedance at the band boundaries are minimized.

Die sog. Bloch-Impedanz ZB ist die effektive Impedanz der periodischen Leitung - sie ist die Eingangs-Impedanz einer unendlich langen periodischen Struktur. Damit die periodische Struktur an eine konventionelle Koaxialleitung mit dem Wellenwiderstand Zw möglichst reflexionsfrei angeschlossen werden kann, sollte ZB möglichst nahe bei ZW liegen.The so-called Bloch impedance Z B is the effective impedance of the periodic line - it is the input impedance of an infinitely long periodic structure. So that the periodic structure can be connected to a conventional coaxial line with the characteristic impedance Zw as free from reflection, Z B should be as close as possible to Z W.

Die Bloch-Impedanz kann aus Spannung und Strom einer Elementarzelle bei periodischen Randbedingungen berechnet werden, d.h. den zwei Komponenten des Eigenvektors des Eigenwertproblems (4): Z B ω = U 1 I 1 = U 2 I 2 = - B A - e j ϕ = B A 2 - 1 = Z TEM sin p ω c + Z TEM 2 ω L TEM 1 - cos p ω c 1 - cos p ω c + Z TEM 2 ω L TEM sin p ω c 2

Figure imgb0027
The Bloch impedance can be calculated from the voltage and current of an elementary cell at periodic boundary conditions, ie the two components of the eigenvector of the eigenvalue problem (4): Z B ω = U 1 I 1 = U 2 I 2 = - B A - e j φ = B A 2 - 1 = Z TEM sin p ω c + Z TEM 2 ω L TEM 1 - cos p ω c 1 - cos p ω c + Z TEM 2 ω L TEM sin p ω c 2
Figure imgb0027

Die starke Frequenzabhängigkeit der Bloch-Impedanz ZB, die extrem von der Impedanz der ungestörten Koaxialleitung ZTEM abweichen kann, zeigt das in Figur 3 illustrierte Diagramm. In diesem Beispiel wurde für a=7.8, p=72mm und ZTEM=28Ω verwendet.The strong frequency dependence of the Bloch impedance Z B , which can deviate extremely from the impedance of the undisturbed coaxial line Z TEM , shows the in FIG. 3 illustrated diagram. In this example we used a = 7.8, p = 72mm and Z TEM = 28Ω.

In den Band-Lücken BL ist ZB rein imaginär, wie es für eine reaktive Last sein soll, die keine Wirkleistung aufnimmt. Hingegen in den Übertragungsbändern B ist ZB reell und nähert sich in den höheren Bändern, wo die Störung durch die Induktivitäten schwächer wirkt, immer näher dem Wert der ungestörten Leitung ZTEM an. Schön sieht man auch, wie in den geradzahligen Bändern die Bloch-Impedanz negativ wird, was mit der negativen Gruppengeschwindigkeit (d.h. Steigung dω/dß < 0) zusammenhängt, so dass der Strom sein Vorzeichen wechselt.In the band gaps BL, Z B is purely imaginary, as it should be for a reactive load that does not absorb active power. On the other hand, in the transmission bands B, Z B is real and, in the higher bands, where the perturbation by the inductances is weaker, approaches the value of the undisturbed line Z TEM . It is also nice to see how in the even-numbered bands the Bloch impedance becomes negative, which is related to the negative group velocity (ie slope dω / dβ <0), so that the current changes its sign.

Vorzugsweise wird man eine periodische Struktur so entwerfen, dass im Übertragungsbereich B die Reflexion r = Z B - Z W Z B + Z W

Figure imgb0028
betragsmäßig kleiner bleibt als ein gegebenes r max, beispielsweise |r|<r max = 0,1. Dies stellt eine Nebenbedingung für das Bestimmen bzw. Optimieren der geometrischen Parameter dar.Preferably, a periodic structure will be designed so that in the transmission region B, the reflection r = Z B - Z W Z B + Z W
Figure imgb0028
in amount remains smaller than one given r max , for example | r | < r max = 0.1. This is a constraint for determining or optimizing the geometric parameters.

Der TE11 Mode lässt sich ähnlich modellieren wie der vorstehend beschriebene TEM Grundmode, zumal der Aufbau der Elementarzelle und das damit verbundene Ersatzschaltbild das Gleiche ist, wie im Fall des TEM-Gundmodes, lediglich werden bei den Wellenleitern die Ausbreitungskonstante und die Impedanz stark frequenzabhängig: Z f = ln D a D i π μ ε 1 1 - f co 2 / f 2 , γ f = j 2 πf c 1 - f co 2 / f 2 ,

Figure imgb0029
mit der genäherten TE11-cutoff-Frequenz f co c π 2 D a + D i .
Figure imgb0030
The TE 11 mode can be modeled similar to the TEM fundamental mode described above, especially since the structure of the unit cell and the equivalent equivalent circuit is the same as in the case of the TEM Gundmodes, only in the waveguides, the propagation constant and the impedance are highly frequency-dependent: Z f = ln D a D i π μ ε 1 1 - f co 2 / f 2 . γ f = j 2 πf c 1 - f co 2 / f 2 .
Figure imgb0029
with the approximated TE 11 cutoff frequency f co c π 2 D a + D i ,
Figure imgb0030

Wenn man nun die gleiche Rechnung wie im TEM-Fall analog zu (6) durchführt, erhält man folgende Gleichung für die TE11-Mode: cos p ω c 1 - f co 2 / f 2 + 2 Z TEM / 1 - f co 2 / f 2 2 ω L TE sin p ω c 1 - f co 2 / f 2 = cos ϕ

Figure imgb0031
If one carries out the same calculation as in the TEM case analogously to (6), one obtains the following equation for the TE 11 mode: cos p ω c 1 - f co 2 / f 2 + 2 Z TEM / 1 - f co 2 / f 2 2 ω L TE sin p ω c 1 - f co 2 / f 2 = cos φ
Figure imgb0031

Da in der Impedanz und in der Ausbreitungskonstante die gleiche Wurzel auftaucht, kann man wie beim TEM-Fall auf eine normierte Frequenz x transformieren und erhält tatsächlich die gleiche Gleichung wieder cos x TE + a TE x TE sin x TE = cos ϕ ,

Figure imgb0032
nun jedoch mit der normierten Frequenz x TE = 2 πp c f 2 - f co 2 ,
Figure imgb0033
bzw. f = x TE c 2 πp 2 + f co 2
Figure imgb0034
und mit der Störung a TE = Z TEM p c L TE .
Figure imgb0035
Since the same root appears in the impedance and in the propagation constant, one can transform to a normalized frequency x as in the TEM case and in fact get the same equation again cos x TE + a TE x TE sin x TE = cos φ .
Figure imgb0032
but now with the normalized frequency x TE = 2 πp c f 2 - f co 2 .
Figure imgb0033
respectively. f = x TE c 2 πp 2 + f co 2
Figure imgb0034
and with the disorder a TE = Z TEM p c L TE ,
Figure imgb0035

Wenn man, wie in einem bevorzugten Anwendungsfall, vier, d.h. s=4, radiale Stäbe verwendet um Modenkonversion TEM<->TE11 zu verhindern, dann ist LTEM = LStab /4 und LTE = LStab / 2, da die TE11-Welle nur zwei parallel zum E-Feld angeordneten Stäbe "sieht". Damit wird aber der Störungsparameter in beiden Fällen gleich: a TEM = a TE = 2 Z TEM p c L Stab ,

Figure imgb0036
was wiederum bedeutet, dass auch die normierten Grenzfrequenzen (xu, xo) der TEM- und TE11-Bänder gleich sind!If, as in a preferred application, four, ie s = 4, radial rods are used to prevent mode conversion TEM <-> TE11, then L TEM = L bar / 4 and L TE = L bar / 2, as the TE11 wave "sees" only two bars parallel to the E-field. But this will equal the disturbance parameter in both cases: a TEM = a TE = 2 Z TEM p c L Rod .
Figure imgb0036
which in turn means that the normalized cutoff frequencies (x u , x o ) of the TEM and TE11 bands are the same!

Die Quintessenz ist damit: Die Dispersionen von TEM- und TE11-Moden in periodischen Strukturen mit vier Verbindungsstrukturen sind sehr eng miteinander verknüpft. Der einzige Parameter, der eine individuelle Beeinflussung beider Moden erlaubt ist die cut-off Frequenz fco der TE11-Mode in der Koaxialleitung, welche die TE11-Bänder nach oben verschiebt.The quintessence is thus: The dispersions of TEM and TE11 modes in periodic structures with four interconnects are very closely linked. The only parameter that allows for individual influencing of both modes is the cut-off frequency f co of the TE11 mode in the coaxial line, which shifts the TE11 bands upwards.

In den folgenden Tabellen sind zusammenfassend die (unnormierten) Grenzfrequenzen der TEM und TE11 Bänder von 4-Stab-Geometrien dargestellt: Kleine Störung a<<3n Mode Band Untere Grenzfrequenz Obere Grenzfrequenz TEM 1 6 a 3 + a f 0

Figure imgb0037
π f 0 n n - 1 π + 2 a / n - 1 / π 1 + 2 a / n - 1 2 / π 2 f 0
Figure imgb0038
nπ f 0
TE11 1 6 a 3 + a f 0 2 + f co 2
Figure imgb0039
π f 0 2 + f co 2
Figure imgb0040
m n - 1 π + 2 a / n - 1 / π 1 + 2 a / n - 1 2 / π 2 2 f 0 2 + f co 2
Figure imgb0041
π f 0 2 + f co 2
Figure imgb0042
Große Störung a>>3n Mode Band Untere Grenzfrequenz Obere Grenzfrequenz TEM n - n π a n 2 π 2 + 2 a 1 + 8 a + 4 n 2 π 2 a 2 - 1 f 0
Figure imgb0043
nπ f 0
TE11 m f TEM , u , n 2 + f co 2
Figure imgb0044
f 0 2 + f co 2
Figure imgb0045
wobei f 0 = c 2 πp , f co c π 2 D a + D i
Figure imgb0046
und die Störung a = 2 Z TEM p c L Stab
Figure imgb0047
ist.The following tables summarize the (non-normalized) cutoff frequencies of the TEM and TE 11 bands of 4-bar geometries: Little disturbance a << 3 n Fashion tape Lower limit frequency Upper limit frequency TEM 1 6 a 3 + a f 0
Figure imgb0037
π f 0
n n - 1 π + 2 a / n - 1 / π 1 + 2 a / n - 1 2 / π 2 f 0
Figure imgb0038
nπ f 0
TE 11 1 6 a 3 + a f 0 2 + f co 2
Figure imgb0039
π f 0 2 + f co 2
Figure imgb0040
m n - 1 π + 2 a / n - 1 / π 1 + 2 a / n - 1 2 / π 2 2 f 0 2 + f co 2
Figure imgb0041
π f 0 2 + f co 2
Figure imgb0042
Great disturbance a >> 3 n Fashion tape Lower limit frequency Upper limit frequency TEM n - n π a n 2 π 2 + 2 a 1 + 8th a + 4 n 2 π 2 a 2 - 1 f 0
Figure imgb0043
nπ f 0
TE 11 m f TEM . u . n 2 + f co 2
Figure imgb0044
f 0 2 + f co 2
Figure imgb0045
in which f 0 = c 2 πp . f co c π 2 D a + D i
Figure imgb0046
and the disorder a = 2 Z TEM p c L Rod
Figure imgb0047
is.

Für ZTEM gilt: Z TEM = 1 2 π μ ε ln D a D i

Figure imgb0048
For Z TEM : Z TEM = 1 2 π μ ε ln D a D i
Figure imgb0048

Die in Figur 4 dargestellte Dispersion-Relation zeigt eine exzellente Übereinstimmung der Ersatzschaltbildbeschreibung mit einer Vollwellen-Simulation für eine Koaxialleiterstruktur mit jeweils vier Verbindungsstäbe pro Elementarzelle und den weiteren Abmessungen Da =36mm, Di =22.8mm, p=72mm, D s ≈1.5mm, mit reinem rechteckigen Stab mit 1x2mm; hierbei wurde LStab =1.68nH aus einem numerischen Modell mittels CST(Computer Simulation Technik) extrahiert. Die durchgezogenen Kurven entsprechen der TEM Dispersions-Bändern n=1, 2, 3, 4 und die gestrichelten Kurven zeigen die TE11-Dispersions-Bänder m=1, 2, 3, 4, wobei für beide Kurven sowohl eine CST-Simulation, als auch ESB-Berechnungen (ESB: Ersatzschaltbild) durchgeführt worden sind. Speziell die vier niedrigsten Bänder werden nahezu auf Strichstärke genau modelliert!In the FIG. 4 shown dispersion relation shows an excellent match of the equivalent circuit diagram description with a full wave simulation for a Koaxialleiterstruktur with four connecting rods per unit cell and the other dimensions D a = 36mm, D i = 22.8mm, p = 72mm, D s ≈1.5mm, with pure rectangular bar with 1x2mm; Here, L Stab = 1.68nH was extracted from a numerical model using CST (Computer Simulation Technique). The solid curves correspond to the TEM dispersion bands n = 1, 2, 3, 4 and the dashed curves show the TE 11 dispersion bands m = 1, 2, 3, 4, with both a CST simulation, as well as ESB calculations (ESB: equivalent circuit diagram) have been carried out. Especially the four lowest bands are modeled almost on line width exactly!

Bei der in Figur 4 dargestellten Dispersionsrelation bietet es sich an das 3. TEM-Band (n=3) zur Übertragung zu verwenden, genauer der deutlich kleinere Frequenzbereich FB von 5,4 bis 5,9 GHz.At the in FIG. 4 The dispersion ratio shown here makes it possible to use the 3rd TEM band (n = 3) for the transmission, more precisely the much smaller frequency range FB of 5.4 to 5.9 GHz.

Da man meist einen möglichst großen monomodigen Frequenzbereich wünscht, soll das verwendete TEM-Band möglichst breit und gleichzeitig auch die TE11-Bandlücke möglichst breit sein. Da man aber, wie oben gezeigt, den TEM Mode nicht unabhängig vom TE11 Mode beeinflussen kann, wird der Kompromiss auf eine Störung a im Übergangsbereich a ≈ 3n hinauslaufen, so dass Band-Breite und BandLücke etwa gleich groß werden. Bei einer derartigen Leitergeometrie ist die Störung mit a=7,8 genau im Übergangsbereich, wo beide Näherungsformeln, wie in der vorstehenden Tabelle zusammengefasst, für die Grenzfrequenzen ungenau werden. Trotzdem können die Grenzfrequenzen der beiden niedrigsten Bänder vorzugsweise mit der Formel für die große Störung berechnet werden. Bei den höheren Bändern mit n>2 sind die Formeln für die kleine Störung genauer. Exakte Ergebnisse liefert natürlich ein numerisches Verfahren, z.B. das Newton-Verfahren.Since one usually wants the largest possible single-mode frequency range, the TEM band used should be as wide as possible and at the same time the TE11 band gap as wide as possible. Since one but, as shown above, the TEM mode can not affect independently of the TE11 mode, the compromise to a disturbance a in the transitional area a ≈ will result in 3 n, so that band-width and band gap are approximately equal. With such a conductor geometry, the perturbation with a = 7.8 is exactly in the transition region, where both approximation formulas, as summarized in the table above, become inaccurate for the cutoff frequencies. Nevertheless, the cutoff frequencies of the two lowest bands can preferably be calculated using the formula for the large perturbation. At the higher bands with n> 2, the formulas for the small disturbance are more accurate. Exact results of course provides a numerical method, for example the Newton method.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

CSTCST
Computer Simulation TechnologyComputer Simulation Technology
ESBESB
ErsatzschaltbildEquivalent circuit
Ee
Eingangentrance
AA
Ausgangoutput
L1, L2L1, L2
Leiterinduktivitätlead inductance
LL
Shunt-AdmittanzShunt admittance
SS
Struktur, VerbindungsstrukturStructure, connection structure
ALAL
Aussenleiterouter conductor
ILIL
Innenleiterinner conductor
Da D a
AussenleiterinnendurchmesserOuter conductor inner diameter
Di D i
Innenleiter(aussen)durchmesserInner conductor (outside) diameter
Ds D s
StabdurchmesserBar diameter
pp
ElementarzellenlängeUnit cell length
BLBL
Bandlückebandgap
BB
Bandtape

Claims (9)

  1. Method for producing a coaxial conductor structure for interference-free transmission of a TEM mode, which is the only mode capable of propagation, of an HF-signal wave within at least one band of n frequency bands forming in the context of a dispersion relation, with n as a positive natural number, with
    a) an internal conductor having a circular cross-section with an inner conductor diameter Di,
    b) an external conductor which equidistantly radially surrounds the internal conductor with an internal diameter Da of the external conductor,
    c) an axially extending common conductor section of the internal and the external conductor, along which in each case s ≥ 1 rod-shaped structures having a rod diameter Ds, which electrically connect the internal conductor to the external conductor are provided at equidistant intervals p,
    characterized in that
    for a propagation of the single TEM mode along the coaxial conductor structure undisturbed by higher excitation modes, which form at least in the form of a TE11 mode within m frequency bands, the parameters Di, Da, Ds, p, s are selected such that
    (i) a lower cutoff frequency fu(TEM) of the single TEM mode propagating within a n ≥ 2-th band is equal to an upper cutoff frequency fo(TE11) of the TE11 mode forming in the m-th band ± a tolerance range Δf, and
    (ii) an upper cutoff frequency fo(TEM) of the single TEM mode propagating within the n ≥ 2-th band is equal to a lower cutoff frequency fu(TE11) of the TE11 mode forming inside the (m+1) -th band ± a tolerance range Δf, where n and m are positive natural numbers and that 1/3 of the bandwidth of the n-th TEM mode is selected as the tolerance range Δf,
    i.e. Δ f < 1 3 f o , TEM , n - f u , TEM , n .
    Figure imgb0063
  2. Method according to Claim 1,
    characterized in that
    s is chosen to be equal to 3 or 4.
  3. The method according to Claim 1 or 2,
    characterized in that
    the following applies to (i): f u TEM = f o TE 11 ± Δf
    Figure imgb0064

    with f u TEM = n - 1 π + 2 a / n - 1 / π 1 + 2 a / n - 1 2 / π 2 f 0
    Figure imgb0065
    f o TE 11 = f 0 2 + f co 2
    Figure imgb0066

    and Δ f < 1 3 f o , TEM , n - f u , TEM , n
    Figure imgb0067

    and
    that the following applies to (ii): f o TEM = f u TE 11 ± Δf
    Figure imgb0068
    with f o TEM = n π f 0 = nc 2 p
    Figure imgb0069

    and f u TE 11 = + 2 a / m / π 1 + 2 a / m 2 / π 2 2 f 0 2 + f co 2
    Figure imgb0070

    and with
    Perturbation: a = Zp 2 cL ;
    Figure imgb0071

    Characteristic Impedance: Z = 1 2 π μ ε ln D a D i ;
    Figure imgb0072

    Inductance: L 1 s D a - D i 2 μ 4 π ln D a D s ;
    Figure imgb0073

    Cutoff frequency: f 0 = c 2 πp ,
    Figure imgb0074

    Cut-off frequency of the TE11 Mode: f co c π 2 D a + D i ;
    Figure imgb0075

    where c:= velocity of light, µ:= magnetic permeability, ε:= dielectric permittivity.
  4. The method according to any one of Claims 1 to 3,
    characterized in that
    the rod-shaped structures, which are positioned in each case at equidistant intervals p, are arranged relative to the circumferential direction of the inner and outer conductor such that
    the rod-shaped structures are each arranged such that they are aligned identically one behind the other in an axial projection to the axially extending common conductor section, or the rod-shaped structures are arranged in axial sequence such that they are each offset by an identical angular offset Δα oriented in the circumferential direction of the internal and external conductor.
  5. Method according to Claim 4,
    characterized in that
    Δα is chosen equal to 90°.
  6. Method according to any one of Claims 1 to 4,
    characterized in that
    the rod-shaped structures are selected from a metallic material, preferably from the material from which the internal and/or the external conductor is composed.
  7. Method according to Claims 1 to 6,
    characterized in that
    the cross-section of the internal conductor and/or the external conductor of the coaxial conductor is designed in a manner deviating from the circular shape with a characteristic impedance equal to that of a circular coaxial cable.
  8. Use of a coaxial conductor structure produced according to the method according to any one of Claims 1 to 7, for interference-free signal transmission of a single TEM mode of an HF-signal wave within a frequency band in which higher excitation modes are not capable of propagating, with simultaneous use of local cooling of the internal conductor by provision of thermally and electrically conductive rod-shaped structures between the internal and external conductor.
  9. Use of a coaxial conductor structure for interference-free transmission of a TEM mode, which is the only mode capable of propagation, of an HF-signal wave within at least one band of n frequency bands forming in the context of a dispersion relation, with n as a positive natural number, with
    a) an internal conductor having a circular cross-section with an inner conductor diameter Di,
    b) an external conductor which equidistantly radially surrounds the internal conductor with an internal diameter Da of the external conductor,
    c) an axially extending common conductor section of the internal and the external conductor, along which in each case s ≥ 1 rod-shaped structures having a rod diameter Ds, which electrically connect the internal conductor to the external conductor, are provided at equidistant intervals P,
    characterized in that
    for a propagation of the single TEM mode along the coaxial conductor structure undisturbed by higher excitation modes, which form at least in the form of a TE11 mode within m frequency bands, the parameters Di, Da, Ds, p, s are selected such that
    (i) a lower cutoff frequency fu(TEM) of the single TEM mode propagating within a n ≥ 2-th band is equal to an upper cutoff frequency fo(TE11) of the TE11 mode forming in the m-th band ± a tolerance range Δf, and
    (ii) an upper cutoff frequency fo(TEM) of the single TEM mode propagating within the n ≥ 2-th band is equal to a lower cutoff frequency fU(TE11) of the TE11 mode forming inside the (m+1)-th band ± a tolerance range Δf, where n and m are positive natural numbers and that 1/3 of the bandwidth of the n-th TEM mode is selected as the tolerance range Δf,
    i.e. Δ f < 1 3 f o , TEM , n - f u , TEM , n .
    Figure imgb0076
EP11718269.1A 2010-03-30 2011-03-29 Coaxial conductor structure Active EP2553757B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010013384A DE102010013384A1 (en) 2010-03-30 2010-03-30 Koaxialleiterstruktur
PCT/EP2011/001583 WO2011124350A1 (en) 2010-03-30 2011-03-29 Coaxial conductor structure

Publications (2)

Publication Number Publication Date
EP2553757A1 EP2553757A1 (en) 2013-02-06
EP2553757B1 true EP2553757B1 (en) 2014-05-14

Family

ID=44262968

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11718269.1A Active EP2553757B1 (en) 2010-03-30 2011-03-29 Coaxial conductor structure

Country Status (8)

Country Link
US (1) US9083067B2 (en)
EP (1) EP2553757B1 (en)
KR (1) KR101541584B1 (en)
CN (1) CN102823056B (en)
AU (1) AU2011238158B9 (en)
DE (1) DE102010013384A1 (en)
ES (1) ES2491105T3 (en)
WO (1) WO2011124350A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021124509A1 (en) 2021-09-22 2023-03-23 Spinner Gmbh Coaxial conductor structure and its use as a broadband mode reflector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012006362B4 (en) * 2012-03-29 2014-05-22 Kathrein-Werke Kg Method and apparatus for transmitting data at high data rates on coaxial lines
CN114023507A (en) * 2021-11-11 2022-02-08 上海天诚通信技术股份有限公司 Coaxial cable, high-speed direct-connection cable and manufacturing process of high-speed direct-connection cable

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659232A (en) * 1970-02-24 1972-04-25 Rca Corp Transmission line filter
US4151494A (en) * 1976-02-10 1979-04-24 Murata Manufacturing Co., Ltd. Electrical filter
GB1568255A (en) * 1976-02-10 1980-05-29 Murata Manufacturing Co Electrical filter
US4223287A (en) * 1977-02-14 1980-09-16 Murata Manufacturing Co., Ltd. Electrical filter employing transverse electromagnetic mode coaxial resonators
JPS6218965Y2 (en) * 1980-01-24 1987-05-15
JP2000059108A (en) * 1998-08-06 2000-02-25 Sumitomo Heavy Ind Ltd Coaxial waveguide
US7239219B2 (en) * 2001-12-03 2007-07-03 Microfabrica Inc. Miniature RF and microwave components and methods for fabricating such components
WO2004004061A1 (en) * 2002-06-27 2004-01-08 Memgen Corporation Miniature rf and microwave components and methods for fabricating such components
US7847659B2 (en) * 2006-12-22 2010-12-07 Alcatel-Lucent Usa Inc. Coaxial metamaterial structure
KR101462741B1 (en) * 2009-09-30 2014-11-17 파나소닉 주식회사 Power supply line for high-frequency current, manufacturing method for same, and power supply line holding structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021124509A1 (en) 2021-09-22 2023-03-23 Spinner Gmbh Coaxial conductor structure and its use as a broadband mode reflector

Also Published As

Publication number Publication date
US20130015927A1 (en) 2013-01-17
US9083067B2 (en) 2015-07-14
AU2011238158B9 (en) 2015-01-15
CN102823056B (en) 2014-11-26
CN102823056A (en) 2012-12-12
KR101541584B1 (en) 2015-08-03
DE102010013384A1 (en) 2011-10-06
AU2011238158A1 (en) 2012-09-27
WO2011124350A1 (en) 2011-10-13
EP2553757A1 (en) 2013-02-06
KR20130054233A (en) 2013-05-24
AU2011238158B2 (en) 2014-11-06
ES2491105T3 (en) 2014-09-05

Similar Documents

Publication Publication Date Title
DE3486443T2 (en) Rectangular-elliptical transition waveguide
DE2452743A1 (en) TEMPERATURE-STABLE FILTERS FOR STRIP LINES USING DIELECTRIC RESONATORS
DE102010027251B4 (en) Koaxialleiterstruktur
DE69201499T2 (en) Low loss coaxial cable.
DE19605569A1 (en) Directional coupler for the high frequency range
DE3044367A1 (en) WALKING PIPES
EP2553757B1 (en) Coaxial conductor structure
DE19736367A1 (en) Waveguide filter for HF power amplifier
EP0973227B1 (en) Dual mode ring resonator
WO2014086493A1 (en) Diffusion‑cooled gas laser arrangement and method for setting the discharge distribution in the case of a diffusion‑cooled gas laser arrangement
DE10159737A1 (en) Multilayer RF Balunchip
DE60110033T2 (en) Band-pass filter with a compact dielectric structure consisting of half-wave resonators and intermediate evanescent waveguides
DE2011554A1 (en) Spiral waveguide
DE19615854C1 (en) Method for producing a coupling for connecting two electromagnetic waveguides
DE2521956C3 (en) Polarization switch
EP1303001B1 (en) A broadband microstrip directional coupler
DE2842576C2 (en) Polarization switch
DE2642448C3 (en) High frequency wave type converter
DE2214522A1 (en) Microwave window
DE68915134T2 (en) Microwave bandpass filter in the form of a comb line.
DE3044379A1 (en) WALKING PIPES
DE112018007069B4 (en) amplifier
DE871324C (en) Arrangement to compensate for changes in impedance occurring at points of interference along ultra-high frequency transmission lines
DE102015002007A1 (en) Millimeter wave band filters
EP1298757A1 (en) High frequency bandpass filter and tuning method thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121025

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011003108

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01P0003060000

Ipc: H01P0001160000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01P 3/06 20060101ALI20130927BHEP

Ipc: H01P 1/16 20060101AFI20130927BHEP

INTG Intention to grant announced

Effective date: 20131023

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 668888

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011003108

Country of ref document: DE

Effective date: 20140626

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2491105

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140905

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140514

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140815

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140814

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140914

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011003108

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

26N No opposition filed

Effective date: 20150217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011003108

Country of ref document: DE

Effective date: 20150217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150329

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150329

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150329

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150329

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 668888

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160329

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230414

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240321

Year of fee payment: 14

Ref country code: IT

Payment date: 20240329

Year of fee payment: 14

Ref country code: FR

Payment date: 20240319

Year of fee payment: 14