EP2507884B1 - Inverter for high voltages - Google Patents

Inverter for high voltages Download PDF

Info

Publication number
EP2507884B1
EP2507884B1 EP10788266.4A EP10788266A EP2507884B1 EP 2507884 B1 EP2507884 B1 EP 2507884B1 EP 10788266 A EP10788266 A EP 10788266A EP 2507884 B1 EP2507884 B1 EP 2507884B1
Authority
EP
European Patent Office
Prior art keywords
power semiconductor
sub
module
semiconductor switching
switching unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10788266.4A
Other languages
German (de)
French (fr)
Other versions
EP2507884A1 (en
Inventor
Rainer Marquardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2507884A1 publication Critical patent/EP2507884A1/en
Application granted granted Critical
Publication of EP2507884B1 publication Critical patent/EP2507884B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/125Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage

Definitions

  • the invention relates to a submodule for forming an inverter with a first subunit, which has a first energy store, a first series circuit of two power semiconductor switching units connected in parallel to the first energy store, which each have a power semiconductor which can be switched on and off in the same forward direction and are conductive in each case counter to said forward direction, and a first terminal, which is connected to the potential point between the power semiconductor switching units of the first series circuit, and a second subunit, the second energy storage, a second energy storage parallel-connected second series connection of two power semiconductor switching units, each having a turn on and off power semiconductor in the same forward direction and in each case are conductive opposite to said forward direction, and having a second terminal which is connected to the potential point t is connected between the power semiconductor switching units of the second series circuit.
  • the invention further relates to a converter for example for high voltage applications with power semiconductor valves, each extending between an AC voltage terminal and a DC voltage terminal and forming a bridge circuit, each power semiconductor valve having a series connection of bipolar submodules and each submodule has at least one energy store and at least one power semiconductor circuit.
  • the aforementioned submodule is from the EP 1 497 911 A2 already known.
  • a direct converter is described with the converter branches, which consist of a series connection of identical bipolar submodules.
  • the submodules have two subunits, each having a unipolar capacitor and a series circuit of two IGBTs, each IGBT a freewheeling diode is connected in parallel in opposite directions.
  • a first submodule connection terminal is connected to the potential point between the IGBTs of the first subunit and the second submodule connection terminal is connected to the potential point between the IGBTs of the second subunit.
  • the two capacitors of the subunits are coupled to one another via connecting means, wherein the connecting means have at least two IGBTs, each with a parallel freewheeling diode.
  • each power semiconductor valve has an AC voltage terminal for connecting a phase of an AC voltage network and a DC voltage terminal, which can be connected to a pole of a DC intermediate circuit.
  • each power semiconductor valve consists of a series circuit of two-pole submodules, each having a unipolar storage capacitor and a power semiconductor circuit in parallel with the storage capacitor.
  • the power semiconductor circuit consists of a series circuit in the same direction oriented switched on and off power semiconductor switches, such as IGBTs or GTOs, each of which a freewheeling diode is connected in parallel in opposite directions.
  • One of two terminals of each submodule is connected to the storage capacitor and the other terminal to the potential point between the two can be turned on and off Power semiconductor switches connected.
  • either the capacitor voltage dropping across the storage capacitor or else a zero voltage can be applied to the two output terminals of the submodule.
  • a so-called DC voltage impressing multi-stage converter is provided, wherein the height of the voltage stages is determined by the height of the respective capacitor voltage.
  • Multi-stage or multi-point converters have the advantage over the two- or three-stage converters with central capacitor banks that high discharge currents are avoided in the event of a short circuit on the DC side of the converter.
  • the complexity of filtering harmonics over two- or three-phase converters is reduced in the case of multistage converters.
  • Multipoint converters are also preferred for the construction of spatially extended branched DC voltage networks, which are required in particular in so-called offshore wind farms and in connection with solar power networks in desert areas.
  • the EP 0 867 998 B1 describes the use of electronic power semiconductor switches in the DC link of a high voltage DC power transmission system.
  • the use of power semiconductor switches at DC voltages of a few hundred kilovolts has the disadvantage that the high voltage makes a large number of power semiconductors connected in series necessary. But this also introduces a high passage loss on these components.
  • overvoltage limiters must be provided in parallel to the power semiconductors, whereby the effort is additionally increased.
  • the surge limiters usually have no ideal Beskylinien so that the number of series-connected power semiconductors must be designed even higher than the nominal voltage would actually require. As a result of this oversizing, the forward losses increase even further.
  • the WO 2008/067786 A1 describes a multi-stage converter with series connections of submodules, each submodule having a thyristor next to a capacitor in parallel to a power semiconductor circuit.
  • the thyristor is connected in parallel with a free-wheeling diode of the power semiconductor circuit, which leads to the entire short-circuit current in the event of a fault.
  • the parallel thyristor is ignited so that the freewheeling diode is relieved.
  • DC multipoint converters are, of course, also excellently suited for use in the field of drive technology.
  • the above-mentioned multi-point or multi-stage converters have the disadvantage that a short-circuit current across the inverter can not be limited without additional measures in both directions, so that the semiconductors of the inverter and external components are endangered or destroyed in the short circuit.
  • the object of the invention is to provide a submodule and a converter of the type mentioned above, with which occurring in the event of a fault occurring short-circuit currents effectively limited and damage to the system can be safely avoided and which is also inexpensive.
  • faulty sections of a DC voltage network should be de-energized as quickly as possible and separated in this way from the rest of the DC network.
  • the invention achieves this object by virtue of the first subunit and the second subunit being connected by connecting means which connect an emitter connection branch which connects an emitter of a first power semiconductor switching unit of the first series circuit to an emitter of a first power semiconductor switching unit of the second series circuit and in which a potential separation diode is arranged, a collector connection branch connecting a collector of the second power semiconductor switching unit of the first series circuit to a collector of the second power semiconductor switching unit of the second series circuit and in which a potential separation diode is arranged, and a Having a switching branch, in which a switching unit is arranged and connects the cathode of the potential separation diode of the emitter connection branch with the anode of the potential separation diode of the collector connection branch.
  • the invention solves this problem in that the submodule is a submodule according to the invention.
  • connection means are designed such that, with suitable control of the power semiconductor switching units, a current flow between the two connection terminals of the submodule according to the invention must always occur via at least one energy store.
  • the affected energy storage device always builds up a countervoltage independent of the polarization of the clamping current, which quickly reduces the current flow.
  • the selected switching state according to the invention depends on the topology of the connection means and their components.
  • a high short-circuit current can be controlled without external additional switches.
  • additional switches for example in the DC voltage circuit which is connected to the converter, or else semiconductor switches connected in parallel with a power semiconductor of the submodule, have become superfluous in the context of the invention.
  • the energy intake has a counter tension in the wake and can be dimensioned in a defined and desired manner, so that unfavorably high voltages are avoided.
  • no energy storage must be charged controlled to restart the inverter. Rather, the inverter according to the invention can resume normal operation at any time.
  • connection means comprise an emitter connection branch which connects an emitter of a first power semiconductor switching unit of the first series circuit to the emitter of a first power semiconductor switch unit of the second series circuit and in which a potential isolation diode is arranged.
  • a collector connection branch is provided, which connects a collector of the second power semiconductor switching unit of the first series circuit with a collector of the second power semiconductor switching unit of the second series circuit and in which also a potential separation diode is arranged.
  • the connection means further comprise a switching branch in which a switching unit is arranged and which connects the cathode of the potential separation diode of the emitter connection branch to the anode of the potential separation diode of the collector connection branch.
  • the emitter of a power semiconductor switching unit is also referred to as source or cathode.
  • the connecting means expediently have a switching unit.
  • This switching unit is in said selected state, for example in its interruption position. Deviating from this, however, it is also possible according to the invention that the switching unit in the selected switching state in their Passage position is.
  • the design of the switching unit is fundamentally arbitrary within the scope of this further development of the invention. For example, this may be a mechanical switching unit, a suitable semiconductor switch, or a power semiconductor switching unit that is similar to the other power semiconductor units of the converter. The design of the power semiconductor switching units will be discussed in more detail later.
  • connection means comprise at least one potential isolation diode arranged to maintain a voltage difference between the first subunit and the second subunit.
  • the connection means comprise at least one potential isolation diode arranged to maintain a voltage difference between the first subunit and the second subunit.
  • the connecting means have at least one damping resistor.
  • the damping resistor (s) support the energy storage devices to absorb energy in the event of a fault.
  • the damping resistors are so with the remaining components of the connecting means interconnects that in the said selected switching state, a current flow, at least partially, also via the damping resistances, regardless of the polarity of the clamping current.
  • a damping resistor is arranged in the emitter connection branch and in the collector connection branch.
  • the switching unit of the switching branch is basically arbitrary. It is essential that the switching unit between a breaker position in which it interrupts a current flow, and a passage position in which it is conductive, can be switched back and forth. It is thus possible, for example, to use a mechanical power switch, a cost-effective semiconductor switch or a power semiconductor switching unit as the switching unit, which is similar to the other power semiconductor switching units of the submodule.
  • Other controllable power semiconductors can be used as a switching unit in the context of the invention.
  • the selected switching state is achieved according to this expedient further development when all the power semiconductor switching units and the switching unit are in their breaker position.
  • the Clamping current is now performed in any case via at least one energy storage or a damping resistor.
  • the switching unit should be selected so that the power loss resulting from it during normal operation of the submodule is as low as possible.
  • all the power semiconductor switching units of the submodule are designed identically, in other words all the semiconductor switches are identical, they have a uniform blocking voltage and structure. This is advantageous at high voltages because only a few semiconductor switches are suitable for extremely high voltages and powers. Uniform submodule placement makes it possible to use the most suitable and powerful semiconductors.
  • each power semiconductor switching unit has a power semiconductor that can be switched on and off, to which a freewheeling diode is connected in parallel in opposite directions.
  • Such turn-off power semiconductors are, for example, marketable IGBTs or GTOs and the like. These power semiconductors are usually used with freewheeling diode connected in parallel in opposite directions.
  • reverse-conducting power semiconductors can also be used. Separate freewheeling diodes are then unnecessary.
  • each energy store is designed as a capacitor and in particular as a unipolar storage capacitor.
  • FIG. 1 shows an embodiment of the inverter 1 according to the invention in a schematic representation. It can be seen that the converter 1 has power semiconductor valves 2 which are connected to one another in a bridge circuit. Each of the power semiconductor valves 2 extends between an AC voltage terminal L 1 , L 2 , L 3 and a DC voltage terminal 3 1 , 3 2 , 3 3 and 4 1 , 4 2 , 4 third
  • the DC voltage terminals 3 1 , 3 2 , 3 3 are connected via a positive pole terminal 5 with a positive pole and a negative pole terminal 6 with a negative pole of a DC voltage network not shown figuratively.
  • the AC voltage terminals L 1 , L 2 and L 3 are each connected to a secondary winding of a transformer, whose primary winding is connected to a likewise not shown figuratively AC mains.
  • an AC voltage terminal L 1 , L 2 , L 3 is provided for each phase of the alternating voltage network.
  • the AC voltage network is three-phase.
  • the inverter 1 has three AC voltage terminals L 1 , L 2 and L 3 .
  • the circuit breakers are in FIG. 1 also not shown.
  • the converter 1 is part of a high-voltage direct-current transmission system and is used to connect AC voltage networks in order to transmit high electrical power between them. It should be noted, however, that the converter can also be part of a so-called FACTS system, which serves to stabilize the network or to ensure a desired voltage quality.
  • FACTS so-called FACTS system
  • use of the inverter is also according to FIG. 1 and 2 possible in drive technology.
  • each power semiconductor valve 2 has a series connection of submodules 7 and a throttle 8.
  • Each submodule 7 has two connection terminals x1 and x2.
  • FIG. 2 shows an embodiment of the submodule 7 according to the invention in more detail. It should be noted at this point that all in FIG. 1 schematically shown submodules 7 are constructed identically. FIG. 2 shows therefore the structure of all submodules 7 of the inverter 1 representative of a submodule. 7
  • the submodule 7 according to FIG. 2 has a first subunit 9 and a second subunit 10, which are framed by a dashed line and constructed identically.
  • the first subunit 9 comprises a first series circuit 11 of power semiconductor switching units 12 and 13, which in the embodiment shown each have an IGBT 14 or 15 as turn on and off power semiconductors and one freewheeling diode 16 and 17, the respectively associated IGBT 14, 15th in opposite directions is connected in parallel.
  • the IGBTs 14, 15 have the same forward direction, so are oriented in the same direction.
  • the potential point between the power semiconductor switching units 12 and 13 is connected to a first terminal x2.
  • the series circuit 11 is connected in parallel to a first capacitor 18 as a first energy store, at which the voltage U C1 drops.
  • the second subunit 10 includes a second series circuit 19 of a first power semiconductor switching unit 20 and a second power semiconductor switching unit 21, each having an IGBT 22 and 23 as turn on and off power semiconductors.
  • the IGBTs 22, 23 have the same forward direction in the series circuit 19, so that the power semiconductor switching units 20 and 21 are oriented in the same direction.
  • Each IGBT 22 or 23 of the second series circuit 19 is a freewheeling diode 24 and 25 connected in opposite directions in parallel.
  • the second series circuit 19 is connected in parallel to a second capacitor 26, at which the voltage U C2 drops.
  • the potential point between the power semiconductor switching units 20 and 21 is connected to the second terminal x1.
  • the connection means 2 have an emitter connection branch 28 and a collector connection branch 29.
  • the emitter connection branch 28 connects the emitter of the IGBT 15 of the first series circuit 11 to the emitter of the IGBT 23 of the second series circuit 19.
  • the collector connection branch 29, connects the collector of the IGBT 14 of the first series circuit 11 to the collector of the IGBT 22 of the second one Series connection 19.
  • a potential separation diode 30 and a limiting resistor 31 are arranged in the emitter connection branch 28 .
  • the collector connection branch 29 also has a potential separation diode 32 and a limiting resistor 33.
  • the emitter connection branch 28 is connected to the collector connection branch 29 via a switching branch 34, in which a switching unit 35 is arranged.
  • the switching unit is realized as a power semiconductor switching unit 35 and includes an IGBT 36 and a freewheeling diode 37 connected in parallel thereto.
  • the switching branch 34 connects the cathode side of the potential separation diode 30 with the anode side of the potential separation diode 32, which between the said anode and the Switching branch 34 arranged limiting resistor 33 has been neglected.
  • the terminal voltage x falling at the connection terminals x2 and x1 is equal to zero irrespective of the direction of the clamping current.
  • the IGBTs 15, 22 and 36 are in their forward position, in which a flow of current in the forward direction through the respective IGBT is possible.
  • the remaining IGBTs, ie the IGBTs 14 and 23, are located however, in their blocking position, so that a current flow through these IGBTs is interrupted.
  • positive current direction i x i x positive
  • the in FIG. 2 is indicated at the first terminal x2 by the arrow, the power semiconductors 15, 37 and 22 are energized.
  • negative current direction (i x negative) the power semiconductors 24, 36 and 17 are live.
  • switching status i x IGBT 15 IGBT 14 IGBT 23 IGBT 22 IGBT 36 U X W CI W C2 1 negative 1 0 0 1 1 0 0 0 positive 1 0 0 1 1 0 0 0 2 negative 0 1 0 1 1 + U C1 -1 0 positive 0 1 0 1 1 + U C1 +1 0 3 negative 0 1 1 0 1 + (U C1 + U C2 ) -1 -1 positive 0 1 1 0 1 + (U C1 + U C2 ) +1 +1 4 negative 1 0 1 0 1 + U C2 0 -1 positive 1 0 1 0 1 + U C2 0 +1 5 negative 0 0 0 0 0 0 - (U C1 + U C2 ) / 2 +1 +1 positive 0 0 0 0 0 0 + (U C1 + U C2 ) +1 +1 +1 0 + (U C1 + U C2 )
  • the columns W C1 and W C2 are intended to clarify whether the storage capacitors 18 and 26 absorb or deliver energy, where +1 stands for the intake and -1 for the delivery of energy.
  • a current flow can take place only when the storage capacitors 18 and 25 are charged. It is advantageous that the occurring current is passed through both capacitors, as then a lower overvoltage occurs at this, as if only one capacitor would have to absorb the energy.
  • the switching state 5 can be used in case of failure for complete power reduction. If all submodules 7 are converted into this switching state, the branch currents of the converter 1 and, as a result, the alternating voltage and DC side currents as a result of the sum of the reverse voltages of all series-connected submodules 7 are reduced very rapidly to zero.
  • the speed of this current reduction results from the above-mentioned counter-voltage and the inductances summarily present in the circuits. In the embodiment shown, it is typically of the order of a few milliseconds.
  • the dead time until the beginning of the current reduction depends essentially on the response time of the switching unit 35. If a power semiconductor switching unit according to FIG. 2 used, this dead time is negligible.
  • the dead time is then essentially the inertia of the owing to various measuring sensors and current transformers, with the aid of which a fault is detected. This inertia of these measurements is currently typically in the range of a few tens of microseconds.
  • the advantages of the submodule according to the invention and of the converter 1 according to the invention can be summarized as follows: On the one hand, the time span until the complete removal of a short-circuit current occurring in the event of a fault is very short. Thus, provided on the AC side of the inverter 1 switches must not be triggered only. Both the AC-side and the DC-side current exceed the rated current only insignificantly.
  • the power semiconductors of the submodules need not be protected with thyristors or other bridging elements as in the prior art.
  • the reliability of the power cutoff is very high because redundancy is ensured in the power semiconductor valves of the inverter 1 by the large number of submodules connected in series. In connection with the reliability is still stated that the inverter 1 is constantly in operation with all its components and metrologically monitored continuously. Such reliability is not given in comparable devices for power dissipation in case of failure, which are activated only in such an error case.
  • Another significant advantage of the invention is that at any time a "switch back" in normal operation is possible, so that even if incorrect unnecessary triggering or detection, the negative effects on the system operation can be minimized.
  • an inverter 1 With the aid of an inverter 1 according to the invention, it is also possible, even in a branched DC voltage network to quickly bring the DC currents to zero. In this way, in the DC voltage circuit, an electroless separation, for example with vacuum interrupters or anti-parallel thyristors possible.
  • the other converters that are connected to the DC power supply must reduce the power, so quickly go into the switching state 5 of the submodules 7.
  • a faulty network section of the DC voltage network can thus be disconnected from the remaining DC voltage network in a simple and cost-effective manner by means of known mechanical switches.
  • the faulty network section can now be "paused" for the purpose of dionization or fault localization and later driven up by its assigned converter. In a very short time, the remaining inverters can put the entire direct current network back into operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Description

Die Erfindung betrifft ein Submodul zum Ausbilden eines Umrichters mit einer ersten Untereinheit, die einen ersten Energiespeicher, eine dem ersten Energiespeicher parallel geschaltete erste Reihenschaltung zweier Leistungshalbleiterschalteinheiten, die jeweils einen an und abschaltbaren Leistungshalbleiter mit gleicher Durchlassrichtung aufweisen und jeweils entgegen der besagten Durchlassrichtung leitfähig sind, und eine erste Anschlussklemme aufweist, die mit dem Potenzialpunkt zwischen den Leistungshalbleiterschalteinheiten der ersten Reihenschaltung verbunden ist, und einer zweiten Untereinheit, die einen zweiten Energiespeicher, eine dem zweiten Energiespeicher parallel geschaltete zweite Reihenschaltung zweier Leistungshalbleiterschalteinheiten, die jeweils einen an und abschaltbaren Leistungshalbleiter mit gleicher Durchlassrichtung aufweisen und jeweils entgegen der besagten Durchlassrichtung leitfähig sind, und eine zweite Anschlussklemme aufweist, die mit dem Potenzialpunkt zwischen den Leistungshalbleiterschalteinheiten der zweiten Reihenschaltung verbunden ist.The invention relates to a submodule for forming an inverter with a first subunit, which has a first energy store, a first series circuit of two power semiconductor switching units connected in parallel to the first energy store, which each have a power semiconductor which can be switched on and off in the same forward direction and are conductive in each case counter to said forward direction, and a first terminal, which is connected to the potential point between the power semiconductor switching units of the first series circuit, and a second subunit, the second energy storage, a second energy storage parallel-connected second series connection of two power semiconductor switching units, each having a turn on and off power semiconductor in the same forward direction and in each case are conductive opposite to said forward direction, and having a second terminal which is connected to the potential point t is connected between the power semiconductor switching units of the second series circuit.

Die Erfindung betrifft ferner einen Umrichter beispielsweise für Hochspannungsanwendungen mit Leistungshalbleiterventilen, die sich jeweils zwischen einem Wechselspannungsanschluss und einem Gleichspannungsanschluss erstrecken und eine Brückenschaltung ausbilden, wobei jedes Leistungshalbleiterventil eine Reihenschaltung zweipoliger Submodule aufweist und jedes Submodul über wenigstens einen Energiespeicher und wenigstens eine Leistungshalbleiterschaltung verfügt.The invention further relates to a converter for example for high voltage applications with power semiconductor valves, each extending between an AC voltage terminal and a DC voltage terminal and forming a bridge circuit, each power semiconductor valve having a series connection of bipolar submodules and each submodule has at least one energy store and at least one power semiconductor circuit.

Das eingangs genannte Submodul ist aus der EP 1 497 911 A2 bereits bekannt. Dort ist ein Direktumrichter mit der Umrichterzweigen beschrieben, die aus einer Reihenschaltung von identischen zweipoligen Submodulen bestehen. Die Submodule weisen zwei Untereinheiten auf, die jeweils einen unipolaren Kondensator sowie eine Reihenschaltung aus zwei IGBTs aufweisen, wobei jedem IGBT eine Freilaufdiode gegensinnig parallel geschaltet ist. Eine erste Submodulanschlussklemme ist mit dem Potenzialpunkt zwischen den IGBTs der ersten Untereinheit und die zweite Submodulanschlussklemme mit dem Potenzialpunkt zwischen den IGBTs der zweiten Untereinheit verbunden. Die beiden Kondensatoren der Untereinheiten sind über Verbindungsmittel miteinander gekoppelt, wobei die Verbindungsmittel wenigstens zwei IGBTs mit jeweils gegensinnig paralleler Freilaufdiode aufweisen.The aforementioned submodule is from the EP 1 497 911 A2 already known. There, a direct converter is described with the converter branches, which consist of a series connection of identical bipolar submodules. The submodules have two subunits, each having a unipolar capacitor and a series circuit of two IGBTs, each IGBT a freewheeling diode is connected in parallel in opposite directions. A first submodule connection terminal is connected to the potential point between the IGBTs of the first subunit and the second submodule connection terminal is connected to the potential point between the IGBTs of the second subunit. The two capacitors of the subunits are coupled to one another via connecting means, wherein the connecting means have at least two IGBTs, each with a parallel freewheeling diode.

In der DE 101 03 031 A1 ist ein Umrichter beschrieben, der Leistungshalbleiterventile aufweist, die in einer Brückenschaltung miteinander verbunden sind. Jedes dieser Leistungshalbleiterventile hat einen Wechselspannungsanschluss zum Anschluss einer Phase eines Wechselspannungsnetzes und einen Gleichspannungsanschluss, der mit einem Pol eines Gleichspannungszwischenkreises verbunden werden kann. Dabei besteht jedes Leistungshalbleiterventil aus einer Reihenschaltung zweipoliger Submodule, die jeweils einen unipolaren Speicherkondensator sowie eine Leistungshalbleiterschaltung in Parallelschaltung zu dem Speicherkondensator aufweisen. Die Leistungshalbleiterschaltung besteht aus einer Reihenschaltung gleichsinnig orientierter an- und abschaltbarer Leistungshalbleiterschalter, wie beispielsweise IGBTs oder GTOs, denen jeweils eine Freilaufdiode gegensinnig parallel geschaltet ist. Eine von zwei Anschlussklemmen eines jeden Submoduls ist mit dem Speicherkondensator und die andere Anschlussklemme mit dem Potenzialpunkt zwischen den beiden an- und abschaltbaren Leistungshalbleiterschaltern verbunden. Je nach Schaltzustand der beiden ansteuerbaren Leistungshalbleiter kann entweder die an dem Speicherkondensator abfallende Kondensatorspannung oder aber eine Nullspannung an die beiden Ausgangsklemmen des Submoduls gelegt werden. Aufgrund der Reihenschaltung der Submodule innerhalb des Leistungshalbleiterventils ist ein so genannter Gleichspannung einprägender Mehrstufenumrichter bereitgestellt, wobei die Höhe der Spannungsstufen durch die Höhe der jeweiligen Kondensatorspannung festgelegt ist. Mehrstufen- oder Mehrpunktumrichter weisen gegenüber den zwei- oder dreistufigen Umrichtern mit zentralen Kondensatorbatterien den Vorteil auf, dass hohe Entladungsströme bei einem Kurzschluss auf Gleichspannungsseite des Umrichters vermieden sind. Darüber hinaus ist bei mehrstufigen Umrichtern der Aufwand bei der Filterung von Oberschwingungen gegenüber Zwei- oder Dreipunktumrichtern verringert.In the DE 101 03 031 A1 An inverter is described which has power semiconductor valves connected together in a bridge circuit. Each of these power semiconductor valves has an AC voltage terminal for connecting a phase of an AC voltage network and a DC voltage terminal, which can be connected to a pole of a DC intermediate circuit. In this case, each power semiconductor valve consists of a series circuit of two-pole submodules, each having a unipolar storage capacitor and a power semiconductor circuit in parallel with the storage capacitor. The power semiconductor circuit consists of a series circuit in the same direction oriented switched on and off power semiconductor switches, such as IGBTs or GTOs, each of which a freewheeling diode is connected in parallel in opposite directions. One of two terminals of each submodule is connected to the storage capacitor and the other terminal to the potential point between the two can be turned on and off Power semiconductor switches connected. Depending on the switching state of the two controllable power semiconductors, either the capacitor voltage dropping across the storage capacitor or else a zero voltage can be applied to the two output terminals of the submodule. Due to the series connection of the submodules within the power semiconductor valve, a so-called DC voltage impressing multi-stage converter is provided, wherein the height of the voltage stages is determined by the height of the respective capacitor voltage. Multi-stage or multi-point converters have the advantage over the two- or three-stage converters with central capacitor banks that high discharge currents are avoided in the event of a short circuit on the DC side of the converter. In addition, the complexity of filtering harmonics over two- or three-phase converters is reduced in the case of multistage converters.

Mehrpunktumrichter eigenen sich auch bevorzugt zum Aufbau räumlich ausgedehnter verzweigter Gleichspannungsnetze, die insbesondere bei so genannten Off-Shore-Windparks und im Zusammenhang mit Solarkraftnetzwerken in Wüstengebieten erforderlich sind.Multipoint converters are also preferred for the construction of spatially extended branched DC voltage networks, which are required in particular in so-called offshore wind farms and in connection with solar power networks in desert areas.

Eine wichtige Voraussetzung für eine Anwendung der Umrichter in diesen Bereichen ist jedoch eine sichere Beherrschung von Kurzschlüssen im Gleichspannungsnetz. Günstige mechanische Schalter für extrem hohe Gleichspannungen, die hohe Fehlerströme unter Last schalten können, stehen wegen grundlegender physikalischer Probleme nicht zur Verfügung. Auch die technisch erreichbaren Abschaltzeiten und die Schaltüberspannung mechanischer Schalter sind störend.However, an important prerequisite for the use of inverters in these areas is a secure control of short circuits in the DC voltage network. Cheap mechanical switches for extremely high DC voltages, which can switch high fault currents under load, are not available due to fundamental physical problems. The technically achievable switch-off times and the switching overvoltage of mechanical switches are also disturbing.

Die EP 0 867 998 B1 beschreibt den Einsatz elektronischer Leistungshalbleiterschalter im Gleichspannungszwischenkreis eines Hochspannungsgleichstromübertragungssystems. Dem Einsatz von Leistungshalbleiterschaltern bei Gleichspannungen von einigen hundert Kilovolt haftet jedoch der Nachteil an, dass die hohe Spannung eine hohe Anzahl in Reihe geschalteter Leistungshalbleiter erforderlich macht. Damit stellt sich aber auch ein hoher Durchlassverlust an diesen Komponenten ein. Darüber hinaus müssen Überspannungsbegrenzer in Parallelschaltung zu den Leistungshalbleitern bereitgestellt werden, wodurch der Aufwand zusätzlich erhöht wird. Die Überspannungsbegrenzer weisen in der Regel keine idealen Begrenzerkennlinien auf, so dass die Anzahl der in Reihe geschalteten Leistungshalbleiter noch höher ausgelegt werden muss, als dies die Nennspannung eigentlich erfordern würde. Durch diese Überdimensionierung steigen die Durchlassverluste noch weiter an.The EP 0 867 998 B1 describes the use of electronic power semiconductor switches in the DC link of a high voltage DC power transmission system. The use of power semiconductor switches at DC voltages of a few hundred kilovolts, however, has the disadvantage that the high voltage makes a large number of power semiconductors connected in series necessary. But this also introduces a high passage loss on these components. In addition, overvoltage limiters must be provided in parallel to the power semiconductors, whereby the effort is additionally increased. The surge limiters usually have no ideal Begrenzerkennlinien so that the number of series-connected power semiconductors must be designed even higher than the nominal voltage would actually require. As a result of this oversizing, the forward losses increase even further.

Die WO 2008/067786 A1 beschreibt einen Mehrstufenumrichter mit Reihenschaltungen von Submodulen, wobei jedes Submodul neben einem Kondensator in Parallelschaltung zu einer Leistungshalbleiterschaltung einen Thyristor aufweist. Der Thyristor ist einer Freilaufdiode der Leistungshalbleiterschaltung parallel geschaltet, die im Fehlerfall den gesamten Kurzschlussstrom führt. Bei einem Kurzschluss wird der parallele Thyristor gezündet, so dass die Freilaufdiode entlastet wird.The WO 2008/067786 A1 describes a multi-stage converter with series connections of submodules, each submodule having a thyristor next to a capacitor in parallel to a power semiconductor circuit. The thyristor is connected in parallel with a free-wheeling diode of the power semiconductor circuit, which leads to the entire short-circuit current in the event of a fault. In the event of a short circuit, the parallel thyristor is ignited so that the freewheeling diode is relieved.

Neben den oben erwähnten Anwendungen im Bereich der Elektroenergieübertragung und -verteilung eignen sich Gleichspannung einprägende Mehrpunktumrichter selbstverständlich auch hervorragend für einen Einsatz im Bereich der Antriebstechnik.In addition to the above-mentioned applications in the field of electric power transmission and distribution, DC multipoint converters are, of course, also excellently suited for use in the field of drive technology.

Die eingangs genannten Mehrpunkt- oder Mehrstufenumrichter weisen den Nachteil auf, dass ein Kurzschlussstrom über den Umrichter sich nicht ohne zusätzliche Maßnahmen in beiden Richtungen begrenzen lässt, so dass die Halbleiter des Umrichters und externe Komponenten im Kurzschlusskreis gefährdet oder zerstört werden.The above-mentioned multi-point or multi-stage converters have the disadvantage that a short-circuit current across the inverter can not be limited without additional measures in both directions, so that the semiconductors of the inverter and external components are endangered or destroyed in the short circuit.

Aufgabe der Erfindung ist es, ein Submodul und einen Umrichter der eingangs genannten Art bereitzustellen, mit denen im Fehlerfall auftretende Kurzschlussströme wirksam begrenzt und Anlageschäden sicher vermieden werden können und das gleichzeitig kostengünstig ist. Darüber hinaus sollen fehlerbehaftete Abschnitte eines Gleichspannungsnetzes möglichst schnell stromlos gemacht und auf diese Art und Weise vom restlichen Gleichspannungsnetz getrennt werden können.The object of the invention is to provide a submodule and a converter of the type mentioned above, with which occurring in the event of a fault occurring short-circuit currents effectively limited and damage to the system can be safely avoided and which is also inexpensive. In addition, faulty sections of a DC voltage network should be de-energized as quickly as possible and separated in this way from the rest of the DC network.

Schließlich sollen bei einem Kurzschluss auf der Gleichspannungsseite des Umrichters die Ströme auf dessen Wechselspannungsseite möglichst wenig beeinflusst und eine Auslösung der wechselstromseitigen mechanischen Schalter vermieden werden.Finally, in the event of a short circuit on the DC side of the converter, the currents on its AC side should be influenced as little as possible, and tripping of the AC side mechanical switches should be avoided.

Ausgehend von dem eingangs genannten Submodul löst die Erfindung diese Aufgabe dadurch, dass die erste Untereinheit und die zweite Untereinheit über Verbindungsmittel miteinander verbunden sind, die einen Emitterverbindungszweig, der einen Emitter einer ersten Leistungshalbleiterschalteinheit der ersten Reihenschaltung mit einem Emitter einer ersten Leistungshalbleiterschalteinheit der zweiten Reihenschaltung verbindet und in dem eine Potenzialtrennungsdiode angeordnet ist, einen Kollektorverbindungszweig, der einen Kollektor der zweiten Leistungshalbleiterschalteinheit der ersten Reihenschaltung mit einem Kollektor der zweiten Leistungshalbleiterschalteinheit der zweiten Reihenschaltung verbindet und in dem eine Potenzialtrennungsdiode angeordnet ist, und einen Schaltzweig aufweisen, in dem eine Schalteinheit angeordnet ist und der die Kathode der Potenzialtrennungsdiode des Emitterverbindungszweiges mit der Anode der Potenzialtrennungsdiode des Kollektorverbindungszweiges verbindet.Starting from the submodule mentioned above, the invention achieves this object by virtue of the first subunit and the second subunit being connected by connecting means which connect an emitter connection branch which connects an emitter of a first power semiconductor switching unit of the first series circuit to an emitter of a first power semiconductor switching unit of the second series circuit and in which a potential separation diode is arranged, a collector connection branch connecting a collector of the second power semiconductor switching unit of the first series circuit to a collector of the second power semiconductor switching unit of the second series circuit and in which a potential separation diode is arranged, and a Having a switching branch, in which a switching unit is arranged and connects the cathode of the potential separation diode of the emitter connection branch with the anode of the potential separation diode of the collector connection branch.

Ausgehend von dem eingangs genannten Umrichter löst die Erfindung diese Aufgabe dadurch, dass das Submodul ein erfindungsgemäßes Submodul ist.Based on the aforementioned converter, the invention solves this problem in that the submodule is a submodule according to the invention.

Erfindungsgemäß sind zwei Untereinheiten, die jeweils einen Energiespeicher, beispielsweise ein Kondensator, und eine Reihenschaltung zweier Leistungshalbleiterschalteinheiten aufweisen, über Verbindungsmittel miteinander verbunden. Die Verbindungsmittel sind abweichend vom Stand der Technik so ausgebildet, dass bei geeigneter Ansteuerung der Leistungshalbleiterschalteinheiten ein Stromfluss zwischen den beiden Anschlussklemmen des erfindungsgemäßen Submoduls immer über wenigstens einen Energiespeicher erfolgen muss. Der jeweils betroffene Energiespeicher baut unabhängig von der Polarisierung des Klemmstromes immer eine Gegenspannung auf, die den Stromfluss schnell abklingen lässt. Der ausgewählte Schaltzustand ist erfindungsgemäß von der Topologie der Verbindungsmittel und deren Komponenten abhängig.According to the invention, two subunits each having an energy store, for example a capacitor, and a series connection of two power semiconductor switching units are connected to one another via connecting means. Deviating from the prior art, the connection means are designed such that, with suitable control of the power semiconductor switching units, a current flow between the two connection terminals of the submodule according to the invention must always occur via at least one energy store. The affected energy storage device always builds up a countervoltage independent of the polarization of the clamping current, which quickly reduces the current flow. The selected switching state according to the invention depends on the topology of the connection means and their components.

Erfindungsgemäß kann ein hoher Kurzschlussstrom ohne externe zusätzliche Schalter beherrscht werden. Im Gegensatz zum Stand der Technik ist im Rahmen der Erfindung sichergestellt, dass hohe Kurzschlussströme durch den Umrichter selbst in beiden Richtungen schnell, zuverlässig und wirksam vermieden werden können. Zusätzliche Schalter, beispielsweise im Gleichspannungskreis, der mit dem Umrichter verbunden ist, oder aber parallel zu einem Leistungshalbleiter des Submoduls geschaltete Halbleiterschalter, sind im Rahmen der Erfindung überflüssig geworden. Im Fehlerfall nehmen nahezu ausschließlich die erfindungsgemäßen Submodule die frei gewordene Energie auf, so dass diese vollständig absorbiert wird. Die Energieaufnahme hat eine Gegenspannung im Gefolge und kann in definierter und gewünschter Weise dimensioniert werden, so dass ungünstig hohe Spannungen vermieden werden. Darüber hinaus müssen erfindungsgemäß zum Wiederanfahren des Umrichters keine Energiespeicher kontrolliert aufgeladen werden. Vielmehr kann der erfindungsgemäße Umrichter seinen Normalbetrieb jederzeit wieder aufnehmen.According to the invention, a high short-circuit current can be controlled without external additional switches. In contrast to the prior art, it is ensured in the context of the invention that high short-circuit currents can be avoided quickly, reliably and effectively by the converter itself in both directions. Additional switches, for example in the DC voltage circuit which is connected to the converter, or else semiconductor switches connected in parallel with a power semiconductor of the submodule, have become superfluous in the context of the invention. In case of error take almost exclusively the submodules according to the invention on the released energy, so that it is completely absorbed. The energy intake has a counter tension in the wake and can be dimensioned in a defined and desired manner, so that unfavorably high voltages are avoided. In addition, according to the invention no energy storage must be charged controlled to restart the inverter. Rather, the inverter according to the invention can resume normal operation at any time.

Gemäß der Erfindung weisen die Verbindungsmittel einen Emitter-Verbindungszweig auf, der einen Emitter einer ersten Leistungshalbleiterschalteinheit der ersten Reihenschaltung mit dem Emitter einer ersten Leistungshalbleiterschaltereinheit der zweiten Reihenschaltung verbindet und in dem eine Potenzialtrennungsdiode angeordnet ist. Ferner ist ein Kollektorverbindungszweig vorgesehen, der einen Kollektor der zweiten Leistungshalbleiterschalteinheit der ersten Reihenschaltung mit einem Kollektor der zweiten Leistungshalbleiterschalteinheit der zweiten Reihenschaltung verbindet und in dem ebenfalls eine Potenzialtrennungsdiode angeordnet ist. Die Verbindungsmittel umfassen darüber hinaus einen Schaltzweig, in dem eine Schalteinheit angeordnet ist und der die Katode der Potenzialtrennungsdiode des Emitter-Verbindungszweiges mit der Anode der Potenzialtrennungsdiode des Kollektor-Verbindungszweiges verbindet. Der Emitter einer Leistungshalbleiterschalteinheit wird auch als Source oder Kathode bezeichnet.According to the invention, the connection means comprise an emitter connection branch which connects an emitter of a first power semiconductor switching unit of the first series circuit to the emitter of a first power semiconductor switch unit of the second series circuit and in which a potential isolation diode is arranged. Further, a collector connection branch is provided, which connects a collector of the second power semiconductor switching unit of the first series circuit with a collector of the second power semiconductor switching unit of the second series circuit and in which also a potential separation diode is arranged. The connection means further comprise a switching branch in which a switching unit is arranged and which connects the cathode of the potential separation diode of the emitter connection branch to the anode of the potential separation diode of the collector connection branch. The emitter of a power semiconductor switching unit is also referred to as source or cathode.

Zweckmäßigerweise weisen die Verbindungsmittel eine Schalteinheit auf. Diese Schalteinheit ist im besagten ausgewählten Zustand beispielsweise in ihrer Unterbrechungsstellung. Abweichend hiervon ist es jedoch erfindungsgemäß auch möglich, dass die Schalteinheit im ausgewählten Schaltzustand in ihrer Durchgangsstellung ist. Die Auslegung der Schalteinheit ist im Rahmen dieser Weiterentwicklung der Erfindung grundsätzlich beliebig. So kann es sich beispielsweise um eine mechanische Schalteinheit, einen geeigneten Halbleiterschalter, oder aber um eine Leistungshalbleiterschalteinheit handeln, die den übrigen Leistungshalbleitereinheiten des Umrichters gleicht. Auf die Ausgestaltung der Leistungshalbleiterschalteinheiten wird später noch genauer eingegangen werden.The connecting means expediently have a switching unit. This switching unit is in said selected state, for example in its interruption position. Deviating from this, however, it is also possible according to the invention that the switching unit in the selected switching state in their Passage position is. The design of the switching unit is fundamentally arbitrary within the scope of this further development of the invention. For example, this may be a mechanical switching unit, a suitable semiconductor switch, or a power semiconductor switching unit that is similar to the other power semiconductor units of the converter. The design of the power semiconductor switching units will be discussed in more detail later.

Zweckmäßigerweise weisen die Verbindungsmittel wenigstens eine Potenzialtrennungsdiode auf, die zum Aufrechterhalten einer Spannungsdifferenz zwischen der ersten Untereinheit und der zweiten Untereinheit eingerichtet ist. Gemäß dieser vorteilhaften Weiterentwicklung ist es möglich, die Anzahl der erreichbaren Spannungsstufen zu erhöhen. So ist es beispielsweise möglich, die Summe der an dem ersten Energiespeicher und die an dem zweiten Energiespeicher abfallende Spannungen an den Anschlussklemmen des Submoduls zu erzeugen. Darüber hinaus besteht bei dieser Ausgestaltung der Erfindung die Möglichkeit je nach Schaltzustand der Leistungshalbleiterschalteinheiten nur eine, also entweder die an dem ersten Energiespeicher oder die an dem zweiten Energiespeicher abfallende Spannung an Anschlussklemmen zu erzeugen. Auf diese Art und Weise können die erste und die zweite Untereinheit regelungstechnisch wie zwei Submodule gemäß dem Stand der Technik behandelt werden. Bislang etablierte Regelungsverfahren können somit auch bei dem erfindungsgemäßen Submodul zur Anwendung gebracht werden.Conveniently, the connection means comprise at least one potential isolation diode arranged to maintain a voltage difference between the first subunit and the second subunit. According to this advantageous development, it is possible to increase the number of achievable voltage levels. For example, it is possible to generate the sum of the voltages dropping across the first energy store and the voltages dropping across the second energy store at the connection terminals of the submodule. In addition, in this embodiment of the invention, the possibility depending on the switching state of the power semiconductor switching units only one, so either to generate the voltage dropping at the first energy storage or the second energy storage at terminals. In this way, the first and the second subunit can be treated in terms of control technology like two submodules according to the prior art. Thus far established control methods can also be applied to the submodule according to the invention.

Darüber hinaus ist es vorteilhaft, dass die Verbindungsmittel wenigstens einen Dämpfungswiderstand aufweisen. Der oder die Dämpfungswiderstände unterstützen die Energiespeicher dabei, im Fehlerfall Energie aufzunehmen. Hierzu sind die Dämpfungswiderstände so mit den restlichen Komponenten der Verbindungsmittel verschaltet, dass in dem besagten ausgewählten Schaltzustand ein Stromfluss unabhängig von der Polarität des Klemmstromes zumindest teilweise auch über die Dämpfungswiderstände führt.Moreover, it is advantageous that the connecting means have at least one damping resistor. The damping resistor (s) support the energy storage devices to absorb energy in the event of a fault. For this purpose, the damping resistors are so with the remaining components of the connecting means interconnects that in the said selected switching state, a current flow, at least partially, also via the damping resistances, regardless of the polarity of the clamping current.

Gemäß einer diesbezüglichen zweckmäßigen Weiterentwicklung ist in dem Emitter-Verbindungszweig und in dem Kollektor-Verbindungszweig jeweils ein Dämpfungswiderstand angeordnet. Wie bereits ausgeführt wurde, ist die Schalteinheit des Schaltzweiges grundsätzlich beliebig auswählbar. Wesentlich ist, dass die Schalteinheit zwischen einer Unterbrecherstellung, in der sie einen Stromfluss unterbricht, und einer Durchlassstellung, in der sie leitend ist, hin- und hergeschaltet werden kann. So ist es beispielsweise möglich, als Schalteinheit einen mechanischen Leistungsschalter, einen kostengünstigen Halbleiterschalter oder aber eine Leistungshalbleiterschalteinheit einzusetzen, die den die übrigen Leistungshalbleiterschalteinheiten des Submoduls gleicht. Auch andere ansteuerbare Leistungshalbleiter sind als Schalteinheit im Rahmen der Erfindung verwendbar.According to a related expedient further development, in each case a damping resistor is arranged in the emitter connection branch and in the collector connection branch. As already stated, the switching unit of the switching branch is basically arbitrary. It is essential that the switching unit between a breaker position in which it interrupts a current flow, and a passage position in which it is conductive, can be switched back and forth. It is thus possible, for example, to use a mechanical power switch, a cost-effective semiconductor switch or a power semiconductor switching unit as the switching unit, which is similar to the other power semiconductor switching units of the submodule. Other controllable power semiconductors can be used as a switching unit in the context of the invention.

Wie bereits ausgeführt wurde, ist der ausgewählte Schaltzustand gemäß dieser zweckmäßigen Weiterentwicklung erreicht, wenn sich alle Leistungshalbleiterschalteinheiten und die Schalteinheit in ihrer Unterbrecherstellung befinden. Der Klemmstrom wird nun in jedem Fall über wenigstens einen Energiespeicher oder einen Dämpfungswiderstand geführt.As already stated, the selected switching state is achieved according to this expedient further development when all the power semiconductor switching units and the switching unit are in their breaker position. Of the Clamping current is now performed in any case via at least one energy storage or a damping resistor.

Die Schalteinheit ist in jedem Falle so zu wählen, dass die an ihr bei Normalbetrieb des Submoduls entstehende Verlustleistung möglichst gering ist.In any case, the switching unit should be selected so that the power loss resulting from it during normal operation of the submodule is as low as possible.

Sind alle Leistungshalbleiterschalteinheiten des Submoduls identisch ausgelegt, mit anderen Worten sind alle Halbleiterschalter identisch, weisen diese eine einheitliche Sperrspannung und Struktur auf. Dies ist bei hohen Spannungen vorteilhaft, weil für extrem hohe Spannungen und Leistungen nur wenige Halbleiterschalter geeignet sind. Eine einheitliche Bestückung der Submodule ermöglicht es, die jeweils bestgeeignetsten und leistungsfähigsten Halbleiter einzusetzen.If all the power semiconductor switching units of the submodule are designed identically, in other words all the semiconductor switches are identical, they have a uniform blocking voltage and structure. This is advantageous at high voltages because only a few semiconductor switches are suitable for extremely high voltages and powers. Uniform submodule placement makes it possible to use the most suitable and powerful semiconductors.

Zweckmäßigerweise weist jede Leistungshalbleiterschalteinheit einen an- und abschaltbaren Leistungshalbleiter auf, dem eine Freilaufdiode gegensinnig parallel geschaltet ist. Solche abschaltbaren Leistungshalbleiter sind beispielsweise Markt verfügbare IGBTs oder GTOs und dergleichen. Diese Leistungshalbleiter werden üblicherweise mit gegensinnig parallel geschalteten Freilaufdiode eingesetzt. Allerdings sind erfindungsgemäß auch rückwärts leitende Leistungshalbleiter einsetzbar. Separate Freilaufdioden sind dann entbehrlich.Expediently, each power semiconductor switching unit has a power semiconductor that can be switched on and off, to which a freewheeling diode is connected in parallel in opposite directions. Such turn-off power semiconductors are, for example, marketable IGBTs or GTOs and the like. These power semiconductors are usually used with freewheeling diode connected in parallel in opposite directions. However, according to the invention, reverse-conducting power semiconductors can also be used. Separate freewheeling diodes are then unnecessary.

Zweckmäßigerweise ist jeder Energiespeicher als Kondensator und insbesondere als unipolarer Speicherkondensator ausgestaltet.Expediently, each energy store is designed as a capacitor and in particular as a unipolar storage capacitor.

Weitere Vorteile und Ausgestaltungen sind Gegenstand der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezug auf beigeschlossenen Figuren der Zeichnung, wobei gleiche Bezugszeichen auf gleich wirkende Bauteile verweisen und wobei

Figur 1
ein Ausführungsbeispiel des erfindungsgemäßen Umrichters schematisch verdeutlicht und
Figur 2
ein Ausführungsbeispiel der erfindungsgemäßen Submodule genauer dargestellt.
Further advantages and embodiments are the subject of the following description of embodiments with reference to enclosed figures of the drawing, wherein the same References to like components and reference
FIG. 1
an embodiment of the inverter according to the invention schematically illustrated and
FIG. 2
an embodiment of the submodules according to the invention shown in more detail.

Figur 1 zeigt ein Ausführungsbeispiel des erfindungsgemäßen Umrichters 1 in einer schematischen Darstellung. Es ist erkennbar, dass der Umrichter 1 Leistungshalbleiterventile 2 aufweist, die in einer Brückenschaltung miteinander verbunden sind. Jedes der Leistungshalbleiterventile 2 erstreckt sich zwischen einem Wechselspannungsanschluss L1, L2, L3 und einem Gleichspannungsanschluss 31, 32, 33 beziehungsweise 41, 42, 43. Die Gleichspannungsanschlüsse 31, 32, 33 sind über einen positiven Polanschluss 5 mit einem positiven Pol und über einen negativen Polanschluss 6 mit einem negativen Pol eines figürlich nicht dargestellten Gleichspannungsnetzes verbindbar. FIG. 1 shows an embodiment of the inverter 1 according to the invention in a schematic representation. It can be seen that the converter 1 has power semiconductor valves 2 which are connected to one another in a bridge circuit. Each of the power semiconductor valves 2 extends between an AC voltage terminal L 1 , L 2 , L 3 and a DC voltage terminal 3 1 , 3 2 , 3 3 and 4 1 , 4 2 , 4 third The DC voltage terminals 3 1 , 3 2 , 3 3 are connected via a positive pole terminal 5 with a positive pole and a negative pole terminal 6 with a negative pole of a DC voltage network not shown figuratively.

Die Wechselspannungsanschlüsse L1, L2 und L3 sind jeweils mit einer Sekundärwicklung eines Transformators verbunden, dessen Primärwicklung an ein ebenfalls figürlich nicht dargestelltes Wechselspannungsnetz angeschlossen ist. Für jede Phase des Wechselspannungsnetzes ist ein Wechselspannungsanschluss L1, L2, L3 vorgesehen. In dem gezeigten Ausführungsbeispiel ist das Wechselspannungsnetz dreiphasig. Somit weist auch der Umrichter 1 drei Wechselspannungsanschlüsse L1, L2 und L3 auf. Zwischen dem Wechselspannungsanschluss L1, L2, L3 und dem Transformator sind zweckmäßigerweise mechanische Leistungsschalter vorgesehen, um im Fehlerfall das Wechselspannungsnetz vom Umrichter 1 zu trennen. Die Leistungsschalter sind in Figur 1 ebenfalls nicht dargestellt.The AC voltage terminals L 1 , L 2 and L 3 are each connected to a secondary winding of a transformer, whose primary winding is connected to a likewise not shown figuratively AC mains. For each phase of the alternating voltage network, an AC voltage terminal L 1 , L 2 , L 3 is provided. In the embodiment shown, the AC voltage network is three-phase. Thus, the inverter 1 has three AC voltage terminals L 1 , L 2 and L 3 . Between the AC voltage terminal L 1 , L 2 , L 3 and the transformer mechanical circuit breakers are expediently provided to disconnect the AC power supply from the inverter 1 in case of failure. The circuit breakers are in FIG. 1 also not shown.

Der Umrichter 1 ist in dem gezeigten Ausführungsbeispiel Teil einer Hochspannungsgleichstromübertragungsanlage und dient zur Verbindung von Wechselspannungsnetzen, um zwischen diesen hohe elektrische Leistungen zu übertragen. An dieser Stelle sei jedoch erwähnt, dass der Umrichter auch Teil einer so genannten FACTS-Anlage sein kann, die zur Netzstabilisierung oder Sicherung einer gewünschten Spannungsqualität dient. Darüber hinaus ist auch eine Verwendung des Umrichters gemäß Figur 1 und 2 in der Antriebstechnik möglich.In the exemplary embodiment shown, the converter 1 is part of a high-voltage direct-current transmission system and is used to connect AC voltage networks in order to transmit high electrical power between them. It should be noted, however, that the converter can also be part of a so-called FACTS system, which serves to stabilize the network or to ensure a desired voltage quality. In addition, use of the inverter is also according to FIG. 1 and 2 possible in drive technology.

In Figur 1 ist ferner erkennbar, dass jedes Leistungshalbleiterventil 2 eine Reihenschaltung aus Submodulen 7 sowie eine Drossel 8 aufweist. Dabei verfügt jedes Submodul 7 über zwei Anschlussklemmen x1 beziehungsweise x2.In FIG. 1 Furthermore, it can be seen that each power semiconductor valve 2 has a series connection of submodules 7 and a throttle 8. Each submodule 7 has two connection terminals x1 and x2.

Figur 2 zeigt ein Ausführungsbeispiel des erfindungsgemäßen Submoduls 7 genauer. Es sei an dieser Stelle darauf hingewiesen, dass alle in Figur 1 schematisch dargestellten Submodule 7 identisch aufgebaut sind. Figur 2 zeigt daher den Aufbau aller Submodule 7 des Umrichters 1 stellvertretend anhand eines Submoduls 7. FIG. 2 shows an embodiment of the submodule 7 according to the invention in more detail. It should be noted at this point that all in FIG. 1 schematically shown submodules 7 are constructed identically. FIG. 2 shows therefore the structure of all submodules 7 of the inverter 1 representative of a submodule. 7

Das Submodul 7 gemäß Figur 2 weist eine erste Untereinheit 9 sowie eine zweite Untereinheit 10 auf, die von einer gestrichelte Linie umrahmt und identisch aufgebaut sind. So umfasst die erste Untereinheit 9 eine erste Reihenschaltung 11 aus Leistungshalbleiterschalteinheiten 12 und 13, die in dem gezeigten Ausführungsbeispiel jeweils einen IGBT 14 beziehungsweise 15 als an- und abschaltbaren Leistungshalbleiter und jeweils eine Freilaufdiode 16 und 17 aufweisen, die dem jeweils zugeordneten IGBT 14, 15 gegensinnig parallel geschaltet ist. Die IGBTs 14, 15 weisen die gleiche Durchlassrichtung auf, sind also gleichsinnig orientiert. Der Potenzialpunkt zwischen den Leistungshalbleiterschalteinheiten 12 und 13 ist mit einer ersten Anschlussklemme x2 verbunden. Die Reihenschaltung 11 ist parallel zu einem ersten Kondensator 18 als ersten Energiespeicher geschaltet, an dem die Spannung UC1 abfällt.The submodule 7 according to FIG. 2 has a first subunit 9 and a second subunit 10, which are framed by a dashed line and constructed identically. Thus, the first subunit 9 comprises a first series circuit 11 of power semiconductor switching units 12 and 13, which in the embodiment shown each have an IGBT 14 or 15 as turn on and off power semiconductors and one freewheeling diode 16 and 17, the respectively associated IGBT 14, 15th in opposite directions is connected in parallel. The IGBTs 14, 15 have the same forward direction, so are oriented in the same direction. The potential point between the power semiconductor switching units 12 and 13 is connected to a first terminal x2. The series circuit 11 is connected in parallel to a first capacitor 18 as a first energy store, at which the voltage U C1 drops.

Die zweite Untereinheit 10 umfasst eine zweite Reihenschaltung 19 aus einer ersten Leistungshalbleiterschalteinheit 20 sowie einer zweiten Leistungshalbleiterschalteinheit 21, die jeweils einen IGBT 22 beziehungsweise 23 als an- und abschaltbaren Leistungshalbleiter aufweisen. Die IGBTs 22, 23 weisen in der Reihenschaltung 19 die gleiche Durchlassrichtung auf, so dass die Leistungshalbleiterschalteinheiten 20 und 21 gleichsinnig orientiert sind. Jedem IGBT 22 beziehungsweise 23 der zweiten Reihenschaltung 19 ist eine Freilaufdiode 24 beziehungsweise 25 gegensinnig parallel geschaltet. Die zweite Reihenschaltung 19 ist einem zweiten Kondensator 26 parallel geschaltet, an dem die Spannung UC2 abfällt. Der Potenzialpunkt zwischen den Leistungshalbleiterschalteinheiten 20 und 21 ist mit der zweiten Anschlussklemme x1 verbunden.The second subunit 10 includes a second series circuit 19 of a first power semiconductor switching unit 20 and a second power semiconductor switching unit 21, each having an IGBT 22 and 23 as turn on and off power semiconductors. The IGBTs 22, 23 have the same forward direction in the series circuit 19, so that the power semiconductor switching units 20 and 21 are oriented in the same direction. Each IGBT 22 or 23 of the second series circuit 19 is a freewheeling diode 24 and 25 connected in opposite directions in parallel. The second series circuit 19 is connected in parallel to a second capacitor 26, at which the voltage U C2 drops. The potential point between the power semiconductor switching units 20 and 21 is connected to the second terminal x1.

Die Untereinheiten 9 und 10 sind über Verbindungsmittel 27 miteinander verknüpft. Die Verbindungsmittel 2 weisen einen Emitter-Verbindungszweig 28 sowie einen Kollektor-Verbindungszweig 29 auf. Der Emitter-Verbindungszweig 28 verbindet den Emitter des IGBTs 15 der ersten Reihenschaltung 11 mit dem Emitter des IGBTs 23 der zweiten Reihenschaltung 19. Der Kollektor-Verbindungszweig 29 hingegen verbindet den Kollektor des IGBTs 14 der ersten Reihenschaltung 11 mit dem Kollektor des IGBTs 22 der zweiten Reihenschaltung 19. In dem Emitter-Verbindungszweig 28 sind eine Potenzialtrennungsdiode 30 sowie ein Begrenzungswiderstand 31 angeordnet. Der Kollektor-Verbindungszweig 29 verfügt ebenfalls über eine Potenzialtrennungsdiode 32 sowie über einen Begrenzungswiderstand 33. Der Emitter-Verbindungszweig 28 ist mit dem Kollektor-Verbindungszweig 29 über einen Schaltzweig 34 verbunden, in dem eine Schalteinheit 35 angeordnet ist. In dem gezeigten Ausführungsbeispiel ist die Schalteinheit als Leistungshalbleiterschalteinheit 35 realisiert und umfasst einen IGBT 36 sowie eine gegensinnig parallel dazu geschaltete Freilaufdiode 37. Dabei verbindet der Schaltzweig 34 die Katodenseite der Potenzialtrennungsdiode 30 mit der Anodenseite der Potenzialtrennungsdiode 32, wobei der zwischen der besagten Anode und dem Schaltzweig 34 angeordnete Begrenzungswiderstand 33 vernachlässigt wurde.The subunits 9 and 10 are linked via connecting means 27. The connection means 2 have an emitter connection branch 28 and a collector connection branch 29. The emitter connection branch 28 connects the emitter of the IGBT 15 of the first series circuit 11 to the emitter of the IGBT 23 of the second series circuit 19. The collector connection branch 29, on the other hand, connects the collector of the IGBT 14 of the first series circuit 11 to the collector of the IGBT 22 of the second one Series connection 19. In the emitter connection branch 28, a potential separation diode 30 and a limiting resistor 31 are arranged. The collector connection branch 29 also has a potential separation diode 32 and a limiting resistor 33. The emitter connection branch 28 is connected to the collector connection branch 29 via a switching branch 34, in which a switching unit 35 is arranged. In the embodiment shown, the switching unit is realized as a power semiconductor switching unit 35 and includes an IGBT 36 and a freewheeling diode 37 connected in parallel thereto. In this case, the switching branch 34 connects the cathode side of the potential separation diode 30 with the anode side of the potential separation diode 32, which between the said anode and the Switching branch 34 arranged limiting resistor 33 has been neglected.

Die Wirkungsweise der Schaltung der Submodule 7 wird im Folgenden erläutert. Zunächst sei darauf hingewiesen, dass die erforderliche Sperrspannung sämtlicher Leistungshalbleiter, also sowohl der Freilaufdioden 16, 17, 24 und 25 als auch der an- und abschaltbaren Leistungshalbleiterschalter 14, 15, 23 und 23, sich nach der maximalen Spannung der beiden unipolaren Speicherkondensatoren 18 und 26 richtet, die in dem gewählten Ausführungsbeispiel gleich ist. Auf diese Weise wird eine nachteilige Überdimensionierung der Sperrspannungen der genannten Leistungshalbleiter vermieden.The operation of the circuit of the submodules 7 will be explained below. First, it should be noted that the required reverse voltage of all power semiconductors, so both the freewheeling diodes 16, 17, 24 and 25 and the on and off power semiconductor switches 14, 15, 23 and 23, after the maximum voltage of the two unipolar storage capacitors 18 and 26, which is the same in the chosen embodiment. In this way, a disadvantageous oversizing of the blocking voltages of said power semiconductors is avoided.

Es kann insgesamt zwischen mehreren Schaltzuständen, die sich hinsichtlich der sich Klemmspannungen Ux voneinander unterscheiden, differenziert werden.Overall, it is possible to differentiate between a plurality of switching states which differ from one another with regard to the clamping voltages U x .

In einem beispielhaft herausgegriffenen Schaltzustand 1 ist die an den Anschlussklemmen x2 und x1 abfallende Klemmspannung Ux unabhängig von der Richtung des Klemmstromes gleich Null. In diesem Schaltzustand befinden sich die IGBTs 15, 22 und 36 in ihrer Durchlassstellung, in der ein Stromfluss in Durchlassrichtung über den jeweiligen IGBT ermöglicht ist. Die restlichen IGBTs, also die IGBTs 14 und 23, befinden sich hingegen in ihrer Sperrstellung, so dass ein Stromfluss über diese IGBTs unterbrochen ist. Bei positiver Stromrichtung ix (ix positiv), die in Figur 2 an der ersten Anschlussklemme x2 durch den Pfeil angedeutet ist, sind die Leistungshalbleiter 15, 37 und 22 stromführend. Bei negativer Stromrichtung (ix negativ) sind die Leistungshalbleiter 24, 36 und 17 stromführend.In an exemplarily selected switching state 1, the terminal voltage x falling at the connection terminals x2 and x1 is equal to zero irrespective of the direction of the clamping current. In this switching state, the IGBTs 15, 22 and 36 are in their forward position, in which a flow of current in the forward direction through the respective IGBT is possible. The remaining IGBTs, ie the IGBTs 14 and 23, are located however, in their blocking position, so that a current flow through these IGBTs is interrupted. With positive current direction i x (i x positive), the in FIG. 2 is indicated at the first terminal x2 by the arrow, the power semiconductors 15, 37 and 22 are energized. With negative current direction (i x negative), the power semiconductors 24, 36 and 17 are live.

In der nachfolgenden Tabelle sind die bevorzugt genutzten Schaltzustände zusammengefasst. Schaltzustand ix IGBT 15 IGBT 14 IGBT 23 IGBT 22 IGBT 36 UX WCI WC2 1 negativ 1 0 0 1 1 0 0 0 positiv 1 0 0 1 1 0 0 0 2 negativ 0 1 0 1 1 +UC1 -1 0 positiv 0 1 0 1 1 + UC1 +1 0 3 negativ 0 1 1 0 1 + (UC1+UC2) -1 -1 positiv 0 1 1 0 1 + (UC1+UC2) +1 +1 4 negativ 1 0 1 0 1 +UC2 0 -1 positiv 1 0 1 0 1 +UC2 0 +1 5 negativ 0 0 0 0 0 - (UC1+UC2) /2 +1 +1 positiv 0 0 0 0 0 + (UC1+UC2) +1 +1 The following table summarizes the preferred switching states used. switching status i x IGBT 15 IGBT 14 IGBT 23 IGBT 22 IGBT 36 U X W CI W C2 1 negative 1 0 0 1 1 0 0 0 positive 1 0 0 1 1 0 0 0 2 negative 0 1 0 1 1 + U C1 -1 0 positive 0 1 0 1 1 + U C1 +1 0 3 negative 0 1 1 0 1 + (U C1 + U C2 ) -1 -1 positive 0 1 1 0 1 + (U C1 + U C2 ) +1 +1 4 negative 1 0 1 0 1 + U C2 0 -1 positive 1 0 1 0 1 + U C2 0 +1 5 negative 0 0 0 0 0 - (U C1 + U C2 ) / 2 +1 +1 positive 0 0 0 0 0 + (U C1 + U C2 ) +1 +1

Die Spalten WC1 und WC2 sollen verdeutlichen, ob die Speicherkondensatoren 18 und 26 Energie aufnehmen oder abgeben, wobei +1 für die Aufnahme und -1 für die Abgabe von Energie steht.The columns W C1 and W C2 are intended to clarify whether the storage capacitors 18 and 26 absorb or deliver energy, where +1 stands for the intake and -1 for the delivery of energy.

Der Tabelle ist entnehmbar, dass in den Schaltzuständen 2, 3 und 4 an den Anschlussklemmen x2 und x1 immer eine positive Spannung erzeugt ist. Dies gilt unabhängig von der Richtung des Klemmstromes. So kann beispielsweise die Kondensatorspannung UC1 oder die Kondensatorspannung UC2 oder aber die Summe der Kondensatorspannung UC1+UC2 an den Anschlussklemmen abfallen.It can be seen from the table that in the switching states 2, 3 and 4 a positive voltage is always generated at the terminals x2 and x1. This applies regardless of the direction of the clamping current. For example, the capacitor voltage U C1 or the capacitor voltage U C2 or else the sum of the capacitor voltage U C1 + U C2 at the connection terminals can drop.

Im Schaltzustand 5 sind alle ansteuerbaren Leistungshalbleiter, also die IGBTs 14, 15, 22, 23 und 36, in ihrer Unterbrecherstellung, so dass ein Stromfluss über die IGBTs unterbrochen ist. In diesem Schaltzustand bildet die Klemmspannung Ux unabhängig von der Polarität des Klemmstromes ix immer eine Gegenspannung aus, so dass das Submodul 7 immer Energie aufnimmt. Bei negativer Stromrichtung, ix negativ, wird eine negative Gegenspannung durch die Parallelschaltung der Speicherkondensatoren 26 und 18 sowie durch den Spannungsabfall an den Dämpfungswiderständen 30 und 32 erzeugt. Falls die Kondensatorspannungen UC1 und UC2 nicht genau übereinstimmen, werden diese selbsttätig symmetriert. Im Schaltzustand 5 gilt in guter Näherung U x = - U C 1 + U C 2 2 - U R

Figure imgb0001

wobei UR dem Spannungsabfall an den Dämpfungswiderständen 32 und 30 entspricht.In the switching state 5, all controllable power semiconductors, ie the IGBTs 14, 15, 22, 23 and 36, are in their breaker position, so that a current flow through the IGBTs is interrupted. In this switching state, the terminal voltage U x always forms a countervoltage independent of the polarity of the clamping current i x , so that the submodule 7 always picks up energy. In the negative current direction, i x negative, a negative reverse voltage is generated by the parallel connection of the storage capacitors 26 and 18 and by the voltage drop across the damping resistors 30 and 32. If the capacitor voltages U C1 and U C2 do not match exactly, they are automatically balanced. In switching state 5 applies to a good approximation U x = - U C 1 + U C 2 2 - U R
Figure imgb0001

where U R corresponds to the voltage drop across the damping resistors 32 and 30.

Bei einer positiven Stromrichtung wird eine positive Gegenspannung U x = + U C 1 + U C 2

Figure imgb0002

erzeugt. Auch hier kann ein Stromfluss nur unter Aufladung der Speicherkondensatoren 18 beziehungsweise 25 erfolgen. Dabei ist es vorteilhaft, dass der auftretende Strom über beide Kondensatoren geführt wird, da an diesen dann eine geringere Überspannung auftritt, als wenn nur ein Kondensator die Energie aufnehmen müsste.A positive current direction becomes a positive reverse voltage U x = + U C 1 + U C 2
Figure imgb0002

generated. Here, too, a current flow can take place only when the storage capacitors 18 and 25 are charged. It is advantageous that the occurring current is passed through both capacitors, as then a lower overvoltage occurs at this, as if only one capacitor would have to absorb the energy.

Der oben aufgeführten Tabelle ist ferner entnehmbar, dass mit dem Submodul 7 und seinen beiden Untereinheiten 9 und 10 die gleichen Ausgangsspannungen an den Ausgangsklemmen erzeugt werden können, wie bei zwei in Reihe geschalteten Submodulen gemäß dem Stand der Technik ( DE 101 03 031 A1 ). Die Untereinheiten 9, 10 entsprechen quasi jeweils einem Submodul gemäß dem Stand der Technik. Mit anderen Worten kann das erfindungsgemäße Submodul gemäß Figur 2 in der gleichen Art und Weise angesteuert werden, wie zwei Submodule gemäß dem Stand der Technik. Alle bekannten Regelverfahren sind daher weiterhin anwendbar. Im engeren Sinn existiert jedoch die Nebenbedingung, dass die Anzahl der in Reihe geschalteten Submodule gemäß dem Stand der Technik immer eine gerade Zahl ergeben muss. Bei Hochspannungsanwendungen ist die Anzahl der in Reihe geschalteten Submodule jedoch so groß, dass diese Nebenbedingung unerheblich ist.It can also be seen from the above table that with the submodule 7 and its two subunits 9 and 10, the same output voltages can be generated at the output terminals as in two series-connected submodules according to the prior art ( DE 101 03 031 A1 ). The subunits 9, 10 virtually each correspond to a submodule according to the prior art. In other words, the inventive submodule according to FIG. 2 in the same manner as two submodules according to the prior art. All known control methods are therefore still applicable. In the narrower sense, however, the secondary condition exists that the number of submodules connected in series according to the prior art always has to be an even number. However, in high voltage applications, the number of submodules connected in series is so large that this constraint is insignificant.

Der Schaltzustand 5 ist im Fehlerfall zum vollständigen Stromabbau einsetzbar. Werden alle Submodule 7 in diesen Schaltzustand überführt, werden die Zweigströme des Umrichters 1 und resultierend auch die wechselspannungs- und gleichspannungsseitigen Ströme in Folge der Summe der Gegenspannungen aller reihengeschalteter Submodule 7 sehr schnell auf Null abgebaut. Die Geschwindigkeit dieses Stromabbaus ergibt sich aus der oben genannten Gegenspannung und den in den Stromkreisen summarisch vorhandenen Induktivitäten. Sie liegt bei dem gezeigten Ausführungsbeispiel typischerweise in der Größenordnung weniger Millisekunden.The switching state 5 can be used in case of failure for complete power reduction. If all submodules 7 are converted into this switching state, the branch currents of the converter 1 and, as a result, the alternating voltage and DC side currents as a result of the sum of the reverse voltages of all series-connected submodules 7 are reduced very rapidly to zero. The speed of this current reduction results from the above-mentioned counter-voltage and the inductances summarily present in the circuits. In the embodiment shown, it is typically of the order of a few milliseconds.

Die Totzeit bis zum Beginn des Stromabbaus ist im Wesentlichen von der Ansprechzeit der Schalteinheit 35 abhängig. Wird für die Schalteinheit 35 eine Leistungshalbleiterschalteinheit gemäß Figur 2 eingesetzt, ist diese Totzeit vernachlässigbar. Die Totzeit ist dann im Wesentlichen der Trägheit der verschiedenen Messsensoren und Stromwandler geschuldet, mit deren Hilfe ein Störfall erkannt wird. Diese Trägheit dieser Messwerteerfassung liegt derzeit typischerweise im Bereich einiger 10 Mikrosekunden.The dead time until the beginning of the current reduction depends essentially on the response time of the switching unit 35. If a power semiconductor switching unit according to FIG. 2 used, this dead time is negligible. The dead time is then essentially the inertia of the owing to various measuring sensors and current transformers, with the aid of which a fault is detected. This inertia of these measurements is currently typically in the range of a few tens of microseconds.

Die Vorteile des erfindungsgemäßen Submoduls und des erfindungsgemäßen Umrichters 1 können wie folgt zusammengefasst werden: Zum Einen ist die Zeitspanne bis zum völligen Abbau eines im Fehlerfall auftretenden Kurzschlussstromes sehr kurz. Somit müssen wechselspannungsseitig des Umrichters 1 vorgesehene Schalter gar nicht erst ausgelöst werden. Sowohl der wechselspannungsseitige als auch der gleichspannungsseitige Strom überschreiten den Nennstrom nur unwesentlich. Die Leistungshalbleiter der Submodule müssen nicht wie beim Stand der Technik mit Thyristoren oder sonstigen überbrückenden Elementen geschützt werden. Die Zuverlässigkeit der Stromabschaltung ist sehr hoch, weil durch die große Anzahl der in Reihe geschalteten Submodule in den Leistungshalbleiterventilen des Umrichters 1 eine Redundanz gewährleistet ist. Im Zusammenhang mit der Zuverlässigkeit sei noch ausgeführt, dass der Umrichter 1 sich mit all seinen Komponenten ständig im Betrieb befindet und messtechnisch laufend überwacht wird. Eine solche Funktionssicherheit ist bei vergleichbaren Vorrichtungen zum Stromabbau in Fehlerfällen, die nur in einem solchen Fehlerfall aktiviert werden, nicht gegeben.The advantages of the submodule according to the invention and of the converter 1 according to the invention can be summarized as follows: On the one hand, the time span until the complete removal of a short-circuit current occurring in the event of a fault is very short. Thus, provided on the AC side of the inverter 1 switches must not be triggered only. Both the AC-side and the DC-side current exceed the rated current only insignificantly. The power semiconductors of the submodules need not be protected with thyristors or other bridging elements as in the prior art. The reliability of the power cutoff is very high because redundancy is ensured in the power semiconductor valves of the inverter 1 by the large number of submodules connected in series. In connection with the reliability is still stated that the inverter 1 is constantly in operation with all its components and metrologically monitored continuously. Such reliability is not given in comparable devices for power dissipation in case of failure, which are activated only in such an error case.

Ein weiterer wesentlicher Vorteil der Erfindung liegt darin, dass jederzeit ein "Zurückschalten" in den Normalbetrieb möglich ist, so dass auch bei fehlerhafter unnötiger Auslösung oder Detektion, die negativen Auswirkungen auf den Anlagenbetrieb minimierbar sind.Another significant advantage of the invention is that at any time a "switch back" in normal operation is possible, so that even if incorrect unnecessary triggering or detection, the negative effects on the system operation can be minimized.

Mit Hilfe eines erfindungsgemäßen Umrichters 1 ist es weiterhin möglich, auch in einem verzweigten Gleichspannungsnetz die Gleichspannungsströme schnell auf Null zu bringen. Auf diese Weise ist im Gleichspannungskreis ein stromloses Trennen, beispielsweise mit Vakuumschaltröhren oder antiparallelen Thyristoren, möglich. Bei verzweigten Gleichspannungsnetzen müssen selbstverständlich auch die übrigen Umrichter, die mit dem Gleichspannungsnetz verbunden sind, den Strom abbauen, also schnell in den Schaltzustand 5 der Submodule 7 übergehen. Ein fehlerbehafteter Netzabschnitt des Gleichspannungsnetzes kann somit einfach und kostengünstig durch bekannte mechanische Schalter stromlos vom restlichen Gleichspannungsnetz getrennt werden. Der fehlerhafte Netzabschnitt kann nun zwecks Dionisation oder Fehlerlokalisation "pausieren" und später von seinem zugeordneten Umrichter hoch gefahren werden. In sehr kurzer Zeit können die verbleibenden Umrichter das gesamte Gleichspannungsnetz wieder in Betrieb nehmen.With the aid of an inverter 1 according to the invention, it is also possible, even in a branched DC voltage network to quickly bring the DC currents to zero. In this way, in the DC voltage circuit, an electroless separation, for example with vacuum interrupters or anti-parallel thyristors possible. In branched DC networks, of course, the other converters that are connected to the DC power supply must reduce the power, so quickly go into the switching state 5 of the submodules 7. A faulty network section of the DC voltage network can thus be disconnected from the remaining DC voltage network in a simple and cost-effective manner by means of known mechanical switches. The faulty network section can now be "paused" for the purpose of dionization or fault localization and later driven up by its assigned converter. In a very short time, the remaining inverters can put the entire direct current network back into operation.

Claims (10)

  1. Sub-module (7) for forming a converter (1) comprising
    - a first sub-unit (9), which has
    - a first energy store (18),
    - a first series circuit (11) - connected in parallel with the first energy store (18) - formed by two power semiconductor switching units (12, 13), which each have a power semiconductor (14, 15) that can be turned on and off and have the same forward direction, and the power semiconductor switching units (12, 13) are each conductive counter to said forward direction, and
    - a first connection terminal (x2), which is connected to the potential point between the power semiconductor switching units (12, 13) of the first series circuit (11), and a second sub-unit (10), which has
    - a second energy store (26),
    - a second series circuit (19) - connected in parallel with the second energy store (26) - formed by two power semiconductor switching units (20, 21), which each have a power semiconductor (22, 23) that can be turned on and off and have the same forward direction, and the power semiconductor switching units (20, 21) are each conductive counter to said forward direction, and
    - a second connection terminal (x1), which is connected to the potential point between the power semiconductor switching units (20, 21) of the second series circuit (19),
    characterized in that
    the first sub-unit (9) and the second sub-unit (10) are connected to one another via connecting means (27) have an emitter connecting branch (28), which connects an emitter of a first power semiconductor switching unit (13) of the first series circuit (11) to an emitter of a first power semiconductor switching unit (21) of the second series circuit (19) and in which a potential isolating diode (30) is arranged, a collector connecting branch (29), which connects a collector of the second power semiconductor switching unit (12) of the first series circuit (11) to a collector of the second power semiconductor switching unit (20) of the second series circuit (19) and in which a potential isolating diode (32) is arranged, and a switching branch (34), in which a switching unit (35) is arranged and which connects the cathode of the potential isolating diode (30) of the emitter connecting branch (28) to the anode of the potential isolating diode (32) of the collector connecting branch (29).
  2. Sub-module (7) according to Claim 1,
    characterized in that
    the switching unit (35) is a mechanical switching unit, a semiconductor switch or a power semiconductor switching unit.
  3. Sub-module (7) according to any of the preceding claims,
    characterized in that
    the connecting means (27) have at least one damping resistor (31, 33).
  4. Sub-module (7) according to Claim 3,
    characterized in that
    damping resistors (31, 33) are arranged in the emitter connecting branch (28) and in the collector connecting branch (29).
  5. Sub-module (7) according to any of the preceding claims,
    characterized in that
    in a selected switching state all the power semiconductor switching units (12, 13, 20, 21, 35) are in their interrupter position, wherein a current flow takes place between the first connection terminal (x2) and the second connection terminal (x1) in both directions only via the first energy store (18) and/or the second energy store (26).
  6. Sub-module (7) according to Claim 5,
    characterized in that
    the switching unit (35) is in its interrupter position in the selected switching state.
  7. Sub-module (7) according to any of the preceding claims,
    characterized in that
    the power semiconductor switching units (12, 13, 20, 21, 35) are reverse conducting power semiconductor switches that can be turned on and off.
  8. Sub-module (7) according to any of Claims 1 to 7,
    characterized in that
    each power semiconductor switching unit (12, 13, 20, 21, 35) has a respective power semiconductor (14, 15, 22, 23, 26) that can be turned on and off, with which power semiconductor a freewheeling diode (16, 17, 24, 25, 37) is connected in parallel in the opposite sense.
  9. Sub-module (7) according to any of the preceding claims,
    characterized in that
    each energy store is a unipolar storage capacitor (18, 26).
  10. Converter (1) particularly for high-voltage applications comprising power semiconductor valves (2), which in each case extend between an AC voltage connection (L1, L2, L3) and a DC voltage connection (31, 32, 33, 41, 42, 43) and form a bridge circuit, wherein each power semiconductor valve (2) has a series circuit formed by two-pole sub-modules (7) and each sub-module (7) has at least one energy store (18, 26) and at least one power semiconductor circuit (11, 19),
    characterized in that
    the sub-module is a sub-module (7) according to any of the preceding claims.
EP10788266.4A 2009-12-01 2010-11-18 Inverter for high voltages Active EP2507884B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009057288.0A DE102009057288B4 (en) 2009-12-01 2009-12-01 Inverters for high voltages
PCT/EP2010/067735 WO2011067120A1 (en) 2009-12-01 2010-11-18 Inverter for high voltages

Publications (2)

Publication Number Publication Date
EP2507884A1 EP2507884A1 (en) 2012-10-10
EP2507884B1 true EP2507884B1 (en) 2014-10-29

Family

ID=43618040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10788266.4A Active EP2507884B1 (en) 2009-12-01 2010-11-18 Inverter for high voltages

Country Status (7)

Country Link
US (1) US9130477B2 (en)
EP (1) EP2507884B1 (en)
KR (1) KR101453631B1 (en)
CN (1) CN102640375B (en)
DE (1) DE102009057288B4 (en)
RU (1) RU2563034C2 (en)
WO (1) WO2011067120A1 (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009057288B4 (en) * 2009-12-01 2018-02-15 Siemens Aktiengesellschaft Inverters for high voltages
US20140226374A1 (en) * 2011-07-29 2014-08-14 Abb Technology Ag Ctl cell protection
WO2013060354A1 (en) * 2011-10-24 2013-05-02 Siemens Aktiengesellschaft Converter for high-voltage dc transmission
DE102012204046B3 (en) 2012-03-15 2013-08-14 Siemens Aktiengesellschaft Multicell converter
EP2817872B1 (en) 2012-04-16 2021-12-15 Siemens Energy Global GmbH & Co. KG Submodule for a modular multilevel converter with a snubber network
WO2013186006A2 (en) 2012-06-12 2013-12-19 Siemens Aktiengesellschaft Multicell converter
US20150288287A1 (en) * 2012-09-21 2015-10-08 Aukland Uniservices Limited Modular multi-level converters
KR101698873B1 (en) 2012-10-11 2017-01-23 지멘스 악티엔게젤샤프트 Modular multilevel dc/dc converter for hvdc applications
EP2907233A1 (en) * 2012-12-10 2015-08-19 Siemens Aktiengesellschaft Submodule for limiting a surge current
CN103001520B (en) * 2012-12-26 2014-08-20 清华大学 Modularized multi-level three-phase voltage source converter
KR101373170B1 (en) * 2012-12-28 2014-03-12 주식회사 효성 Converter
CN105191093B (en) * 2013-01-21 2018-03-13 Abb 技术有限公司 Multiphase converter with mixed bridge unit
EP2768133B1 (en) * 2013-02-14 2015-11-04 ABB Technology Ltd Converter cell with reduced power losses, high voltage multilevel converter and associated method
JP5957594B2 (en) * 2013-02-20 2016-07-27 株式会社日立製作所 Power converter
US9461557B2 (en) * 2013-03-22 2016-10-04 Abb Ab Bipolar double voltage cell and multilevel converter with such a cell
WO2014154241A1 (en) * 2013-03-25 2014-10-02 Abb Technology Ltd A multilevel converter with cell type mixing
CN103280989B (en) * 2013-05-15 2017-02-08 南京南瑞继保电气有限公司 Current converter and control method thereof
EP2811641A1 (en) * 2013-06-05 2014-12-10 Siemens Aktiengesellschaft Controlling the operation of an converter having a plurality of semiconductor switches for converting high power electric signals from DC to AC or from AC to DC
WO2015007302A1 (en) 2013-07-15 2015-01-22 Siemens Aktiengesellschaft Modular multi-level dc-dc converter for hvdc applications
EP2830201A1 (en) * 2013-07-26 2015-01-28 Alstom Technology Ltd Voltage source converter module
DE102013218207A1 (en) * 2013-09-11 2015-03-12 Siemens Aktiengesellschaft Modular multipoint power converter for high voltages
EP2849330A1 (en) * 2013-09-13 2015-03-18 Alstom Technology Ltd Modular Power Converter and module thereof
EP2852019B8 (en) * 2013-09-23 2020-10-21 General Electric Technology GmbH Improvements in or relating to power modules for use in power transmission networks
JP6207631B2 (en) * 2013-12-24 2017-10-04 三菱電機株式会社 Power converter
CN104753353A (en) * 2013-12-31 2015-07-01 国家电网公司 Two-way transmission converter applicable to high voltage and high power
CN106062897B (en) * 2014-02-26 2018-07-20 西门子公司 Electric component
DE102014205293A1 (en) * 2014-03-21 2015-09-24 Siemens Aktiengesellschaft Multilevel converter with reduced rollover damage
DE202014002953U1 (en) 2014-04-07 2015-07-09 Stefan Goetz Electric energy storage system
CN104052026B (en) * 2014-05-29 2016-05-25 华中科技大学 For submodule topology and the application thereof of modularization multi-level converter
DE202014004749U1 (en) 2014-06-13 2015-09-15 Aehling, Dr. Jaensch & Dr. Goetz GbR (vertretungsberechtigter Gesellschafter Dr. Malte Jaensch, 74321 Bietigheim-Bissingen) Electronic circuit for simplified operation of multipoint converters
DE102014008399A1 (en) 2014-06-13 2015-12-17 Stefan Goetz Electronic circuit and method for simplified operation of multipoint converters
KR101521105B1 (en) * 2014-07-31 2015-05-19 연세대학교 산학협력단 Method for detecting fault of sub module of modular multilevel converter
DE102014112763A1 (en) 2014-09-04 2016-03-10 Maschinenfabrik Reinhausen Gmbh Switching arrangement for a regulating transformer, in particular preselector
EP3073530B1 (en) * 2015-03-23 2017-05-03 ABB Schweiz AG Reverse conducting power semiconductor device
CN107431428A (en) * 2015-03-30 2017-12-01 通用电器技术有限公司 The control of voltage source converter
DE102015106196B3 (en) * 2015-04-02 2016-06-23 Rainer Marquardt Low loss modular multilevel converter
DE102015004492A1 (en) 2015-04-07 2016-10-13 Aehling, Dr. Jaensch & Dr. Goetz GbR (vertretungsberechtigter Gesellschafter Dr. Malte Jaensch, 74321 Bietigheim-Bissingen) Electric energy storage system
DE102015004517A1 (en) 2015-04-07 2016-10-13 Aehling, Dr. Jaensch & Dr. Goetz GbR (vertretungsberechtigter Gesellschafter Dr. Malte Jaensch, 74321 Bietigheim-Bissingen) Electric energy storage system
DE102015105889A1 (en) 2015-04-17 2016-10-20 Ge Energy Power Conversion Technology Limited Switching module and converter with at least one switching module
US20180166994A1 (en) 2015-05-28 2018-06-14 Siemens Aktiengesellschaft Voltage-Regulated Power Converter Module
DE102015209948A1 (en) 2015-05-29 2016-12-01 Siemens Aktiengesellschaft Voltage transformer arrangement with capacitive coupling
EP3136581B1 (en) * 2015-08-26 2020-04-29 GE Energy Power Conversion Technology Ltd Modular multilevel converter and method for operating same
EP3255773B1 (en) 2016-06-09 2021-01-13 GE Energy Power Conversion Technology Ltd. Low loss double submodule for a modular multi-level converter and modular multi-level converter having same
DE102017202209A1 (en) 2017-02-13 2018-08-16 Siemens Aktiengesellschaft Method and device for stabilizing a frequency in an alternating voltage network
DE102017113460A1 (en) 2017-06-20 2018-12-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Electronic circuit for converting electrical energy and associated control
WO2020007464A1 (en) * 2018-07-04 2020-01-09 Siemens Aktiengesellschaft Modular multi-point converter with modular storage units
CN112930645A (en) * 2018-08-31 2021-06-08 奥尔堡大学 Flexible and efficient switching string converter
EP3621189B1 (en) * 2018-09-06 2021-04-21 ABB Power Grids Switzerland AG Modular dc crowbar
CN109546674A (en) * 2018-12-07 2019-03-29 南京南瑞继保电气有限公司 A kind of bridge-type direct current energy-consuming device and control method
EP3734818B1 (en) * 2019-04-29 2022-06-29 Siemens Energy Global GmbH & Co. KG Method for troubleshooting in a direct current line and inverter assembly for implementing the method
DE102019206751B4 (en) * 2019-05-09 2021-03-25 Schmidhauser Ag frequency converter
CN110535359A (en) * 2019-08-29 2019-12-03 华北电力大学(保定) A kind of diode clamp mixing MMC circuit with from equal pressure energy power
EP4071996A4 (en) * 2019-12-03 2022-11-23 Mitsubishi Electric Corporation Power conversion device
JP6771707B1 (en) * 2020-03-11 2020-10-21 三菱電機株式会社 Power converter
WO2022035788A1 (en) 2020-08-10 2022-02-17 Terminal Power LLC Dc-dc auto-converter module

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE510597C2 (en) 1997-03-24 1999-06-07 Asea Brown Boveri Electric power transmission system
JPH10275952A (en) * 1997-03-28 1998-10-13 Mitsubishi Electric Corp Semiconductor laser-pumped slid-state laser amplification device and semiconductor laser-pumped solid-state laser apparatus
DE20122923U1 (en) 2001-01-24 2010-02-25 Siemens Aktiengesellschaft Converter circuits with distributed energy storage
DE10217889A1 (en) * 2002-04-22 2003-11-13 Siemens Ag Power supply with a direct converter
RU2231903C2 (en) * 2002-09-24 2004-06-27 Мустафа Георгий Маркович High-level voltage converter
CN100566106C (en) * 2003-10-17 2009-12-02 Abb研究有限公司 Be used to switch the converter circuit of the switching voltage levels of big figure
KR101030947B1 (en) * 2004-11-22 2011-04-28 에이비비 리써치 리미티드 Converter circuit for switching a number of switching voltage levels
DE102005045090B4 (en) * 2005-09-21 2007-08-30 Siemens Ag Method for controlling a multiphase power converter with distributed energy storage
ES2369570T3 (en) 2006-12-08 2011-12-02 Siemens Aktiengesellschaft PROTECTION ELEMENTS OF SEMICONDUCTORS TO CONTROL SHORT CIRCUITS ON THE DC SIDE IN THE CASE OF INDIRECT VOLTAGE CONVERTERS.
DE102008014898B4 (en) * 2008-03-19 2018-09-27 Siemens Aktiengesellschaft Method for controlling a multiphase power converter with distributed energy stores at low output frequencies
DE102009057288B4 (en) * 2009-12-01 2018-02-15 Siemens Aktiengesellschaft Inverters for high voltages
DE102011087151A1 (en) * 2011-11-25 2013-05-29 Ge Energy Power Conversion Gmbh Multipoint power converter with brake chopper

Also Published As

Publication number Publication date
RU2563034C2 (en) 2015-09-20
CN102640375A (en) 2012-08-15
WO2011067120A1 (en) 2011-06-09
US20120243282A1 (en) 2012-09-27
DE102009057288A1 (en) 2011-06-09
EP2507884A1 (en) 2012-10-10
CN102640375B (en) 2015-05-27
US9130477B2 (en) 2015-09-08
KR101453631B1 (en) 2014-10-22
RU2012127254A (en) 2014-01-10
DE102009057288B4 (en) 2018-02-15
KR20120089359A (en) 2012-08-09

Similar Documents

Publication Publication Date Title
EP2507884B1 (en) Inverter for high voltages
EP2338214B1 (en) Device having an inverter
EP3259839B1 (en) Converter arrangement and method for short-circuit protection thereof
EP3025403B1 (en) Modular multipoint power converter for high voltages
EP2118993B1 (en) Method for limiting damage to a converter having a power semiconductor in the case of a short circuit of an intermediate direct current circuit
EP2810290B1 (en) Apparatus for switching of direct current in a dc network terminal
EP3255773B1 (en) Low loss double submodule for a modular multi-level converter and modular multi-level converter having same
EP2319168A2 (en) Converter with distributed brake resistances
EP2810291B1 (en) Apparatus for switching dc current
WO2018158233A1 (en) Switching device for disconnecting a current path
EP2092622A1 (en) Rectifier with short circuit current limiting
EP2580859B1 (en) Double module for a modular multi-stage converter
EP2926455B1 (en) Apparatus for switching direct currents in branches of a dc voltage grid node
EP3783783A1 (en) Assembly for regulating a power flow in an ac network and method for protecting said assembly
EP3635851A1 (en) Current converter unit
EP3403271B1 (en) Device for switching a dc current in a pole of a dc voltage network
WO2014090272A1 (en) Submodule for limiting a surge current
EP2564501B1 (en) Sub-module for a modular multi-level converter
EP2845214A1 (en) Apparatus for switching in a dc voltage mains
EP3639360B1 (en) Converter arrangement having phase module arrester and method for short-circuit protection thereof
WO2014090316A1 (en) Switch arrangement of a d.c. voltage network
EP3270397A1 (en) Switching assembly and method for fault clearing
DE102005049208A1 (en) Device for switching electric current between poles e.g. for power distribution and transmission, uses current limiting inductances between GTO power semiconductors to provide link between inductances and terminal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120508

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140522

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 693975

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010008166

Country of ref document: DE

Effective date: 20141211

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141029

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150129

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150228

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150302

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150130

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010008166

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141118

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141118

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101118

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 693975

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010008166

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220127

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010008166

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231123

Year of fee payment: 14

Ref country code: FR

Payment date: 20231123

Year of fee payment: 14

Ref country code: CH

Payment date: 20231201

Year of fee payment: 14