EP2507163A1 - Réacteur catalytique comprenant une structure alvéolaire catalytique et au moins un élément structural - Google Patents

Réacteur catalytique comprenant une structure alvéolaire catalytique et au moins un élément structural

Info

Publication number
EP2507163A1
EP2507163A1 EP10803605A EP10803605A EP2507163A1 EP 2507163 A1 EP2507163 A1 EP 2507163A1 EP 10803605 A EP10803605 A EP 10803605A EP 10803605 A EP10803605 A EP 10803605A EP 2507163 A1 EP2507163 A1 EP 2507163A1
Authority
EP
European Patent Office
Prior art keywords
catalytic
structural element
catalytic reactor
architectures
reactor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10803605A
Other languages
German (de)
English (en)
Inventor
Pascal Del-Gallo
Daniel Gary
Aude Cuni
Mathieu Cornillac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP2507163A1 publication Critical patent/EP2507163A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • B01J15/005Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2495Net-type reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/00849Stationary elements outside the bed, e.g. baffles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst

Definitions

  • Catalytic reactor comprising a catalytic alveolar structure and at least one structural element
  • the present invention relates to a catalytic reactor comprising a catalytic cellular structure, in particular a catalytic ceramic or metal foam, and at least one structural element reducing the preferential flows of gas along the walls of the reactor and promoting the transfer of heat.
  • Ceramic foams or metal alloy foams are known to be used as a catalyst support for chemical reactions, in particular heterogeneous catalysis reactions. These foams are particularly interesting for highly exo- or endothermic reactions (ex: Fischer-Tropsch exothermic reaction, gas-water-shift reaction, partial oxidation reaction, reaction of water-gas-shift reaction). methanation ...), and / or for catalytic reactors where one seeks to obtain high space velocities (steam reforming reaction of natural gas, naphtha, LPG ).
  • the method of producing open-porosity macro-porous ceramic foams is the impregnation of a polymeric foam (most often polyurethane or polyester), cut to the desired geometry, by a suspension of ceramic particles in an aqueous solvent or organic.
  • the excess suspension is removed from the polymer foam by repeated application of compression or centrifugation, in order to keep only a thin layer of suspension on the strands of the polymer.
  • After one or more impregnations of the polymeric foam by this method it is dried so as to remove the solvent while maintaining the mechanical integrity of the deposited ceramic powder layer.
  • the foam is then heated at high temperature in two stages.
  • the first step called debinding is to degrade the polymer and other organic substances possibly present in the suspension, by a slow and controlled temperature rise until complete elimination of the organic volatile substances (typically 500-900 ° C.).
  • the second step called sintering consists in consolidating the residual mineral structure by a high temperature heat treatment.
  • the final porosity Permitted by this method covers a range of 30% to 95% for a pore size ranging from 0.2mm to 5mm.
  • the final pore size (or open macroporosity) is derived from the macrostructure of the initial organic template (polymer foam, usually polyurethane). That varies generally from 60 to 5 ppi (ppi: pore per inch, 50 ⁇ to 5 mm).
  • the foam may also be metallic in nature with a chemical formulation that makes it possible to ensure the chemical stability of the architecture under operating conditions (temperature, pressure, gas composition, etc.).
  • the metal honeycomb architecture will consist of surface-oxidized NiFeCrAl-based chemical formulations, this surface oxidation allowing the formation of a layer of micrometric alumina protecting the surface. metal alloy of any corrosion phenomenon.
  • Ceramic and / or metal honeycomb architectures covered with ceramic are good catalyst supports in several respects:
  • Axial means along the axis of the catalytic reactor, and by radial of the inner or outer wall of the catalytic reactor at the center of the catalyst bed,
  • thermomechanical and / or thermochemical stresses supported by the bed
  • a filling control to improve the homogeneity of the filling of a tube to another.
  • microstructure of the material itself, ie its chemical formulation, the micro and / or meso-porosity, the size, the dispersion and the metallic surface of the active phase (s), thickness of deposit (s), ...
  • the architecture of the catalyst that is to say its geometric shape (granules, barrels, honeycomb monoliths, foam-type foam structures, spheres, pills, sticks, ...),
  • the structure of the bed within the reactor (stack of catalytic materials), that is to say the arrangement of catalytic materials architecture / microstructure controlled (s) within the catalytic reactor. It can be envisaged, for example, as catalytic bed structure (s) of successive stacks with or without non-catalytic elements of various functionalities.
  • structure of catalytic reactors is meant successive stacks of various architectures and varied (foams, barrels, spheres, ...) of ceramic and / or metal covered with ceramics and microstructures controlled.
  • monolithic structure of catalytic reactors is meant successive stacks of ceramic and / or metal honeycomb architectures (foams) covered with ceramics and controlled microstructures.
  • a solution of the present invention is a catalytic reactor comprising:
  • the reactor according to the invention may have one or more of the following characteristics:
  • the catalytic alveolar architecture is a catalytic ceramic foam
  • the catalytic alveolar architecture is a metal foam covered with a protective oxide layer on which a catalyst is deposited;
  • the catalytic reactor comprises a structural element in the form of a ring, arches, disc or perforated grid, or at least two structural elements in the form of a ring, a disk, a pierced grid or a combination of these forms ;
  • the structural element is a disc having at least one opening, for example with 4 openings, with the opening or openings representing between 85% and 95% of the surface of the disc; ( Figure 5)
  • the structural element is metallic in nature; it preferably comprises an alloy rich in nickel and chromium;
  • the metallic structural element is machined in the same alloy as the catalytic reactor casing.
  • the envelope of the catalytic reactor is generally composed of an alloy comprising nickel and chromium;
  • the structural element is ceramic in nature.
  • the catalytic alveolar architectures are manufactured from a matrix of polymeric material chosen from polyurethane (PU), polyvinyl chloride (PVC), polystyrene (PS), cellulose and latex, but the ideal choice of foam is limited by stringent requirements.
  • the polymeric material must not release toxic compounds, for example PVC is avoided because it can lead to the release of hydrogen chloride.
  • the catalytic alveolar architecture when ceramic type typically comprises inorganic particles selected from alumina (Al 2 03) and / or doped-alumina (La (1 to 20% by weight) - A1 2 0 3, This (1 to 20 wt.% By weight) - Al 2 O 3 , Zr (1 to 20 wt.%) -Al 2 O 3 ), magnesia (MgO), spinel (MgAl 2 O 4 ), hydrotalcites CaO, silicocalcary, silicoaluminous, zinc oxide, cordierite, mullite, aluminum titanate, and zircon (ZrSiC ⁇ ); or ceramic particles selected from ceria (Ce0 2 ), zirconium (Zr0 2 ), stabilized ceria (Gd 2 0 3 between 3 and 10 mol% cerine) and stabilized zirconium (Y 2 0 3 between 3 and 10 mol% zirconium) and the mixed oxides of formula (I):
  • D is selected from magnesium (Mg), yttrium (Y), strontium (Sr), lanthanum (La), presidium (Pr), samarium (Sm), gadolinium (Gd), Erbium (Er) or Ytterbium (Yb); where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0; 5 and ⁇ ensures the electrical neutrality of the oxide.
  • FIGS. 1 to 5 Each figure represents an example of a structural element.
  • Figure 1 shows:
  • one or more architectures (a) of ceramic and / or metal cells with controlled catalytic micro-structures
  • the bed is entirely structured in ceramic foam, in order to benefit from a volume catalytic activity and optimum heat transfer along the entire tube.
  • the static mixer at the inlet makes it possible to avoid possible preferential flows to the walls.
  • the static mixer is in contact with the inner wall of the reactor.
  • the foam may also be metallic in nature.
  • Figure 2 shows: ceramic and / or metal and controlled catalytic microstructure architectures (these architectures are, for example, stacked ceramic catalytic foam bars), and
  • non-catalytic structural elements preferably metallic or ceramic, in the form of rings (c) between the cellular architectures.
  • inorganic non-oxide type materials having intrinsic properties of high thermal conductivity (silicon carbide, silicon nitride, etc.) will be chosen.
  • any flow to the walls are avoided by the rings.
  • the rings are in contact with the inner wall of the reactor.
  • ceramic and / or metal and controlled catalytic microstructure architectures are, for example, stacked ceramic catalytic foam bars
  • non-catalytic structural elements preferably metallic, in the form of rings (c) and central discs (d) arranged between the cellular architectures.
  • ceramic and / or metal and controlled catalytic microstructure architectures are, for example, stacked ceramic catalytic foam bars
  • non-catalytic structural elements preferably metal or ceramic, in the form of arches (e) arranged between the cellular architectures.
  • FIG. 5 represents an example of a structural element to be inserted between the cellular architectures.
  • This element has the shape of a ring of diameter corresponding to internal diameter of the reaction chamber, with a cross centered on the middle of the diameter of the honeycomb architecture.
  • This element if it is metallic, must be strongly open to generate the lowest possible pressure drop and will preferably be machined in the same alloy as the reactor so that the expansion is identical to that of the reaction chamber so as to stick well. at the wall.
  • the structural element according to FIG. 5 is in contact with the internal wall of the reactor. This element interposed between the cellular architectures allows:
  • the catalytic reactor according to the invention can be used to produce gaseous products, in particular a synthesis gas
  • the feed gas preferably comprises oxygen, carbon dioxide or water vapor mixed with methane.
  • these catalytic bed structures can be deployed on all the catalytic reactors of the hydrogen production process by steam forming, namely in particular the pre-reforming, reforming and water-gas-shift beds.
  • reaction temperatures employed are high and range from 200 to 1000 ° C, preferably from 400 ° C to 1000 ° C.
  • the pressure of the reagents can be between 10 and 50 bar, preferably between 15 and 35 bar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Réacteur catalytique comprenant au moins deux architectures alvéolaires catalytiques et au moins un élément structural,intercalé entre les deux architectures alvéolaires catalytiques, et dont l'ensemble du périmètre extérieur est en contact avec la paroi interne du réacteur; l'architecture alvéolaire et l'élément structural étant agencés de manière coaxiale.

Description

Réacteur catalytique comprenant une structure alvéolaire catalytique et au moins un élément structural
La présente invention a pour objet un réacteur catalytique comprenant une structure alvéolaire catalytique, en particulier une mousse céramique ou métallique catalytique, et au moins un élément structural réduisant les écoulements préférentiels du gaz le long des parois du réacteur et favorisant le transfert de chaleur.
Les mousses en céramique voire en alliage métallique sont connues pour être utilisées comme support de catalyseur pour les réactions chimiques, en particulier les réactions de catalyse hétérogène. Ces mousses sont particulièrement intéressantes pour des réactions fortement exo- ou endo- thermiques (ex : réaction exothermique de Fischer- Tropsch, réaction du gaz à l' eau (réaction de water-gas-shift), réaction d'oxydation partielle, réaction de méthanation...), et/ou pour des réacteurs catalytiques où l'on cherche à obtenir des vitesses spatiales élevées (réaction de vaporeformage du gaz naturel, du naphta, GPL ...).
La méthode de réalisation de mousses céramique à macro porosité ouverte la plus rependue consiste en l'imprégnation d'une mousse polymérique (le plus souvent polyuréthane ou polyester), découpée selon la géométrie souhaitée, par une suspension de particules céramiques dans un solvant aqueux ou organique. L'excès de suspension est évacué de la mousse de polymère par l'application répétée d'une compression ou par centrifugation, afin de ne conserver qu'une fine couche de suspension sur les brins du polymère. Après une ou plusieurs imprégnations de la mousse polymérique par ce procédé, celle-ci est séchée de façon à évacuer le solvant tout en conservant l'intégrité mécanique de la couche de poudre céramique déposée. La mousse est ensuite chauffée à haute température en deux étapes. La première étape appelée déliantage consiste à dégrader le polymère et autres organiques éventuellement présents dans la suspension, par une élévation de température lente et contrôlée jusqu'à élimination complète des substances volatiles organiques (typiquement 500-900°C). La seconde étape appelée frittage consiste à consolider la structure minérale résiduelle par un traitement thermique haute température.
Cette méthode de fabrication permet ainsi d'obtenir une mousse inorganique qui est la réplique de la mousse de polymère initiale, au retrait de frittage près. La porosité finale permise par cette méthode couvre une gamme de 30% à 95% pour une taille de pore allant de 0,2mm à 5mm. La taille de pore(s) finale (ou macroporosité ouverte) est issue de la macrostructure du « template » organique initial (mousse de polymère, polyuréthane généralement). Celui varie généralement de 60 à 5 ppi (ppi : pore per inch, de 50 μιη à 5 mm).
La mousse peut également être de nature métallique avec une formulation chimique permettant d'assurer une stabilité chimique de l'architecture sous conditions opératoires (température, pression, composition gazeuse, ...). Dans le cadre d'une application pour la réaction de vaporeformage de gaz naturel l'architecture alvéolaire métallique sera constituée de formulations chimiques à base NiFeCrAl oxydée en surface, cette oxydation de surface permettant la formation d'une couche d'alumine micrométrique protégeant l'alliage métallique de tout phénomène de corrosion.
Les architectures alvéolaires céramiques et/ou métalliques recouverts de céramique constituent de bons supports de catalyseurs à plusieurs égards :
- un rapport surface/volume maximal (m 2 /m 3 ), afi·n d'augmenter la surface géométrique d'échange et donc indirectement l'efficacité catalytique,
- une minimisation des pertes de charge le long du lit (entre l'entrée et la sortie du réacteur catalytique),
- un transfert de chaleur d'une efficacité axiale et/ou radiale accrue. On entend par axial le long de l'axe du réacteur catalytique, et par radial de la paroi interne ou externe du réacteur catalytique au centre du lit catalytique,
- une amélioration des contraintes thermomécaniques et/ou thermochimiques supportées par le lit,
- une amélioration de la densité du remplissage d'un tube par rapport à un remplissage aléatoire induit par les structures conventionnelles (sphère, pellet, cylindre, barillets...),
- un contrôle du remplissage permettant d'améliorer l'homogénéité du remplissage d'un tube à l'autre.
Le choix de la structure adaptée à une réaction donnée résulte souvent d'un compromis entre l'optimisation de ces différents facteurs et les architecture(s) / microstructure(s) de(s) catalyseur(s) associées. D'autre part, dans le cas d'un réacteur constitué de plusieurs tubes en parallèle, une autre problématique est celle de l'homogénéité du remplissage des tubes. En effet, un fonctionnement optimisé du procédé requiert des comportements analogues des différents tubes, en particulier en matière de perte de charge et de minimisation des points chauds. Ceci passe par un contrôle efficace du remplissage des tubes.
La structuration globale d'un réacteur catalytique à lit fixe est un « phénomène » multi-échelles :
- La microstructure du matériau (catalyseur) lui-même, à savoir sa formulation chimique, la micro et/ou méso-porosité, la taille, la dispersion et la surface métallique de(s) phase(s) active(s), l'épaisseur du(des) dépôt(s), ...
- L'architecture du catalyseur, c'est-à-dire sa forme géométrique (granulés, barillets, monolithes en nids d'abeille, structures alvéolaires de type mousse, sphères, pilules, bâtonnets, ...),
- La structure du lit au sein du réacteur (empilement des matériaux catalytiques), c'est-à- dire l'agencement des matériaux catalytiques d'architecture/microstructure contrôlée(s) au sein du réacteur catalytique. Il peut être envisagé par exemple comme structure de lit(s) catalytique(s) des empilements successifs additionné ou non d'éléments non catalytiques de fonctionnalités variées.
Un des inconvénients des structures monolithiques de réacteurs catalytiques réside dans la différence de dilatation entre ces structures et les tubes (enceinte réactionnelle) qui les contiennent ; ce qui est susceptible d'entraîner un contact insuffisant entre certaines architectures (monolithes, ...) et la paroi interne du tube. Cette non-continuité physique entraine :
- des écoulements préférentiels du gaz le long des parois (by-pass),
- une absence de transfert de chaleur par conduction entre le tube et la zone du lit catalytique concernée.
Par structure de réacteurs catalytiques, on entend des empilements successifs d'architectures diverses et variées (mousses, barillets, sphères, ...) de nature céramiques et/ou métalliques recouverts de céramiques et de microstructures contrôlées. Par structure monolithique de réacteurs catalytiques, on entend des empilements successifs d'architectures alvéolaires (mousses) céramiques et/ou métalliques recouverts de céramiques et de microstructures contrôlées.
Une solution de la présente invention est un réacteur catalytique comprenant :
- au moins deux architectures alvéolaires catalytiques, et
au moins un élément structural, intercalé entre les deux architectures alvéolaires catalytiques, et dont l'ensemble du périmètre extérieur est en contact avec la paroi interne du réacteur ; l'architecture alvéolaire et l'élément structural étant agencés de manière coaxiale.
Selon le cas, le réacteur selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes :
- l'architecture alvéolaire catalytique est une mousse céramique catalytique ;
- l'architecture alvéolaire catalytique est une mousse métallique recouverte d'une couche d'oxyde de protection sur laquelle est déposée un catalyseur ;
- le réacteur catalytique comprend un élément structural sous forme d'anneau, d'arceaux, de disque ou de grille percée, ou au moins deux éléments structuraux sous forme d'anneau, de disque, de grille percée ou présentant une combinaison de ces formes ;
- l'élément structural est un disque présentant au moins une ouverture, par exemple avec 4 ouvertures, avec le ou les ouvertures représentant entre 85 % et 95 % de la surface du disque ; (figure 5)
- l'élément structural est de nature métallique ; il comprend de préférence un alliage riche en nickel et en chrome ;
- l'élément structural métallique est usiné dans le même alliage que l'enveloppe du réacteur catalytique. Pour les réactions ayant lieu à des températures de l'ordre de 800-950°C, comme dans le cas de la réaction de réformage à la vapeur, l'enveloppe du réacteur catalytique est en général constituée d'un alliage comprenant du nickel et du chrome ;
- l'élément structural est de nature céramique.
Les architectures alvéolaires catalytiques sont fabriquées à partir d'une matrice en matériau polymérique choisi parmi le poly(uréthane) (PU), le poly(chlorure de vinyle) (PVC), le polystyrène (PS), la cellulose et le latex, mais le choix idéal de la mousse est limité par de sévères exigences. Le matériau polymérique ne doit pas libérer des composés toxiques, par exemple le PVC est évité car il peut entraîner la libération de chlorure d'hydrogène.
L'architecture alvéolaire catalytique lorsqu'elle est de nature céramique comprend typiquement des particules inorganiques choisies parmi l'alumine(Al203) et/ou l'alumine dopée (La (1 à 20 % en poids)- A1203, Ce (1 à 20 wt.% en poids)- A1203, Zr (1 à 20 % en poids)-Al203), la magnésie (MgO), le spinelle (MgAl204), les hydrotalcites, CaO, les silicocalcaires, les silicoalumineux, l'oxyde de zinc, la cordiérite, la mullite, le titanate d'aluminium, et le zircon (ZrSiC^) ; ou des particules céramiques choisies parmi la cérine (Ce02), le zirconium (Zr02), la cérine stabilisée (Gd203 entre 3 et 10 mol% en cérine) et le zirconium stabilisé (Y203 entre 3 et 10 mol% en zirconium) et les oxydes mixtes de formule (I):
Ce(1-X) Zrx 0(2_δ) (I),
où 0 < x < 1 et δ assure la neutralité électrique de l'oxyde,
ou les oxydes mixtes dopés de formule (II):
Ce(i_x_y) Zrx Dy 02_δ (II),
où D is choisi parmi le Magnésium (Mg), l'Yttrium (Y), le Strontium (Sr), le Lanthanum (La), le Presidium (Pr), le Samarium (Sm), le Gadolinium (Gd), l'Erbium (Er) ou l'Ytterbium (Yb); où 0 < x < 1, 0< y <0;5 et δ assure la neutralité électrique de l'oxyde.
L'invention va être décrite plus en détail à l'aide des figures 1 à 5. Chaque figure représente un exemple d'élément structural.
La figure 1 représente :
- une/des architectures (a) alvéolaires céramiques et/ou métalliques et à micro structures catalytiques contrôlées, et
- un mélangeur statique (b) en particulier métallique.
Dans ce réacteur, le lit est entièrement structuré en mousse céramique, afin de bénéficier d'une activité catalytique volumique et de transferts de chaleur optimaux le long de tout le tube. Le mélangeur statique en entrée permet d'éviter de possibles écoulements préférentiels aux parois. Le mélangeur statique est en contact avec la paroi interne du réacteur. La mousse peut également être de nature métallique.
La figure 2 représente : - des architectures (a) alvéolaires céramiques et/ou métalliques et à microstructures catalytiques contrôlées (ces architectures sont par exemple des pains de mousse catalytique céramique empilées), et
- des éléments structuraux non catalytiques, de préférence métalliques ou céramique, sous forme d'anneaux (c) entre les architectures alvéolaires. Dans le cadre d'éléments structuraux de nature céramique il sera choisi des matériaux inorganiques de type non oxydes possédant des propriétés intrinsèques de conductivité thermique élevée (carbure de silicium, nitrure de silicium, ...).
Dans ce réacteur, les éventuels écoulements aux parois sont évités par les anneaux. Les anneaux sont en contact avec la paroi interne du réacteur.
La figure 3 représente :
- des architectures (a) alvéolaires céramiques et/ou métalliques et à microstructures catalytiques contrôlées (ces architectures sont par exemple des pains de mousse catalytique céramique empilées), et
- des éléments structuraux non catalytiques, de préférence métalliques, sous forme d'anneaux (c) et de disques (d) centraux disposés entre les architectures alvéolaires.
Dans ce réacteur, les éventuels écoulements aux parois sont évités par les anneaux. De plus, on observe une perturbation de l'écoulement par l'intermédiaire des disques centraux positionnés entre deux architectures alvéolaires pour augmenter la convection. Les disques ne sont pas en contact avec la paroi interne de l'enceinte réactionnelle, tandis que les anneaux sont en contact avec cette même paroi interne.
La figure 4 représente :
- des architectures (a) alvéolaires céramiques et/ou métalliques et à microstructures catalytiques contrôlées (ces architectures sont par exemple des pains de mousse catalytique céramique empilées), et
- des éléments structuraux non catalytiques, de préférence métalliques ou céramiques, sous forme d'arceaux (e) disposés entre les architectures alvéolaires.
Dans ce réacteur, les éventuels écoulements aux parois sont évités par les arceaux. Les arceaux sont en contact avec la paroi interne du réacteur.
La figure 5 représente un exemple d'élément structural à insérer entre les architectures alvéolaires. Cet élément a la forme d'un anneau de diamètre correspondant au diamètre interne de l'enceinte réactionnelle, avec une croix ayant pour centre le milieu du diamètre de l'architecture alvéolaire.
Cet élément s'il est métallique doit être fortement ouvert pour générer une perte de charge la plus faible possible et sera préférentiellement usiné dans le même alliage que le réacteur pour que la dilatation soit identique à celle que l'enceinte réactionnelle de manière à bien coller à la paroi.
L'élément structural selon la figure 5 est en contact avec la paroi interne du réacteur. Cet élément intercalé entre les architectures alvéolaires permet :
- d'éviter les écoulements le long des parois,
- de conduire la chaleur par conduction par les branches de la croix vers le cœur du réacteur (centre de la croix), et
- de perturber l'écoulement du fluide par l'intermédiaire du centre de la croix ce qui améliore la convection.
Le réacteur catalytique selon l'invention peut-être utilisé pour produire des produits gazeux, en particulier un gaz de synthèse
Le gaz d'alimentation comprend de préférence de l'oxygène, du dioxyde de carbone ou de la vapeur d'eau mélangé à du méthane. Toutefois ces structures de lits catalytiques peuvent être déployées sur tous les réacteurs catalytiques du procédé de production d'hydrogène par vapore formage, à savoir notamment les lits de pré reformage, de re formage et de water-gas-shift.
Les températures de réaction qui sont employées sont élevées et sont comprises entre 200 et 1000°C, de préférence entre 400°C et 1000°C.
La pression des réactifs (CO, H2, CH4, H20, C02, ...) peut être comprise entre 10 et 50 bars, préférentiellement entre 15 et 35 bars.

Claims

Revendications
1. Réacteur catalytique comprenant au moins deux architectures alvéolaires catalytiques et au moins un élément structural, intercalé entre les deux architectures alvéolaires catalytiques, et dont l'ensemble du périmètre extérieur est en contact avec la paroi interne du réacteur ; l'architecture alvéolaire et l'élément structural étant agencés de manière coaxiale.
2. Réacteur catalytique selon la revendication 1 , caractérisé en ce que ledit réacteur comprend au moins un élément structural placé à l'extrémité supérieure des architectures catalytiques.
3. Réacteur catalytique selon l'une des revendications 1 ou 2, caractérisé en ce que l'architecture alvéolaire catalytique est une mousse céramique catalytique.
4. Réacteur catalytique selon l'une des revendications 1 ou 2, caractérisé en ce que l'architecture alvéolaire catalytique est une mousse métallique recouverte d'une couche d'oxyde de protection sur laquelle est déposée un catalyseur.
5. Réacteur catalytique selon l'une des revendications 1 à 4, caractérisé en ce que le réacteur catalytique comprend un élément structural sous forme d'anneau, d'arceaux, de disque ou de grille percée, ou au moins deux éléments structuraux sous forme d'anneau, de disque, de grille percée ou présentant une combinaison de ces formes.
6. Réacteur catalytique selon l'une des revendications 1 à 5, caractérisé en ce que l'élément structural est un disque présentant au moins une ouverture, le ou les ouvertures représentant entre 85 % et 95 % de la surface du disque.
7. Réacteur catalytique selon l'une des revendications 1 à 6, caractérisé en ce que l'élément structural est de nature métallique.
8. Réacteur catalytique selon l'une des revendications 1 à 6, caractérisé en ce que l'élément structural est de nature céramique.
9. Réacteur catalytique selon la revendication 7, caractérisé en ce que l'élément structural métallique est usiné dans le même alliage que l'enveloppe du réacteur catalytique.
10. Utilisation du réacteur catalytique tel que défini dans l'une des revendications 1 à 9 pour produire du gaz.
11. Utilisation selon la revendication 10, caractérisé en ce que le gaz est du gaz de synthèse.
EP10803605A 2009-12-01 2010-11-24 Réacteur catalytique comprenant une structure alvéolaire catalytique et au moins un élément structural Withdrawn EP2507163A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0958553A FR2953150B1 (fr) 2009-12-01 2009-12-01 Reacteur catalytique comprenant une structure alveolaire catalytique et au moins un element structural
PCT/FR2010/052501 WO2011067506A1 (fr) 2009-12-01 2010-11-24 Réacteur catalytique comprenant une structure alvéolaire catalytique et au moins un élément structural

Publications (1)

Publication Number Publication Date
EP2507163A1 true EP2507163A1 (fr) 2012-10-10

Family

ID=42124329

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10803605A Withdrawn EP2507163A1 (fr) 2009-12-01 2010-11-24 Réacteur catalytique comprenant une structure alvéolaire catalytique et au moins un élément structural

Country Status (6)

Country Link
US (1) US20120248377A1 (fr)
EP (1) EP2507163A1 (fr)
CN (1) CN102639436A (fr)
BR (1) BR112012013313A2 (fr)
FR (1) FR2953150B1 (fr)
WO (1) WO2011067506A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104289159B (zh) * 2013-07-15 2016-04-13 浙江大学 一种装填有径向壁流的结构化催化剂的装置
WO2018078082A1 (fr) 2016-10-27 2018-05-03 Shell Internationale Research Maatschappij B.V. Procédé de production d'hydrocarbures
CN114678078B (zh) * 2022-03-11 2024-06-28 南京航空航天大学 一种co2-ch4重整泡沫反应器及其优化设计方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19858974B4 (de) * 1998-12-19 2006-02-23 Daimlerchrysler Ag Verfahren zur katalytischen Umsetzung eines Ausgangsstoffes, insbesondere eines Gasgemisches
WO2002047186A2 (fr) * 2000-12-05 2002-06-13 Texaco Development Corporation Module de reacteur s'utilisant dans un dispositif compact de traitement de combustible
US7195662B2 (en) * 2001-06-15 2007-03-27 Huette Klein-Reichenbach Gesellschaft Mbh Device and process for producing metal foam
US20050276746A1 (en) * 2004-06-14 2005-12-15 Qinglin Zhang Catalytic reactor for hydrogen generation systems
US7565743B2 (en) * 2005-04-14 2009-07-28 Catacel Corp. Method for insertion and removal of a catalytic reactor cartridge
JP5292103B2 (ja) * 2005-12-23 2013-09-18 エクソンモービル リサーチ アンド エンジニアリング カンパニー 混合器/流れ分配器を有する再生反応器のための制御燃焼
EP2249954B1 (fr) * 2008-03-07 2011-08-03 Haldor Topsoe A/S Réacteur catalytique
CA2753610C (fr) * 2009-02-27 2016-07-26 Andre Boulet Structure de type contacteur fluidique a passages paralleles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2011067506A1 *

Also Published As

Publication number Publication date
FR2953150B1 (fr) 2013-08-09
WO2011067506A1 (fr) 2011-06-09
CN102639436A (zh) 2012-08-15
US20120248377A1 (en) 2012-10-04
BR112012013313A2 (pt) 2016-03-01
FR2953150A1 (fr) 2011-06-03

Similar Documents

Publication Publication Date Title
JP5236412B2 (ja) 蒸気改質触媒のための新触媒設計および製造プロセス
US20210245139A1 (en) Catalyst support materials, catalyst supports, catalysts and reaction methods using catalysts
AU2014346741B2 (en) Gaseous fuel CPOX reformers and methods of CPOX reforming
AU2005200390A1 (en) Catalyst configuration and methods for syngas production
EP2506962B1 (fr) Réacteur catalytique comprenant une zone alvéolaire de macroporosité et microstructure contrôlées et une zone à microstructure standard
EP0418122B1 (fr) Réacteur d&#39;oxydation à différentiel de perte de charge et son utilisation.
EP2507163A1 (fr) Réacteur catalytique comprenant une structure alvéolaire catalytique et au moins un élément structural
JP2024103728A (ja) メンブレンリアクタ
EP2506964A1 (fr) Réacteur catalytique comprenant une structure alvéolaire et des éléments en optimisant le contact avec la paroi interne du réacteur
EP2397223A1 (fr) Réacteur catalytique comprenant une structure catalytique offrant une distribution améliorée du flux gazeux
JP2003306310A (ja) オートサーマルリフォーミング改質器およびそれを用いたオートサーマルリフォーミング方法
WO2024203759A1 (fr) Structure en nid d&#39;abeilles
JP2003277018A (ja) 水素精製装置及び水素除去触媒の製造方法
JP4922041B2 (ja) 合成ガス製造触媒及びそれを用いた合成ガス製造方法
FR3021555A1 (fr) Catalyseur sous la forme d&#39;un barillet avec une geometrie definissant un trou
FR2651689A1 (fr) Reacteur d&#39;oxydation a differentiel de perte de charge et son utilisation.
EP2602024A1 (fr) Architecture catalytique dotée d&#39;un rapport S/V élevé, d&#39;un faible DP et d&#39;un taux de vide élevé pour applications industrielles
JP2013071849A (ja) 水素製造装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120702

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180720

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20190304