EP2506959B1 - Microfluidic element for analysing a fluid sample - Google Patents

Microfluidic element for analysing a fluid sample Download PDF

Info

Publication number
EP2506959B1
EP2506959B1 EP10782320.5A EP10782320A EP2506959B1 EP 2506959 B1 EP2506959 B1 EP 2506959B1 EP 10782320 A EP10782320 A EP 10782320A EP 2506959 B1 EP2506959 B1 EP 2506959B1
Authority
EP
European Patent Office
Prior art keywords
reagent
chamber
chambers
channel
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10782320.5A
Other languages
German (de)
French (fr)
Other versions
EP2506959A1 (en
Inventor
Manfred Augstein
Susanne Würl
Carlo Effenhauser
Christoph Böhm
Edwin Oosterbroek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Roche Diagnostics GmbH
Original Assignee
F Hoffmann La Roche AG
Roche Diagnostics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG, Roche Diagnostics GmbH filed Critical F Hoffmann La Roche AG
Priority to EP10782320.5A priority Critical patent/EP2506959B1/en
Publication of EP2506959A1 publication Critical patent/EP2506959A1/en
Application granted granted Critical
Publication of EP2506959B1 publication Critical patent/EP2506959B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/20Dissolving using flow mixing
    • B01F21/22Dissolving using flow mixing using additional holders in conduits, containers or pools for keeping the solid material in place, e.g. supports or receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/30Mixing the contents of individual packages or containers, e.g. by rotating tins or bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/10Mixers with shaking, oscillating, or vibrating mechanisms with a mixing receptacle rotating alternately in opposite directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71725Feed mechanisms characterised by the means for feeding the components to the mixer using centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions

Definitions

  • the present invention relates to a microfluidic element for determining an analyte in a fluid sample, preferably in a body fluid sample.
  • the element comprises a substrate and a channel structure which is enclosed by the substrate and a cover layer.
  • Microfluidic elements for analyzing a fluid sample and mixing a fluid with a reagent are used in diagnostic tests (in vitro diagnostics). In these tests, body fluid samples are analyzed for an analyte for medical purposes.
  • the term mixing comprises both the possibility that the reagent is in liquid form, that is, that two liquids are mixed together.
  • the term includes the possibility that the reagent is present as a solid and dissolved in a liquid and homogenized.
  • the solid dry reagent is introduced into the fluidic element in liquid form and dried in a further step before the element is used for analysis.
  • test carriers on which microfluidic elements with channel structures for receiving a liquid sample are present in order to enable the implementation of complex and multi-level test procedures ("test protocols").
  • a test carrier may comprise one or more fluidic elements.
  • Test carrier and fluidic elements consist of a carrier material, usually a substrate made of plastic material. Suitable materials are, for example, COC (cyclo-olefin copolymer) or plastics such as PMMA, polycarbonate or polystyrene.
  • the test carriers have a sample analysis channel which is enclosed by the substrate and a lid or cover layer.
  • the sample analysis channel often consists of a succession of multiple channel sections and intermediate chambers compared to the channel sections of extended chambers.
  • the structures and dimensions of the sample analysis channel with its chambers and sections are defined by a patterning of plastic parts of the substrate, which are produced, for example, by injection molding techniques or other methods for producing suitable structures. It is also possible to introduce the structure by material-removing methods such as milling.
  • Fluidic test carriers are used, for example, in immunochemical analyzes with a multi-step test procedure in which a separation of bound and free reaction components takes place.
  • a controlled liquid transport is necessary.
  • the control of the process flow can take place with internal (within the fluidic element) or with external (outside the fluidic element) measures.
  • the control can be based on the application of pressure differences or else the change of forces, for example resulting from the change in the effective direction of gravity.
  • centrifugal forces acting on a rotating test carrier a control by changing the rotational speed or the direction of rotation or by the distance from the axis of rotation can be made.
  • the US 2005/0041525 A1 describes microfluidic elements and methods for analyzing biological samples and mixing different liquids.
  • the liquids to be mixed are first added from respective containers in a first chamber to combine the liquids. Subsequently, the combined liquids from the first chamber are emptied through at least one capillary connection channel into a second chamber to mix the liquids.
  • two or more parallel capillary connection paths are used.
  • the second chamber is in flow relationship via at least one capillary connection path with at least one third mixing chamber. The transport of the liquids is effected by centrifugal forces and always takes place from the rotation axis closer chamber to the rotation axis remote chamber.
  • the sample analysis channel of the microfluidic elements contains at least one reagent which reacts with a liquid introduced into the channel.
  • the liquid and the reagent are mixed in the test carrier with each other so that a reaction of the sample liquid with the reagent leads to a change in a measured variable that is characteristic of the analyte contained in the liquid.
  • the measured variable is measured on the test carrier itself.
  • Commonly used are optically evaluable measuring methods in which a color change or another optically measurable variable are detected.
  • the capillary channels contain special flow obstacles.
  • the production of such obstacles, such as ribs, must be formed in the microstructure and are therefore expensive and complicate the manufacturing process of the test carrier.
  • such structures are not suitable for all mixing processes or not for all reagents and sample liquids.
  • the fluidic element should be suitable for simultaneously mixing different reagents, which are introduced separately and which, for. B. at different spatial locations, dissolve and to allow the sample liquid to react with different reagents.
  • microfluidic element having the features of claim 1.
  • test carrier for analyzing a body fluid sample for an analyte contained therein without limiting the generality of a microfluidic element.
  • other sample fluids can also be analyzed.
  • a microfluidic element is understood to mean an element with a channel structure in which the smallest dimension of the channel structure is at least 1 ⁇ m and its largest dimension (for example Length of the channel) is at most 10 cm. Due to the small dimensions and the capillary channel structures prevail in the channels or channel sections predominantly laminar flow conditions. The resulting poor conditions for thorough mixing of liquid and solid in such capillary channels are significantly improved by the microfluidic element according to the invention.
  • the microfluidic element rotates about an axis of rotation.
  • the axis of rotation preferably extends through the microfluidic element. It passes through a predetermined position, preferably z. B. by the center of gravity or the center of the element.
  • the axis of rotation extends perpendicular to the surface of the fluidic element, which preferably has a flat, disk-like shape and z. B. may be a round disc.
  • the microfluidic element is held for example in a holder of an analyzer, wherein the axis of rotation is formed by a rotary shaft of the device.
  • a channel structure which comprises a feed channel with a feed opening and a bleed channel with a bleed opening and at least two reagent chambers.
  • At least one of the reagent chambers contains a reagent which is preferably in solid form as a dry reagent and which reacts with the liquid sample introduced into the channel structure.
  • Each two adjacent reagent chambers are connected to one another via at least two connection channels such that a fluid exchange between the two reagent chambers is made possible.
  • one of the reagent chambers has an inlet opening which is in fluid communication with the feed channel so that a liquid sample can flow from the feed channel into the reagent chambers.
  • the liquid sample flows from the feed channel into the reagent chamber, which is further away from the (two) reagent chambers from the axis of rotation. The liquid thus flows into the spin axis remote reagent chamber.
  • rotational axis remote and rotational axis near do not represent absolute range indications where a structure is located, but indicate how far apart a structure is from the axis of rotation.
  • the axis of rotation is understood as the zero point of a distance scale, which extends radially outward from the axis of rotation.
  • a structure remote from the axis of rotation is, in this sense, further away from the axis of rotation than a structure near the axis of rotation.
  • a reagent chamber remote from the axis of rotation is the reagent chamber, which is further away from the axis of rotation in relation to another reagent chamber.
  • the reaction chamber remote from the axis of rotation is the chamber which, compared to other chambers, is farthest from the axis of rotation, ie the remainder of the reagent chambers.
  • rotation axis is to be understood.
  • a reagent chamber close to the axis of rotation is to be understood as meaning the reagent chamber which, in comparison to the other reagent chambers, is arranged closest to the axis of rotation.
  • connection channels between the two reagent chambers allow unhindered and rapid fluid exchange.
  • more than two connection channels are advantageous.
  • Particularly preferred three connection channels are used, the z. B. can be arranged substantially parallel to each other.
  • the reagent chambers are fluidly connected in series through the two connection channels in such a way that a fluid series connection is created.
  • the reagent chambers are geometrically independent component structures and have their own receiving volume. Fluidically, however, they are together a single fluid chamber. Thus, the positive properties of single reagent chambers are combined with the properties of a single fluid chamber.
  • the solid dry reagents are introduced into the chambers in liquid form and then dried. This drying takes place either by heating or by freezing, which preferably takes place at temperatures of below -60 ° C., particularly preferably at about -70 ° C.
  • the test carrier to improve the drying of the liquid reagent, pre-cooled. Especially with "surfactant-containing" reagents, the "cold drying" by freezing is preferred.
  • the reagent chambers are geometrically separated from one another, different reagents can be introduced into each of the reagent chambers without the reagents being mixed before or during drying. This is supported by a corresponding geometric design of the reagent chambers.
  • the chambers may be separated by sharp boundaries such as ridges or edges to prevent crosstalk due to creep effects.
  • the sharp-edged boundaries also form a barrier for transporting the fluid out of a reagent chamber. However, this can be easily overcome by the external forces (centrifugal force, hydrostatic force).
  • the arrangement of the reagent chambers of the channel structure is designed in such a way that one of the chambers is arranged to be more remote from the axis of rotation than the other chamber, ie the distance of the one reagent chamber remote from the axis of rotation from the axis of rotation is greater than the distance of the other chamber.
  • the second (and possible other rotationsachsen labre) reagent chamber is filled.
  • the reagent chamber is filled which is furthest away from the axis of rotation.
  • the (closer to the farthest reagent chamber) arranged closer to the axis of rotation chambers are filled only in one or more further steps, the order of filling depends on the distance to the axis of rotation.
  • the reagent chamber with the smallest distance to the rotation axis is filled last.
  • a release of the reagents is more reliable, more complete and faster than in only partly filled chambers.
  • a good mixing for a large number of different volumes can be achieved.
  • three or five of z. B. 12 reagent chambers are filled with the volume to be tested, with all (e.g., three or five) chambers completely filled. If all reagent chambers are filled with the same reagent or the same composition of reagents, a very good mixing with the reagents can be achieved in this way for different volumes of sample liquid.
  • the two (or more) connecting channels between two adjacent reagent chambers are arranged in parallel.
  • the spaced (separate) connection channels are preferably formed by straight channel sections.
  • the length of at least one of the connection channels is smaller than the smallest dimension of the reagent chambers in the test carrier plane.
  • the test carrier level is the level which extends perpendicular to the surface normal of the test carrier, for example, perpendicular to the axis of rotation.
  • one of the at least two connecting channels is arranged centrally between adjacent reagent chambers. He aligns with the centers of the two reagent chambers that he connects.
  • the (other) connecting channel is laterally connected to the reagent chambers such that it extends outside the central axis connecting the centers. It is particularly preferably arranged tangentially to the reagent chambers that its outer side (outer wall) is aligned with the outer walls of the reagent chambers.
  • the centric connection channel is wider (it has a larger cross-section at the same channel height) than the laterally arranged channel.
  • connection channels between two adjacent reagent chambers are designed such that, when filling the reagent chamber arrangement, the liquid can flow through the connection channels from one chamber into the second.
  • the liquid preferably flows through one of the connecting channels.
  • the air contained in the not yet filled chamber can escape through the other of the two channels, that is, the channel not wetted by the liquid, preferably through the central connecting channel.
  • a connecting channel extends along the central axis, which connects the centers of two adjacent reagent chambers.
  • the two other connection channels are preferably arranged tangentially to the reagent chambers.
  • connection channels are each arranged between two adjacent reagent chambers. Two reagent chambers are adjacent when no further reagent chamber is arranged between them and a fluid exchange between them takes place directly via the at least two connection channels, without further fluidic structures being interposed therebetween.
  • the channel structure comprises a mixing chamber in which the reagent chambers and the connection channels are integrated between the reagent chambers.
  • the reagent chambers in the mixing chamber are arranged in series in the radial direction in such a way that the row of chambers encloses an angle of at most 80 ° to the radial direction, particularly preferably of a maximum of 60 °.
  • Radial direction is to be understood as meaning a straight line that extends outward from the axis of rotation of the microfluidic element or of the test carrier. The Thus, reagent chambers need not be directly directed radially outward, but may include an angle to the radial direction that is different than 90 °.
  • the reagent chambers are designed to be filled with a liquid and to dissolve a solid dry reagent contained in the reagent chamber without the liquid flowing into the adjacent reagent chamber. As long as the amount of liquid does not exceed the volume of the reagent chamber, the liquid remains in the reagent chamber into which it flows. This is always the first time you fill the rotating axis remote reagent chamber. As a rule, therefore, it has the inlet opening, which is in fluid communication with the feed channel such that a liquid sample can flow into the rotation axis remote reagent chamber.
  • the reagent chambers have a round configuration. Their base is circular. The bottom of the individual chambers is rounded, so that the floor merges steadily into the chamber walls, ie without an edge.
  • the reagent chambers are preferably designed in the form of a hemisphere or a hemisphere segment. Between two adjacent chambers, a web is formed, which separates the two chambers. At the upper end of the chamber, an edge is provided so that a capillary stop is formed, which prevents leakage of liquid from one of the reagent chambers.
  • This web-like barrier is referred to in professional circles as a plate.
  • the edge in the transition does not have to be sharp-edged. It can also have a small radius. However, the radius should be chosen so small that the barrier function is maintained.
  • the reagent chambers which are each connected to one another by at least two connecting channels, are preferably integrated in a mixing chamber.
  • the mixing chamber consists of the reagent chambers, the connection channels, a feed opening through which liquid can enter from a feed channel into the mixing chamber, and a vent opening at the end a vent channel, which is in air exchange communication with the mixing chamber, is arranged.
  • the mixing chamber may also comprise a transport channel which is guided laterally along the reagent chambers.
  • Reagent chambers having a rounded bottom or a rounded depression as a structure are also suitable for use in rotating test carriers and Zentrifugaldevices to introduce two or more reagents individually in the structure and to mix together only when dissolved with a liquid at a later date.
  • the statements made in the figure description with respect to rotating test carrier can therefore be transferred to non-rotating test carrier in which the reagent chambers have a rounded bottom and preferably have a hemispherical shape.
  • Hemispherical reagent chambers which are preferably combined in a mixing chamber, also have a great advantage in the introduction and drying of reagents.
  • the reagents are introduced into the reagent chambers in liquid form and dried there. During the drying process, the surface tension acts, so that the metered liquid reagent wets the environment of the application point and spreads slowly. If it strikes edges or similar places, which have a higher capillarity, it dries concentrated there. The rounded bottom prevents such concentration. Since only one reagent is applied per reagent chamber, also a confluence and mixing is prevented. This is supported by the sharp-edged upper edges of the chambers. Even when the reagents are dissolved, the round bottom reagent chambers prove to be particularly advantageous.
  • FIG. 1 shows a microfluidic element 1 with three identically constructed channel structures 2, which extend substantially radially outward.
  • the smallest dimension of the channel structure 2 is at least 0.1 mm, more preferably at least 0.2 mm in size.
  • the microfluidic element 1 is a test carrier 3, which is designed as a round disc and through which a rotation axis 4 extends centrally around which the disc-shaped test carrier 3 rotates.
  • the channel structure 2 is formed by a substrate 5 and a Enclosed cover layer not shown, which covers the test carrier 3 from above.
  • the microfluidic element 1 is suitable for use in an analyzer or similar device having a support for receiving and rotating the microfluidic element.
  • the device is preferably designed such that the microfluidic element is rotated about a rotary shaft of the device, wherein the axis of the rotary shaft is aligned with the axis of rotation 4 of the microfluidic element 1.
  • the rotary shaft of the device can extend through a bore 4a of the test carrier 3.
  • the axis of rotation 4 preferably extends through the center or the center of gravity of the element 1.
  • the channel structure 2 of the microfluidic element 1 includes a feed channel 6, which comprises a U-shaped channel section 7 and a straight channel section 8.
  • a feed opening 9 is provided, through which a liquid sample, preferably, for example, a body fluid such as blood, can be entered into the feed channel 6.
  • a sample liquid can be metered by an operator manually (with a pipette) into a feed opening 9.
  • the feed channel can also be equipped with a liquid by means of a dosing station of an analytical device.
  • the channel structure 2 further comprises a vent channel 10 with a vent opening 11 and two reagent chambers 13, which are connected to each other via three connecting channels 14 so that a fluid exchange between the two reagent chambers 13 takes place.
  • the channel structure 2 is in a preferred embodiment according to FIG. 1 formed as analysis function channel 15, which comprises a measuring chamber 16, a measuring channel 17 between the measuring chamber 16 and the reagent chambers 13 and a waste chamber 18, which is connected via a disposal channel 19 with the measuring chamber 16.
  • the measuring chamber 16 is vented via its own venting channel. Trained as a reservoir 20 Waste chamber 18 has a vent passage 21 with an outlet valve at the end, can escape through the air from the channel structure 2.
  • the channel structure 2 includes a mixing chamber 22, in which the two reagent chambers 13 and the three connecting channels 14 are integrated.
  • the mixing chamber 22 has an inlet opening 23 which is in fluid communication with the feed channel 6, so that a liquid sample can flow into the rotation axis remote reagent chamber 13 a.
  • the rotation axis remote reagent chamber 13a has a greater distance to the rotation axis 4 than the other reagent chamber 13b.
  • the near-axis reagent chamber 13b (closer to the rotation axis 4 than the reagent chamber 13a) is in fluid contact with the vent passage 10 via an air outlet 33, so that air escapes from the reagent chamber assembly and the mixing chamber 22.
  • the direction of rotation and the acceleration can be an optimized solubilization of the reagents in the Reagent chambers 13 take place, which is supported by the rounded reagent chambers 13.
  • FIG. 2a shows a section along the line IIA FIG. 1 through the two reagent chambers 13a, 13b.
  • the reagent chambers 13a, 13b are preferably hemispherical in shape, wherein the open opening surface of the hemispheres 24 is closed by the cover layer.
  • the reagent chambers 13 are rounded at their bottom so that no sharp edges occur. The rounded bottom of the chamber thus ensures a uniform distribution of both the reagent and a uniform solubilization and a uniform flow rate.
  • the transitions to the connecting channels are preferably not rounded but sharp-edged, ie at the upper edge of the hemispheres 24 a sharp edge 25 is formed, wherein the edge 25 preferably includes an angle of 90 °. This creates a kind of geometric valve that provides overflow protection because the edge provides a physical barrier to the further transport of the liquid.
  • the reagents present in liquid form are introduced into the open test carrier 3 without cover layer, for example by pipetting.
  • the sharp edges then serve as boundaries that prevent creeping of the liquid reagents during drying.
  • the structure thus becomes more independent of disturbing effects during automatic processing during drying.
  • An overflow protection 26 adjoins the reagent chambers 13 at the upper edge, which prevents reagents from escaping from the mixing chamber 22.
  • the surface enlargement by the overflow protection 26 can also have an elongating effect on the mixing time during mixing or dissolution of the dry reagents.
  • FIG. 2b shows the section through the channel structure 2 FIG. 2a
  • the reagent chambers 13 and the mixing chamber 22 is here designed so that the depth t of the overflow protection 26 is about one third of the depth T of the mixing channel 22.
  • the Depth t of the overflow protection 26 is about 400 microns.
  • Two-thirds of the depth T of the mixing channel 22 is formed by the reagent chambers 13.
  • the dried reagent 35 covers the bottom and the inner surfaces of the hemispheres 24, wherein the filling height h of the dry reagent 35 at the bottom corresponds approximately to half the height H of the hemisphere 24.
  • the reagent 35 continues to flow up during the drying; However, it is prevented by the physical barrier and the edge 25 from crawling over the web 27 formed between the two chambers 13a, 13b.
  • the web 27 preferably extends between two adjacent reagent chambers 13 in the direction of the cover layer 34 and thus separates the two reagent chambers 13a, 13b of the mixing chamber 22.
  • Figure 2c shows a three-dimensional view in the area of the line IIc FIG. 1 through the connecting channels 14 of the channel structure 2.
  • the feed channel 6 has a backstop 28, which is designed as a microfluidic valve 29.
  • the depth of the feed channel 6 from the surface 30 of the microfluidic element 1 is of the same order of magnitude as the depth of the connecting channels 14. However, it is significantly larger than the depth of the rotation axis remote reagent chamber 13a.
  • the depth of the feed channel 6 is therefore also about 400 microns.
  • a liquid flowing into the overflow protection 26 of the mixing chamber 22 by rotational force from the feed channel 6 flows via the edge 25 into the hemispherical reagent chamber 13a. By rotation of the test carrier 3, the liquid that has flowed in is moved in the reagent chamber 13a and thus dissolves the dry reagent (not shown here).
  • connection channels 14a, 14b and 14c When another liquid flows in, it is also conducted through the connection channels 14a, 14b and 14c into the further reagent chambers 13 (not shown).
  • the transitions into the capillary connection channels 14a, 14b, 14c, which are formed by the hemisphere 24, are preferably not smaller than 0.4 ⁇ 0.4 mm in cross section (or their diameter is not smaller than 0.4 mm) and may later taper gradually.
  • connection channels 14 with a smaller cross section the applied capillary force is so great that an overflow (“crosstalk”), in particular the liquid reagents before drying, is formed.
  • the channel structure 2 with bottomed reagent chambers 13 can also be used in non-rotating test carriers.
  • a fluid driven by an (external) force first flows in a non-rotating microfluidic element 1 into the first reagent chamber 13a, fills it completely and dissolves the contained reagent.
  • the rounded bottom of the chamber not only ensures even distribution of the reagent.
  • the dissolution of the reagent is also optimized. Only the influx of additional (force-driven) liquid allows it to overcome the edge 25, so that it can flow through the connection channels 14 in the adjacent reagent chamber. Consequently, the reagent contained here is first dissolved in a second step.
  • FIG. 3 shows by way of example a further embodiment of a test carrier 3, with five identical channel structures 2.
  • the feed channel 6 also has a U-shaped channel section 7 and a straight channel section 8.
  • the mixing chamber 22 also has a venting channel 10 with a vent 11 at its end close to the axis of rotation.
  • the channel structure 2 is designed as an analysis function channel 15 and comprises a measuring chamber 16.
  • FIG. 4 shows a detailed drawing of the mixing chamber 22 from FIG. 3 with the three series-connected reagent chambers 13a, b, c and in each case two connecting channels 14, namely in each case a central connecting channel 14a and a lateral (near the axis of rotation) connecting channel 14b.
  • the mixing chamber 22 preferably has a rotational axis-near inlet opening 23, through which liquid from the feed channel 6 enters the mixing chamber 22.
  • a capillary transport channel 31 is preferably arranged on the long axis 36 of the mixing chamber 22 remote from the axis of rotation.
  • the transport channel 31 extends laterally and radially outward on the series-arranged reagent chambers 13. Its depth (viewed from the surface 30 of the test carrier 3) is about 150 to 2000 microns less than the depth of the connecting channels.
  • the incoming liquid is passed through the transport channel 31 into the reagent chamber 13a.
  • the venting channel 10 is wider than the feed channel 8 and as the connecting channels 14 between the reagent chambers 13. In this way, a smaller capillary force is generated by the venting channel 10, so that no liquid penetrates into the venting channel 10.
  • the venting channel 10 is always arranged close to the axis of rotation so that the liquid can not pass from the reagent chambers 13 into the venting channel 10 during rotation.
  • the air contained therein escapes through the connection channels 14a and 14b into the next reagent chamber 13c.
  • liquid flows through the two connection channels 14a and 14b into the reagent chamber 13c.
  • the filling of the second reagent chamber 13c thus initially also takes place at least partially through the connection channels 14a, 1-4b and through the transport channel 31.
  • the air contained in the second reagent chamber 13c escapes through the connection capillaries 14a and 14b which form the connection to the rotational axis-nominal reagent chamber 13b. In this way it is ensured that no air is trapped in the reagent chambers 13a, 13b and 13c. From the reagent chamber 13b, the air escapes through the vent passage 110. In this way, a preferred filling of the reagent chambers 13 from radially outside to radially inside is made possible.
  • the arrangement according to the invention allows the liquids to be mixed even when the reagents are being dissolved, in particular when the reagents in the second and further reagent chambers 13 are dissolved.
  • the degree of solubilization is therefore particularly high and effective.
  • the filling of the reagent chambers 13a, b, c of the mixing chamber 22 is based on or FIGS. 5a to 5c explained in more detail.
  • Entering the mixing chamber 22 Liquid is conducted past the capillary-active transport channel 31, which is adjacent to the inlet opening 23, past the two reagent chamber 13b, 13c near the axis of rotation and flows into the reagent chamber 13a remote from the axis of rotation (arrow direction F).
  • the inflowing liquid is held by capillary action in the transport channel 31.
  • the rotational axis near reagent chamber 13b is filled by the liquid first flows through the central and tangential connection channels 14a, b and also through the transport channel 31 and later directly into the chamber 13b.
  • the air contained in the reagent chambers 13 finally escapes through the air outlet 33 and the venting channel 10.
  • the reagent chambers 13 a single volume of 3 ul, so that the three reagent chambers together have a volume of about 9 ul.
  • the volumes of the individual reagent chambers 13 are preferably between 3 ⁇ l and 10 ⁇ l.
  • Reagent chambers with a volume of 2 ⁇ l or only 1 ⁇ l are also conceivable, as well as reagent chambers 13 with a volume of 20 ⁇ l, 50 ⁇ l, 100 ⁇ l or 500 ⁇ l.
  • FIG. 6 shows a further preferred embodiment with a mixing chamber 22, in which two reagent chambers 13a, 13b are integrated.
  • a capillary transport channel 31 is provided through which into the mixing chamber 22 entering liquid is guided to the rotation axis remote reagent chamber 13a, which is the two reagent chambers 13a, 13b the farthest from the axis of rotation reagent chamber.
  • the reagent chambers 13 are preferably arranged adjacent to one another such that their distance is smaller than the smallest dimension of the reagent chambers 13 in the test carrier plane, rapid fluid transport from one chamber 13 to the other is also possible.
  • the smallest distance is defined in the context of the invention as the smallest distance between the reagent chambers 13 and between the Reagenzhuntau touchcardn.
  • At least the centrally located connecting channel 14a between two reagent chambers 13 is therefore shorter than the smallest dimension of the reagent chambers 13.
  • the central connecting channel 14a is about 0.2 mm long. Its width and depth are each 0.4 mm.
  • the reagent chambers, 13 have a height of 1.4 mm.
  • the diameter of the reagent chambers is 1.95 mm.
  • test carrier 3 Due to the modular design with small reagent chambers 13, it is possible to provide test carrier 3, which are based on this principle arbitrarily expandable. So not only two or three, but also several chambers can be connected in series.
  • reagent chambers In addition to the round hemispherical reagent chambers, other forms of the reagent chambers are possible, for example, drop-shaped reagent chamber forms or when using two reagent chambers, which are integrated in a mixing chamber 22 z. B. so-called “yin-yang formations". Preferably, these reagent chambers are rounded at the bottom. Above all, oval and round chamber shapes prove advantageous.
  • FIG. 7 shows a star-shaped arrangement of three reagent chambers 13 in a mixing chamber 22. Also in this arrangement, the rotation axis remote mixing chamber 13a is filled via the transport channel 31 first. If further liquid flows in, then the two reagent chambers 13b, 13c closer to the axis of rotation are filled together. Between the reagent chambers 13a and 13b, only a central connection channel 14a is provided, since the capillary transport channel 31 as a second connection channel see, since the capillary transport channel 31 serves as a second connection channel 14b.
  • FIGS. 8a and 8b Three-dimensional views of such a star-shaped reagent chamber arrangement are shown. Clearly visible are the rounded connection channels 14 between the reagent chambers 13 and the rounded hemispherical reagent chambers 13 themselves. In this embodiment, it can be seen that the transport channel 31 also functions fluidically as a connection channel 14.
  • FIG. 9 shows that even a star-shaped or circular arrangement of reagent chambers 13 can be extended.
  • six reagent chambers 13 can be interconnected fluidically, whereby the principle is maintained that the rotor axis furthest reagent chamber 13a is filled first. A filling of the other chambers then starts from the rotation axis remote chamber 13 a, which is farthest from the axis of rotation 4.
  • the very compact and small arrangement obtained has the advantage that a plurality of cascaded channel structures 2 can be arranged on a test carrier 3.
  • FIGS. 10a to 10c Based on FIGS. 10a to 10c the drying process of two reagents in a microfluidic element 1 is explained at different times, wherein in each figure both a top view and a section is shown.
  • connection channels 14 Starting from two reagent chambers 13, which are separated from each other and in fluid communication with each other via connection channels 14, is the drying of the initially liquid reagents explained.
  • the two reagent chambers 13a, 13b are integrated in a mixing chamber 22. Between the two reagent chambers 13a, 13b, a web 27 is arranged, so that the two chambers 13 are spatially spaced from each other. In the web 27, the connecting channels 14 are embedded.
  • the embodiment shown here has three connection channels 14a, 14b and 14c, wherein the connection channel 14a is a central channel and the two further connection channels 14b and 14c are each arranged laterally.
  • FIG. 10a shows that a liquid reagent is introduced into the hemispherical reagent chambers 13a, 13b.
  • a reagent chamber 13 is used, which is referred to as “pearl” due to their shape. Overall, therefore, a “pearl chain structure" is present in the mixing chamber 22.
  • the reagent is in each case applied to the middle of the reagent chamber 13a, 13b. During the following drying process, the reagent wets the environment of the dosing point, forming a uniform film. Since the reagent chambers are free of edges or corners where the reagent might concentrate, a very even distribution occurs. When the liquid reagent reaches the connection channels 14, it enters it.
  • connection channels 14 due to the flow resistance of the connection channels 14, it is slowed down and does not flow until it has passed into the adjacent reagent chamber 13. If the liquid reagent reaches the upper edge of the reagent chamber 13, which forms the end to the surface of the microfluidic element 1, the reagent stops at the Edge and does not continue to flow. The resulting cross-sectional increase thus has a capillary stop effect.
  • the connecting channels 14 preferably have such a cross section that the liquid in the connecting channels 14 is braked and is not transported into the adjacent reagent chamber 13 due to capillary forces. Consequently, on the one hand, the cross-section must be large enough so that the resulting capillary forces are small enough so that the connection channels are not completely filled with the reagent and the reagents in the connection channels mix. On the other hand, the must Cross-section of the connecting channels should be small enough so that the flow resistance is sufficient to decelerate inflowing reagent in the connecting channels 14.
  • connection channels 14 not only affects the drying process when only capillary forces act.
  • the cross sections also have an influence on the mixing efficiency and the exchange of liquids between two reagent chambers 13.
  • the cross section of the connection channels is at least 0.1 mm 2 , preferably 0.4 x 0.4 mm 2 large. Cross sections of less than 0.05 mm 2 have proved to be unsuitable.
  • the hemispherical or bottom-rounded reagent chambers 13 show that when filled with a liquid reagent with a maximum volume of 70% of the chamber volume, a trouble-free drying of the reagents is possible. A mixing of two reagents in two adjacent chambers 13 is reliably prevented.
  • the volume of the liquid reagent to be applied is preferably less than 60% of the chamber volume, particularly preferably less than 55%.
  • FIG. 10c shows the two reagent chambers 13, after the liquid reagent is spread.
  • the connecting channels 14 are wetted with liquid only at their beginning. The largest distance of the respective connection channels 14 is free of liquid, so that a mixing of the two reagents is reliably prevented.
  • the reagent chambers 13 with a rounded bottom, in particular if they are preferably integrated in a mixing chamber 22, are not only particularly suitable for drying two different reagents, but that such reagent chambers 13 are in non-rotating microfluidic Elements 1 can be used.
  • required force is generated by an external force.
  • pressure forces can be generated, which are caused for example by an external pump.
  • this force can be based on a hydrostatic pressure.
  • the statements made in the context of this invention for rotating test carriers therefore also apply to non-rotating microfluidic elements.
  • the basis of the FIGS. 2 to 9 corresponding features can also be used accordingly in non-rotating arrangements and channel structures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

Die vorliegende Erfindung betrifft ein mikrofluidisches Element zur Bestimmung eines Analyten in einer Flüssigkeitsprobe, bevorzugt in einer Körperflüssigkeitsprobe. Das Element umfasst ein Substrat und eine Kanalstruktur, die von dem Substrat und einer Deckschicht umschlossen wird.The present invention relates to a microfluidic element for determining an analyte in a fluid sample, preferably in a body fluid sample. The element comprises a substrate and a channel structure which is enclosed by the substrate and a cover layer.

Mikrofluidische Elemente zum Analysieren einer Flüssigkeitsprobe und zum Durchmischen einer Flüssigkeit mit einem Reagenz werden in diagnostischen Tests (In-Vitro-Diagnostik) eingesetzt. Bei diesen Tests werden Körperflüssigkeitsproben auf einen darin enthaltenen Analyten für medizinische Zwecke untersucht. Der Begriff Durchmischen umfasst dabei sowohl die Möglichkeit, dass das Reagenz in flüssiger Form vorliegt, dass also zwei Flüssigkeiten miteinander gemischt werden. Daneben umfasst der Begriff die Möglichkeit, dass das Reagenz als Feststoff vorliegt und in einer Flüssigkeit aufgelöst und homogenisiert wird. In vielen Anwendungsfällen wird das feste Trockenreagenz in flüssiger Form in das fluidische Element eingebracht und in einem weiteren Schritt getrocknet, bevor das Element zur Analyse verwendet wird.Microfluidic elements for analyzing a fluid sample and mixing a fluid with a reagent are used in diagnostic tests (in vitro diagnostics). In these tests, body fluid samples are analyzed for an analyte for medical purposes. The term mixing comprises both the possibility that the reagent is in liquid form, that is, that two liquids are mixed together. In addition, the term includes the possibility that the reagent is present as a solid and dissolved in a liquid and homogenized. In many applications, the solid dry reagent is introduced into the fluidic element in liquid form and dried in a further step before the element is used for analysis.

Ein wichtiger Bestandteil bei der Analyse sind Testträger, auf denen mikrofluidische Elemente mit Kanalstrukturen zur Aufnahme einer Flüssigkeitsprobe vorhanden sind, um die Durchführung aufwendiger und mehrstufiger Testführungen ("Testprotokolle") zu ermöglichen. Ein Testträger kann ein oder mehrere fluidische Elemente umfassen.An important part of the analysis are test carriers on which microfluidic elements with channel structures for receiving a liquid sample are present in order to enable the implementation of complex and multi-level test procedures ("test protocols"). A test carrier may comprise one or more fluidic elements.

Testträger und fluidische Elemente bestehen aus einem Trägermaterial, üblicherweise aus einem Substrat aus Kunststoffmaterial. Geeignete Materialien sind beispielsweise COC (Cyclo-Olefin-Copolymer) oder Kunststoffe wie PMMA, Polycarbonat oder Polystyrol. Die Testträger weisen einen Probenanalysekanal auf, der von dem Substrat und einem Deckel oder einer Deckschicht umschlossen wird. Der Probenanalysekanal besteht häufig aus einer Aufeinanderfolge mehrerer Kanalabschnitte und dazwischen liegender im Vergleich zu den Kanalabschnitten erweiterter Kammern. Die Strukturen und Dimensionen des Probenanalysekanals mit seinen Kammern und Abschnitten werden durch eine Strukturierung von Kunststoffteilen des Substrats definiert, die beispielsweise durch Spritzgießtechniken oder andere Verfahren zur Herstellung von geeigneten Strukturen erzeugt werden. Auch ist es möglich, die Struktur durch materialabtragende Verfahren wie beispielsweise Fräsen einzubringen.Test carrier and fluidic elements consist of a carrier material, usually a substrate made of plastic material. Suitable materials are, for example, COC (cyclo-olefin copolymer) or plastics such as PMMA, polycarbonate or polystyrene. The test carriers have a sample analysis channel which is enclosed by the substrate and a lid or cover layer. The sample analysis channel often consists of a succession of multiple channel sections and intermediate chambers compared to the channel sections of extended chambers. The structures and dimensions of the sample analysis channel with its chambers and sections are defined by a patterning of plastic parts of the substrate, which are produced, for example, by injection molding techniques or other methods for producing suitable structures. It is also possible to introduce the structure by material-removing methods such as milling.

Fluidische Testträger werden beispielsweise bei immunchemischen Analysen mit einem mehrstufigen Testablauf verwendet, bei dem eine Trennung von gebundenen und freien Reaktionsbestandteilen stattfindet. Dazu ist ein gesteuerter Flüssigkeitstransport notwendig. Die Steuerung des Prozessablaufs kann mit internen (innerhalb des fluidischen Elements) oder mit externen (außerhalb des fluidischen Elements) Maßnahmen erfolgen. Die Steuerung kann auf der Anwendung von Druckunterschieden oder auch der Änderung von Kräften basieren, beispielsweise aus der Änderung der Wirkrichtung der Schwerkraft resultieren. Bei auftretenden Zentrifugalkräften, die auf einen rotierenden Testträger einwirken, kann eine Steuerung durch Änderung der Rotationsgeschwindigkeit oder der Drehrichtung oder durch den Abstand von der Drehachse vorgenommen werden.Fluidic test carriers are used, for example, in immunochemical analyzes with a multi-step test procedure in which a separation of bound and free reaction components takes place. For this purpose, a controlled liquid transport is necessary. The control of the process flow can take place with internal (within the fluidic element) or with external (outside the fluidic element) measures. The control can be based on the application of pressure differences or else the change of forces, for example resulting from the change in the effective direction of gravity. When centrifugal forces acting on a rotating test carrier, a control by changing the rotational speed or the direction of rotation or by the distance from the axis of rotation can be made.

Analysesysteme mit derartigen Testtragern sind beispielsweise aus folgenden Publikationen bekannt:

  • US 4,456,581
  • US 4,580,896
  • EP 1 077 771 B1
  • EP 1 944 612 A1
  • US 2005/0041525 A1
Analysis systems with such test carriers are known, for example, from the following publications:
  • US 4,456,581
  • US 4,580,896
  • EP 1 077 771 B1
  • EP 1 944 612 A1
  • US 2005/0041525 A1

Die US 2005/0041525 A1 beschreibt mikrofluidische Elemente und Verfahren zur Analyse von biologischen Proben und zum Mischen verschiedener Flüssigkeiten. Die zu mischenden Flüssigkeiten werden zunächst aus entsprechenden Behältern in eine erste Kammer gegeben, um die Flüssigkeiten zu vereinigen. Anschließend werden die vereinigten Flüssigkeiten aus der ersten Kammer durch mindestens einen Kapillarverbindungskanal in eine zweite Kammer entleert, um die Flüssigkeiten zu mischen. In einigen Ausführungsformen werden zwei oder mehr parallele Kapillarverbindungswege verwendet. In einer weiteren Ausführungsform steht die zweite Kammer über mindestens einen Kapillarverbindungsweg mit mindestens einer dritten Mischkammer in Fiießbeziehung. Der Transport der Flüssigkeiten wird durch Zentrifugalkräfte bewirkt und erfolgt stets von der rotationsachsennäheren Kammer zur rotationsachsenferneren Kammer.The US 2005/0041525 A1 describes microfluidic elements and methods for analyzing biological samples and mixing different liquids. The liquids to be mixed are first added from respective containers in a first chamber to combine the liquids. Subsequently, the combined liquids from the first chamber are emptied through at least one capillary connection channel into a second chamber to mix the liquids. In some embodiments, two or more parallel capillary connection paths are used. In a further embodiment, the second chamber is in flow relationship via at least one capillary connection path with at least one third mixing chamber. The transport of the liquids is effected by centrifugal forces and always takes place from the rotation axis closer chamber to the rotation axis remote chamber.

Im Allgemeinen enthält zur Durchführung der Analysen der Probenanalysekanal der mikrofluidischen Elemente zumindest ein Reagenz, das mit einer in den Kanal eingebrachten Flüssigkeit reagiert. Die Flüssigkeit und das Reagenz werden in dem Testträger miteinander so vermischt, dass eine Reaktion der Probenflüssigkeit mit dem Reagenz zu einer Änderung einer Messgröße führt, die für den in der Flüssigkeit enthaltenen Analyten charakteristisch ist. Die Messgröße wird an dem Testträger selbst gemessen. Gebräuchlich sind optisch auswertbare Messverfahren, bei denen eine Farbänderung oder eine andere optisch messbare Größe detektiert werden.In general, to perform the analyzes, the sample analysis channel of the microfluidic elements contains at least one reagent which reacts with a liquid introduced into the channel. The liquid and the reagent are mixed in the test carrier with each other so that a reaction of the sample liquid with the reagent leads to a change in a measured variable that is characteristic of the analyte contained in the liquid. The measured variable is measured on the test carrier itself. Commonly used are optically evaluable measuring methods in which a color change or another optically measurable variable are detected.

Für die Durchführung der Analyse ist es entscheidend, dass das in getrockneter Form vorliegende Reagenz von der Probenflüssigkeit gelöst und mit dieser durchmischt wird. Im Stand der Technik werden einige Anstrengungen unternommen, um das Durchmischen zu optimieren. Beispielsweise wird bei rotierenden Testträgern, die in einem Analysesystem um eine Rotationsachse gedreht werden, das Durchmischen durch schnelle Änderungen der Drehrichtung gefördert. Dieser entstehende "Schüttel-Modus" (Shake-Mode) ist in einer besonderen Ausprägung beispielsweise bei Markus Grumann, "Readout of Diagnostic Assays on a Centrifugal Microfluidic Platform", (Dissertation Universität Freiburg, 2005, URN (NBN): urn:nbn:de:bsz:25-opus-22723 ), beschrieben.For carrying out the analysis, it is crucial that the reagent present in dried form is dissolved from the sample liquid and mixed with it. In the prior art, some efforts are being made to optimize mixing. For example, in rotating test carriers, which are rotated in an analysis system about an axis of rotation, the mixing is promoted by rapid changes in the direction of rotation. This emerging "shaking mode" (shake mode) is in a special form, for example in Markus Grumann, "Readout of Diagnostic Assays on a Centrifugal Microfluidic Platform", (Dissertation University of Freiburg, 2005, URN (NBN): urn: nbn: de: pp: 25-opus-22723 ).

Weitere bekannte Methoden zur Verbesserung des Durchmischens von Probenflüssigkeit und Reagenz umfassen das Einbringen von Magnetpartikeln, die durch Einwirken eines Elektro- oder Permanentmagneten in Bewegung versetzt werden. Durch die Integration der Partikel steigt der Aufwand bei der Herstellung der Testträger. Zusätzlich müssen die Analysesysteme über weitere Komponenten, nämlich den Magneten, verfügen und wird deshalb teuer.Other known methods for improving the mixing of sample liquid and reagent include the introduction of magnetic particles, which are caused by the action of an electric or permanent magnet in motion be offset. The integration of the particles increases the effort involved in the production of the test carriers. In addition, the analysis systems must have other components, namely the magnet, and therefore becomes expensive.

Andere Methoden schließen z. B. Elemente ein, deren Kapillarkanäle spezielle Strömungshindernisse enthalten. Die Herstellung derartiger Hindernisse, wie zum Beispiel Rippen, müssen in der Mikrostruktur ausgebildet werden und sind deshalb teuer und erschweren den Herstellungsprozess des Testträgers. Außerdem eignen sich solche Strukturen nicht für alle Mischprozesse bzw. nicht für alle Reagenzien und Probenflüssigkeiten.Other methods include z. B. elements, the capillary channels contain special flow obstacles. The production of such obstacles, such as ribs, must be formed in the microstructure and are therefore expensive and complicate the manufacturing process of the test carrier. In addition, such structures are not suitable for all mixing processes or not for all reagents and sample liquids.

Trotz der vielfältigen Bemühungen, Mischvorgänge in mikrofluidischen Elementen, insbesondere das Durchmischen von getrockneten festen Reagenzien und Probenflüssigkeiten zu verbessern, besteht weiterer Bedarf an einem mikrofluidischen Element bzw. Testträger, bei dem das Durchmischen insbesondere von kleinen Probenflüssigkeiten verbessert ist. Des Weiteren soll das fluidische Element geeignet sein, um gleichzeitig unterschiedliche Reagenzien, die getrennt eingebracht sind und sich z. B. an unterschiedlichen räumlichen Stellen befinden, anzulösen und die Probenflüssigkeit mit unterschiedlichen Reagenzien reagieren zu lassen.Despite the many efforts to improve mixing operations in microfluidic elements, especially the mixing of dried solid reagents and sample liquids, there is a further need for a microfluidic element or test carrier in which the mixing of, in particular, small sample liquids is improved. Furthermore, the fluidic element should be suitable for simultaneously mixing different reagents, which are introduced separately and which, for. B. at different spatial locations, dissolve and to allow the sample liquid to react with different reagents.

Gelöst wird das bestehende Problem durch ein mikrofluidisches Element mit den Merkmalen des Anspruchs 1.The existing problem is solved by a microfluidic element having the features of claim 1.

Im Folgenden wird die Erfindung und deren Vorteile unter Bezugnahme auf einen Testträger zur Analyse einer Körperflüssigkeitsprobe auf einen darin enthaltenen Analyten ohne Einschränkung der Allgemeinheit eines mikrofluidischen Elements beschrieben und erläutert. Neben Körperflüssigkeiten können auch andere Probenflüssigkeiten analysiert werden.In the following, the invention and its advantages will be described and explained with reference to a test carrier for analyzing a body fluid sample for an analyte contained therein without limiting the generality of a microfluidic element. In addition to body fluids, other sample fluids can also be analyzed.

Im Rahmen der Erfindung wird unter einem mikrofluidischen Element ein Element mit einer Kanalstruktur verstanden, bei dem die kleinste Dimension der Kanalstruktur mindestens 1 µm und dessen größte Dimension (beispielsweise Länge des Kanals) höchstens 10 cm beträgt. Aufgrund der kleinen Dimensionen und der kapillaren Kanalstrukturen herrschen in den Kanälen bzw. Kanalabschnitten vorwiegend laminare Strömungsverhältnisse. Die daraus resultierenden schlechten Bedingungen für ein Durchmischen von Flüssigkeit und Feststoff in solchen Kapillarkanälen werden durch das erfindungsgemäße mikrofluidische Element deutlich verbessert.In the context of the invention, a microfluidic element is understood to mean an element with a channel structure in which the smallest dimension of the channel structure is at least 1 μm and its largest dimension (for example Length of the channel) is at most 10 cm. Due to the small dimensions and the capillary channel structures prevail in the channels or channel sections predominantly laminar flow conditions. The resulting poor conditions for thorough mixing of liquid and solid in such capillary channels are significantly improved by the microfluidic element according to the invention.

Das mikrofluidische Element rotiert um eine Rotationsachse. Die Rotationsachse erstreckt sich bevorzugt durch das mikrofluidische Element. Sie verläuft durch eine vorbestimmte Position, bevorzugt z. B. durch den Schwerpunkt oder den Mittelpunkt des Elements. In einer bevorzugten Ausgestaltung erstreckt sich die Rotationsachse senkrecht zur Oberfläche des fluidischen Elements, das bevorzugt eine flache, scheibenartige Form hat und z. B. eine runde Scheibe sein kann. Dazu ist das mikrofluidische Element beispielsweise in einer Halterung eines Analysegeräts gehalten, wobei die Rotationsachse von einer Drehwelle des Geräts gebildet wird.The microfluidic element rotates about an axis of rotation. The axis of rotation preferably extends through the microfluidic element. It passes through a predetermined position, preferably z. B. by the center of gravity or the center of the element. In a preferred embodiment, the axis of rotation extends perpendicular to the surface of the fluidic element, which preferably has a flat, disk-like shape and z. B. may be a round disc. For this purpose, the microfluidic element is held for example in a holder of an analyzer, wherein the axis of rotation is formed by a rotary shaft of the device.

Durch eine entsprechende Strukturierung eines Substrats des Elements wird eine Kanalstruktur gebildet, die einen Zuführkanal mit einer Zuführöffnung und einen Entlüftungskanal mit einer Entlüftungsöffnung sowie wenigstens zwei Reagenzkammern umfasst. In wenigstens einer der Reagenzkammern ist ein Reagenz enthalten, das bevorzugt in fester Form als Trockenreagenz vorliegt und das mit der Flüssigkeitsprobe, die in die Kanalstruktur eingebracht wird, reagiert. Je zwei benachbarte Reagenzkammern sind über wenigstens zwei Verbindungskanäle derart miteinander verbunden, dass ein Fluidaustausch zwischen den beiden Reagenzkammern ermöglicht wird. Dabei hat eine der Reagenzkammern eine Einlassöffnung, die so in Fluidverbindung mit dem Zuführkanal steht, dass eine Flüssigkeitsprobe aus dem Zuführkanal in die Reagenzkammern einströmen kann. Erfindungsgemäß fließt die Flüssigkeitsprobe aus dem Zuführkanal in die Reagenzkammer, die von den (beiden) Reagenzkammern weiter von der Rotationsachse entfernt ist. Die Flüssigkeit fließt also in die rotationsachsenferne Reagenzkammer.By means of a corresponding structuring of a substrate of the element, a channel structure is formed which comprises a feed channel with a feed opening and a bleed channel with a bleed opening and at least two reagent chambers. At least one of the reagent chambers contains a reagent which is preferably in solid form as a dry reagent and which reacts with the liquid sample introduced into the channel structure. Each two adjacent reagent chambers are connected to one another via at least two connection channels such that a fluid exchange between the two reagent chambers is made possible. In this case, one of the reagent chambers has an inlet opening which is in fluid communication with the feed channel so that a liquid sample can flow from the feed channel into the reagent chambers. According to the invention, the liquid sample flows from the feed channel into the reagent chamber, which is further away from the (two) reagent chambers from the axis of rotation. The liquid thus flows into the spin axis remote reagent chamber.

Die im Sinne der Erfindung verwendeten Ausdrücke "rotationsachsenfern" und "rotationsachsennah" stellen keine absoluten Bereichsangaben dar, wo sich eine Struktur befindet, sondern geben an, wie weit eine Struktur von der Rotationsachse entfernt ist. Die Rotationsachse wird dabei als Nullpunkt einer Entfernungsskala verstanden, welche sich von der Rotationsachse radial nach außen erstreckt. Eine rotationsachsenferne Struktur ist in diesem Sinne weiter von der Rotationsachse entfernt als eine rotationsachsennahe Struktur. Eine rotationsachsenferne Reagenzkammer ist also die Reagenzkammer, die in Relation zu einer anderen Reagenzkammer weiter von der Rotationsachse entfernt ist. Bei zwei Reagenzkammern ist die rotationsachsenferne Reagenzkammer die Kammer, die im Vergleich zu anderen Kammern am weitesten von der Rotationsachse entfernt ist, also die Entfernteste der Reagenzkammern. In analoger Weise ist der Begriff "rotationsachsennah" zu verstehen. In diesem Sinne ist unter rotationsachsennaher Reagenzkammer die Reagenzkammer zu verstehen, die - im Vergleich zu den anderen Reagenzkammern - am nächsten zur Rotationsachse angeordnet ist.The terms "rotational axis remote" and "rotational axis near" used in the context of the invention do not represent absolute range indications where a structure is located, but indicate how far apart a structure is from the axis of rotation. The axis of rotation is understood as the zero point of a distance scale, which extends radially outward from the axis of rotation. A structure remote from the axis of rotation is, in this sense, further away from the axis of rotation than a structure near the axis of rotation. Thus, a reagent chamber remote from the axis of rotation is the reagent chamber, which is further away from the axis of rotation in relation to another reagent chamber. In the case of two reagent chambers, the reaction chamber remote from the axis of rotation is the chamber which, compared to other chambers, is farthest from the axis of rotation, ie the remainder of the reagent chambers. In an analogous manner, the term "rotation axis" is to be understood. In this sense, a reagent chamber close to the axis of rotation is to be understood as meaning the reagent chamber which, in comparison to the other reagent chambers, is arranged closest to the axis of rotation.

Im Rahmen der Erfindung wurde erkannt, dass - im Gegensatz zu den im Stand der Technik bekannten mikrofluidischen Elementen - mit den über wenigstens zwei Verbindungskanäle verbundenen Reagenzkammern mehrstufige Reaktionsführungen möglich sind und die Anordnung vielfältige Kontrollmöglichkeiten bietet. Insbesondere ermöglicht die Anordnung, unterschiedliche Reagenzien, die getrennt voneinander eingebracht wurden, ohne sich beim Eintrocknen zu vermischen, in einem einzigen Prozessschritt aufzulösen, wobei das Auflösen fluidisch nicht behindert wird.In the context of the invention, it has been recognized that, in contrast to the microfluidic elements known in the prior art, multistage reaction paths are possible with the reagent chambers connected via at least two connecting channels, and the arrangement offers a wide range of control options. In particular, the arrangement makes it possible to dissolve different reagents, which have been introduced separately, without mixing on drying, in a single process step, wherein the dissolution is not impeded fluidically.

Die wenigstens zwei Verbindungskanäle zwischen den beiden Reagenzkammern ermöglichen einen ungehinderten und schnellen Fluidaustausch. Im Rahmen der Erfindung wurde erkannt, dass mehr als zwei Verbindungskanäle vorteilhaft sind. Besonders bevorzugt werden drei Verbindungskanäle eingesetzt, die z. B. im Wesentlichen parallel zueinander angeordnet sein können. Die Reagenzkammern werden durch die beiden Verbindungskanäle fluidisch derart hintereinander geschaltet, dass eine Fluid-Reihenschaltung entsteht.The at least two connection channels between the two reagent chambers allow unhindered and rapid fluid exchange. Within the scope of the invention it has been recognized that more than two connection channels are advantageous. Particularly preferred three connection channels are used, the z. B. can be arranged substantially parallel to each other. The reagent chambers are fluidly connected in series through the two connection channels in such a way that a fluid series connection is created.

Die Reagenzkammern sind geometrisch eigenständige Komponentenstrukturen und weisen ein eigenes Aufnahmevolumen auf. Fluidisch sind sie jedoch gemeinsam eine einzige Fluidkammer. Somit werden die positiven Eigenschaften von Einzelreagenzkammern mit den Eigenschaften einer einzigen Fluidkammer kombiniert. Die festen Trockenreagenzien werden in flüssiger Form in die Kammern eingebracht und dann getrocknet. Dieses Eintrocknen geschieht entweder durch Erhitzen oder durch ein Gefrieren, dass bevorzugt bei Temperaturen von unter -60 °C, besonders bevorzugt bei ca. -70 °C stattfindet. Bevorzugt ist der Testträger, um das Eintrocknen des flüssigen Reagenz zu verbessern, vorgekühlt. Insbesondere bei "tensidhaltigen" Reagenzien wird das "kalte Eintrocknen" durch Gefrieren bevorzugt.The reagent chambers are geometrically independent component structures and have their own receiving volume. Fluidically, however, they are together a single fluid chamber. Thus, the positive properties of single reagent chambers are combined with the properties of a single fluid chamber. The solid dry reagents are introduced into the chambers in liquid form and then dried. This drying takes place either by heating or by freezing, which preferably takes place at temperatures of below -60 ° C., particularly preferably at about -70 ° C. Preferably, the test carrier to improve the drying of the liquid reagent, pre-cooled. Especially with "surfactant-containing" reagents, the "cold drying" by freezing is preferred.

Da die Reagenzkammern geometrisch voneinander getrennt sind, lassen sich in jede der Reagenzkammern unterschiedliche Reagenzien einbringen, ohne dass es zu einem Vermischen der Reagenzien vor oder während dem Eintrocknen kommt. Dies wird durch eine entsprechende geometrische Gestaltung der Reagenzkammern unterstützt. Beispielsweise können die Kammern durch scharfe Begrenzungen wie Stege oder Kanten getrennt sein, um ein Durchmischen ("Crosstalk") durch Kriecheffekte zu verhindern. Die scharfkantigen Begrenzungen bilden zwar für den Transport des Fluids aus einer Reagenzkammer hinaus ebenfalls eine Barriere. Diese kann jedoch durch die auftretenden externen Kräfte (Zentrifugalkraft, hydrostatische Kraft) leicht überwunden werden. Durch die Möglichkeit, jede Kammer mit einem unterschiedlichen Reagenz zu befüllen, können in nur einem Prozessschritt mehrere (unterschiedliche) Reagenzien angelöst und homogenisiert werden.Since the reagent chambers are geometrically separated from one another, different reagents can be introduced into each of the reagent chambers without the reagents being mixed before or during drying. This is supported by a corresponding geometric design of the reagent chambers. For example, the chambers may be separated by sharp boundaries such as ridges or edges to prevent crosstalk due to creep effects. The sharp-edged boundaries also form a barrier for transporting the fluid out of a reagent chamber. However, this can be easily overcome by the external forces (centrifugal force, hydrostatic force). By being able to fill each chamber with a different reagent, several (different) reagents can be dissolved and homogenized in just one process step.

Die Anordnung der Reagenzkammern der Kanalstruktur ist derart ausgebildet, dass eine der Kammern rotationsachsenferner angeordnet ist als die andere Kammer, d. h. der Abstand der einen rotationsachsenfernen Reagenzkammer von der Rotationsachse ist größer als der Abstand der anderen Kammer. Durch die Rotation des mikrofluidischen Elements wird die in die Kanalstruktur eingegebene Flüssigkeit zunächst in die rotationsachsenferne Kammer geleitet, so dass diese Kammer zuerst gefüllt und das in der Kammer angelagerte Reagenz gelöst wird. Die Flüssigkeit reagiert mit dem Reagenz. Dabei sind die Flüssigkeitsmenge und das Volumen der ersten Reagenzkammer aufeinander abgestimmt.The arrangement of the reagent chambers of the channel structure is designed in such a way that one of the chambers is arranged to be more remote from the axis of rotation than the other chamber, ie the distance of the one reagent chamber remote from the axis of rotation from the axis of rotation is greater than the distance of the other chamber. As a result of the rotation of the microfluidic element, the liquid introduced into the channel structure is first conducted into the chamber remote from the axis of rotation, so that this chamber is filled first and the chamber deposited in the chamber Reagent is dissolved. The liquid reacts with the reagent. The amount of liquid and the volume of the first reagent chamber are matched to one another.

Erst wenn eine größere Flüssigkeitsmenge in die Kanalstruktur gegeben wird bzw. aus dem Zuführkanal in die Reagenzkammern einströmt, wird auch die zweite (und mögliche weitere rotationsachsennähere) Reagenzkammer gefüllt. Auf diese Weise können auch Reagenzien mit kleinen Probenmengen sehr gut gelöst werden. Es wird also zunächst die Reagenzkammer gefüllt, die am weitesten von der Rotationsachse entfernt ist. Die (relativ zu der entferntesten Reagenzkammer) näher an der Rotationsachse angeordneten Kammern werden erst in einem oder mehreren weiteren Schritten gefüllt, wobei die Reihenfolge der Befüllung vom Abstand zur Rotationsachse abhängt. Die Reagenzkammer mit dem geringsten Abstand zur Rotationsachse wird zuletzt gefüllt. Im Rahmen der Erfindung wurde erkannt, dass in vollständig gefüllten Reagenzkammern ein Lösen der Reagenzien zuverlässiger, vollständiger und schneller erfolgt als in nur teilgefüllten Kammern. Durch die Anordnung einer Mehrzahl von Reagenzkammern mit relativ kleinen Teilvolumen, z. B. 2, 3, 4, 5, 6, 8, 10, 12, 15 etc. Kammern, kann eine gute Durchmischung für eine große Zahl unterschiedlicher Volumen erzielt werden. Beispielsweise können drei oder fünf der z. B. 12 Reagenzkammern mit dem zu untersuchenden Volumen gefüllt werden, wobei alle (z.B. drei oder fünf) Kammern vollständig gefüllt sind. Wenn alle Reagenzkammern mit dem gleichen Reagenz bzw. der gleichen Zusammensetzung von Reagenzien gefüllt sind, kann auf diese Weise für unterschiedliche Volumina an Probenflüssigkeit eine sehr gute Durchmischung mit den Reagenzien erzielt werden.Only when a larger amount of liquid is added to the channel structure or flows from the supply channel into the reagent chambers, the second (and possible other rotationsachsennähere) reagent chamber is filled. In this way, even reagents with small amounts of sample can be solved very well. Thus, first the reagent chamber is filled which is furthest away from the axis of rotation. The (closer to the farthest reagent chamber) arranged closer to the axis of rotation chambers are filled only in one or more further steps, the order of filling depends on the distance to the axis of rotation. The reagent chamber with the smallest distance to the rotation axis is filled last. In the context of the invention, it has been recognized that in completely filled reagent chambers, a release of the reagents is more reliable, more complete and faster than in only partly filled chambers. By arranging a plurality of reagent chambers with relatively small partial volume, z. B. 2, 3, 4, 5, 6, 8, 10, 12, 15 etc. chambers, a good mixing for a large number of different volumes can be achieved. For example, three or five of z. B. 12 reagent chambers are filled with the volume to be tested, with all (e.g., three or five) chambers completely filled. If all reagent chambers are filled with the same reagent or the same composition of reagents, a very good mixing with the reagents can be achieved in this way for different volumes of sample liquid.

In einer bevorzugten Ausführungsform sind die jeweils zwei (oder mehreren) Verbindungskanäle zwischen zwei benachbarten Reagenzkammern parallel angeordnet. Die beabstandeten (getrennten) Verbindungskanäle werden bevorzugt durch gerade Kanalabschnitte gebildet. Bevorzugt ist die Länge wenigstens eines der Verbindungskanäle kleiner als die kleinste Dimension der Reagenzkammern in Testträgerebene. Die Testträgerebene ist die Ebene, die sich senkrecht zur Flächennormalen des Testträgers erstreckt, beispielsweise senkrecht zur Rotationsachse.In a preferred embodiment, the two (or more) connecting channels between two adjacent reagent chambers are arranged in parallel. The spaced (separate) connection channels are preferably formed by straight channel sections. Preferably, the length of at least one of the connection channels is smaller than the smallest dimension of the reagent chambers in the test carrier plane. The test carrier level is the level which extends perpendicular to the surface normal of the test carrier, for example, perpendicular to the axis of rotation.

Vorteilhafterweise ist einer der wenigstens zwei Verbindungskanäle zwischen benachbarten Reagenzkammern zentral angeordnet. Er fluchtet mit den Zentren der beiden Reagenzkammern, die er verbindet. Bevorzugt ist der (andere) Verbindungskanal derart seitlich mit den Reagenzkammern verbunden, dass er außerhalb der die Zentren verbindenden Zentralachse verläuft. Besonders bevorzugt ist er tangential an den Reagenzkammern angeordnet, dass seine Außenseite (Außenwand) mit den Außenwänden der Reagenzkammern fluchtet. Bevorzugt ist der zentrische Verbindungskanal breiter (er hat einen größeren Querschnitt bei gleicher Kanalhöhe) als der seitlich angeordnete Kanal.Advantageously, one of the at least two connecting channels is arranged centrally between adjacent reagent chambers. He aligns with the centers of the two reagent chambers that he connects. Preferably, the (other) connecting channel is laterally connected to the reagent chambers such that it extends outside the central axis connecting the centers. It is particularly preferably arranged tangentially to the reagent chambers that its outer side (outer wall) is aligned with the outer walls of the reagent chambers. Preferably, the centric connection channel is wider (it has a larger cross-section at the same channel height) than the laterally arranged channel.

Die Verbindungskanäle zwischen zwei benachbarten Reagenzkammern sind so ausgebildet, dass beim Befüllen der Reagenzkammeranordnung die Flüssigkeit durch die Verbindungskanäle von der einen Kammer in die zweite fließen kann. Dabei fließt die Flüssigkeit bevorzugt durch einen der Verbindungskanäle. Gleichzeitig kann die in der noch nicht befüllten Kammer enthaltene Luft durch den anderen der beiden Kanäle, also den nicht von der Flüssigkeit benetzten Kanal entweichen, bevorzugt durch den zentrischen Verbindungskanal.The connection channels between two adjacent reagent chambers are designed such that, when filling the reagent chamber arrangement, the liquid can flow through the connection channels from one chamber into the second. The liquid preferably flows through one of the connecting channels. At the same time, the air contained in the not yet filled chamber can escape through the other of the two channels, that is, the channel not wetted by the liquid, preferably through the central connecting channel.

Besonders bevorzugt ist eine Ausführungsform mit drei Verbindungskanälen zwischen zwei benachbarten Reagenzkammern. Dabei erstreckt sich ein Verbindungskanal entlang der Zentralachse, die die Zentren von zwei benachbarten Reagenzkammern verbindet. Die beiden anderen Verbindungskanäle sind bevorzugt tangential an den Reagenzkammern angeordnet. Beim Befüllen der Reagenzkammern wird zunächst die rotationsachsenferne Reagenzkammer gefüllt. Dazu wird Flüssigkeit durch den (tangentialen) Verbindungskanal, der der Einlassöffnung benachbart ist, in die rotationsachsenferne Kammer geleitet. Beim Befüllen der rotationsachsenfernen Reagenzkammer entweicht Luft durch die beiden anderen Verbindungskanäle (den mittleren und den zweiten tangentialen Kanal) bis die Reagenzkammer gefüllt ist. Bei einem weiteren Befüllen wird die Luft in den beiden anderen Verbindungskanälen durch Flüssigkeit verdrängt, so dass ein weiteres Befüllen der rotationsachsennahen Reagenzkammer zunächst durch die beiden anderen Verbindungskanäle erfolgt und schließlich auch über den ersten Verbindungskanal, der der Einlassöffnung benachbart ist.Particularly preferred is an embodiment with three connecting channels between two adjacent reagent chambers. In this case, a connecting channel extends along the central axis, which connects the centers of two adjacent reagent chambers. The two other connection channels are preferably arranged tangentially to the reagent chambers. When filling the reagent chambers, the reaction chamber remote from the axis of rotation is first filled. For this purpose, liquid is passed through the (tangential) connecting channel, which is adjacent to the inlet opening, into the chamber remote from the axis of rotation. When filling the reaction chamber remote from the axis of rotation air escapes through the two other communication channels (the middle and the second tangential channel) until the reagent chamber is filled. At another Filling the air in the other two connecting channels is displaced by liquid, so that further filling of the rotational axis near the reagent chamber initially takes place through the two other connecting channels and finally via the first connecting channel which is adjacent to the inlet opening.

Bei einer Anordnung eines fluidischen Elements mit drei oder mehr Reagenzkammern sind die wenigstens zwei Verbindungskanäle (bevorzugt drei Verbindungskanäle) jeweils zwischen zwei benachbarten Reagenzkammern angeordnet. Zwei Reagenzkammern sind benachbart, wenn zwischen ihnen keine weitere Reagenzkammer angeordnet ist und ein Fluidaustausch zwischen ihnen direkt über die wenigstens zwei Verbindungskanäle erfolgt, ohne dass weitere fluidische Strukturen dazwischen geschaltet sind.In an arrangement of a fluidic element having three or more reagent chambers, the at least two connection channels (preferably three connection channels) are each arranged between two adjacent reagent chambers. Two reagent chambers are adjacent when no further reagent chamber is arranged between them and a fluid exchange between them takes place directly via the at least two connection channels, without further fluidic structures being interposed therebetween.

Die erfindungsgemäße Kanalstruktur mit wenigstens zwei Reagenzkammern, die durch wenigstens zwei Verbindungskanäle direkt miteinander verbunden sind, bietet eine hohe Flexibilität, eine platzsparende und kompakte Anordnung sowie eine Reihe von funktionalen Vorteilen:

  1. 1. Mit zwei miteinander verbundenen Reagenzkammern ist eine zweistufige Reaktionsführung möglich. In einem ersten Schritt wird dabei eine Flüssigkeitsmenge, die dem Volumen der ersten Reagenzkammer entspricht, in die erste, rotationsachsenferne Reagenzkammer geleitet. Das darin enthaltene Trockenreagenz wird aufgelöst, so dass die erste Reaktion stattfinden kann. In einem weiteren Schritt wird eine zweite Flüssigkeitsteilmenge in die Anordnung der Reagenzkammern gefüllt, wobei die zweite Teilmenge dem Volumen der zweiten Reagenzkammer entspricht. Diese zweite Teilmenge der Flüssigkeit kann beispielsweise ein Puffermedium sein. Der Füllvorgang findet dadurch statt, dass die zusätzliche zweite Teilmenge durch die Zentrifugalkraft zunächst in die erste Kammer gedrückt wird und sich mit dem dort vorhandenen Fluid vermischt und erst dann in die zweite Reagenzkammer strömt. Durch eine entsprechende Steuerung der Rotationsgeschwindigkeit und Rotationsrichtung beginnt ein Mischvorgang, bei dem das Reagenz in der zweiten Reagenzkammer aufgelöst wird und eine zweite Reaktion mit dem zweiten Reagenz stattfindet. Da bei dem Anlösen jeweils beide Reagenzkammern vollständig gefüllt sind, wird eine gute Homogenisierung und Durchmischung in den unterschiedlichen Phasen in jeweils beiden Kammern erzielt.
  2. 2. Die Reagenzkammeranordnung bietet den Vorteil, dass ein optimiertes Anlösen eines Trockenreagenz in der rotationsachsenfernen ersten Kammer dadurch stattfindet, dass diese Kammer jeweils von dem gesamten Füllvolumen mehrfach, beim Vorhandensein von zwei Reagenzkammern zweifach durchströmt wird. Zunächst findet ein Durchströmen der ersten Reagenzkammer beim Füllen der Kammer statt. Das zweite Durchströmen findet beim Entleeren der Struktur statt. Auf diese Weise wird eine besonders gute Auflösung der Trockenreagenzien erzielt. Dies hat den weiteren Vorteil, dass auch die beim Eintrocknen von Reagenzien entstehenden Agglomerate, die durch die Zentrifugalkraft radial nach außen in die erste Kammer gedrückt werden, beim anschließenden Entleeren mit dem Fluid aus den radial innen liegenden Kammern "nachgespült" werden. Verluste an der Innenoberfläche der ersten Reagenzkammer werden vermieden.
  3. 3. Mit der erfindungsgemäßen Anordnung lassen sich auf einfache Weise Verdünnungsreihen realisieren. Da die Anordnung der Reagenzkammern eine sehr kompakte Kanalstruktur ermöglicht, können auf einem Testträger mehrere Kanalstrukturen ausgebildet sein. Zur Durchführung einer Verdünnungsreihe wird in den parallel angeordneten Kanalstrukturen jeweils nur die rotationsachsenferne erste Reagenzkammer mit Reagenzien bestückt. Zur Durchführung einer Verdünnungsreihe werden die parallelen Strukturen mit unterschiedlichen Volumina gefüllt, so dass für eine definierte Reagenzmenge unterschiedliche Verdünnungen in nur einem Prozessschritt erzeugt werden können. Der Vorteil einer derartigen sequentiellen Mikroreaktorkaskade mit einer so genannten Perlenkettenstruktur (Reihenschaltung von mehreren Kammern) liegt darin, dass die komplette Reaktion mit variablen Volumina durchgeführt werden kann, ohne Änderungen in der Geometrie der Kanalstruktur vornehmen zu müssen. Dabei ist das geringste Volumen der Probenflüssigkeit so groß wie das Volumen der ersten Reagenzkammer. Bevorzugt sind die zu untersuchenden Volumina ein Vielfaches der vorzugsweise gleichen Volumina der einzelnen Reagenzkammern.
  4. 4. Ein weiterer Vorteil der Reagenzkammerstruktur liegt darin, dass die einzelnen Reagenzkammern auf die zu untersuchenden Teilvolumina abgestimmt sein können. Im Rahmen der Erfindung wurde bei Untersuchungen zum Anlöse- und Mischverhalten erkannt, dass bei vollständig gefüllten Kammern die Mischvorgänge optimiert ablaufen. Steht beispielsweise in einem ersten Befüllungsschritt nur eine Teilmenge des Fluids zur Verfügung, beispielsweise ein Verdünnungspuffer, der erst später mit einer Probenflüssigkeit aufgefüllt wird, so würde in einem "Ein-Kammer-System" die Homogenisierung mit der ersten Teilmenge nur sehr schlecht ablaufen, da Lufteinschlüsse gebildet werden würden. In einer Reagenzkammeranordnung mit mehreren Reagenzkammern sind die Kammern jeweils auf das Teilvolumen der zu untersuchenden Flüssigkeit ausgelegt und ermöglichen so ein optimiertes Anlösen und Mischen, da die einzelne Reagenzkammer von dem Flüssigkeitsteilvolumen komplett gefüllt wird. Auch ein Schäumen der Lösung wird verhindert.
The channel structure according to the invention with at least two reagent chambers, which are directly connected to one another by at least two connecting channels, offers high flexibility, a space-saving and compact arrangement and a number of functional advantages:
  1. 1. With two interconnected reagent chambers a two-stage reaction is possible. In a first step, an amount of liquid corresponding to the volume of the first reagent chamber is guided into the first reagent chamber remote from the axis of rotation. The dry reagent contained therein is dissolved so that the first reaction can take place. In a further step, a second liquid subset is filled into the arrangement of the reagent chambers, wherein the second subset corresponds to the volume of the second reagent chamber. This second subset of the liquid may be, for example, a buffer medium. The filling process takes place in that the additional second subset is first pressed by the centrifugal force in the first chamber and mixed with the existing fluid there and then flows into the second reagent chamber. By an appropriate control of the rotational speed and direction of rotation begins Mixing process in which the reagent in the second reagent chamber is dissolved and a second reaction takes place with the second reagent. Since both reagent chambers are completely filled when they are dissolved, good homogenization and thorough mixing in the different phases in each of the two chambers is achieved.
  2. 2. The reagent chamber arrangement has the advantage that an optimized dissolution of a dry reagent takes place in the first chamber remote from the axis of rotation, in that this chamber is perfused twice in each case by the entire filling volume twice in the presence of two reagent chambers. First, a flow through the first reagent chamber takes place during filling of the chamber. The second flow occurs when the structure is emptied. In this way, a particularly good resolution of the dry reagents is achieved. This has the further advantage that even the agglomerates formed during the drying of reagents, which are pressed radially outwards into the first chamber by the centrifugal force, are "rinsed" with the fluid from the radially inner chambers during the subsequent emptying. Losses on the inner surface of the first reagent chamber are avoided.
  3. 3. With the arrangement according to the invention can be realized in a simple way dilution series. Since the arrangement of the reagent chambers enables a very compact channel structure, a plurality of channel structures can be formed on a test carrier. In order to carry out a dilution series, only the first reagent chamber remote from the axis of rotation is filled with reagents in the parallel channel structures. To carry out a dilution series, the parallel structures are filled with different volumes, so that different dilutions can be produced in just one process step for a defined amount of reagent. The advantage of such a sequential microreactor cascade with a so-called bead-chain structure (series connection of several chambers) is that the complete reaction can be carried out with variable volumes, without changes in to make the geometry of the channel structure. In this case, the smallest volume of the sample liquid is as large as the volume of the first reagent chamber. The volumes to be examined are preferably a multiple of the preferably equal volumes of the individual reagent chambers.
  4. 4. Another advantage of the reagent chamber structure is that the individual reagent chambers can be matched to the partial volumes to be examined. In the context of the invention, it was recognized in investigations of the dissolving and mixing behavior that, when the chambers are completely filled, the mixing processes take place in an optimized manner. If, for example, only a subset of the fluid is available in a first filling step, for example a dilution buffer which is filled up later with a sample liquid, homogenization with the first subset would be very poor in a "one-chamber system" Air pockets would be formed. In a reagent chamber arrangement with a plurality of reagent chambers, the chambers are each designed for the partial volume of the liquid to be examined and thus enable optimized dissolution and mixing, since the individual reagent chamber is completely filled by the liquid partial volume. Foaming of the solution is also prevented.

Um die Mischvorgänge in der Reagenzkammeranordnung weiter zu verbessern umfasst die Kanalstruktur in einer bevorzugten Ausführungsform eine Mischkammer, in der die Reagenzkammern und die Verbindungskanäle zwischen den Reagenzkammern integriert sind. Auf diese Weise werden die Eigenschaften der einzelnen Reagenzkammern mit den Eigenschaften einer fluidischen Einzelkammer noch besser kombiniert. Bevorzugt sind die Reagenzkammern in der Mischkammer derart in radialer Richtung in Reihe angeordnet, dass die Reihe der Kammern einen Winkel von maximal 80° zur Radialrichtung, besonders bevorzugt von maximal 60°, einschließt. Unter Radialrichtung ist dabei eine Gerade zu verstehen, die sich von der Rotationsachse des mikrofluidischen Elements bzw. des Testträgers nach außen erstreckt. Die Reagenzkammern müssen folglich nicht direkt radial nach außen gerichtet sein, sondern können einen Winkel zur Radialrichtung einschließen, der von 90° verschieden ist.In order to further enhance the mixing operations in the reagent chamber assembly, in a preferred embodiment, the channel structure comprises a mixing chamber in which the reagent chambers and the connection channels are integrated between the reagent chambers. In this way, the properties of the individual reagent chambers are better combined with the properties of a fluidic single chamber. Preferably, the reagent chambers in the mixing chamber are arranged in series in the radial direction in such a way that the row of chambers encloses an angle of at most 80 ° to the radial direction, particularly preferably of a maximum of 60 °. Radial direction is to be understood as meaning a straight line that extends outward from the axis of rotation of the microfluidic element or of the test carrier. The Thus, reagent chambers need not be directly directed radially outward, but may include an angle to the radial direction that is different than 90 °.

Die Reagenzkammern sind so ausgebildet, dass ein Befüllen mit einer Flüssigkeit und das Anlösen eines in der Reagenzkammer enthaltenen festen Trockenreagenz erfolgt, ohne dass die Flüssigkeit in die benachbarte Reagenzkammer strömt. Solange die Flüssigkeitsmenge das Volumen der Reagenzkammer nicht überschreitet, verbleibt die Flüssigkeit in der Reagenzkammer, in die sie einströmt. Dies ist beim ersten Befüllen stets die rotationsachsenferne Reagenzkammer. In der Regel weist sie deshalb die Einlassöffnung auf, die in Fluidverbindung mit dem Zuführkanal derart steht, dass eine Flüssigkeitsprobe in die rotationsachsenferne Reagenzkammer fließen kann.The reagent chambers are designed to be filled with a liquid and to dissolve a solid dry reagent contained in the reagent chamber without the liquid flowing into the adjacent reagent chamber. As long as the amount of liquid does not exceed the volume of the reagent chamber, the liquid remains in the reagent chamber into which it flows. This is always the first time you fill the rotating axis remote reagent chamber. As a rule, therefore, it has the inlet opening, which is in fluid communication with the feed channel such that a liquid sample can flow into the rotation axis remote reagent chamber.

Vorzugsweise weisen die Reagenzkammern eine runde Ausgestaltung auf. Ihre Grundfläche ist kreisförmig ausgebildet. Der Boden der einzelnen Kammern ist verrundet, so dass der Boden stetig in die Kammerwände übergeht, also ohne eine Kante. Bevorzugt sind die Reagenzkammern in Form einer Halbkugel oder eines Halbkugelsegments ausgebildet. Zwischen zwei benachbarten Kammern ist ein Steg ausgebildet, der die beiden Kammern trennt. Am oberen Ende der Kammer ist eine Kante vorgesehen, so dass ein Kapillarstop gebildet wird, der einen Austritt von Flüssigkeit aus einer der Reagenzkammern verhindert. Diese stegartige Barriere wird in Fachkreisen als Tellerrand bezeichnet. Selbstverständlich muss die Kante im Übergang nicht scharfkantig sein. Sie kann auch einen geringen Radius aufweisen. Allerdings ist der Radius so klein zu wählen, dass die Barrierefunktion erhalten bleibt.Preferably, the reagent chambers have a round configuration. Their base is circular. The bottom of the individual chambers is rounded, so that the floor merges steadily into the chamber walls, ie without an edge. The reagent chambers are preferably designed in the form of a hemisphere or a hemisphere segment. Between two adjacent chambers, a web is formed, which separates the two chambers. At the upper end of the chamber, an edge is provided so that a capillary stop is formed, which prevents leakage of liquid from one of the reagent chambers. This web-like barrier is referred to in professional circles as a plate. Of course, the edge in the transition does not have to be sharp-edged. It can also have a small radius. However, the radius should be chosen so small that the barrier function is maintained.

Bevorzugt sind die Reagenzkammern, die jeweils von wenigstens zwei Verbindungskanälen miteinander verbunden sind, in einer Mischkammer integriert. Die Mischkammer besteht aus den Reagenzkammern, den Verbindungskanälen, einer Zuführöffnung, durch die Flüssigkeit aus einem Zuführkanal in die Mischkammer eintreten kann, und einer Entlüftungsöffnung, die am Ende eines Entlüftungskanals, der mit der Mischkammer in Luftaustauschverbindung steht, angeordnet ist. Darüber hinaus kann die Mischkammer auch einen Transportkanal umfassen, der seitlich an den Reagenzkammern entlang geführt ist.The reagent chambers, which are each connected to one another by at least two connecting channels, are preferably integrated in a mixing chamber. The mixing chamber consists of the reagent chambers, the connection channels, a feed opening through which liquid can enter from a feed channel into the mixing chamber, and a vent opening at the end a vent channel, which is in air exchange communication with the mixing chamber, is arranged. In addition, the mixing chamber may also comprise a transport channel which is guided laterally along the reagent chambers.

Reagenzkammern mit einem verrundeten Boden bzw. einer verrundeten Vertiefung als Struktur eignen sich auch unabhängig von dem Einsatz in rotierenden Testträgern und Zentrifugaldevices, um zwei oder mehrere Reagenzien einzeln in die Struktur einzubringen und erst beim Anlösen mit einer Flüssigkeit zu einem späteren Zeitpunkt gemeinsam zu vermischen. Dies gilt insbesondere für Reagenzien, die miteinander reagieren, aber erst zu einem Analysezeitpunkt (beispielsweise beim Anlösen mit Plasma) vermischt werden dürfen, vorher jedoch nicht. Erst in der Analyse sollen sie sich gemeinsam anlösen. Die in der Figurenbeschreibung gemachten Aussagen in Bezug auf rotierende Testträger lassen sich deshalb auch auf nicht rotierende Testträger übertragen, bei denen die Reagenzkammern einen abgerundeten Boden aufweisen und bevorzugt eine halbkugelförmige Gestalt haben.Reagent chambers having a rounded bottom or a rounded depression as a structure are also suitable for use in rotating test carriers and Zentrifugaldevices to introduce two or more reagents individually in the structure and to mix together only when dissolved with a liquid at a later date. This applies in particular to reagents which react with one another but may only be mixed at an analysis time (for example when dissolving with plasma), but not before. Only in the analysis should they dissolve together. The statements made in the figure description with respect to rotating test carrier can therefore be transferred to non-rotating test carrier in which the reagent chambers have a rounded bottom and preferably have a hemispherical shape.

Halbkugelförmige Reagenzkammern, die bevorzugt in einer Mischkammer zusammengefasst sind, weisen auch einen großen Vorteil beim Einbringen und beim Eintrocknen von Reagenzien auf. Die Reagenzien werden in flüssiger Form in die Reagenzkammern eingebracht und dort getrocknet. Während des Trocknungsvorgangs wirkt die Oberflächenspannung, so dass das dosierte flüssige Reagenz die Umgebung des Aufbringpunkts benetzt und sich langsam verteilt. Trifft es dabei auf Kanten oder ähnliche Stellen, die eine höhere Kapillarität haben, trocknet es dort konzentriert ein. Durch den verrundeten Boden wird ein derartiges Aufkonzentrieren verhindert. Da pro Reagenzkammer nur ein Reagenz appliziert wird, wird auch ein Zusammenfließen und Vermischen unterbunden. Dies wird durch die scharfkantigen oberen Ränder der Kammern unterstützt. Auch beim Anlösen der Reagenzien erweisen sich die Reagenzkammern mit rundem Boden als besonders vorteilhaft.Hemispherical reagent chambers, which are preferably combined in a mixing chamber, also have a great advantage in the introduction and drying of reagents. The reagents are introduced into the reagent chambers in liquid form and dried there. During the drying process, the surface tension acts, so that the metered liquid reagent wets the environment of the application point and spreads slowly. If it strikes edges or similar places, which have a higher capillarity, it dries concentrated there. The rounded bottom prevents such concentration. Since only one reagent is applied per reagent chamber, also a confluence and mixing is prevented. This is supported by the sharp-edged upper edges of the chambers. Even when the reagents are dissolved, the round bottom reagent chambers prove to be particularly advantageous.

Die Erfindung wird nachfolgend anhand von in den Figuren dargestellten besonderen Ausführungsformen näher erläutert. Dazu wird die Erfindung beispielhaft an einem rotierenden Testträger beschrieben. Die dort dargestellten Besonderheiten können einzeln oder in Kombination verwendet werden, um bevorzugte Ausgestaltungen der Erfindung zu schaffen, beispielsweise eine Kanalstruktur eines mikrofluidischen Elements, das nicht rotiert. Zur Verdeutlichung von Details stimmen die dargestellten Proportionen der einzelnen Komponenten teilweise nicht überein. Die beschriebenen Ausführungen stellen keine Einschränkung der durch die Ansprüche in ihrer Allgemeinheit definierten Erfindung dar. Es zeigen:

Fig. 1
ein als Testträger ausgebildetes mikrofluidisches Element mit drei identischen Kanalstrukturen;
Fig. 2a, b, c
Schnittbilder durch eine Kanalstruktur aus Fig. 1;
Fig. 3
einen alternativen Testträger;
Fig. 4
eine Detailzeichnung einer Kanalstruktur mit drei Reagenzkammern;
Fig. 5
Detailzeichnungen einer Kanalstruktur mit drei Reagenzkammern beim Befüllen;
Fig. 6
eine Ausführungsform mit zwei Reagenzkammern;
Fig. 7
eine Ausführungsform mit drei Reagenzkammern;
Fig. 8
eine perspektivische Ansichten der Anordnung aus Fig. 7;
Fig. 9
eine Anordnung mit sechs Reagenzkammern;
Fig. 10a, b, c
eine Anordnung mit zwei Reagenzkammern beim Eintrocknen von flüssigen Reagenzien
The invention will be explained in more detail with reference to specific embodiments shown in the figures. For this purpose, the invention is described by way of example on a rotating test carrier. The features illustrated therein may be used alone or in combination to provide preferred embodiments of the invention, for example, a channel structure of a microfluidic element that does not rotate. To clarify details, the proportions of the individual components shown do not match in part. The described embodiments do not limit the invention defined by the claims in their generality. It shows:
Fig. 1
a trained as a test carrier microfluidic element with three identical channel structures;
Fig. 2a, b, c
Sectional images through a channel structure Fig. 1 ;
Fig. 3
an alternative test carrier;
Fig. 4
a detailed drawing of a channel structure with three reagent chambers;
Fig. 5
Detailed drawings of a channel structure with three reagent chambers during filling;
Fig. 6
an embodiment with two reagent chambers;
Fig. 7
an embodiment with three reagent chambers;
Fig. 8
a perspective views of the arrangement Fig. 7 ;
Fig. 9
an arrangement with six reagent chambers;
Fig. 10a, b, c
an arrangement with two reagent chambers during the drying of liquid reagents

Figur 1 zeigt ein mikrofluidisches Element 1 mit drei identisch aufgebauten Kanalstrukturen 2, die sich im Wesentlichen radial nach außen erstrecken. Vorzugsweise ist die kleinste Dimension der Kanalstruktur 2 wenigstens 0,1 mm, besonders bevorzugt wenigstens 0,2 mm groß. Das mikrofluidische Element 1 ist ein Testträger 3, der als runde Scheibe ausgebildet ist und durch den sich eine Rotationsachse 4 mittig erstreckt, um die der scheibenförmige Testträger 3 rotiert. Die Kanalstruktur 2 wird von einem Substrat 5 und einer nicht gezeigten Deckschicht umschlossen, die den Testträger 3 von oben abdeckt. FIG. 1 shows a microfluidic element 1 with three identically constructed channel structures 2, which extend substantially radially outward. Preferably, the smallest dimension of the channel structure 2 is at least 0.1 mm, more preferably at least 0.2 mm in size. The microfluidic element 1 is a test carrier 3, which is designed as a round disc and through which a rotation axis 4 extends centrally around which the disc-shaped test carrier 3 rotates. The channel structure 2 is formed by a substrate 5 and a Enclosed cover layer not shown, which covers the test carrier 3 from above.

Das mikrofluidische Element 1 ist zum Einsatz in einem Analysegerät oder einem ähnlichen Gerät geeignet, dass eine Halterung aufweist, um das mikrofluidische Element aufzunehmen und rotieren zu lassen. Das Gerät ist vorzugsweise so ausgebildet, dass das mikrofluidische Element um eine Drehwelle des Geräts rotiert wird, wobei die Achse der Drehwelle mit der Rotationsachse 4 des mikrofluidischen Elements 1 fluchtet. Dazu kann sich die Drehwelle des Geräts durch eine Bohrung 4a des Testträgers 3 erstrecken. Bevorzugt erstreckt sich die Rotationsachse 4 durch den Mittelpunkt oder den Schwerpunkt des Elements 1.The microfluidic element 1 is suitable for use in an analyzer or similar device having a support for receiving and rotating the microfluidic element. The device is preferably designed such that the microfluidic element is rotated about a rotary shaft of the device, wherein the axis of the rotary shaft is aligned with the axis of rotation 4 of the microfluidic element 1. For this purpose, the rotary shaft of the device can extend through a bore 4a of the test carrier 3. The axis of rotation 4 preferably extends through the center or the center of gravity of the element 1.

Die Kanalstruktur 2 des mikrofluidischen Elements 1 schließt einen Zuführkanal 6 ein, der einen U-förmigen Kanalabschnitt 7 und einen geraden Kanalabschnitt 8 umfasst. Am Ende der beiden U-Schenkel des U-förmigen Kanalabschnitts 7 ist je eine Zuführöffnung 9 vorgesehen, durch die eine Flüssigkeitsprobe, bevorzugt beispielsweise eine Körperflüssigkeit wie Blut, in den Zuführkanal 6 eingegeben werden kann. Beispielsweise kann eine Probenflüssigkeit von einem Bediener manuell (mit einer Pipette) in eine Zuführöffnung 9 dosiert werden. Alternativ kann der Zuführkanal auch mittels einer Dosierstation eines Analysegerätes mit einer Flüssigkeit bestückt werden. Beim Dosieren einer Flüssigkeit in den Zuführkanal 6 wird in die Flüssigkeit durch eine der beiden Zuführöffnungen 9 hineingegeben, während die in dem Kanal enthaltene Luft durch die zweite Zuführöffnung entweichen kann.The channel structure 2 of the microfluidic element 1 includes a feed channel 6, which comprises a U-shaped channel section 7 and a straight channel section 8. At the end of the two U-legs of the U-shaped channel portion 7, a feed opening 9 is provided, through which a liquid sample, preferably, for example, a body fluid such as blood, can be entered into the feed channel 6. For example, a sample liquid can be metered by an operator manually (with a pipette) into a feed opening 9. Alternatively, the feed channel can also be equipped with a liquid by means of a dosing station of an analytical device. When dosing a liquid in the feed channel 6 is inserted into the liquid through one of the two feed openings 9, while the air contained in the channel can escape through the second supply port.

Die Kanalstruktur 2 umfasst weiter einen Entlüftungskanal 10 mit einer Entlüftungsöffnung 11 sowie zwei Reagenzkammern 13, die über drei Verbindungskanäle 14 so miteinander verbunden sind, dass ein Fluidaustausch zwischen den beiden Reagenzkammern 13 erfolgt. Die Kanalstruktur 2 ist in einer bevorzugten Ausführungsform nach Figur 1 als Analysefunktionskanal 15 ausgebildet, der eine Messkammer 16, einen Messkanal 17 zwischen der Messkammer 16 und den Reagenzkammern 13 sowie eine Waste-Kammer 18 umfasst, die über einen Entsorgungskanal 19 mit der Messkammer 16 verbunden ist. Die Messkammer 16 wird über einen eigenen Entlüftungskanal entlüftet. Die als Sammelbecken 20 ausgebildete Waste-Kammer 18 weist einen Entlüftungskanal 21 mit einem Auslassventil am Ende auf, durch den Luft aus der Kanalstruktur 2 entweichen kann.The channel structure 2 further comprises a vent channel 10 with a vent opening 11 and two reagent chambers 13, which are connected to each other via three connecting channels 14 so that a fluid exchange between the two reagent chambers 13 takes place. The channel structure 2 is in a preferred embodiment according to FIG. 1 formed as analysis function channel 15, which comprises a measuring chamber 16, a measuring channel 17 between the measuring chamber 16 and the reagent chambers 13 and a waste chamber 18, which is connected via a disposal channel 19 with the measuring chamber 16. The measuring chamber 16 is vented via its own venting channel. Trained as a reservoir 20 Waste chamber 18 has a vent passage 21 with an outlet valve at the end, can escape through the air from the channel structure 2.

In einer bevorzugten Ausführungsform, wie z. B. in Figur 1 gezeigt, schließt die Kanalstruktur 2 eine Mischkammer 22 ein, in die die beiden Reagenzkammern 13 und die drei Verbindungskanäle 14 integriert sind. Die Mischkammer 22 hat eine Einlassöffnung 23, die in Fluidverbindung mit dem Zuführkanal 6 steht, so dass eine Flüssigkeitsprobe in die rotationsachsenferne Reagenzkammer 13a einfließen kann. Die rotationsachsenferne Reagenzkammer 13a hat eine größere Entfernung zu der Rotationsachse 4 als die andere Reagenzkammer 13b. Die rotationsachsennahe Reagenzkammer 13b (näher an der Rotationsachse 4 als die Reagenzkammer 13a) steht über einem Luftauslass 33 in Fluidkontakt mit dem Entlüftungskanal 10, so dass Luft aus der Reagenzkammeranordnung und der Mischkammer 22 entweichen.In a preferred embodiment, such. In FIG. 1 shown, the channel structure 2 includes a mixing chamber 22, in which the two reagent chambers 13 and the three connecting channels 14 are integrated. The mixing chamber 22 has an inlet opening 23 which is in fluid communication with the feed channel 6, so that a liquid sample can flow into the rotation axis remote reagent chamber 13 a. The rotation axis remote reagent chamber 13a has a greater distance to the rotation axis 4 than the other reagent chamber 13b. The near-axis reagent chamber 13b (closer to the rotation axis 4 than the reagent chamber 13a) is in fluid contact with the vent passage 10 via an air outlet 33, so that air escapes from the reagent chamber assembly and the mixing chamber 22.

Wird eine Flüssigkeit in den U-förmigen Kanalabschnitt 7 gegeben und deren Testträger 3 dann um die Rotationsachse 4 rotiert, so drückt die Zentrifugalkraft die Flüssigkeit durch den geraden Kanalabschnitt 8 des Zuführkanals 6 bis die Flüssigkeit die Mischkammer 22 durch die Einlassöffnung 23 erreicht. Die Flüssigkeit wird dann in der rotationsachsenfernen Reagenzkammer 13a gesammelt, bis sich diese gefüllt hat. Dabei wird ein in der Reagenzkammer 13a eingetrocknetes Trockenreagenz gelöst. Wird weiter Flüssigkeit in die Mischkammer 22 eingelassen, so fließt die Flüssigkeit nun durch die drei Verbindungskanäle 14 in die rotationsachsennähere Reagenzkammer 13b, wobei der radial am weitesten außen liegende Verbindungskanal 14 zuerst mit Flüssigkeit gefüllt wird. Die in der Mischkammer 22 enthaltene Luft entweicht durch einen Lufteinlass 33 in den Entlüftungskanal 10 nach außen.When a liquid is placed in the U-shaped channel section 7 and its test carrier 3 is then rotated about the rotation axis 4, the centrifugal force pushes the liquid through the straight channel section 8 of the feed channel 6 until the liquid reaches the mixing chamber 22 through the inlet opening 23. The liquid is then collected in the off-axis reagent chamber 13a until it has filled. In this case, a dry reagent dried in the reagent chamber 13a is dissolved. If further liquid is admitted into the mixing chamber 22, the liquid now flows through the three connecting channels 14 into the rotational axis-closer reagent chamber 13b, wherein the radially outermost connecting channel 14 is first filled with liquid. The air contained in the mixing chamber 22 escapes through an air inlet 33 in the vent passage 10 to the outside.

Durch geeignete Steuerung der Rotationsgeschwindigkeit, der Drehrichtung und der Beschleunigung kann ein optimiertes Anlösen der Reagenzien in den Reagenzkammern 13 erfolgen, was durch die verrundeten Reagenzkammern 13 unterstützt wird.By suitable control of the rotational speed, the direction of rotation and the acceleration can be an optimized solubilization of the reagents in the Reagent chambers 13 take place, which is supported by the rounded reagent chambers 13.

Figur 2a zeigt einen Schnitt entlang der Linie IIA aus Figur 1 durch die zwei Reagenzkammern 13a, 13b. Die Reagenzkammern 13a, 13b sind bevorzugt halbkugelförmig ausgebildet, wobei die offene Öffnungsfläche der Halbkugeln 24 von der Deckschicht abgeschlossen wird. Die Reagenzkammern 13 sind an ihrem Boden so verrundet, dass keine scharfen Kanten auftreten. Der verrundete Kammerboden stellt also eine gleichmäßige Verteilung sowohl des Reagenz als auch ein gleichmäßiges Anlösen und eine gleichmäßige Strömungsgeschwindigkeit sicher. Die Übergänge zu den Verbindungskanälen sind bevorzugt nicht abgerundet sondern scharfkantig, d.h. an dem oberen Rand der Halbkugeln 24 ist eine scharfe Kante 25 ausgebildet, wobei die Kante 25 bevorzugt einen Winkel von 90° einschließt. Hierdurch entsteht eine Art geometrisches Ventil, das einen Überlaufschutz bildet, da die Kante eine physikalische Barriere für den Weitertransport der Flüssigkeit darstellt. FIG. 2a shows a section along the line IIA FIG. 1 through the two reagent chambers 13a, 13b. The reagent chambers 13a, 13b are preferably hemispherical in shape, wherein the open opening surface of the hemispheres 24 is closed by the cover layer. The reagent chambers 13 are rounded at their bottom so that no sharp edges occur. The rounded bottom of the chamber thus ensures a uniform distribution of both the reagent and a uniform solubilization and a uniform flow rate. The transitions to the connecting channels are preferably not rounded but sharp-edged, ie at the upper edge of the hemispheres 24 a sharp edge 25 is formed, wherein the edge 25 preferably includes an angle of 90 °. This creates a kind of geometric valve that provides overflow protection because the edge provides a physical barrier to the further transport of the liquid.

Um die Reagenzien in die Kammer zu bringen, werden in den offenen Testträger 3 ohne Deckschicht die in flüssiger Form vorliegenden Reagenzien eingebracht, beispielsweise durch Pipettieren. Die scharfen Kanten dienen dann als Begrenzung, die ein Kriechen der flüssigen Reagenzien während der Eintrocknung vermeiden. Die Struktur wird somit unabhängiger gegenüber Störeffekten während des automatischen Prozessierens bei der Eintrocknung. An die Reagenzkammern 13 schließt sich am oberen Rand ein Überlaufschutz 26 an, der verhindert, dass Reagenzien aus der Mischkammer 22 heraustreten können. Die Oberflächenvergrößerung durch den Überlaufschutz 26 kann sich zudem verlängernd auf die Mischzeit beim Vermischen bzw. Auflösen der Trockenreagenzien auswirken.In order to bring the reagents into the chamber, the reagents present in liquid form are introduced into the open test carrier 3 without cover layer, for example by pipetting. The sharp edges then serve as boundaries that prevent creeping of the liquid reagents during drying. The structure thus becomes more independent of disturbing effects during automatic processing during drying. An overflow protection 26 adjoins the reagent chambers 13 at the upper edge, which prevents reagents from escaping from the mixing chamber 22. The surface enlargement by the overflow protection 26 can also have an elongating effect on the mixing time during mixing or dissolution of the dry reagents.

Figur 2b zeigt den Schnitt durch die Kanalstruktur 2 aus Figur 2a, jedoch mit dargestellten Trockenreagenzien 35 und Deckschicht 34. Die Reagenzkammern 13 und die Mischkammer 22 ist hier so ausgebildet, dass die Tiefe t des Überlaufschutzes 26 etwa ein Drittel der Tiefe T des Mischkanals 22 ist. Die Tiefe t des Überlaufschutzes 26 beträgt ca. 400 µm. Zwei Drittel der Tiefe T des Mischkanals 22 wird durch die Reagenzkammern 13 gebildet. Das eingetrocknete Reagenz 35 bedeckt den Boden und die Innenflächen der Halbkugeln 24, wobei die Füllhöhe h des Trockenreagenz 35 am Boden ca. der halben Höhe H der Halbkugel 24 entspricht. An den Rändern fließt das Reagenz 35 während der Eintrocknung weiter hinauf; es wird jedoch durch die physikalische Barriere und die Kante 25 von einem Weiterkriechen über den zwischen den beiden Kammern 13a, 13b gebildeten Steg 27 gehindert. Der Steg 27 erstreckt sich bevorzugt zwischen zwei benachbarten Reagenzkammern 13 in Richtung zur Deckschicht 34 und trennt so die beiden Reagenzkammern 13a, 13b der Mischkammer 22. FIG. 2b shows the section through the channel structure 2 FIG. 2a However, with shown dry reagents 35 and cover layer 34. The reagent chambers 13 and the mixing chamber 22 is here designed so that the depth t of the overflow protection 26 is about one third of the depth T of the mixing channel 22. The Depth t of the overflow protection 26 is about 400 microns. Two-thirds of the depth T of the mixing channel 22 is formed by the reagent chambers 13. The dried reagent 35 covers the bottom and the inner surfaces of the hemispheres 24, wherein the filling height h of the dry reagent 35 at the bottom corresponds approximately to half the height H of the hemisphere 24. At the edges, the reagent 35 continues to flow up during the drying; However, it is prevented by the physical barrier and the edge 25 from crawling over the web 27 formed between the two chambers 13a, 13b. The web 27 preferably extends between two adjacent reagent chambers 13 in the direction of the cover layer 34 and thus separates the two reagent chambers 13a, 13b of the mixing chamber 22.

Figur 2c zeigt eine dreidimensionale Ansicht im Bereich der Linie IIc aus Figur 1 durch die Verbindungskanäle 14 der Kanalstruktur 2. Der Zuführkanal 6 weist eine Rücklaufsperre 28 auf, die als mikrofluidisches Ventil 29 ausgebildet ist. Die Tiefe des Zuführkanals 6 von der Oberfläche 30 des mikrofluidischen Elements 1 liegt in der gleichen Größenordnung wie die Tiefe der Verbindungskanäle 14. Sie ist aber deutlich größer als die Tiefe der rotationsachsenfernen Reagenzkammer 13a. Die Tiefe des Zuführkanals 6 beträgt also ebenfalls ca. 400 µm. Eine durch Rotationskraft aus dem Zuführkanal 6 in den Überlaufschutz 26 der Mischkammer 22 einfließende Flüssigkeit fließt über die Kante 25 in die halbkugelförmige Reagenzkammer 13a ein. Durch Rotation des Testträgers 3 wird die eingeflossene Flüssigkeit in der Reagenzkammer 13a bewegt und löst so das (hier nicht dargestellte) enthaltene Trockenreagenz an. Figure 2c shows a three-dimensional view in the area of the line IIc FIG. 1 through the connecting channels 14 of the channel structure 2. The feed channel 6 has a backstop 28, which is designed as a microfluidic valve 29. The depth of the feed channel 6 from the surface 30 of the microfluidic element 1 is of the same order of magnitude as the depth of the connecting channels 14. However, it is significantly larger than the depth of the rotation axis remote reagent chamber 13a. The depth of the feed channel 6 is therefore also about 400 microns. A liquid flowing into the overflow protection 26 of the mixing chamber 22 by rotational force from the feed channel 6 flows via the edge 25 into the hemispherical reagent chamber 13a. By rotation of the test carrier 3, the liquid that has flowed in is moved in the reagent chamber 13a and thus dissolves the dry reagent (not shown here).

Beim Zuströmen weiterer Flüssigkeit wird sie durch die Verbindungskanäle 14a, 14b und 14c auch in die nicht dargestellten weiteren Reagenzkammern 13 geleitet. Im Rahmen der Erfindung wurde festgestellt, dass die von der als Halbkugel 24 ausgebildeten Reagenzkammer 13 abgehenden Übergänge in die kapillaren Verbindungskanäle 14a, 14b, 14c vorzugsweise nicht kleiner als 0,4 x 0,4 mm im Querschnitt (bzw. deren Durchmesser nicht kleiner als 0,4 mm) sein darf und sich erst später graduell verjüngen darf. Bei Verbindungskanälen 14 mit einem kleineren Querschnitt ist die ausgeübte Kapillarkraft so groß, dass ein Überlaufen ("Crosstalk"), insbesondere der flüssigen Reagenzien vor dem Eintrocknen, entsteht.When another liquid flows in, it is also conducted through the connection channels 14a, 14b and 14c into the further reagent chambers 13 (not shown). In the context of the invention, it has been found that the transitions into the capillary connection channels 14a, 14b, 14c, which are formed by the hemisphere 24, are preferably not smaller than 0.4 × 0.4 mm in cross section (or their diameter is not smaller than 0.4 mm) and may later taper gradually. For connection channels 14 with a smaller cross section, the applied capillary force is so great that an overflow ("crosstalk"), in particular the liquid reagents before drying, is formed.

Die Kanalstruktur 2 mit am Boden verrundeten Reagenzkammern 13 lässt sich auch in nicht rotierenden Testträgern einsetzen. Eine von einer (externen) Kraft getriebene Flüssigkeit fließt zunächst bei einem nicht rotierenden mikrofluidischen Element 1 in die erste Reagenzkammer 13a, füllt diese vollständig und löst das enthaltene Reagenz. Durch den verrundeten Boden der Kammer wird nicht nur eine gleichmäßige Verteilung des Reagenz sichergestellt. Das Anlösen des Reagenz erfolgt ebenfalls optimiert. Erst der Zustrom weiterer (Kraft getriebener) Flüssigkeit lässt sie die Kante 25 überwinden, so dass sie durch die Verbindungskanäle 14 in die benachbarte Reagenzkammer einströmen kann. Das hier enthaltene Reagenz wird folglich erst in einem zweiten Schritt angelöst.The channel structure 2 with bottomed reagent chambers 13 can also be used in non-rotating test carriers. A fluid driven by an (external) force first flows in a non-rotating microfluidic element 1 into the first reagent chamber 13a, fills it completely and dissolves the contained reagent. The rounded bottom of the chamber not only ensures even distribution of the reagent. The dissolution of the reagent is also optimized. Only the influx of additional (force-driven) liquid allows it to overcome the edge 25, so that it can flow through the connection channels 14 in the adjacent reagent chamber. Consequently, the reagent contained here is first dissolved in a second step.

Figur 3 zeigt beispielhaft eine weitere Ausführungsform eines Testträgers 3, mit fünf identischen Kanalstrukturen 2. Der Zuführkanal 6 weist ebenfalls einen U-förmigen Kanalabschnitt 7 und einen geraden Kanalabschnitt 8 auf. Die Mischkammer 22 weist an ihrem rotationsachsennahen Ende ebenfalls einen Entlüftungskanal 10 mit einer Entlüftungsöffnung 11 auf. Auch in dieser Anordnung ist die Kanalstruktur 2 als Analysefunktionskanal 15 ausgebildet und umfasst eine Messkammer 16. FIG. 3 shows by way of example a further embodiment of a test carrier 3, with five identical channel structures 2. The feed channel 6 also has a U-shaped channel section 7 and a straight channel section 8. The mixing chamber 22 also has a venting channel 10 with a vent 11 at its end close to the axis of rotation. Also in this arrangement, the channel structure 2 is designed as an analysis function channel 15 and comprises a measuring chamber 16.

Figur 4 zeigt eine Detailzeichnung der Mischkammer 22 aus Figur 3 mit den drei in Reihe geschalteten Reagenzkammern 13a, b, c und je zwei Verbindungskanälen 14, nämlich je einen zentralen Verbindungskanal 14a und einen seitlichen (rotationsachsennahen) Verbindungskanal 14b. Die Mischkammer 22 weist bevorzugt eine rotationsachsennahe Einlassöffnung 23 auf, durch die Flüssigkeit aus dem Zuführkanal 6 in die Mischkammer 22 eintritt. Ein kapillarer Transportkanal 31 ist bevorzugt am rotationsachsenfernen langen Rand 36 der Mischkammer 22 angeordnet. Der Transportkanal 31 verläuft seitlich und radial außen an den in Reihe angeordneten Reagenzkammern 13. Seine Tiefe (von den Oberfläche 30 des Testträgers 3 aus betrachtet) ist mit ca. 150 bis 2000 µm geringer als die Tiefe der Verbindungskanäle. Die eintretende Flüssigkeit wird durch den Transportkanal 31 in die Reagenzkammer 13a geleitet. FIG. 4 shows a detailed drawing of the mixing chamber 22 from FIG. 3 with the three series-connected reagent chambers 13a, b, c and in each case two connecting channels 14, namely in each case a central connecting channel 14a and a lateral (near the axis of rotation) connecting channel 14b. The mixing chamber 22 preferably has a rotational axis-near inlet opening 23, through which liquid from the feed channel 6 enters the mixing chamber 22. A capillary transport channel 31 is preferably arranged on the long axis 36 of the mixing chamber 22 remote from the axis of rotation. The transport channel 31 extends laterally and radially outward on the series-arranged reagent chambers 13. Its depth (viewed from the surface 30 of the test carrier 3) is about 150 to 2000 microns less than the depth of the connecting channels. The incoming liquid is passed through the transport channel 31 into the reagent chamber 13a.

Der Entlüftungskanal 10 ist breiter als der Zuführkanal 8 und als die Verbindungskanäle 14 zwischen den Reagenzkammern 13. Auf diese Weise wird von dem Entlüftungskanal 10 eine kleinere Kapillarkraft erzeugt, so dass keine Flüssigkeit in den Entlüftungskanal 10 dringt. Zudem ist der Entlüftungskanal 10 stets rotationsachsennah angeordnet, so dass die Flüssigkeit während der Rotatiom nicht aus den Reagenzkammern 13 in den Entlüftungskanal 10 gelangen kann. Schon beim Befüllen der Reagenzkammer 13a entweicht die darin enthaltene Luft durch die Verbindungskanäle 14a und 14b in die nächste Reagenzkammer 13c. Sobald die Reagenzkammer 13a komplett gefüllt ist, fließt Flüssigkeit durch die beiden Verbindungskanäle 14a und 14b in die Reagenzkammer 13c. Das Befüllen der zweiten Reagenzkammer 13c erfolgt also zunächst auch mindestens teilweise durch die Verbindungskanäle 14a, 1-4b und durch den Transportkanal 31.The venting channel 10 is wider than the feed channel 8 and as the connecting channels 14 between the reagent chambers 13. In this way, a smaller capillary force is generated by the venting channel 10, so that no liquid penetrates into the venting channel 10. In addition, the venting channel 10 is always arranged close to the axis of rotation so that the liquid can not pass from the reagent chambers 13 into the venting channel 10 during rotation. As soon as the reagent chamber 13a is filled, the air contained therein escapes through the connection channels 14a and 14b into the next reagent chamber 13c. As soon as the reagent chamber 13a is completely filled, liquid flows through the two connection channels 14a and 14b into the reagent chamber 13c. The filling of the second reagent chamber 13c thus initially also takes place at least partially through the connection channels 14a, 1-4b and through the transport channel 31.

Die in der zweiten Reagenzkammer 13c enthaltene Luft entweicht durch die Verbindungskapillare 14a und 14b, die die Verbindung zur rotationsachsennamem Reagenzkammer 13b bilden. Auf diese Weise wird gewährleistet, dass keine Luft in den Reagenzkammern 13a, 13b und 13c eingeschlossen wird. Aus der Reagenzkammer 13b entweicht die Luft über den Entlüftungskanal 110. Auf diese Weise wird ein bevorzugtes Befüllen der Reagenzkammern 13 von radial außen nach radial innen ermöglicht.The air contained in the second reagent chamber 13c escapes through the connection capillaries 14a and 14b which form the connection to the rotational axis-nominal reagent chamber 13b. In this way it is ensured that no air is trapped in the reagent chambers 13a, 13b and 13c. From the reagent chamber 13b, the air escapes through the vent passage 110. In this way, a preferred filling of the reagent chambers 13 from radially outside to radially inside is made possible.

Die erfindungsgemäße Anordnung erlaubt ein Vermischen der Flüssigkeiten schon beim Anlösen der Reagenzien, insbesondere beim Anlösen der Reagenzen in der zweiten und weiteren Reagenzkammer 13. Der Grad des Anlösen ist deshalb besonders hoch und effektiv.The arrangement according to the invention allows the liquids to be mixed even when the reagents are being dissolved, in particular when the reagents in the second and further reagent chambers 13 are dissolved. The degree of solubilization is therefore particularly high and effective.

Das Befüllen der Reagenzkammern 13a, b, c der Mischkammer 22 wird anhand oder Figuren 5a bis 5c näher erläutert. In die Mischkammer 22 eintretende Flüssigkeit wird über den kapillaraktiven Transportkanal 31, der der Einlassöffnung 23 benachbart ist, an den beiden rotationsachsennahen Reagenzkammern 13b, 13c vorbeigeleitet und fließt in die rotationsachsenferne Reagenzkammer 13a ein (Pfeilrichtung F). Die einströmende Flüssigkeit wird dabei durch Kapillarwirkung in dem Transportkanal 31 gehalten. Während der Rotation des Testträgers 3 (in Pfeilrichtung R, hier im Uhrzeigersinn) wird die Flüssigkeit dann am rotationsachsenfernen Ende der Mischkammer 22 in die Reagenzkammer 13a gedrückt und löst das dort enthaltene Trockenreagenz an. Beim Befüllern entweicht Luft aus der Reagenzkammer 13a über die Verbindungskanäle 14a, 14b und die Kammern 13c, 13b sowie den Entlüftungskanal 10. Sobald weitere Flüssigkeit nachfließt, wird diese durch den Transportkanal 31 in die Reagenzkammer 13a geleitet und von dort zunächst zumindest teilweise durch den zentralen Verbindungskanal 14a und den tangentialen Verbindungskanal 14b in die mittlere Reagenzkammer 13c geleitet. Das weitere Befüllen erfolgt direkt über den Transportkanal 31 bis die Reagenzkammer 13c gefüllt ist. Beim weiteren Einströmen von Flüssigkeit aus dem Zuführkanal 6 wird schließlich auch die rotationsachsennahe Reagenzkammer 13b gefüllt, indem die Flüssigkeit zunächst durch die zentrischen und tangentialen Verbindungskanäle 14a, b und auch durch den Transportkanal 31 und später direkt in die Kammer 13b einfließt. Die in den Reagenzkammern 13 enthaltene Luft entweicht schließlich durch den Luftauslass 33 und den Entlüftungskanal 10.The filling of the reagent chambers 13a, b, c of the mixing chamber 22 is based on or FIGS. 5a to 5c explained in more detail. Entering the mixing chamber 22 Liquid is conducted past the capillary-active transport channel 31, which is adjacent to the inlet opening 23, past the two reagent chamber 13b, 13c near the axis of rotation and flows into the reagent chamber 13a remote from the axis of rotation (arrow direction F). The inflowing liquid is held by capillary action in the transport channel 31. During the rotation of the test carrier 3 (in the direction of arrow R, here in a clockwise direction), the liquid is then pressed at the end of the mixing chamber 22 remote from the axis of rotation into the reagent chamber 13a and dissolves the dry reagent contained therein. When Befüllern escapes air from the reagent chamber 13a via the connecting channels 14a, 14b and the chambers 13c, 13b and the vent passage 10. As further liquid nachfließt, this is passed through the transport channel 31 into the reagent chamber 13a and from there first at least partially through the central Connecting passage 14 a and the tangential connection channel 14 b led into the middle reagent chamber 13 c. The further filling takes place directly via the transport channel 31 until the reagent chamber 13c is filled. Upon further inflow of liquid from the feed channel 6, finally, the rotational axis near reagent chamber 13b is filled by the liquid first flows through the central and tangential connection channels 14a, b and also through the transport channel 31 and later directly into the chamber 13b. The air contained in the reagent chambers 13 finally escapes through the air outlet 33 and the venting channel 10.

In dem Beispiel weisen gemäß den Figuren 4 und 5 die Reagenzkammern 13 ein Einzelvolumen von 3 µl auf, so dass die drei Reagenzkammern gemeinsam ein Volumen von ca. 9 µl haben. Bevorzugt liegen die Volumina der einzelnen Reagenzkammern 13 zwischen 3 µl und 10 µl. Reagenzkammern mit einem Volumen von 2 µl oder nur 1 µl sind ebenfalls denkbar, genauso Reagenzkammern 13 mit einem Volumen von 20 µl, 50 µl, 100 µl oder 500 µl.In the example, according to the FIGS. 4 and 5 the reagent chambers 13 a single volume of 3 ul, so that the three reagent chambers together have a volume of about 9 ul. The volumes of the individual reagent chambers 13 are preferably between 3 μl and 10 μl. Reagent chambers with a volume of 2 μl or only 1 μl are also conceivable, as well as reagent chambers 13 with a volume of 20 μl, 50 μl, 100 μl or 500 μl.

Figur 6 zeigt eine weitere bevorzugte Ausführungsform mit einer Mischkammer 22, in der zwei Reagenzkammern 13a, 13b integriert sind. Auch hier ist ein kapillarer Transportkanal 31 vorgesehen, durch den in die Mischkammer 22 eintretende Flüssigkeit zu der rotationsachsenfernen Reagenzkammer 13a geführt wird, die von den beiden Reagenzkammern 13a, 13b die am weitesten von der Rotationsachse entfernte Reagenzkammer ist. Die verrundeten Reagenzkammern 13, mit den gerundeten Böden, die bevorzugt als Halbkugel 24 ausgebildet sind, sorgen nicht nur für eine homogene Reagenzapplikation des noch flüssigen Reagenz. Sie erweisen sich auch als äußerst geeignet, wenn der Testträger 3 in einem Shake-Mode betrieben wird, bei dem die Rotationsgeschwindigkeit und Drehrichtung gemäß einer bevorzugt sägezahnförmigen Ansteuerungskurve verändert wird. Bei diesem als "Euler-Mischen" bekannten Verfahren, dass eine gute Homogenisierung und Auflösung der Trockenreagenzien garantiert, kann durch die verrundete Geometrie das Vermischen weiter gesteigert werden. Im Rahmen der Erfindung wurde erkannt, dass der effektivste Austausch und das effektivste Durchmischen an den Rändern und Wänden der Reagenzkammern 13 stattfindet. Bevorzugt sind deshalb in wenigstens einer der zwei benachbarten Reagenzkammern 13 die Verbindungskanäle 14 randlagig, z. B. tangential zu den Reagenzkammern 13, angeordnet. Dabei hat es sich als vorteilhaft erwiesen, die Verbindungskanäle 14 ohne Kantenübergänge an den Reagenzkammern 13 anzuformen. FIG. 6 shows a further preferred embodiment with a mixing chamber 22, in which two reagent chambers 13a, 13b are integrated. Again, a capillary transport channel 31 is provided through which into the mixing chamber 22 entering liquid is guided to the rotation axis remote reagent chamber 13a, which is the two reagent chambers 13a, 13b the farthest from the axis of rotation reagent chamber. The rounded reagent chambers 13, with the rounded bottoms, which are preferably formed as a hemisphere 24, not only provide for a homogeneous reagent application of the still liquid reagent. They also prove to be extremely suitable when the test carrier 3 is operated in a shake mode in which the rotational speed and direction of rotation are changed according to a preferably sawtooth-shaped control curve. In this process, known as "Euler mixing", which guarantees good homogenization and dissolution of the dry reagents, mixing can be further increased by the rounded geometry. Within the scope of the invention it has been recognized that the most effective exchange and the most effective mixing takes place at the edges and walls of the reagent chambers 13. Preferably, therefore, in at least one of the two adjacent reagent chambers 13, the connecting channels 14 edge-layered, z. B. tangential to the reagent chambers 13, arranged. It has proven to be advantageous to form the connecting channels 14 without edge transitions to the reagent chambers 13.

Darüber hinaus wurde im Rahmen der Erfindung erkannt, dass mehrere Reagenzkammern mit Verbindungskanälen während des "Euler-Mischens" das Fluid durch die Verbindungskanäle 14 von Kammer 13 zu Kammer 13 transportiert und in Kombination mit den gerundeten Flächen ein diffuser Austausch und eine gute Mischeffizienz geschaffen werden kann.Moreover, within the scope of the invention, it has been recognized that multiple reagent chambers with communication channels during "Euler mixing" transport the fluid through the communication channels 14 from chamber 13 to chamber 13 and, in combination with the rounded surfaces, provide a diffused exchange and mixing efficiency can.

Da die Reagenzkammern 13 bevorzugt derart benachbart angeordnet sind, dass ihr Abstand kleiner ist als die kleinste Dimension der Reagenzkammern 13 in der Testträgerebene, ist auch ein schneller Fluidtransport von einer Kammer 13 in die andere möglich. Der kleinste Abstand wird im Rahmen der Erfindung definiert als die kleinste Entfernung zwischen den Reagenzkammern 13 bzw. zwischen den Reagenzkammeraußenwänden. Wenigstens der zentral gelegene Verbindungskanal 14a zwischen zwei Reagenzkammern 13 ist deshalb kürzer als die kleinste Dimension der Reagenzkammern 13. In dem in Fig. 6 gezeigten Beispiel ist der zentrale Verbindungskanal 14a etwa 0,2 mm lang. Seine Breite und Tiefe ist jeweils 0,4 mm. Die Reagenzkammern, 13 haben eine Höhe von 1,4 mm. Der Durchmesser der Reagenzkammern beträgt 1,95 mm. Durch diese geometrische Anordnung ist ein Fluidtransport zwischen zwei benachbarten Reagenzkammern 13 ungehindert möglich. Durch die kurzen Verbindungskanäle 14 kann das Fluid schnell von einer Kammer zur anderen transportiert werden. Der Transport geschieht direkt ohne dazwischen liegende Ventilstrukturen, Heberanordnungen oder siphonartige Kanalstrukturen, deren Länge ein Mehrfaches der Reagenzkammern beträgt. Hierdurch ist der Prozessablauf mit den erfindungsgemäßen Reagenzkammern sehr schnell und spart Zeit. Es lassen sich außerdem eine gesteuerte und definierte Auflösung von unterschiedlichen Trockenreagenzien, die in einzelnen Reagenzkammern 13 enthalten sind, durchführen.Since the reagent chambers 13 are preferably arranged adjacent to one another such that their distance is smaller than the smallest dimension of the reagent chambers 13 in the test carrier plane, rapid fluid transport from one chamber 13 to the other is also possible. The smallest distance is defined in the context of the invention as the smallest distance between the reagent chambers 13 and between the Reagenzkammeraußenwänden. At least the centrally located connecting channel 14a between two reagent chambers 13 is therefore shorter than the smallest dimension of the reagent chambers 13. In the in Fig. 6 As shown, the central connecting channel 14a is about 0.2 mm long. Its width and depth are each 0.4 mm. The reagent chambers, 13 have a height of 1.4 mm. The diameter of the reagent chambers is 1.95 mm. By this geometric arrangement, a fluid transport between two adjacent reagent chambers 13 is possible without hindrance. Through the short connection channels 14, the fluid can be quickly transported from one chamber to another. The transport takes place directly without intervening valve structures, siphon arrangements or siphon-like channel structures whose length is a multiple of the reagent chambers. As a result, the process sequence with the reagent chambers according to the invention is very fast and saves time. In addition, a controlled and defined dissolution of different dry reagents contained in individual reagent chambers 13 can be carried out.

Durch den modularen Aufbau mit kleinen Reagenzkammern 13, ist es möglich Testträger 3 vorzusehen, die auf diesem Prinzip beruhend beliebig erweiterbar sind. So lassen sich nicht nur zwei oder drei, sondern auch mehrere Kammern in Reihe schalten.Due to the modular design with small reagent chambers 13, it is possible to provide test carrier 3, which are based on this principle arbitrarily expandable. So not only two or three, but also several chambers can be connected in series.

Neben den runden halbkugelförmigen Reagenzkammern sind auch andere Formen der Reagenzkammern möglich, beispielsweise tropfenförmige Reagenzkammerformen oder bei der Verwendung von zwei Reagenzkammern, die in einer Mischkammer 22 integriert sind z. B. so genannte "Yin-Yang-Ausformungen". Bevorzugt sind auch diese Reagenzkammern am Boden verrundet. Vorteilhaft erweisen sich vor allem ovale und runde Kammerformen.In addition to the round hemispherical reagent chambers, other forms of the reagent chambers are possible, for example, drop-shaped reagent chamber forms or when using two reagent chambers, which are integrated in a mixing chamber 22 z. B. so-called "yin-yang formations". Preferably, these reagent chambers are rounded at the bottom. Above all, oval and round chamber shapes prove advantageous.

Figur 7 zeigt eine sternförmige Anordnung von drei Reagenzkammern 13 in einer Mischkammer 22. Auch in dieser Anordnung wird über den Transportkanal 31 die rotationsachsenferne Mischkammer 13a zuerst befüllt. Bei einem Einfließen von weiterer Flüssigkeit werden dann die beiden rotationsachsennäheren Reagenzkammern 13b, 13c gemeinsam gefüllt. Zwischen den Reagenzkammern 13a und 13b ist nur ein zentraler Verbindungskanal 14a vorgesehen, da der kapillare Transportkanal 31 als zweiter Verbindungskanal sehen, da der kapillare Transportkanal 31 als zweiter Verbindungskanal 14b dient. FIG. 7 shows a star-shaped arrangement of three reagent chambers 13 in a mixing chamber 22. Also in this arrangement, the rotation axis remote mixing chamber 13a is filled via the transport channel 31 first. If further liquid flows in, then the two reagent chambers 13b, 13c closer to the axis of rotation are filled together. Between the reagent chambers 13a and 13b, only a central connection channel 14a is provided, since the capillary transport channel 31 as a second connection channel see, since the capillary transport channel 31 serves as a second connection channel 14b.

In den Figuren 8a und 8b sind dreidimensionale Ansichten einer derartigen sternförmigen Reagenzkammeranordnung gezeigt. Deutlich zu erkennen sind die verrundeten Verbindungskanäle 14 zwischen den Reagenzkammern 13 sowie die verrundeten halbkugelförmigen Reagenzkammern 13 selbst. In dieser Ausführungsform ist zu erkennen, dass der Transportkanal 31 fluidisch auch als Verbindungskanal 14 fungiert.In the FIGS. 8a and 8b Three-dimensional views of such a star-shaped reagent chamber arrangement are shown. Clearly visible are the rounded connection channels 14 between the reagent chambers 13 and the rounded hemispherical reagent chambers 13 themselves. In this embodiment, it can be seen that the transport channel 31 also functions fluidically as a connection channel 14.

Figur 9 zeigt, dass auch eine sternförmige oder kreisförmige Anordnung von Reagenzkammern 13 erweitert werden kann. So lassen sich, wie hier gezeigt, sechs Reagenzkammern 13 fluidisch zusammenschalten, wobei das Prinzip beibehalten wird, dass die rotationsachsenfernste Reagenzkammer 13a zuerst befüllt wird. Ein Befüllen der weiteren Kammern geht dann von der rotationsachsenfernen Kammer 13a aus, die am weitesten von der Rotationsachse 4 entfernt ist. FIG. 9 shows that even a star-shaped or circular arrangement of reagent chambers 13 can be extended. Thus, as shown here, six reagent chambers 13 can be interconnected fluidically, whereby the principle is maintained that the rotor axis furthest reagent chamber 13a is filled first. A filling of the other chambers then starts from the rotation axis remote chamber 13 a, which is farthest from the axis of rotation 4.

Während des Rotierens des Testträgers wird das Fluid durch alle Reagenzkammern bewegt, bei der sternförmigen Anordnung genauso wie bei der reihenförmigen Anordnung. Auf diese Weise lässt sich ein sehr effizientes Anlösen und Vermischen sowie eine gezielte Steuerung der Flüssigkeitsmengen erzielen. Die dabei erhaltene sehr kompakte und kleine Anordnung hat den Vorteil, dass mehrere kaskadierte Kanalstrukturen 2 auf einen Testträger 3 angeordnet sein können.During rotation of the test carrier, the fluid is moved through all the reagent chambers, in the star-shaped arrangement as well as in the row-shaped arrangement. In this way, a very efficient dissolving and mixing as well as a targeted control of the liquid quantities can be achieved. The very compact and small arrangement obtained has the advantage that a plurality of cascaded channel structures 2 can be arranged on a test carrier 3.

Anhand der Figuren 10a bis 10c wird der Eintrocknungsprozess von zwei Reagenzien in einem mikrofluidischen Element 1 zu unterschiedlichen Zeitpunkten erläutert, wobei in jeder Figur sowohl eine Ansicht von oben als auch ein Schnitt dargestellt ist.Based on FIGS. 10a to 10c the drying process of two reagents in a microfluidic element 1 is explained at different times, wherein in each figure both a top view and a section is shown.

Ausgehend von zwei Reagenzkammern 13, die von einander getrennt sind und über Verbindungskanäle 14 miteinander in Fluidverbindung stehen, wird das Eintrocknen der zunächst flüssigen Reagenzien erläutert. Die beiden Reagenzkammern 13a, 13b sind in einer Mischkammer 22 integriert. Zwischen den beiden Reagenzkammern 13a, 13b ist ein Steg 27 angeordnet, so dass die beiden Kammern 13 räumlich voneinander beabstandet sind. In dem Steg 27 sind die Verbindungskanäle 14 eingelassen. Die hier gezeigte Ausführungsform weist drei Verbindungskanäle 14a, 14b und 14c auf, wobei der Verbindungskanal 14a ein zentraler Kanal ist und die beiden weiteren Verbindungskanäle 14b und 14c jeweils seitlich angeordnet sind.Starting from two reagent chambers 13, which are separated from each other and in fluid communication with each other via connection channels 14, is the drying of the initially liquid reagents explained. The two reagent chambers 13a, 13b are integrated in a mixing chamber 22. Between the two reagent chambers 13a, 13b, a web 27 is arranged, so that the two chambers 13 are spatially spaced from each other. In the web 27, the connecting channels 14 are embedded. The embodiment shown here has three connection channels 14a, 14b and 14c, wherein the connection channel 14a is a central channel and the two further connection channels 14b and 14c are each arranged laterally.

Figur 10a zeigt, dass ein flüssiges Reagenz in die halbkugelförmigen Reagenzkammern 13a, 13b eingebracht wird. Pro Reagenz wird eine Reagenzkammer 13 verwendet, die auf Grund ihrer Form auch als "Perle" bezeichnet wird. Insgesamt liegt in der Mischkammer 22 also eine "Perlenkettenstruktur" vor. Das Reagenz wird jeweils in die Mitte der Reagenzkammer 13a, 13b appliziert. Während des folgenden Trocknungsvorgangs benetzt das Reagenz die Umgebung des Dosierpunktes und bildet dabei einen gleichmäßigen Film. Da die Reagenzkammern frei von Kanten oder Ecken sind, in denen das Reagenz aufkonzentrieren könnte, findet eine sehr gleichmäßige Verteilung statt. Erreicht das flüssige Reagenz die Verbindungskanäle 14, so tritt es in sie hinein. Durch den Flusswiderstand der Verbindungskanäle 14 wird es jedoch abgebremst und fließt nicht bis zum Übergang in die benachbarte Reagenzkammer 13. Erreicht das flüssige Reagenz den oberen Rand der Reagenzkammer 13, die den Abschluss zur Oberfläche des mikrofluidischen Elements 1 bilden, so stoppt das Reagenz an der Kante und fließt nicht weiter. Die erfolgende Querschnittserhöhung hat folglich eine Kapillarstopwirkung. FIG. 10a shows that a liquid reagent is introduced into the hemispherical reagent chambers 13a, 13b. For each reagent, a reagent chamber 13 is used, which is referred to as "pearl" due to their shape. Overall, therefore, a "pearl chain structure" is present in the mixing chamber 22. The reagent is in each case applied to the middle of the reagent chamber 13a, 13b. During the following drying process, the reagent wets the environment of the dosing point, forming a uniform film. Since the reagent chambers are free of edges or corners where the reagent might concentrate, a very even distribution occurs. When the liquid reagent reaches the connection channels 14, it enters it. However, due to the flow resistance of the connection channels 14, it is slowed down and does not flow until it has passed into the adjacent reagent chamber 13. If the liquid reagent reaches the upper edge of the reagent chamber 13, which forms the end to the surface of the microfluidic element 1, the reagent stops at the Edge and does not continue to flow. The resulting cross-sectional increase thus has a capillary stop effect.

Die Verbindungskanäle 14 weisen bevorzugt einen derartigen Querschnitt auf, dass die Flüssigkeit in den Verbindungskanälen 14 gebremst und nicht auf Grund von Kapillarkräften in die benachbarte Reagenzkammer 13 transportiert wird. Auf der einen Seite muss der Querschnitt folglich groß genug sein, damit die entstehenden Kapillarkräfte klein genug sind, so dass die Verbindungskanäle nicht vollständig mit dem Reagenz gefüllt werden und sich die Reagenzien in den Verbindungskanälen vermischen. Auf der anderen Seite muss der Querschnitt der Verbindungskanäle klein genug sein, damit der Flusswiderstand ausreicht, um einströmendes Reagenz in den Verbindungskanälen 14 abzubremsen.The connecting channels 14 preferably have such a cross section that the liquid in the connecting channels 14 is braked and is not transported into the adjacent reagent chamber 13 due to capillary forces. Consequently, on the one hand, the cross-section must be large enough so that the resulting capillary forces are small enough so that the connection channels are not completely filled with the reagent and the reagents in the connection channels mix. On the other hand, the must Cross-section of the connecting channels should be small enough so that the flow resistance is sufficient to decelerate inflowing reagent in the connecting channels 14.

Die geeignete Wahl des Querschnitts der Verbindungskanäle 14 beeinflusst nicht nur den Eintrocknungsprozess, wenn lediglich Kapillarkräfte wirken. Die Querschnitte haben auch Einfluss auf die Mischeffizienz und den Austausch von Flüssigkeiten zwischen zwei Reagenzkammern 13. Damit ausreichend hohe Strömungsgeschwindigkeiten erzielt werden, die einen Fluidaustausch zwischen den Kammern 13 ermöglichen, ist der Querschnitt der Verbindungskanäle wenigstens 0,1 mm2, bevorzugt 0,4 x 0,4 mm2 groß. Querschnitte von weniger als 0,05 mm2 haben sich als nicht geeignet erwiesen.The proper choice of the cross section of the connection channels 14 not only affects the drying process when only capillary forces act. The cross sections also have an influence on the mixing efficiency and the exchange of liquids between two reagent chambers 13. In order to achieve sufficiently high flow velocities which allow a fluid exchange between the chambers 13, the cross section of the connection channels is at least 0.1 mm 2 , preferably 0.4 x 0.4 mm 2 large. Cross sections of less than 0.05 mm 2 have proved to be unsuitable.

Die halbkugelförmigen oder am Boden verrundeten Reagenzkammern 13 zeigen, dass es bei einem Füllen mit einem flüssigen Reagenz mit einem Volumen von maximal 70 % des Kammervolumens ein problemloses Eintrocknen der Reagenzien möglich ist. Ein Vermischen von zwei Reagenzien in zwei benachbarten Kammern 13 wird zuverlässig verhindert. Bevorzugt ist das zu applizierende Volumen des flüssigen Reagenz kleiner 60 % des Kammervolumens, besonders bevorzugt kleiner 55 %.The hemispherical or bottom-rounded reagent chambers 13 show that when filled with a liquid reagent with a maximum volume of 70% of the chamber volume, a trouble-free drying of the reagents is possible. A mixing of two reagents in two adjacent chambers 13 is reliably prevented. The volume of the liquid reagent to be applied is preferably less than 60% of the chamber volume, particularly preferably less than 55%.

Figur 10c zeigt die beiden Reagenzkammern 13, nachdem das flüssige Reagenz aufgespreitet ist. Die Verbindungskanäle 14 sind jeweils nur an ihrem Anfang mit Flüssigkeit benetzt. Die größte Strecke der jeweiligen Verbindungskanäle 14 ist frei von Flüssigkeit, so dass ein Vermischen der beiden Reagenzien zuverlässig verhindert wird. FIG. 10c shows the two reagent chambers 13, after the liquid reagent is spread. The connecting channels 14 are wetted with liquid only at their beginning. The largest distance of the respective connection channels 14 is free of liquid, so that a mixing of the two reagents is reliably prevented.

Im Rahmen der Erfindung hat sich gezeigt, dass die Reagenzkammern 13 mit einem verrundeten Boden, insbesondere wenn sie bevorzugt in einer Mischkammer 22 integriert sind, nicht nur für das Eintrocknen von zwei unterschiedlichen Reagenzien besonders geeignet sind, sondern dass derartige Reagenzkammern 13 in nicht rotierenden mikrofluidischen Elementen 1 eingesetzt werden können. Die zur Steuerung der Flüssigkeiten und zum Anlösen der Reagenzien benötigte Kraft wird durch eine externe Kraft erzeugt. Alternativ zur Zentrifugalkraft bzw. Rotationskraft können Druckkräfte erzeugt werden, die beispielsweise durch eine externe Pumpe hervorgerufen werden. Auch kann diese Kraft auf einem hydrostatischen Druck basieren. Die für rotierende Testträger gemachten Aussagen im Rahmen dieser Erfindung gelten deshalb auch für nicht rotierende mikrofluidische Elemente. Die anhand der Figuren 2 bis 9 beschriebenen Besonderheiten können entsprechend auch in nicht rotierende Anordnungen und Kanalstrukturen verwendet werden.In the context of the invention, it has been found that the reagent chambers 13 with a rounded bottom, in particular if they are preferably integrated in a mixing chamber 22, are not only particularly suitable for drying two different reagents, but that such reagent chambers 13 are in non-rotating microfluidic Elements 1 can be used. For controlling the liquids and for dissolving the Reactants required force is generated by an external force. As an alternative to the centrifugal force or rotational force, pressure forces can be generated, which are caused for example by an external pump. Also, this force can be based on a hydrostatic pressure. The statements made in the context of this invention for rotating test carriers therefore also apply to non-rotating microfluidic elements. The basis of the FIGS. 2 to 9 corresponding features can also be used accordingly in non-rotating arrangements and channel structures.

Claims (15)

  1. Microfluidic element for analysing a liquid sample
    having a substrate (5) and a channel structure (2) enclosed by the substrate (5) and a cover layer,
    wherein
    the microfluidic element (1) is rotatable around a rotational axis (4);
    the channel structure (2) includes a feed channel (6) having a feed opening (9), a ventilation channel (10) having a ventilation opening (11), and at least two reagent chambers (13);
    the reagent chambers (13) are connected to one another via two connection channels (14) in such a manner that a fluid exchange is possible between the reagent chambers (13),
    one of the reagent chambers (13) is a rolational-axis-distal reagent chamber (13a), which, of the two reagent chambers (13), is positioned furthest away from the rotational axis,
    the rotational-axis-distal reagent chamber (13a) contains a reagent (35), which reacts with the liquid sample,
    one of the reagent chambers (13) has an inlet opening (23), which is in fluid connection with the feed channel (6), so that by rotation of the microfluidic element the liquid sample inserted into the channel structure (2) is first channelled into the rotational-axis-distal reagent chamber (13a) so that this rotational-axis-distal reagent chamber (13a) is filled first and the reagent adsorbed in this rotational-axis-distal reagent chamber (13a) is dissolved.
  2. Microfluidic element according to claim 1, characterised in that the microfluidic element (1) is a test carrier (3), through which the rotational axis (4) extends.
  3. Microfluidic element according to claim 1 or 2, characterised in that the channel structure (2) is an analysis function channel (15), which comprises a measuring chamber (16).
  4. Microfluidic element according to any one of the preceding claims, characterised in that the rotational-axis-distal reagent chamber (13a) has the inlet opening (23).
  5. Microfluidic element according to any one of the preceding claims, characterised in that the channel structure (2) comprises a mixing chamber (22), in which the reagent chambers (13) and the connection channels (14) between the reagent chambers (13) are integrated.
  6. Microfluidic element according to claim 5, characterised in that
    - the mixing chamber (22) has a rotational-axis-proximal inlet opening (23), and
    - a capillary transport channel (31) is implemented laterally and radially externally on the reagent chambers (13) in the mixing chamber (22), whose cross section is smaller than the cross section of the connection channels (14), so that liquid flows through the transport channel (31) from the rotational-axis-proximal inlet opening (23) to the rotational-axis-distal reagent chamber (13a), which is opposite to the inlet opening (23).
  7. Microfluidic element according to claim 5 or 6, characterised in that webs (27) are implemented between two adjacent reagent chambers (13) in the mixing chamber (22), wherein the webs (27), by which the reagent chambers (13) in the mixing chamber (22) are separated, extend perpendicular to the cover layer (34).
  8. Microfluidic element according to any one of the preceding claims, characterised in that the reagent chambers (13) are positioned in series in radial direction in such a manner that the series of the reagent chambers (13) encloses an angle of at most 80° to the radial direction.
  9. Microfluidic element according to any one of the preceding claims, characterised in that the reagent chambers (13) are essentially hemispherical, the opening surface of the hemisphere (24) being terminated by the cover layer (34) of the microfluidic element (1).
  10. Microfluidic element according to any one of the preceding claims, characterised in that the reagent chamber (13) adjacent to the rotational axis (4) has the inlet opening (23) and an air inlet (33), which connects the reagent chamber (13) to a ventilation channel (10).
  11. Microfluidic element according to any one of the preceding claims, characterised in that one connection channel (14a) is positioned between two adjacent reagent chambers (13) in such a manner that it aligns with the centres of the two reagent chambers (13).
  12. Microfluidic element according to claim 11, characterised in that the second connection channel (14b) is connected laterally to the two reagent chambers (13) in such a manner that it extends outside a central axis connecting the centres of two adjacent reagent chambers (13).
  13. Microfluidic element according to any one of the preceding claims, characterised in that two adjacent reagent chambers (13) are positioned in such a manner that their spacing is less than the smallest dimension of the reagent chambers (13) in test carrier plane.
  14. Microfluidic element according to any one of the preceding claims, characterised in that the reagent chambers (13) are implemented so that filling the reagent chamber (13) with a liquid and dissolving of a reagent (35) contained in the reagent chamber (13) occurs without liquid flowing into the adjacent reagent chamber (13).
  15. Microfluidic element according to any one of the preceding claims, characterised in that the connection channel (14) has a cross section, in which the smallest cross-sectional dimension is at least 150 µm.
EP10782320.5A 2009-12-04 2010-11-30 Microfluidic element for analysing a fluid sample Active EP2506959B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10782320.5A EP2506959B1 (en) 2009-12-04 2010-11-30 Microfluidic element for analysing a fluid sample

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09015031A EP2329877A1 (en) 2009-12-04 2009-12-04 Microfluidic element for analysing a fluid sample
PCT/EP2010/068499 WO2011067241A1 (en) 2009-12-04 2010-11-30 Microfluidic element for analyzing a liquid sample
EP10782320.5A EP2506959B1 (en) 2009-12-04 2010-11-30 Microfluidic element for analysing a fluid sample

Publications (2)

Publication Number Publication Date
EP2506959A1 EP2506959A1 (en) 2012-10-10
EP2506959B1 true EP2506959B1 (en) 2015-02-25

Family

ID=42199278

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09015031A Withdrawn EP2329877A1 (en) 2009-12-04 2009-12-04 Microfluidic element for analysing a fluid sample
EP10782320.5A Active EP2506959B1 (en) 2009-12-04 2010-11-30 Microfluidic element for analysing a fluid sample

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP09015031A Withdrawn EP2329877A1 (en) 2009-12-04 2009-12-04 Microfluidic element for analysing a fluid sample

Country Status (3)

Country Link
US (1) US8911684B2 (en)
EP (2) EP2329877A1 (en)
WO (1) WO2011067241A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011077134A1 (en) 2011-06-07 2012-12-13 Robert Bosch Gmbh Cartridge, centrifuge and method for mixing a first and second component
WO2013172003A1 (en) * 2012-05-16 2013-11-21 パナソニック株式会社 Organism detection chip and organism detection device provided therewith
WO2014100150A1 (en) * 2012-12-20 2014-06-26 Flir Detection, Inc. Device and methods for detection of analytes including use of a clorimetric barcode
JP6349721B2 (en) * 2013-12-24 2018-07-04 凸版印刷株式会社 Sample analysis chip
KR101859860B1 (en) * 2014-06-06 2018-05-18 에프. 호프만-라 로슈 아게 Rotatable cartridge with a metering chamber for analyzing a biological sample
EP2952257A1 (en) 2014-06-06 2015-12-09 Roche Diagnostics GmbH Rotatable cartridge for processing and analyzing a biological sample
EP2952258A1 (en) * 2014-06-06 2015-12-09 Roche Diagnostics GmbH Rotatable cartridge for analyzing a biological sample
EP2957890A1 (en) * 2014-06-16 2015-12-23 Roche Diagnostics GmbH Cartridge with a rotatable lid
WO2017091213A1 (en) * 2015-11-24 2017-06-01 Hewlett-Packard Development Company, L.P. Devices having a sample delivery component
EP3173149A1 (en) 2015-11-26 2017-05-31 Roche Diagnostics GmbH Determining a quantity of an analyte in a blood sample
EP4023338A1 (en) 2016-04-14 2022-07-06 Roche Diagnostics GmbH Cartridge and optical measurement of an analyte with said cartridge
CN107305210B (en) * 2016-04-20 2019-09-17 光宝电子(广州)有限公司 Biological detection cassette and its current method for detecting fluid
WO2018194700A1 (en) * 2017-04-20 2018-10-25 Hewlett-Packard Development Company, L.P. Microfluidic reaction system
CN108761055B (en) * 2018-04-27 2024-03-29 广州万孚生物技术股份有限公司 Microfluidic chip and analytical instrument with same
CN110295107A (en) * 2019-07-01 2019-10-01 贵州金玖生物技术有限公司 A kind of multi-pass amount micro-fluidic chip for detection of nucleic acids
CN113009136B (en) * 2020-08-21 2024-04-05 东莞东阳光医疗智能器件研发有限公司 Small multi-index detection sample analysis device
CN113413935B (en) * 2021-07-28 2024-09-03 南京岚煜生物科技有限公司 Active micro-fluidic chip based on magnetic mixing technology and application method thereof
CN114505106B (en) * 2022-01-29 2023-02-03 南京岚煜生物科技有限公司 Active micro-fluidic chip for optimizing magnetic uniform mixing effect and use method thereof
CN115555067A (en) * 2022-09-28 2023-01-03 深圳市卓润生物科技有限公司 Centrifugal continuous reaction structure, implementation method and centrifugal biological sample detection device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3044372A1 (en) 1980-11-25 1982-07-08 Boehringer Mannheim Gmbh, 6800 Mannheim ROTOR UNIT WITH INSERT ELEMENTS FOR A CENTRIFUGAL ANALYZER
US4580896A (en) 1983-11-07 1986-04-08 Allied Corporation Multicuvette centrifugal analyzer rotor with annular recessed optical window channel
GB9809943D0 (en) 1998-05-08 1998-07-08 Amersham Pharm Biotech Ab Microfluidic device
SE0201738D0 (en) 2002-06-07 2002-06-07 Aamic Ab Micro-fluid structures
US7347617B2 (en) * 2003-08-19 2008-03-25 Siemens Healthcare Diagnostics Inc. Mixing in microfluidic devices
WO2006106608A1 (en) * 2005-04-04 2006-10-12 Matsushita Electric Industrial Co., Ltd. Liquid homogenizer and analyzer employing the same
DE102005016509A1 (en) * 2005-04-09 2006-10-12 Boehringer Ingelheim Microparts Gmbh Apparatus for assaying a liquid sample comprises reaction chambers containing immobilized reagents, each connected to an assay chamber so that liquid can be transferred by centrifugal force
WO2007052647A1 (en) * 2005-11-01 2007-05-10 Matsushita Electric Industrial Co., Ltd. Disc for analyzing liquid sample and method of analyzing mixed liquid sample
EP1916524A1 (en) * 2006-09-27 2008-04-30 Roche Diagnostics GmbH Rotatable test element

Also Published As

Publication number Publication date
WO2011067241A1 (en) 2011-06-09
US8911684B2 (en) 2014-12-16
US20120301371A1 (en) 2012-11-29
EP2506959A1 (en) 2012-10-10
EP2329877A1 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
EP2506959B1 (en) Microfluidic element for analysing a fluid sample
DE60124699T2 (en) TWO DIRECTION FLOW ZENTRIFUGALMIKROFLUID DEVICES
DE112011102770B4 (en) Microfluidic unit with auxiliary and side channels
EP2072131B1 (en) Microfluid element for mixing a fluid into a reagent
DE602004013339T2 (en) MIXING IN MICROFLUID DEVICES
EP2632590B1 (en) Microfluidic test carrier for dividing a liquid quantity into subquantities
DE60035611T2 (en) MICRO FLUID ANALYSIS DEVICE
EP1201304B1 (en) Microstructured platform for examining a liquid
DE102013203293B4 (en) Apparatus and method for conducting a liquid through a first or second outlet channel
EP2632591B1 (en) Microfluidic element for analysis of a sample liquid
EP1566215A2 (en) Microstructured platform and method of handling a liquid
EP3829767B1 (en) Device and method for guiding a liquid through a porous medium
EP1531003A1 (en) Microstructured separation device to separate the liquid phase from a suspension
DE112015006185T5 (en) Microfluidic unit with longitudinal and transverse liquid barriers for transverse flow mixing
DE112018007590B3 (en) APPLICATION-SPECIFIC MICROFLUIDIC UNIT WITH PROGRAMMABLE MICROFLUIDIC NODES
EP2062643A1 (en) Analysis system and method for analysing a bodily fluid sample on an analyte contained therein
EP2369343A1 (en) Device and method for manipulating or examining a liquid sample
DE102007019695A1 (en) Cuvette for the optical analysis of small volumes
EP1843833B1 (en) Method and device for dosing and mixing small amounts of liquid, apparatus and use
EP2145682A1 (en) Test element for analysing a bodily fluid sample for an analyte contained therein, analysis system and method for controlling the movement of a fluid contained in a channel of a test element
DE60007285T2 (en) CAPILLARY LIQUID TRANSFER DEVICE INSIDE
DE102008002509A1 (en) Stopped-flow chip
WO2018011085A1 (en) Handling of liquids using a fluid module having a fluid plane that is inclined with respect to a rotation plane
DE19728520A1 (en) Switchable dynamic micromixer with minimal dead volume
EP1534432B1 (en) Microfluidic system with high aspect ratio

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120524

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130429

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140717

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140922

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010008996

Country of ref document: DE

Effective date: 20150409

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 711446

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150415

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150525

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150526

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010008996

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 711446

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010008996

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0001000000

Ipc: B01F0021000000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231019

Year of fee payment: 14

Ref country code: DE

Payment date: 20231019

Year of fee payment: 14