EP2506363B1 - Waveguide coupling - Google Patents

Waveguide coupling Download PDF

Info

Publication number
EP2506363B1
EP2506363B1 EP12001275.2A EP12001275A EP2506363B1 EP 2506363 B1 EP2506363 B1 EP 2506363B1 EP 12001275 A EP12001275 A EP 12001275A EP 2506363 B1 EP2506363 B1 EP 2506363B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
carrier plate
coupling
feed line
coupling element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12001275.2A
Other languages
German (de)
French (fr)
Other versions
EP2506363A1 (en
Inventor
Christian Schulz
Michael Dr.-Ing. Gerding
Michael Dr.-Ing. Deilmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krohne Messtechnik GmbH and Co KG
Original Assignee
Krohne Messtechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krohne Messtechnik GmbH and Co KG filed Critical Krohne Messtechnik GmbH and Co KG
Publication of EP2506363A1 publication Critical patent/EP2506363A1/en
Application granted granted Critical
Publication of EP2506363B1 publication Critical patent/EP2506363B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions

Definitions

  • the present invention relates to a waveguide coupling, in particular for a radar level gauge, with a waveguide, a support plate and at least one feed line, wherein the feed line is guided on and / or in the carrier plate in the inner region of the waveguide and the feed line with one end in the inner region of the waveguide ends, wherein the carrier plate is continuously extending into the inner region of the waveguide and thus beyond the end of the feed line, wherein in the vicinity of the end of the feed line and / or in the carrier plate, an electrically conductive coupling element is arranged, so that the coupling element with the feed line is coupled and the coupling element of the coupling of guided via the feed line in the waveguide electromagnetic waves in the waveguide, wherein the coupling element has a longitudinal ridge and a crosspiece, said longitudinal ridge and the crosspiece arrange crosswise et, wherein the feed line is aligned substantially straight to the center of the inner cross-sectional area of the waveguide and wherein the longitudinal web of the coupling element is arranged in extension of
  • Such waveguide couplings have long been known in high frequency engineering and they are used as an interface between an electronic device generating an electromagnetic signal and the supply of the line-guided signal in the interior of the waveguide.
  • the carrier plate usually consists of a board known from circuit technology, wherein the feed line is often designed as a microstrip line and is guided through a recess in the waveguide in the interior of the waveguide, where the conducted electromagnetic wave of the feedline separates and propagates as a guided electromagnetic wave in the waveguide.
  • the guided electromagnetic wave can ultimately leave the waveguide as a free space wave, either immediately after exiting the waveguide or after passing through an adjoining the waveguide radiator, often to achieve a certain radiation characteristic is provided; in the latter case, the waveguide serves quasi only as a transition element.
  • the shape of the waveguide as well as the injected electromagnetic signal decide which modes of an electromagnetic wave ultimately propagate in the waveguide.
  • electromagnetic waves with frequencies in the GHz range are used for radar applications.
  • a generic waveguide coupling is from the US 2,829,348 A known, which is dedicated to the coupling of a strip conductor to a waveguide.
  • the US 2010/0225410 A1 shows an arrangement in which two microstrip conductors are guided into the interior of a waveguide.
  • the EP 0 071 069 A2 shows a waveguide coupling, coincide in the feed line and coupling element. Further waveguide couplings are in US 2006/0255875 A1 and JP 2007-13450A disclosed.
  • the previously derived object is achieved in the waveguide coupling described above in that the waveguide is mounted on a first side of the support plate on the support plate, that the coupling element is capacitively coupled to the feed line, that the support plate on its first side on which the waveguide is placed, or in an intermediate layer, the feed line, the coupling element and an electrically conductive screen surface, that the support plate on its first side opposite the second side or in an intermediate layer a large area has further electrically conductive shielding surface and that outside of the region opposite to the inner cross-sectional surface of the waveguide that the shielding surface and / or the further shielding surface protrudes with an influencing extension in the inner cross-sectional area of the waveguide and that the influencing extension to the center of the inner cross-sectional area of the waveguide is aligned tapered, and is arranged in alignment with the feed line.
  • the support plate is continuously extending into the inner region of the waveguide, so practically represents a continuous plate, eliminates the operation of the exemption of that end of the feed line, which ends in the interior of the waveguide, also mechanically sensitive structures are avoided.
  • the electrically conductive coupling element in the vicinity of the end of the feed line, it is possible to adjust the waveguide coupling electromagnetically and, for example, to influence the bandwidth to the desired center frequency of the leading electromagnetic waves.
  • the coupling element is arranged substantially in the center of the waveguide and / or in the carrier plate. If previously it is mentioned that the feed line is guided on and / or in the carrier plate, or that the coupling element is arranged on and / or in the carrier plate, then it is meant that the electrically conductive elements are not necessarily on a surface of the Carrier plate must be realized, but rather can be realized as conductive structures in a printed circuit board, as is known for example from multilayer boards.
  • the coupling element thus has a longitudinal web and a transverse web, wherein the longitudinal web and the crosspiece are arranged in a cross shape.
  • the longitudinal web and the crosspiece do not have to be distinguishable as individual, overlapping structures, but rather may also be present as a single structure in which only a geometrical distinction is made between a longitudinal web and a transverse web can be.
  • the cross shape of the coupling element brings an unexpected positive effect in terms of achievable and achieved bandwidth with it. While with conventional constructions bandwidths are achieved with an adaptation of better than 15 dB of usually not more than about 10% of the carrier frequency, with the described cross-shaped coupling element bandwidths of about 20% of the carrier frequency can be achieved, which brings a significant advantage.
  • the bandwidth can be varied, with which an adaptation above a predetermined attenuation is achieved by a desired center frequency.
  • the coupling element is preferably designed such that the characteristic dimensions of the coupling element are in the range of one quarter of the wavelength of the electromagnetic waves to be emitted.
  • characteristic dimensions is meant, for example, the longitudinal and transverse extent of the coupling element, in the case of the cross-shaped configuration of the coupling element so the extension of the longitudinal web and the transverse web of the coupling element.
  • account must be taken here of the effective relative permittivity of the design - resulting, for example, from the relative permittivities of the support plate and ambient air - since this is a scaling factor, the scaling factor being more precisely the reciprocal of the root from the actual relative permittivity.
  • the carrier plate has on its first side, on which the waveguide is mounted, or on its second side opposite the first side, or in an intermediate layer, the feed line, the coupling element and an electrically conductive shielding surface.
  • the electrically conductive shielding surface and the feed line are realized separately from one another, wherein the feed line, the coupling element and the shielding surface are realized in particular as a metallization of the carrier plate. It makes sense to photolithographically make the production of these electrically conductive structures in a known manner, since it is here It is also possible to carry out the required precision in the execution of the structures even in the area of millimeter fractions.
  • the electrically conductive shielding surface contacts the waveguide on its end face, wherein the shielding surface surrounds the waveguide in particular over a large area. Since the electrically conductive waveguide is connected at its end face to the likewise electrically conductive shielding surface, it is possible in a very simple manner to place the shielding surface and waveguide at a common electrical potential, for example at ground potential.
  • the support plate according to the invention on its first side, on which the waveguide is placed, or on its second side opposite the first side or in an intermediate layer has a large area further electrically conductive screen surface and preferably outside the range , which is opposite to the inner cross-sectional area of the waveguide, wherein the further screen surface is in turn realized in particular as a metallization of the carrier plate or as a metallic intermediate layer.
  • the entire surface of the support plate can be provided in a simple manner with a defined potential and can suppress interference emissions.
  • the shielding surface and / or the further shielding surface into the inner cross-sectional surface of the waveguide with an influencing extension, wherein the influencing extension is aligned with the center of the inner cross-sectional surface of the waveguide and is aligned with the feedline.
  • the influencing extension remains in the vicinity of the circumference of the inner cross-sectional area of the waveguide, ie preferably does not protrude into the region of the coupling element.
  • a conductive cap on the second side of the support plate in geometrical continuation of the waveguide to be placed the electrically conductive cap then with its end face in particular those on the second side of the support plate arranged large screen area or the other screen contacted.
  • the support plate has on its first side opposite the second side - or again in an intermediate layer - in continuation of the waveguide an electrically conductive layer as the conclusion of the waveguide.
  • a distance from the end of the waveguide is preferably realized to the coupling element, which is also a quarter of the wavelength of the guided electromagnetic waves.
  • the waveguide and / or the cap are filled with a potting compound, wherein the permittivity of the dielectric used as potting compound is to be considered in the dimensioning of those structures in the generation and guidance of the desired electromagnetic Waves are involved.
  • a filled with a potting compound waveguide it is particularly advantageous if the support plate in the region of the inner cross-sectional area of the waveguide has at least one recess - for example in the form of a bore - as can spread over these recesses an initially liquid potting compound in all areas of waveguide coupling ,
  • Fig. 1 a waveguide coupling 1 known from the prior art is shown, wherein Fig. 1a a waveguide 2, a support plate 3 and a feed line 4 has.
  • the waveguide 2 is placed in the assembled state on the first side 5 of the support plate 3 on the support plate 3, which in Fig. 1a is indicated by a dashed line.
  • the feed line 4 is guided on the support plate 3 in the inner region 5 of the waveguide, in any case, this applies to the mounting state. Accordingly, the feed line 4 terminates at one end 7 in the inner region 6 of the waveguide 2, the end 7 of the feed line 4 projecting into the inner region 6 of the waveguide 2 in the axial direction of the waveguide 2, ie actually at an outer end in the irradiation region of the waveguide 2 is provided.
  • Fig. 1b is good to see that the one end 7 of the feed line 4 in the inner region 6 of in Fig. 1b itself not shown waveguide ends and there is free, namely protruding into a milled recess 8. It is readily conceivable that the end 7 of the feed line 4 is cumbersome to produce and, moreover, is mechanically very sensitive.
  • waveguide couplings 1 and components of such waveguide couplings 1 are shown.
  • the support plate 3 extends continuously into the inner region 6 of the waveguide 2, so that therefore the end of the 7th the feed line 4 is not exempted, so no to the contour of the end 7 of the feed line 4 adapted recess in the inner region of the waveguide in the support plate 3 is provided. It therefore eliminates the time-consuming processing step of producing a precise opening of the support plate 3. Further, in the Fig.
  • an electrically conductive coupling element 9 is provided, wherein the indication "in the vicinity of the end 7 of the feed line 4" is to be understood that the coupling element 9 capacitively with the Feed line 4 and is coupled to the end 7 of the feed line 4 and the coupling element 9 of the coupling of guided via the feed line 4 in the waveguide 6 electromagnetic waves in the waveguide 6 is used.
  • the shape of the coupling element 9 is crucial for the adaptation of the waveguide coupling, wherein it is advantageous regardless of the shape of the coupling element 9, if - as in the Fig. 2 to 5 shown - the coupling element 9 is arranged substantially in the center of the waveguide 2 on the support plate 3; the electromagnetic waves emitted by the coupling element 9 are thus emitted practically symmetrically with respect to the wall of the waveguide 2.
  • the coupling element 9 has a longitudinal web 9a and a transverse web 9b, wherein the longitudinal web 9a and the transverse web 9b form a total of a cross.
  • a good adaptation of the waveguide coupling 1 is realized primarily by the longitudinal web 9a, 9b further, but not so significant improvements of the adjustment are achieved with the cross bar.
  • the characteristic dimensions of the coupling element 9 are in the range of one quarter of the wavelength of the electromagnetic waves to be emitted, wherein the characteristic dimensions in the present case in each case the longitudinal extent of the longitudinal web 9a and the cross bar 9b.
  • the feed line 4 is aligned substantially tapered straight to the center of the inner cross-sectional area of the waveguide 2, that is, in the case of the circular waveguide 2 radially extends, wherein the longitudinal web 9a of the coupling element 9 is arranged in extension of the feed line 4.
  • the in the Figures 2 and 4 illustrated examples and embodiments are characterized in that the support plate 3 on its first side 5, to which the waveguide is mounted in the assembled state - not shown in the Fig. 2 and 4 -
  • the Fig. 2 in particular the Fig.
  • the carrier plate 3 on its first side 5 opposite the second side 12 has a large area further electrically conductive screen surface 13 and that outside of the area opposite the inner cross-sectional area of the waveguide, wherein the further shield surface 13 also as a metallization of the support plate 3rd is realized.
  • the waveguide coupling 1 in Fig. 5 shows an exactly opposite structure of the assignment of the first page 5 and the second side 12 of the support plate 3.
  • the waveguide 2 is indeed also placed on the first side 5 of the support plate 3, but the feed line 4 and the coupling element realized on the second side 12 of the support plate 3 as a metallization, which works just as well; Both solutions shown are technically equivalent and equally easy to manufacture.
  • the electrically conductive shielding surface 11 protrudes with an influencing extension 14 into the inner cross-sectional area of the waveguide, wherein the influencing extension 14 is arranged on the center of the inner cross-sectional area of the waveguide, in the present case in alignment with the feed line 4.
  • the feed line 4, the longitudinal web 9a and the influencing extension 14 are quasi in line.
  • Fig. 5 is further shown that on the second side 12 of the support plate 3 in continuation of the waveguide 2, an electrically conductive cap 15 is placed as a conclusion of the waveguide 2, wherein the electrically conductive cap 15 consists of an electrically conductive base portion 15a and an electrically conductive terminating element 15b wherein the end element 15b can be inserted into the base part 15a.
  • Fig. 5 is further shown that an electrically conductive connection between the waveguide 2 and the cap 15 is made by a plurality of vias 16, which are embedded in the support plate 3.
  • the plated-through holes 16 make an electrically conductive connection between the electrically conductive screen surface 11 on one side of the carrier plate 3 and the further electrically conductive screen surface 13 on the other side of the carrier element 3.
  • the feed line 4 the coupling element 9 and the shielding surface 11 are provided on the side of the waveguide 2 of the support member 3 or on the side of the termination 15, just as it is of crucial importance, whether the further shield surface 13 on the waveguide 2 facing side of the support plate 3 is provided or on the other, the end 15 facing side of the support plate 3.
  • Vias 16 are also in Fig. 3 shown.
  • This in Fig. 2 illustrated example is designed for the coupling of electromagnetic waves with a center frequency of 80 GHz, in this case for coupling a linearly polarized electromagnetic wave, wherein the waveguide is made round and with an inner diameter of 2.6 mm, the longitudinal web 9a and the transverse web 9b of Einkoppelelements 9 have a length of 0.84 mm, and the support plate 3 has an edge length of about 6 mm. Due to the clever choice of the shape and the dimensions of the coupling element 9, it is possible a Adjustment better than 15 dB for a bandwidth of about 17 GHz or 21% of the center frequency to achieve. It should be noted here that the specifications apply to a design without encapsulation; in the case of encapsulation, the relative permittivity of the encapsulant must also be taken into account when dimensioning
  • the example according to Fig. 3 is optimized for a coupling of a linearly polarized electromagnetic wave with a center frequency of 6 GHz, wherein the - not shown waveguide - is designed round and with an inner diameter of 21.6 mm, the longitudinal web 9a of the coupling element 9 has a length of 5.5 mm and the transverse web 9b of the coupling element 9 has a length of 7.4 mm and wherein the carrier plate 3 has an edge length of about 32 mm.
  • a potting compound with a relative permittivity of about 4 is used, which has also been taken into account in the aforementioned interpretation. If the potting is omitted or replaced by a potting with a different relative permittivity, the dimensions must be adjusted accordingly.
  • Fig. 3 is optimized for a coupling of a linearly polarized electromagnetic wave with a center frequency of 6 GHz, wherein the - not shown waveguide - is designed round and with an inner diameter of 21.6 mm, the longitudinal web 9a of the coupling element 9 has
  • These holes are easy to manufacture and reduce the advantage of the illustrated embodiment of a waveguide coupling 1 with an otherwise continuous support plate 3, since holes are very easy to manufacture compared to a milled exemption of the feed line 4.

Description

Die vorliegende Erfindung betrifft eine Hohlleitereinkopplung, insbesondere für ein Radar-Füllstandmessgerät, mit einem Hohlleiter, einer Trägerplatte und wenigstens einer Speiseleitung, wobei die Speiseleitung auf und/oder in der Trägerplatte in den Innenbereich des Hohlleiters geführt ist und die Speiseleitung mit einem Ende im Innenbereich des Hohlleiters endet, wobei die Trägerplatte durchgehend auch in den Innenbereich des Hohlleiters und damit über das Ende der Speiseleitung hinaus erstreckt ist, wobei in Nähe des Endes der Speiseleitung auf und/oder in der Trägerplatte ein elektrisch leitfähiges Einkoppelelement angeordnet ist, sodass das Einkoppelelement mit der Speiseleitung gekoppelt ist und das Einkoppelelement der Einkopplung von über die Speiseleitung in den Hohlleiter geführten elektromagnetischen Wellen in den Hohlleiter dient, wobei das Einkoppelelement einen Längssteg und einen Quersteg aufweist, wobei der Längssteg und der Quersteg kreuzförmig angeordnet sind, wobei die Speiseleitung im Wesentlichen gerade auf das Zentrum der inneren Querschnittsfläche des Hohlleiters zulaufend ausgerichtet ist und wobei der Längssteg des Einkoppelelements in Verlängerung der Speiseleitung angeordnet ist.The present invention relates to a waveguide coupling, in particular for a radar level gauge, with a waveguide, a support plate and at least one feed line, wherein the feed line is guided on and / or in the carrier plate in the inner region of the waveguide and the feed line with one end in the inner region of the waveguide ends, wherein the carrier plate is continuously extending into the inner region of the waveguide and thus beyond the end of the feed line, wherein in the vicinity of the end of the feed line and / or in the carrier plate, an electrically conductive coupling element is arranged, so that the coupling element with the feed line is coupled and the coupling element of the coupling of guided via the feed line in the waveguide electromagnetic waves in the waveguide, wherein the coupling element has a longitudinal ridge and a crosspiece, said longitudinal ridge and the crosspiece arrange crosswise et, wherein the feed line is aligned substantially straight to the center of the inner cross-sectional area of the waveguide and wherein the longitudinal web of the coupling element is arranged in extension of the feed line.

Derartige Hohlleitereinkopplungen sind in der Hochfrequenztechnik seit langem bekannt und sie werden als Schnittstelle zwischen einer ein elektromagnetisches Signal erzeugenden Elektronikeinrichtung und der Einspeisung des leitungsgeführten Signals in den Innenraum des Hohlleiters verwendet. Bei aus dem Stand der Technik bekannten Hohlleitereinkopplungen besteht die Trägerplatte üblicherweise aus einer aus der Schaltungstechnik bekannten Platine, wobei die Speiseleitung häufig als Mikrostreifenleitung ausgeführt ist und durch eine Ausnehmung in dem Hohlleiter in den Innenraum des Hohlleiters geführt wird, wo sich die leitungsgeführte elektromagnetische Welle von der Speiseleitung trennt und sich als geführte elektromagnetische Welle in dem Hohlleiter ausbreitet. Bei der beispielhaft angeführten Anwendung im Rahmen eines Radar-Füllstandmessgeräts kann die geführte elektromagnetische Welle den Hohlleiter letztlich auch als Freiraumwelle verlassen, entweder unmittelbar nach Austritt aus dem Hohlleiter oder nach Durchlaufen einer sich an den Hohlleiter anschließenden Abstrahleinrichtung, die häufig zur Erzielung einer bestimmten Abstrahlcharakteristik vorgesehen ist; im letzteren Fall dient der Hohlleiter quasi nur als Übergangselement. Die Form des Hohlleiters wie auch das eingespeiste elektromagnetische Signal entscheiden darüber, welche Moden einer elektromagnetischen Welle sich letztlich in dem Hohlleiter ausbreiten. Üblicherweise werden elektromagnetische Wellen mit Frequenzen im GHz-Bereich für Radaranwendungen verwendet.Such waveguide couplings have long been known in high frequency engineering and they are used as an interface between an electronic device generating an electromagnetic signal and the supply of the line-guided signal in the interior of the waveguide. In waveguide couplings known from the prior art, the carrier plate usually consists of a board known from circuit technology, wherein the feed line is often designed as a microstrip line and is guided through a recess in the waveguide in the interior of the waveguide, where the conducted electromagnetic wave of the feedline separates and propagates as a guided electromagnetic wave in the waveguide. In the example given application in the context of a radar level gauge, the guided electromagnetic wave can ultimately leave the waveguide as a free space wave, either immediately after exiting the waveguide or after passing through an adjoining the waveguide radiator, often to achieve a certain radiation characteristic is provided; in the latter case, the waveguide serves quasi only as a transition element. The shape of the waveguide as well as the injected electromagnetic signal decide which modes of an electromagnetic wave ultimately propagate in the waveguide. Usually, electromagnetic waves with frequencies in the GHz range are used for radar applications.

Eine gattungsgemäße Hohlleitereinkopplung ist aus der US 2,829,348 A bekannt, die sich der Ankopplung eines Streifenleiters an einen Hohlleiter widmet. Die US 2010/0225410 A1 zeigt eine Anordnung, bei der zwei Mikrostreifenleiter in das Innere eines Hohlleiters geführt werden. Die EP 0 071 069 A2 zeigt eine Hohlleitereinkopplung, bei der Speiseleitung und Einkoppelelement zusammenfallen. Weitere Hohlleitereinkopplungen sind in US 2006/0255875 A1 und JP 2007-13450A offenbart.A generic waveguide coupling is from the US 2,829,348 A known, which is dedicated to the coupling of a strip conductor to a waveguide. The US 2010/0225410 A1 shows an arrangement in which two microstrip conductors are guided into the interior of a waveguide. The EP 0 071 069 A2 shows a waveguide coupling, coincide in the feed line and coupling element. Further waveguide couplings are in US 2006/0255875 A1 and JP 2007-13450A disclosed.

Aus dem Stand der Technik ist bekannt, dass das die Speiseleitung im Innenbereich des Hohlleiters umgebende Material der Trägerplatte entfernt wird - beispielsweise durch Fräsen -, so dass das Ende der Speiseleitung praktisch freigelegt ist. Dieser Vorgang ist vergleichsweise aufwendig, da insbesondere bei hochfrequenten elektromagnetischen Wellen die resultierenden Strukturen klein und damit mechanisch empfindlich sind, so dass hohe Anforderungen an die Präzision der auszuführenden Fräsarbeiten gestellt werden müssen. Derartige Konstruktionen sind beispielsweise bekannt aus Brumbi, D.: "Grundlagen der Radartechnik zur Füllstandmessung", 3. überarbeitete Auflage, 1999 .From the prior art it is known that the material surrounding the feed line in the inner region of the waveguide material of the carrier plate is removed - for example by milling - so that the end of the feed line is practically exposed. This process is comparatively complicated, since the resulting structures are small and therefore mechanically sensitive, especially in the case of high-frequency electromagnetic waves, so that high demands must be placed on the precision of the milling work to be performed. Such constructions are known, for example Brumbi, D .: "Fundamentals of radar technology for level measurement", 3rd revised edition, 1999 ,

Es ist damit Aufgabe der Erfindung, eine solche Hohlleitereinkopplung anzugeben, die eine größere Stabilität aufweist und einfach zu fertigen ist.It is therefore an object of the invention to provide such a waveguide coupling, which has a greater stability and is easy to manufacture.

Die zuvor hergeleitete Aufgabe ist bei der eingangs beschriebenen Hohlleitereinkopplung dadurch gelöst, dass der Hohlleiter auf einer ersten Seite der Trägerplatte auf die Trägerplatte aufgesetzt ist, dass das Einkoppelelement kapazitiv mit der Speiseleitung gekoppelt ist, dass die Trägerplatte auf ihrer ersten Seite, auf der der Hohlleiter aufgesetzt ist, oder in einer Zwischenschicht die Speiseleitung, das Einkoppelelement und eine elektrisch leitfähige Schirmfläche aufweist, dass die Trägerplatte auf ihrer der ersten Seite gegenüberliegenden zweiten Seite oder in einer Zwischenschicht eine großflächige weitere elektrisch leitfähige Schirmfläche aufweist und zwar außerhalb des Bereiches, der der inneren Querschnittsfläche des Hohlleiters gegenüberliegt, dass die Schirmfläche und/oder die weitere Schirmfläche mit einem Beeinflussungsfortsatz in die innere Querschnittsfläche des Hohlleiters hineinragt und dass der Beeinflussungsfortsatz auf das Zentrum der inneren Querschnittsfläche des Hohlleiters zulaufend ausgerichtet ist, und in einer Flucht mit der Speiseleitung angeordnet ist.The previously derived object is achieved in the waveguide coupling described above in that the waveguide is mounted on a first side of the support plate on the support plate, that the coupling element is capacitively coupled to the feed line, that the support plate on its first side on which the waveguide is placed, or in an intermediate layer, the feed line, the coupling element and an electrically conductive screen surface, that the support plate on its first side opposite the second side or in an intermediate layer a large area has further electrically conductive shielding surface and that outside of the region opposite to the inner cross-sectional surface of the waveguide that the shielding surface and / or the further shielding surface protrudes with an influencing extension in the inner cross-sectional area of the waveguide and that the influencing extension to the center of the inner cross-sectional area of the waveguide is aligned tapered, and is arranged in alignment with the feed line.

Dadurch, dass die Trägerplatte durchgehend auch in den Innenbereich des Hohlleiters erstreckt ist, also praktisch eine durchgehende Platte darstellt, entfällt der Arbeitsgang der Freistellung desjenigen Endes der Speiseleitung, das im Innenbereich des Hohlleiters endet, ferner werden mechanisch empfindliche Strukturen vermieden. Durch das elektrisch leitfähige Einkoppelelement in der Nähe des Endes der Speiseleitung ist es möglich, die Hohlleitereinkopplung elektromagnetisch anzupassen und beispielsweise die Bandbreite um die gewünschte Mittenfrequenz der zu führenden elektromagnetischen Wellen zu beeinflussen.The fact that the support plate is continuously extending into the inner region of the waveguide, so practically represents a continuous plate, eliminates the operation of the exemption of that end of the feed line, which ends in the interior of the waveguide, also mechanically sensitive structures are avoided. By the electrically conductive coupling element in the vicinity of the end of the feed line, it is possible to adjust the waveguide coupling electromagnetically and, for example, to influence the bandwidth to the desired center frequency of the leading electromagnetic waves.

Bei einer bevorzugten Ausgestaltung der Erfindung hat es sich als vorteilhaft herausgestellt, wenn das Einkoppelelement im Wesentlichen im Zentrum des Hohlleiters auf und/oder in der Trägerplatte angeordnet ist. Wenn zuvor davon die Rede ist, dass die Speiseleitung auf und/oder in der Trägerplatte geführt ist, oder dass das Einkoppelelement auf und/oder in der Trägerplatte angeordnet ist, dann ist damit gemeint, dass die elektrisch leitenden Elemente nicht zwingend auf einer Oberfläche der Trägerplatte realisiert sein müssen, sondern vielmehr auch als leitfähige Strukturen in einer Leiterplatte realisiert sein können, wie dies beispielsweise von Multilayer-Platinen bekannt ist.In a preferred embodiment of the invention, it has been found to be advantageous if the coupling element is arranged substantially in the center of the waveguide and / or in the carrier plate. If previously it is mentioned that the feed line is guided on and / or in the carrier plate, or that the coupling element is arranged on and / or in the carrier plate, then it is meant that the electrically conductive elements are not necessarily on a surface of the Carrier plate must be realized, but rather can be realized as conductive structures in a printed circuit board, as is known for example from multilayer boards.

Als besonders geeignete Struktur für das Einkoppelelement hat sich erfindungsgemäß eine Kreuzform herausgestellt, so dass das Einkoppelelement also einen Längssteg und einen Quersteg aufweist, wobei der Längssteg und der Quersteg kreuzförmig angeordnet sind. Der Längssteg und der Quersteg müssen selbstverständlich nicht als einzelne, sich überlappende Strukturen unterscheidbar sein, können vielmehr auch als eine einzige Struktur vorhanden sein, bei der lediglich geometrisch zwischen einem Längssteg und einem Quersteg unterschieden werden kann. Die Kreuzform des Einkoppelelements bringt einen unerwarteten positiven Effekt hinsichtlich der erzielbaren und erzielten Bandbreite mit sich. Während mit herkömmlichen Konstruktionen Bandbreiten bei einer Anpassung von besser als 15 dB von meist nicht mehr als etwa 10 % der Trägerfrequenz erzielt werden, sind mit dem beschriebenen kreuzförmigen Einkoppelelement Bandbreiten von etwa 20 % der Trägerfrequenz erzielbar, was einen erheblichen Vorteil mit sich bringt.As a particularly suitable structure for the coupling element according to the invention a cross shape has been found, so that the coupling element thus has a longitudinal web and a transverse web, wherein the longitudinal web and the crosspiece are arranged in a cross shape. Of course, the longitudinal web and the crosspiece do not have to be distinguishable as individual, overlapping structures, but rather may also be present as a single structure in which only a geometrical distinction is made between a longitudinal web and a transverse web can be. The cross shape of the coupling element brings an unexpected positive effect in terms of achievable and achieved bandwidth with it. While with conventional constructions bandwidths are achieved with an adaptation of better than 15 dB of usually not more than about 10% of the carrier frequency, with the described cross-shaped coupling element bandwidths of about 20% of the carrier frequency can be achieved, which brings a significant advantage.

Durch Variation der Länge des Längssteges und der Länge des Quersteges kann beispielsweise die Bandbreite variiert werden, mit der eine Anpassung oberhalb einer vorgegebenen Dämpfung um eine gewünschte Mittenfrequenz erreicht wird.By varying the length of the longitudinal web and the length of the transverse web, for example, the bandwidth can be varied, with which an adaptation above a predetermined attenuation is achieved by a desired center frequency.

Das Einkoppelelement ist vorzugsweise so ausgestaltet, dass die charakteristischen Abmessungen des Einkoppelelements im Bereich von einem Viertel der Wellenlänge der zu emittierenden elektromagnetischen Wellen liegen. Unter "charakteristischen Abmessungen" ist beispielsweise die Längs- und Quererstreckung des Einkoppelelements gemeint, im Falle der kreuzförmigen Ausgestaltung des Einkoppelelementes also die Erstreckung des Längssteges und des Quersteges des Einkoppelelements. In jedem Fall ist hier jedoch die effektive relative Permittivität der Konstruktion zu berücksichtigen - beispielsweise sich ergebend aus den relativen Permittivitäten von Trägerplatte und umgebender Luft -, da diese als Skalierungsfaktor eingeht, wobei der Skalierungsfaktor genauer der Kehrwert der Wurzel aus der effektiven relativen Permittivität ist.The coupling element is preferably designed such that the characteristic dimensions of the coupling element are in the range of one quarter of the wavelength of the electromagnetic waves to be emitted. By "characteristic dimensions" is meant, for example, the longitudinal and transverse extent of the coupling element, in the case of the cross-shaped configuration of the coupling element so the extension of the longitudinal web and the transverse web of the coupling element. In any case, however, account must be taken here of the effective relative permittivity of the design - resulting, for example, from the relative permittivities of the support plate and ambient air - since this is a scaling factor, the scaling factor being more precisely the reciprocal of the root from the actual relative permittivity.

Erfindungsgemäß ist vorgesehen, dass die Trägerplatte auf ihrer ersten Seite, auf die der Hohlleiter aufgesetzt ist, oder auf ihrer der ersten Seite gegenüberliegenden zweiten Seite oder in einer Zwischenschicht die Speiseleitung, das Einkoppelelement und eine elektrisch leitfähige Schirmfläche aufweist. Selbstverständlich sind die elektrisch leitfähige Schirmfläche und die Speiseleitung getrennt voneinander realisiert, wobei die Speiseleitung, das Einkoppelelement und die Schirmfläche insbesondere als Metallisierung der Trägerplatte realisiert sind. Es bietet sich an, die Herstellung dieser elektrisch leitfähigen Strukturen in bekannter Weise fotolithografisch vorzunehmen, da es hier ohne Weiteres möglich ist, die erforderliche Präzision bei der Ausführung der Strukturen auch im Bereich von Millimeter-Bruchteilen sauber auszuführen.According to the invention, the carrier plate has on its first side, on which the waveguide is mounted, or on its second side opposite the first side, or in an intermediate layer, the feed line, the coupling element and an electrically conductive shielding surface. Of course, the electrically conductive shielding surface and the feed line are realized separately from one another, wherein the feed line, the coupling element and the shielding surface are realized in particular as a metallization of the carrier plate. It makes sense to photolithographically make the production of these electrically conductive structures in a known manner, since it is here It is also possible to carry out the required precision in the execution of the structures even in the area of millimeter fractions.

Gemäß einer vorteilhaften Weiterbildung kontaktiert die elektrisch leitfähige Schirmfläche den Hohlleiter an seiner Stirnfläche, wobei die Schirmfläche den Hohlleiter insbesondere großflächig umgibt. Da der elektrisch leitfähige Hohlleiter an seiner Stirnfläche mit der ebenfalls elektrisch leitfähigen Schirmfläche verbunden ist, ist es auf sehr einfache Weise möglich, Schirmfläche und Hohlleiter auf ein gemeinsames elektrisches Potential zu legen, beispielsweise auf Masse-Potential.According to an advantageous development, the electrically conductive shielding surface contacts the waveguide on its end face, wherein the shielding surface surrounds the waveguide in particular over a large area. Since the electrically conductive waveguide is connected at its end face to the likewise electrically conductive shielding surface, it is possible in a very simple manner to place the shielding surface and waveguide at a common electrical potential, for example at ground potential.

Es hat sich ebenfalls als vorteilhaft herausgestellt, wenn die Trägerplatte erfindungsgemäß auf ihrer ersten Seite, auf der der Hohlleiter aufgesetzt ist, oder auf ihrer der ersten Seite gegenüberliegenden zweiten Seite oder in einer Zwischenschicht eine großflächige weitere elektrisch leitfähige Schirmfläche aufweist und zwar bevorzugt außerhalb des Bereiches, der der inneren Querschnittsfläche des Hohlleiters gegenüberliegt, wobei die weitere Schirmfläche wiederum insbesondere als Metallisierung der Trägerplatte realisiert ist oder als metallische Zwischenschicht. Auf diese Weise lässt sich die gesamte Oberfläche der Trägerplatte auf einfache Weise mit einem definierten Potential versehen und lassen sich Störemissionen unterdrücken.It has also been found to be advantageous if the support plate according to the invention on its first side, on which the waveguide is placed, or on its second side opposite the first side or in an intermediate layer has a large area further electrically conductive screen surface and preferably outside the range , which is opposite to the inner cross-sectional area of the waveguide, wherein the further screen surface is in turn realized in particular as a metallization of the carrier plate or as a metallic intermediate layer. In this way, the entire surface of the support plate can be provided in a simple manner with a defined potential and can suppress interference emissions.

Im Rahmen der Erfindung ist erkannt worden, dass es auf überraschend einfache Weise möglich ist, unerwünschte Moden in dem Hohlleiter zu unterdrücken. Dies kann dadurch erreicht werden, dass die Schirmfläche und/oder die weitere Schirmfläche mit einem Beeinflussungsfortsatz in die innere Querschnittsfläche des Hohlleiters hineinragt, wobei der Beeinflussungsfortsatz auf das Zentrum der inneren Querschnittsfläche des Hohlleiters zulaufend ausgerichtet ist und in einer Flucht mit der Speiseleitung angeordnet ist. Dabei bleibt der Beeinflussungsfortsatz trotz seiner Orientierung in Richtung auf das Zentrum der inneren Querschnittsfläche des Hohlleiters in der Nähe des Umfangs der inneren Querschnittsfläche des Hohlleiters, ragt also vorzugsweise nicht in den Bereich des Einkoppelelements.In the context of the invention it has been recognized that it is possible in a surprisingly simple manner to suppress unwanted modes in the waveguide. This can be achieved by projecting the shielding surface and / or the further shielding surface into the inner cross-sectional surface of the waveguide with an influencing extension, wherein the influencing extension is aligned with the center of the inner cross-sectional surface of the waveguide and is aligned with the feedline. In this case, despite its orientation in the direction of the center of the inner cross-sectional area of the waveguide, the influencing extension remains in the vicinity of the circumference of the inner cross-sectional area of the waveguide, ie preferably does not protrude into the region of the coupling element.

Um einen Abschluss des Hohlleiters in der der Abstrahlrichtung entgegengesetzten Richtung zu erzielen, kann entweder eine leitfähige Kappe auf der zweiten Seite der Trägerplatte in geometrischer Fortsetzung des Hohlleiters aufgesetzt sein, wobei die elektrisch leitfähige Kappe dann mit ihrer Stirnfläche insbesondere die auf der zweiten Seite der Trägerplatte angeordnete großflächige Schirmfläche oder die weitere Schirmfläche kontaktiert. Alternativ kann jedoch auch vorgesehen sein, dass die Trägerplatte auf ihrer der ersten Seite gegenüberliegenden zweiten Seite - oder wiederum in einer Zwischenschicht - in Fortsetzung des Hohlleiters eine elektrisch leitfähige Schicht als Abschluss des Hohlleiters aufweist. In beiden Varianten wird bevorzugt ein Abstand vom Abschluss des Hohlleiters zu dem Einkoppelelement realisiert, der ebenfalls ein Viertel der Wellenlänge der geführten elektromagnetischen Wellen beträgt.In order to achieve a conclusion of the waveguide in the direction opposite to the direction of radiation, either a conductive cap on the second side of the support plate in geometrical continuation of the waveguide to be placed, the electrically conductive cap then with its end face in particular those on the second side of the support plate arranged large screen area or the other screen contacted. Alternatively, however, it can also be provided that the support plate has on its first side opposite the second side - or again in an intermediate layer - in continuation of the waveguide an electrically conductive layer as the conclusion of the waveguide. In both variants, a distance from the end of the waveguide is preferably realized to the coupling element, which is also a quarter of the wavelength of the guided electromagnetic waves.

In einer weiteren bevorzugten Ausgestaltung der Erfindung ist vorgesehen, dass der Hohlleiter und/oder die Kappe mit einer Vergussmasse ausgefüllt sind, wobei die Permittivität des als Vergussmasse verwendeten Dielektrikums bei der Dimensionierung derjenigen Strukturen zu berücksichtigen ist, die bei der Erzeugung und Führung der gewünschten elektromagnetischen Wellen beteiligt sind. Bei einer mit einer Vergussmasse gefüllten Hohlleitereinkopplung ist es besonders vorteilig, wenn die Trägerplatte im Bereich der inneren Querschnittsfläche des Hohlleiters wenigstens eine Ausnehmung aufweist - beispielsweise in Form einer Bohrung - da sich über diese Ausnehmungen eine zunächst noch flüssige Vergussmasse in alle Bereiche der Hohlleitereinkopplung ausbreiten kann.In a further preferred embodiment of the invention it is provided that the waveguide and / or the cap are filled with a potting compound, wherein the permittivity of the dielectric used as potting compound is to be considered in the dimensioning of those structures in the generation and guidance of the desired electromagnetic Waves are involved. In a filled with a potting compound waveguide, it is particularly advantageous if the support plate in the region of the inner cross-sectional area of the waveguide has at least one recess - for example in the form of a bore - as can spread over these recesses an initially liquid potting compound in all areas of waveguide coupling ,

Im Einzelnen gibt es nun eine Vielzahl von Möglichkeiten, die erfindungsgemäße Hohlleitereinkopplung auszugestalten und weiterzubilden. Dazu wird verwiesen einerseits auf die dem Patentanspruch 1 nachgeordneten Patentansprüche, andererseits auf die folgende Beschreibung von Ausführungsbeispielen in Verbindung mit der Zeichnung. In der Zeichnung zeigt

Fig. 1
eine aus dem Stand der Technik bekannte Hohlleitereinkopplung in Seitenansicht und in Draufsicht,
Fig. 2
eine Trägerplatte einer Hohlleitereinkopplung von der ersten Seite und von der zweiten Seite in Draufsicht,
Fig. 3
eine Trägerplatte für eine Hohlleitereinkopplung,
Fig. 4
ein Ausführungsbeispiel einer Trägerplatte für eine erfindungsgemäße Hohlleitereinkopplung und
Fig. 5
eine Explosionsdarstellung einer Hohlleitereinkopplung.
In particular, there are a variety of ways to design and further develop the waveguide coupling according to the invention. Reference is made on the one hand to the claims subordinate to claim 1, on the other hand, to the following description of embodiments in conjunction with the drawings. In the drawing shows
Fig. 1
a known from the prior art waveguide coupling in side view and in plan view,
Fig. 2
a carrier plate of a waveguide coupling from the first side and from the second side in plan view,
Fig. 3
a carrier plate for a waveguide coupling,
Fig. 4
an embodiment of a carrier plate for a waveguide coupling according to the invention and
Fig. 5
an exploded view of a waveguide coupling.

In Fig. 1 ist eine aus dem Stand der Technik bekannte Hohlleitereinkopplung 1 dargestellt, wobei Fig. 1a einen Hohlleiter 2, eine Trägerplatte 3 und eine Speiseleitung 4 aufweist. Der Hohlleiter 2 ist im Montagezustand auf der ersten Seite 5 der Trägerplatte 3 auf die Trägerplatte 3 aufgesetzt, was in Fig. 1a durch eine strichpunktierte Linie angedeutet ist.In Fig. 1 a waveguide coupling 1 known from the prior art is shown, wherein Fig. 1a a waveguide 2, a support plate 3 and a feed line 4 has. The waveguide 2 is placed in the assembled state on the first side 5 of the support plate 3 on the support plate 3, which in Fig. 1a is indicated by a dashed line.

Die Speiseleitung 4 ist auf der Trägerplatte 3 in den Innenbereich 5 des Hohlleiters geführt, jedenfalls trifft das auf den Montagezustand zu. Die Speiseleitung 4 endet demnach mit einem Ende 7 im Innenbereich 6 des Hohlleiters 2, wobei das Ende 7 der Speiseleitung 4 in axialer Richtung des Hohlleiters 2 betrachtet in den Innenbereich 6 des Hohlleiters 2 hineinragt, tatsächlich also an einem äußeren Ende im Einstrahlungsbereich des Hohlleiters 2 vorgesehen ist. In Fig. 1b ist gut zu erkennen, dass das eine Ende 7 der Speiseleitung 4 in dem Innenbereich 6 des in Fig. 1b selbst nicht dargestellten Hohlleiters endet und dort freigestellt ist, nämlich in eine gefräste Ausnehmung 8 hineinragt. Es ist ohne weiteres vorstellbar, dass das Ende 7 der Speiseleitung 4 umständlich herzustellen ist und darüber hinaus mechanisch sehr empfindlich ist.The feed line 4 is guided on the support plate 3 in the inner region 5 of the waveguide, in any case, this applies to the mounting state. Accordingly, the feed line 4 terminates at one end 7 in the inner region 6 of the waveguide 2, the end 7 of the feed line 4 projecting into the inner region 6 of the waveguide 2 in the axial direction of the waveguide 2, ie actually at an outer end in the irradiation region of the waveguide 2 is provided. In Fig. 1b is good to see that the one end 7 of the feed line 4 in the inner region 6 of in Fig. 1b itself not shown waveguide ends and there is free, namely protruding into a milled recess 8. It is readily conceivable that the end 7 of the feed line 4 is cumbersome to produce and, moreover, is mechanically very sensitive.

In den Fig. 2 bis 5 sind Hohlleitereinkopplungen 1 bzw. Bestandteile solcher Hohlleitereinkopplungen 1 dargestellt. Im Unterschied zu den aus Fig. 1 bekannten Hohlleitereinkopplungen ist in den Ausführungsbeispielen gemäß den Fig. 2 bis 5 die Trägerplatte 3 durchgehend auch in den Innenbereich 6 des Hohlleiters 2 erstreckt, so dass also das Ende 7 der Speiseleitung 4 nicht freigestellt ist, also keine an die Kontur des Endes 7 der Speiseleitung 4 angepasste Ausnehmung im Innenbereich des Hohlleiters in der Trägerplatte 3 vorgesehen ist. Es entfällt hier demnach der aufwändige Bearbeitungsschritt der Herstellung einer präzisen Durchbrechung der Trägerplatte 3. Ferner ist in den Fig. 2 bis 5 erkennbar, dass in der Nähe des Endes 7 der Speiseleitung 4 auf der Trägerplatte 3 ein elektrisch leitfähiges Einkoppelelement 9 vorgesehen ist, wobei die Angabe "in der Nähe des Endes 7 der Speiseleitung 4" dahingehend zu verstehen ist, dass das Einkoppelelement 9 kapazitiv mit der Speiseleitung 4 bzw. mit dem Ende 7 der Speiseleitung 4 gekoppelt ist und das Einkoppelelement 9 der Einkopplung von über die Speiseleitung 4 in den Hohlleiter 6 geführten elektromagnetischen Wellen in den Hohlleiter 6 dient.In the Fig. 2 to 5 waveguide couplings 1 and components of such waveguide couplings 1 are shown. Unlike the out Fig. 1 known waveguide couplings is in the embodiments according to the Fig. 2 to 5 the support plate 3 extends continuously into the inner region 6 of the waveguide 2, so that therefore the end of the 7th the feed line 4 is not exempted, so no to the contour of the end 7 of the feed line 4 adapted recess in the inner region of the waveguide in the support plate 3 is provided. It therefore eliminates the time-consuming processing step of producing a precise opening of the support plate 3. Further, in the Fig. 2 to 5 recognizable that in the vicinity of the end 7 of the feed line 4 on the support plate 3, an electrically conductive coupling element 9 is provided, wherein the indication "in the vicinity of the end 7 of the feed line 4" is to be understood that the coupling element 9 capacitively with the Feed line 4 and is coupled to the end 7 of the feed line 4 and the coupling element 9 of the coupling of guided via the feed line 4 in the waveguide 6 electromagnetic waves in the waveguide 6 is used.

Die Formgebung des Einkoppelelements 9 ist entscheidend für die Anpassung der Hohlleitereinkopplung, wobei es ungeachtet von der Form des Einkoppelelements 9 vorteilhaft ist, wenn - wie in den Fig. 2 bis 5 dargestellt - das Einkoppelelement 9 im Wesentlichen im Zentrum des Hohlleiters 2 auf der Trägerplatte 3 angeordnet ist; die von dem Einkoppelelement 9 emittierten elektromagnetischen Wellen werden so praktisch symmetrisch in Bezug auf die Wandung des Hohlleiters 2 emittiert.The shape of the coupling element 9 is crucial for the adaptation of the waveguide coupling, wherein it is advantageous regardless of the shape of the coupling element 9, if - as in the Fig. 2 to 5 shown - the coupling element 9 is arranged substantially in the center of the waveguide 2 on the support plate 3; the electromagnetic waves emitted by the coupling element 9 are thus emitted practically symmetrically with respect to the wall of the waveguide 2.

Bei den Ausführungsbeispielen ist vorgesehen, dass das Einkoppelelement 9 einen Längssteg 9a und einen Quersteg 9b aufweist, wobei der Längssteg 9a und der Quersteg 9b insgesamt ein Kreuz bilden. Eine gute Anpassung der Hohlleitereinkopplung 1 wird in erster Linie durch den Längssteg 9a realisiert, wobei mit dem Quersteg 9b weitere, jedoch vom Umfang nicht so erhebliche Verbesserungen der Anpassung erzielt werden.In the embodiments, it is provided that the coupling element 9 has a longitudinal web 9a and a transverse web 9b, wherein the longitudinal web 9a and the transverse web 9b form a total of a cross. A good adaptation of the waveguide coupling 1 is realized primarily by the longitudinal web 9a, 9b further, but not so significant improvements of the adjustment are achieved with the cross bar.

In den dargestellten Ausführungsbeispielen liegen die charakteristischen Abmessungen des Einkoppelelements 9 im Bereich von einem Viertel der Wellenlänge der zu emittierenden elektromagnetischen Wellen, wobei die charakteristischen Abmessungen im vorliegenden Fall jeweils die Längserstreckung des Längssteges 9a und des Quersteges 9b sind.In the illustrated embodiments, the characteristic dimensions of the coupling element 9 are in the range of one quarter of the wavelength of the electromagnetic waves to be emitted, wherein the characteristic dimensions in the present case in each case the longitudinal extent of the longitudinal web 9a and the cross bar 9b.

In den Fig. 2a und 3 bis 5 ist zu erkennen, dass die Speiseleitung 4 im Wesentlichen gerade auf das Zentrum der inneren Querschnittsfläche des Hohlleiters 2 zulaufend ausgerichtet ist, im Falle des runden Hohlleiters 2 also radial erstreckt ist, wobei der Längssteg 9a des Einkoppelelements 9 in Verlängerung der Speiseleitung 4 angeordnet ist.In the Fig. 2a and 3 to 5 It can be seen that the feed line 4 is aligned substantially tapered straight to the center of the inner cross-sectional area of the waveguide 2, that is, in the case of the circular waveguide 2 radially extends, wherein the longitudinal web 9a of the coupling element 9 is arranged in extension of the feed line 4.

Die in den Figuren 2 und 4 dargestellten Beispiele und Ausführungsbeispiele zeichnen sich dadurch aus, dass die Trägerplatte 3 auf ihrer ersten Seite 5, auf die der Hohlleiter im Montagezustand aufgesetzt ist - nicht dargestellt in den Fig. 2 und 4 - die Speiseleitung 4, das Einkoppelelement 9 und eine den - in den Fig. 2 und 4 nicht dargestellten - Hohlleiter an seiner Stirnfläche 10 kontaktierende, den Hohlleiter insbesondere großflächig umgebende elektrisch leitfähige Schirmfläche 11 aufweist, wobei die Speiseleitung 4, das Einkoppelelement 9 und die Schirmfläche 11 als Metallisierung der Trägerplatte 3 realisiert sind. In der Fig. 2, insbesondere der Fig. 2b ist dargestellt, dass die Trägerplatte 3 auf ihrer der ersten Seite 5 gegenüberliegenden zweiten Seite 12 eine großflächige weitere elektrisch leitfähige Schirmfläche 13 aufweist und zwar außerhalb des Bereiches, der der inneren Querschnittsfläche des Hohlleiters gegenüberliegt, wobei die weitere Schirmfläche 13 ebenfalls als Metallisierung der Trägerplatte 3 realisiert ist.The in the Figures 2 and 4 illustrated examples and embodiments are characterized in that the support plate 3 on its first side 5, to which the waveguide is mounted in the assembled state - not shown in the Fig. 2 and 4 - The feed line 4, the coupling element 9 and a - in the Fig. 2 and 4 not shown - waveguide on its end face 10 contacting, the waveguide in particular a large area surrounding electrically conductive shielding surface 11, wherein the feed line 4, the coupling element 9 and the shield surface 11 are realized as metallization of the support plate 3. In the Fig. 2 , in particular the Fig. 2b It is shown that the carrier plate 3 on its first side 5 opposite the second side 12 has a large area further electrically conductive screen surface 13 and that outside of the area opposite the inner cross-sectional area of the waveguide, wherein the further shield surface 13 also as a metallization of the support plate 3rd is realized.

Die Hohlleitereinkopplung 1 in Fig. 5 zeigt einen genau entgegengesetzten Aufbau der Belegung der ersten Seite 5 und der zweiten Seite 12 der Trägerplatte 3. In dem dort dargestellten Ausführungsbeispiel ist der Hohlleiter 2 zwar ebenfalls auf der ersten Seite 5 der Trägerplatte 3 aufgesetzt, jedoch sind die Speiseleitung 4 und das Einkoppelelement 9 auf der zweiten Seite 12 der Trägerplatte 3 als Metallisierung realisiert, was ebenso gut funktioniert; beide dargestellten Lösungen sind technisch gleichwertig und ebenso einfach herzustellen.The waveguide coupling 1 in Fig. 5 shows an exactly opposite structure of the assignment of the first page 5 and the second side 12 of the support plate 3. In the embodiment shown there, the waveguide 2 is indeed also placed on the first side 5 of the support plate 3, but the feed line 4 and the coupling element realized on the second side 12 of the support plate 3 as a metallization, which works just as well; Both solutions shown are technically equivalent and equally easy to manufacture.

Bei dem Beispiel gemäß Fig. 3 ist keine ausgedehnte Schirmfläche vorgesehen, sondern nur eine elektrisch leitende Kontaktierungsfläche 14, auf die der Hohlleiter aufgesetzt werden kann. Bei der Trägerplatte 3 gemäß Fig. 4 ist erfindungsgemäß vorgesehen, dass die elektrisch leitfähige Schirmfläche 11 mit einem Beeinflussungsfortsatz 14 in die innere Querschnittsfläche des Hohlleiters hineinragt, wobei der Beeinflussungsfortsatz 14 auf das Zentrum der inneren Querschnittsfläche des Hohlleiters, vorliegend nämlich in einer Flucht mit der Speiseleitung 4 angeordnet ist. Die Speiseleitung 4, der Längssteg 9a und der Beeinflussungsfortsatz 14 liegen quasi in einer Linie.In the example according to Fig. 3 No extended screen surface is provided, but only an electrically conductive contacting surface 14, on which the waveguide can be placed. In the support plate 3 according to Fig. 4 According to the invention, the electrically conductive shielding surface 11 protrudes with an influencing extension 14 into the inner cross-sectional area of the waveguide, wherein the influencing extension 14 is arranged on the center of the inner cross-sectional area of the waveguide, in the present case in alignment with the feed line 4. The feed line 4, the longitudinal web 9a and the influencing extension 14 are quasi in line.

In Fig. 5 ist ferner dargestellt, dass auf der zweiten Seite 12 der Trägerplatte 3 in Fortsetzung des Hohlleiters 2 eine elektrisch leitfähige Kappe 15 als Abschluss des Hohlleiters 2 aufgesetzt ist, wobei die elektrisch leitfähige Kappe 15 aus einem elektrisch leitfähigen Basisteil 15a und einem elektrisch leitfähigen Abschlusselement 15b besteht, wobei das Abschlusselement 15b in das Basisteil 15a einfügbar ist.In Fig. 5 is further shown that on the second side 12 of the support plate 3 in continuation of the waveguide 2, an electrically conductive cap 15 is placed as a conclusion of the waveguide 2, wherein the electrically conductive cap 15 consists of an electrically conductive base portion 15a and an electrically conductive terminating element 15b wherein the end element 15b can be inserted into the base part 15a.

In Fig. 5 ist ferner dargestellt, dass eine elektrisch leitfähige Verbindung zwischen dem Hohlleiter 2 und der Kappe 15 hergestellt ist durch mehrere Durchkontaktierungen 16, die in die Trägerplatte 3 eingelassen sind. Die Durchkontaktierungen 16 stellen eine elektrisch leitende Verbindung her zwischen der elektrisch leitfähigen Schirmfläche 11 auf der einen Seite der Trägerplatte 3 und der weiteren elektrisch leitfähigen Schirmfläche 13 auf der anderen Seite des Trägerelements 3. Wie bereits schon erwähnt, ist es für die technische Funktion nicht entscheidend, ob die Speiseleitung 4, das Einkoppelelement 9 und die Schirmfläche 11 auf der Seite des Hohlleiters 2 des Trägerelements 3 oder auf der Seite des Abschlusses 15 vorgesehen sind, genauso wenig wie es von entscheidender Bedeutung ist, ob die weitere Schirmfläche 13 auf der dem Hohlleiter 2 zugewandten Seite der Trägerplatte 3 vorgesehen ist oder auf der anderen, dem Abschluss 15 zugewandten Seite der Trägerplatte 3. Durchkontaktierungen 16 sind ferner auch in Fig. 3 dargestellt.In Fig. 5 is further shown that an electrically conductive connection between the waveguide 2 and the cap 15 is made by a plurality of vias 16, which are embedded in the support plate 3. The plated-through holes 16 make an electrically conductive connection between the electrically conductive screen surface 11 on one side of the carrier plate 3 and the further electrically conductive screen surface 13 on the other side of the carrier element 3. As already mentioned, it is not critical for the technical function whether the feed line 4, the coupling element 9 and the shielding surface 11 are provided on the side of the waveguide 2 of the support member 3 or on the side of the termination 15, just as it is of crucial importance, whether the further shield surface 13 on the waveguide 2 facing side of the support plate 3 is provided or on the other, the end 15 facing side of the support plate 3. Vias 16 are also in Fig. 3 shown.

Das in Fig. 2 dargestellte Beispiel ist für die Einkopplung von elektromagnetischen Wellen mit einer Mittenfrequenz von 80 GHz ausgelegt, vorliegend zur Einkopplung einer linear polarisierten elektromagnetischen Welle, wobei der Hohlleiter rund und mit einem Innendurchmesser von 2,6 mm ausgeführt ist, der Längssteg 9a und der Quersteg 9b des Einkoppelelements 9 eine Länge von je 0,84 mm aufweisen, und die Trägerplatte 3 eine Kantenlänge von etwa 6 mm aufweist. Durch die geschickte Wahl der Formgebung und der Abmessungen des Einkoppelelements 9 ist es möglich, eine Anpassung besser als 15 dB für eine Bandbreite von ca. 17 GHz bzw. von 21% der Mittenfrequenz zu erzielen. Zu beachten ist hier, dass die Angaben für eine Konstruktion ohne Verguss gelten, bei einem Verguss ist bei der Dimensionierung zusätzlich die relative Permittivität der Vergussmasse zu berücksichtigenThis in Fig. 2 illustrated example is designed for the coupling of electromagnetic waves with a center frequency of 80 GHz, in this case for coupling a linearly polarized electromagnetic wave, wherein the waveguide is made round and with an inner diameter of 2.6 mm, the longitudinal web 9a and the transverse web 9b of Einkoppelelements 9 have a length of 0.84 mm, and the support plate 3 has an edge length of about 6 mm. Due to the clever choice of the shape and the dimensions of the coupling element 9, it is possible a Adjustment better than 15 dB for a bandwidth of about 17 GHz or 21% of the center frequency to achieve. It should be noted here that the specifications apply to a design without encapsulation; in the case of encapsulation, the relative permittivity of the encapsulant must also be taken into account when dimensioning

Das Beispiel gemäß Fig. 3 ist optimiert für eine Einkopplung einer linear polarisierten elektromagnetischen Welle mit einer Mittenfrequenz von 6 GHz, wobei der - nicht dargestellte Hohlleiter - rund und mit einem Innendurchmesser von 21,6 mm ausgeführt ist, der Längssteg 9a des Einkoppelelements 9 eine Länge von 5,5 mm aufweist und der Quersteg 9b des Einkoppelelements 9 eine Länge von 7,4 mm aufweist und wobei die Trägerplatte 3 eine Kantenlänge von etwa 32 mm hat. In diesem Beispiel wird eine Vergussmasse mit einer relativen Permittivität von etwa 4 verwendet, die auch bei der vorgenannten Auslegung berücksichtigt worden ist. Wird der Verguss weggelassen oder durch einen Verguss mit einer anderen relativen Permittivität ersetzt, sind die Abmessungen entsprechend anzupassen. In Fig. 3 ist ferner gezeigt, dass die Trägerplatte im Bereich der inneren Querschnittsfläche des Hohlleiters Ausnehmungen 17a, 17b aufweist, die vor allem der besseren Verfüllbarkeit der Hohlleitereinkopplung 1 mit einer Vergussmasse dienen und als Bohrungen ausgeführt sind. Diese Bohrungen sind einfach herzustellen und schmälern den Vorteil der dargestellten Ausführungsform einer Hohlleitereinkopplung 1 mit einer sonst durchgehenden Trägerplatte 3 nicht, da Bohrungen im Vergleich zu einer gefrästen Freistellung der Speiseleitung 4 sehr einfach herzustellen sind.The example according to Fig. 3 is optimized for a coupling of a linearly polarized electromagnetic wave with a center frequency of 6 GHz, wherein the - not shown waveguide - is designed round and with an inner diameter of 21.6 mm, the longitudinal web 9a of the coupling element 9 has a length of 5.5 mm and the transverse web 9b of the coupling element 9 has a length of 7.4 mm and wherein the carrier plate 3 has an edge length of about 32 mm. In this example, a potting compound with a relative permittivity of about 4 is used, which has also been taken into account in the aforementioned interpretation. If the potting is omitted or replaced by a potting with a different relative permittivity, the dimensions must be adjusted accordingly. In Fig. 3 it is further shown that the support plate in the region of the inner cross-sectional surface of the waveguide recesses 17a, 17b, which serve above all the better Verfüllbarkeit the waveguide 1 with a potting compound and are designed as holes. These holes are easy to manufacture and reduce the advantage of the illustrated embodiment of a waveguide coupling 1 with an otherwise continuous support plate 3, since holes are very easy to manufacture compared to a milled exemption of the feed line 4.

Claims (10)

  1. Waveguide coupling (1), in particular for a radar fill level measuring device, having a waveguide (2), a carrier plate (3) and at least one feed line (4), wherein the feed line (4) is guided on and/or in the carrier plate (3) into the inner region (6) of the waveguide (2) and the feed line (4) ends with one end (7) in the inner region (6) of the waveguide (2), wherein the carrier plate (3) also extends continuously into the inner region (6) of the waveguide (2) and thus beyond the end (7) of the feed line (4), wherein an electrically conductive coupling element (9) is arranged on and/or in the carrier plate (3) in the vicinity of the end (7) of the feed line (4), so that the coupling element (9) is coupled to the feed line (4) and the coupling element (9) serves to couple electromagnetic waves led in the waveguide (6) via the feed line (4) into the waveguide (6), wherein the coupling element (9) has a longitudinal bar (9a) and a cross bar (9b), wherein the longitudinal bar (9a) and the cross bar (9b) are arranged in a cross shape, wherein the feed line (4) is aligned substantially straight towards the center of the inner cross section area of the waveguide (2), and wherein the longitudinal bar (9a) of the coupling element (9) is arranged in extension of the feed line (4),
    wherein the waveguide (2) is placed on the carrier plate (3) on a first side (5) of the carrier plate (3), wherein the coupling element (9) is capacitively coupled to the feed line (4), wherein the carrier plate (3) has on its first side (5), on which the waveguide (2) is placed, or, in an intermediate layer, the feed line (4), the coupling element (9) and the screen face (11), wherein the carrier plate (3) has, on its second side (12) opposite the first side (5) or in an intermediate layer, a large-area further electrically conductive screen face (13) outside the region, which is opposite the inner cross section area of the waveguide (2), wherein the screen face (11) and/or the further screen face (13) extends into the inner cross section area of the waveguide (2) with an influencing extension (14), and wherein the influencing extension (14) is aligned towards the center of the inner cross section area of the waveguide (2) and is arranged in line with the feed line (4).
  2. Waveguide coupling (1) according to claim 1, characterized in that the coupling element (9) is arranged substantially in the center of the inner cross section area of the waveguide (2) on and/or in the carrier plate (3).
  3. Waveguide coupling (1) according to claim 1 or 2, characterized in that the characteristic dimensions of the coupling element (9), taking into account the effective relative permittivity of the waveguide coupling, are in the range of one quarter of the wavelength of the electromagnetic waves to be emitted, wherein the effective relative permittivity results from the relative permittivities of the carrier plate (3) and of the medium surrounding the carrier plate (3).
  4. Waveguide coupling (1) according to any one of the claims 1 to 3, characterized in that the electrically conductive screen face (11) contacts the waveguide (2) at its end face (10) and the screen face (11) surrounds the waveguide (2) in particular over a large area.
  5. Waveguide coupling (1) according to one of claims 1 to 4, characterized in that the feed line (4), the coupling element (9) and the screen face (11) and/or the further screen face (13) is/are implemented as metallization of the carrier plate (3).
  6. Waveguide coupling (1) according to any one of claims 1 to 5, characterized in that an electrically conductive cap (15a, 15b) is placed on the second side (12) of the carrier plate (3) in geometrical continuation of the waveguide (2) as a closure of the waveguide (2), the electrically conductive cap (15) contacts with its end face (16), in particular, the screen face (11) arranged on the second side (12) of the carrier plate (3) or the further screen face (13), or that the carrier plate has, on its second side (12) opposite the first side (5) or in an intermediate layer in continuation of the waveguide (2), an electrically conductive layer as a termination of the waveguide.
  7. Waveguide coupling (1) according to claim 6, characterized in that an electrically conductive connection is produced between the waveguide (2) and the cap (15a, 15b) or between the waveguide (2) and the conductive layer serving as termination of the waveguide (2), in particular by means of at least one through-plating (16) through the carrier plate (3).
  8. Waveguide coupling (1) according to any one of claims 1 to 7, characterized in that for the coupling in of a linearly polarized electromagnetic wave with a center frequency of 80 GHz, the waveguide (2) is designed round and with an inner diameter of approximately 2.6 mm, the longitudinal bar (9a) and the transverse bar (9b) of the coupling element (9) each having a length of approximately 0.84 mm and the carrier plate (3) preferably having an edge length of approximately 6 mm.
  9. Waveguide coupling (1) according to any one of claims 1 to 7, characterized in that, in order to couple in a linearly polarized electromagnetic wave with a center frequency of 6 GHz, the waveguide (2) is designed round and with an inner diameter of approximately 21.6 mm, the longitudinal bar (9a) of the coupling element (9) having a length of approximately 5.5 mm and the transverse bar (9b) of the coupling element (9) having a length of approximately 7.4 mm and the carrier plate (3) preferably having an edge length of approximately 32 mm, wherein there is a casting of the waveguide coupling (1) with a casting compound having a relative permittivity of approximately 4.
  10. Waveguide coupling (1) according to any one of claims 1 to 9, characterized in that the waveguide (2) and/or the cap (15a, 15b) are filled with a casting compound, and in that the carrier plate has at least one recess in the region of the inner cross section area of the waveguide, in particular for better filling with a casting compound, in particular in the form of at least one bore.
EP12001275.2A 2011-04-01 2012-02-27 Waveguide coupling Active EP2506363B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011015894A DE102011015894A1 (en) 2011-04-01 2011-04-01 Waveguide coupling

Publications (2)

Publication Number Publication Date
EP2506363A1 EP2506363A1 (en) 2012-10-03
EP2506363B1 true EP2506363B1 (en) 2019-07-24

Family

ID=45929385

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12001275.2A Active EP2506363B1 (en) 2011-04-01 2012-02-27 Waveguide coupling

Country Status (4)

Country Link
US (1) US8981867B2 (en)
EP (1) EP2506363B1 (en)
CN (1) CN102769166B (en)
DE (1) DE102011015894A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014106400A1 (en) 2014-04-25 2015-11-12 Weber Maschinenbau Gmbh Breidenbach INDIVIDUAL TRANSPORT OF FOOD PORTIONS
DE102014109120B4 (en) 2014-06-30 2017-04-06 Krohne Messtechnik Gmbh microwave module
DE102015113224A1 (en) * 2015-08-11 2017-02-16 Endress + Hauser Gmbh + Co. Kg Radar Level Transmitter
DE102016108868A1 (en) * 2016-05-13 2017-11-16 Kathrein Werke Kg Adapter plate for HF structures
CN110441393B (en) * 2019-07-31 2020-06-19 北京理工大学 Ultrasonic detection device and method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2829348A (en) * 1952-04-02 1958-04-01 Itt Line-above-ground to hollow waveguide coupling
DE3129425A1 (en) * 1981-07-25 1983-02-10 Richard Hirschmann Radiotechnisches Werk, 7300 Esslingen MICROWAVE ANTENNA FOR CIRCULAR POLARISATION
GB8816276D0 (en) * 1988-07-08 1988-08-10 Marconi Co Ltd Waveguide coupler
US5471664A (en) * 1993-12-30 1995-11-28 Samsung Electro-Mechanics Co., Ltd. Clockwise and counterclockwise circularly polarized wave common receiving apparatus for low noise converter
TW300345B (en) * 1995-02-06 1997-03-11 Matsushita Electric Ind Co Ltd
US6580335B1 (en) * 1998-12-24 2003-06-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Waveguide-transmission line transition having a slit and a matching element
JP2005260570A (en) * 2004-03-11 2005-09-22 Mitsubishi Electric Corp Microstripline waveguide converter
US7463109B2 (en) * 2005-04-18 2008-12-09 Furuno Electric Company Ltd. Apparatus and method for waveguide to microstrip transition having a reduced scale backshort
JP4473182B2 (en) * 2005-06-29 2010-06-02 株式会社日立国際電気 Waveguide transmission line converter
DE102006014010B4 (en) 2006-03-27 2009-01-08 Vega Grieshaber Kg Waveguide transition with decoupling element for planar waveguide couplings
DE102007057211A1 (en) 2007-11-26 2009-05-28 Martin Meyer Monitor for a tank filling level has a sensor with an evaluation unit and a transmitter, integrated into the tank closure
US8089327B2 (en) * 2009-03-09 2012-01-03 Toyota Motor Engineering & Manufacturing North America, Inc. Waveguide to plural microstrip transition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102011015894A1 (en) 2012-10-04
US8981867B2 (en) 2015-03-17
CN102769166B (en) 2016-05-11
EP2506363A1 (en) 2012-10-03
CN102769166A (en) 2012-11-07
US20120262247A1 (en) 2012-10-18

Similar Documents

Publication Publication Date Title
EP3329545B1 (en) Dual-polarized antenna
EP2506363B1 (en) Waveguide coupling
DE602004008013T2 (en) Circular polarized slot antenna arrangement with easy miniaturization possibility
DE102006041994B4 (en) Waveguide / stripline converter
EP2081254B1 (en) Antenna coupler
EP3025394B1 (en) Broadband omnidirectional antenna
WO2014006150A1 (en) Waveguide coupling, high-frequency module, filling level radar, and use
DE3442387A1 (en) HORN SPOTLIGHTS
EP1751819A2 (en) Embedded planar antenna and pertaining tuning method
DE102009019626B3 (en) Electrical connector with impedance correcting element and method of making the same
DE19707490A1 (en) RF coaxial connector
EP3244483B1 (en) Screened casing for use in hf applications
DE19607706C2 (en) PCB coax connector system
EP3293814B1 (en) Circuit substrate and electronic super high frequency component
DE4028338A1 (en) NOZZLE FOR A MATERIAL MACHINE TOOL
DE10209961A1 (en) microwave antenna
DE102017123342A1 (en) TO housing with high reflection loss
DE202014105530U1 (en) Connectors
DE102008026579B4 (en) Angled transition from microstrip line to rectangular waveguide
EP3298649B1 (en) High-frequency conductor system with cable-bound rf bushing
BE1026802B1 (en) Connectors
DE102012000762A1 (en) antenna cover
WO2020187881A1 (en) Waveguide assembly, waveguide system and use of a waveguide assembly
EP4293815A1 (en) Radar assembly
DE102023113912A1 (en) Radar arrangement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130304

17Q First examination report despatched

Effective date: 20151027

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20190225

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012015046

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1159302

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190724

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191024

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191024

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191025

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191124

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012015046

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200227

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200227

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200227

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1159302

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230221

Year of fee payment: 12

Ref country code: CH

Payment date: 20230307

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230420

Year of fee payment: 12