EP2504902A2 - Diagnose von relais in einer batterie - Google Patents
Diagnose von relais in einer batterieInfo
- Publication number
- EP2504902A2 EP2504902A2 EP10770520A EP10770520A EP2504902A2 EP 2504902 A2 EP2504902 A2 EP 2504902A2 EP 10770520 A EP10770520 A EP 10770520A EP 10770520 A EP10770520 A EP 10770520A EP 2504902 A2 EP2504902 A2 EP 2504902A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- relay
- battery
- battery system
- output
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/52—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/21—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/001—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00304—Overcurrent protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00308—Overvoltage protection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H47/00—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
- H01H47/002—Monitoring or fail-safe circuits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- Battery systems are used both in mobile applications such as be increasingly used in vehicles (hybrid or electric vehicles), as well as in stationary applications such as emergency power systems in the future. In this case, very high demands are placed on the reliability of the overall arrangement, since a failure of the battery can lead to failure of the entire system. In a vehicle consequence of such a failure of the drive battery would be a "lying down", but due to the high energy content and the high output voltage of the battery systems also safety-related aspects have to be considered.
- relays are usually provided in series with the two battery poles. These relays must allow for repeated shutdown of a battery system under load according to applicable safety requirements, which represents a corresponding load of the relay because of the potentially high current flowing. Therefore, it is desirable to be able to diagnose the correct functioning of the relay.
- a first aspect of the invention provides a battery system having a plurality of battery cells connected in series between a first battery post and a second battery post, a first relay connected between the first battery post and a first output of the battery system. a second relay connected between the second battery and a second output of the battery system and a controller.
- the battery system has a third relay, which is connected in series with a first resistor of predetermined size between the first battery terminal and the first output of the battery system and parallel to the first relay.
- the controller is connected to the relays and configured to open or close the relays by outputting a respective control signal.
- the third relay which is connected in series with the first resistor and together with it in parallel with the first relay, allows the correct operation of the first relay to be determined by optionally closing the first relay or the third relay and changing the resistance to the first one electrical behavior of the battery system is examined. If a relay does not close or open despite a corresponding control signal, this can be read off the resulting currents and voltages at the outputs of the battery system. For normal operation, of course, the first relay is closed to avoid loss of electrical energy to the first resistor and the associated heat generation.
- the battery system has a voltage sensor connected between the first output of the battery system and the second output of the battery system, which is connected to the controller and configured to detect a voltage measurement value and to output it to the controller.
- the controller can specify corresponding switching states of the relays for different error cases and evaluate the voltage measured value.
- the controller is designed to open the relays and to output an error signal if the voltage measurement value is greater than a first threshold value. In this case, not all relays have opened, which is why the voltage of the battery cells is still applied to the battery outputs. Since this represents a safety-relevant error, an error signal is output.
- the controller may also be configured to close at least one of the first and third relays and the second relay and output an error signal if the voltage reading is less than a second threshold is. In this case, not all controlled relays have closed, which is why the voltage of the battery cells is not applied to the battery outputs. The detected error is correspondingly indicated by an error signal.
- the controller may also be configured to either close at least one of the first and third relays or the second relay and output an error signal if the voltage reading is greater than a third threshold. In particular, in combination with one of the previously described error cases can be narrowed in this way, which relay is exactly affected by the error.
- the battery system can have a current sensor connected in series with the battery cells, which is connected to the controller and designed to detect a current measured value and to output it to the controller.
- the current reading may also provide information about the correct functioning of the relays since current can only flow when the battery cells are connected to the battery outputs via the relays.
- the controller is therefore designed to open at least one of the first and third relays or the second relay and to output an error signal if an amount of the current measurement value is greater than a fourth threshold value. In this case, the controlled relay has not opened, so that still a current flows, which is indicated by the error signal.
- the controller is designed to detect a time profile of the voltage measured by the voltage sensor or of the current measured by the current sensor and to determine a time constant of the time profile. Since the time constant results essentially from the product of the capacity associated with the battery system (usually the input capacitance of the inverter in a motor vehicle) and the resistor connected in series with it, the determination of the actual time constant allowed to determine whether the charging current of the Capacitance over the first resistor flows or not, which in turn allows appropriate conclusions about the switching state of the first and third relay.
- the time- Constant can be derived either from the current measurements or from the voltage measurements, but it is also conceivable in a battery system with both voltage and current sensor to reduce the measurement error of the individual measurements by both measurements are evaluated.
- the battery system may include a fourth relay connected in series with a second resistor of predetermined size between the second battery post and the second output of the battery system and in parallel with the second relay.
- the fourth relay allows the detection of further errors.
- a second aspect of the invention relates to a motor vehicle having an electric drive motor for driving the motor vehicle and a battery system connected to the electric drive motor according to the first aspect of the invention.
- Fig. 1 is a block diagram of an embodiment of the battery system according to the invention.
- Fig. 2 is an overview of different error cases and their detection.
- Fig. 1 shows a block diagram of an embodiment of the battery system according to the invention.
- a plurality of battery cells 10 are used as energy storage in Series connected to produce a sufficiently high battery voltage UBATT ZU for the respective application.
- a first relay 1 1 and a second relay 12 are provided, which can separate the battery cells from the battery outputs or connect them with them.
- Parallel to the first relay 1 1, a second current path with a series connection of a third relay 13 and a resistor 14 is provided.
- the third relay 13, together with the resistor 14, makes it possible to check the correct functioning of the relays 11, 12, 13 by specifying various switching states in a test procedure and measuring the resulting battery currents or voltages.
- the exemplary embodiment of FIG. 1 has a voltage sensor 15 connected between the battery outputs and a current sensor 16 connected in series with the battery cells 10.
- the overview shows seven error cases divided into five groups. For each error case is listed, which relay is controlled as, that is, which relay is closed by control signals and which should be open. It is also indicated which relay is presumed to be faulty, either "sticking", ie not yet opening in response to a corresponding control signal, or not being able to be closed, ie not responding to a corresponding control signal.
- the current, voltage or time constants values to be expected in the event of correct functioning ("should") or malfunction (“is”) are plotted, so that the various error cases can be clearly distinguished from one another, so that all possible outputs are checked Error cases, the faulty relay and the nature of the malfunction can be determined.
- the diagnosis of the relay preferably takes place before activating or after deactivating the battery system.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Transportation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009047104A DE102009047104A1 (de) | 2009-11-25 | 2009-11-25 | Diagnose von Relais in einer Batterie |
PCT/EP2010/064223 WO2011064012A2 (de) | 2009-11-25 | 2010-09-27 | Diagnose von relais in einer batterie |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2504902A2 true EP2504902A2 (de) | 2012-10-03 |
Family
ID=43901878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10770520A Withdrawn EP2504902A2 (de) | 2009-11-25 | 2010-09-27 | Diagnose von relais in einer batterie |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2504902A2 (de) |
DE (1) | DE102009047104A1 (de) |
WO (1) | WO2011064012A2 (de) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011108408A1 (de) * | 2011-07-23 | 2013-01-24 | Volkswagen Aktiengesellschaft | Verfahren und Testsystem zum Test einer Schützanordnung für ein Fahrzeug |
US8792222B2 (en) * | 2012-02-29 | 2014-07-29 | Lg Chem, Ltd. | Driver circuit for an electric vehicle and a diagnostic method |
DE102012207669A1 (de) | 2012-05-09 | 2013-11-14 | Robert Bosch Gmbh | Batteriesystem mit einem Schaltmittel mit integrierter Sicherung |
DE102012016696A1 (de) * | 2012-06-06 | 2013-12-12 | Diehl Ako Stiftung & Co. Kg | Schaltungsanordnung und Verfahren zur Gleichstromunterbrechung |
US9217765B2 (en) | 2012-08-09 | 2015-12-22 | GM Global Technology Operations LLC | Method and system for isolating voltage sensor and contactor faults in an electrical system |
US10974606B2 (en) | 2016-08-31 | 2021-04-13 | Cps Technology Holdings Llc | Bi-stable relay |
EP3404432B1 (de) * | 2017-04-26 | 2024-07-03 | Contemporary Amperex Technology Co., Limited | Verfahren und system zur erkennung von relaishaftung |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100454466C (zh) * | 2003-03-31 | 2009-01-21 | 日本电气株式会社 | 用于检测继电器触点的熔接的方法和装置 |
JP2006278210A (ja) * | 2005-03-30 | 2006-10-12 | Toyota Motor Corp | 故障診断装置および故障診断方法 |
JP4510753B2 (ja) * | 2005-12-16 | 2010-07-28 | パナソニックEvエナジー株式会社 | 電源装置、及びその制御方法 |
-
2009
- 2009-11-25 DE DE102009047104A patent/DE102009047104A1/de not_active Withdrawn
-
2010
- 2010-09-27 EP EP10770520A patent/EP2504902A2/de not_active Withdrawn
- 2010-09-27 WO PCT/EP2010/064223 patent/WO2011064012A2/de active Application Filing
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2011064012A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2011064012A3 (de) | 2012-08-16 |
DE102009047104A1 (de) | 2011-05-26 |
WO2011064012A2 (de) | 2011-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3503343B1 (de) | Elektrisches system und verfahren zur diagnose der funktionsfähigkeit von leistungsrelais in einem elektrischen system | |
EP2996899B1 (de) | Vorladen eines kraftfahrzeug-hochvoltnetzes | |
DE102012213159A1 (de) | Batteriesystem mit Batterieschützen und einer Diagnosevorrichtung zum Überwachen des Funktionszustandes der Schütze sowie dazugehöriges Diagnoseverfahren | |
WO2011064012A2 (de) | Diagnose von relais in einer batterie | |
EP2499506A2 (de) | Batterie-steuergerät-architektur | |
DE102007046483A1 (de) | Schaltungsanordnung zur Überwachung einer elektrischen Isolation | |
DE102011004516A1 (de) | Schaltung und Verfahren zur Diagnose von Schaltkontakten in einem batteriebetriebenen Straßenfahrzeug | |
DE102016107598B3 (de) | Vorrichtung und verfahren zum überwachen eines hochvolt-schützes in einem fahrzeug | |
WO2016050406A1 (de) | Batteriesystem mit einer zum versorgen eines hochvoltnetzes mit elektrischer energie ausgebildeten batterie und einer messeinrichtung zum messen mindestens eines isolationswiderstandes der batterie | |
DE102014221272A1 (de) | Überwachungseinrichtung für eine Batterie, eine Lithium-Ionen-Batterie sowie Verfahren zur Überwachung einer Batterie | |
EP2357484B1 (de) | Verfahren zur Diagnose einer elektrischen Verbindung und Ausgabebaugruppe | |
WO2012034798A1 (de) | Batteriesystem mit zellspannungserfassungseinheiten | |
DE102014210648A1 (de) | Batteriesystem | |
DE102008018244B3 (de) | Vorrichtung und Verfahren zum Erkennen eines Fehlers in einer Leistungsbrückenschaltung | |
EP2546852B1 (de) | Bistabiles Sicherheitsrelais | |
DE102010041024A1 (de) | Verfahren zum Austausch von Batteriezellen während des Betriebes | |
DE102013209527A1 (de) | Schutzschaltung für einen Aktuator, Aktuatorvorrichtung und Verfahren zum Betreiben eines elektrischen Aktuators | |
EP2515404A2 (de) | Schaltungsanordnung zur Potentialtrennung eines elektrischen Geräts vom Netz | |
DE102013221590A1 (de) | Verfahren zur Überwachung der Gleichspannungsladung des Energiespeichers eines Kraftfahrzeugs sowie ein Batteriemanagementsystem | |
DE102011011798A1 (de) | Verfahren zum Betreiben eines Energiespeichers für ein Fahrzeug sowie entsprechender Energiespeicher, Spannungsversorgung und Fahrzeug | |
DE102014200265A1 (de) | Batteriesystem mit einer Hochvoltbatterie und einer Schutzschaltung und Verfahren zum Überwachen des Funktionszustandes einer Schutzschaltung für eine Hochvoltbatterie | |
DE102017011721A1 (de) | Elektrisches Bordnetz für ein Kraftfahrzeug, wobei für einen Zwischenkreis des elektrischen Bordnetzes eine zusätzliche Gleichspannung bereitgestellt ist | |
DE102012215063A1 (de) | Überwachungsschaltung für ein Schütz | |
DE102020210339B4 (de) | Schaltungsanordnung und Verfahren zur Fehlererkennung | |
DE102015006279A1 (de) | Vorrichtung und Verfahren zum Überprüfen einer Funktionsüberwachung eines Schaltschützes eines Kraftfahrzeugs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME RS |
|
17P | Request for examination filed |
Effective date: 20130218 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01H 47/00 20060101ALI20130221BHEP Ipc: H01M 10/48 20060101ALI20130221BHEP Ipc: H02J 7/00 20060101AFI20130221BHEP |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SAMSUNG SDI CO., LTD. Owner name: ROBERT BOSCH GMBH |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20181204 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20190615 |