EP2499221A1 - Process for hydrotreatment and hydroisomerization of feedstocks resulting from a renewable source using a zeolite modified by a basic treatment - Google Patents

Process for hydrotreatment and hydroisomerization of feedstocks resulting from a renewable source using a zeolite modified by a basic treatment

Info

Publication number
EP2499221A1
EP2499221A1 EP10787509A EP10787509A EP2499221A1 EP 2499221 A1 EP2499221 A1 EP 2499221A1 EP 10787509 A EP10787509 A EP 10787509A EP 10787509 A EP10787509 A EP 10787509A EP 2499221 A1 EP2499221 A1 EP 2499221A1
Authority
EP
European Patent Office
Prior art keywords
zeolite
initial
catalyst
dealuminated
hydroisomerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10787509A
Other languages
German (de)
French (fr)
Inventor
Laurent Simon
Emmanuelle Guillon
Antoine Daudin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP2499221A1 publication Critical patent/EP2499221A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/54Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/16After treatment, characterised by the effect to be obtained to increase the Si/Al ratio; Dealumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/22After treatment, characterised by the effect to be obtained to destroy the molecular sieve structure or part thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/38Base treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • fillers include for example vegetable oils, animal fats, raw or having undergone prior treatment, as well as mixtures of such fillers.
  • These fillers contain chemical structures of the triglyceride or ester or fatty acid type, the structure and the hydrocarbon chain length of the latter being compatible with the hydrocarbons present in gas oils and kerosene.
  • patents include US Pat. No. 4,992,605, US Pat. No. 5,705,722, EP 1, 681, 337 and EP 1, 741, 768.
  • transition metal sulphide solids allows the production of paraffins from ester-type molecules in two reaction routes: - The hydrodeoxygenation leading to the formation of water by hydrogen consumption and the formation of carbon number (Cn) hydrocarbons equal to that of the initial fatty acid chains,
  • the liquid effluent from these hydrotreatment processes consists essentially of n-paraffins which can be incorporated into the diesel fuel and kerosene pool.
  • a hydroisomerization step is necessary to convert n-paraffins into branched paraffins having better properties when cold.
  • Patent application EP 1 741 768 describes a process comprising a hydrotreatment followed by a hydroisomerization step in order to improve the cold properties of the linear paraffins obtained.
  • the catalysts used in the hydroisomerization step are bifunctional catalysts consist of a metal active phase comprising a Group VIII metal chosen from palladium, platinum and nickel,
  • Zeolite modification by alkaline treatment is a process that has been studied in the open literature.
  • This modification method by alkaline treatment makes it possible to create mesoporosity in certain type of zeolite, such as the microporous zeolite ZSM-5 in Ogura et al., Applied Catal. A: General, 219 (2001) 33, Groen et al., Colloids and Surfaces A: Physicochem. Eng. Aspects 241 (2004) 53, and Groen et al., Microporous and Mesoporous
  • the dealuminated Y zeolite contains mesopores, created by extracting aluminum atoms from the framework of the zeolite.
  • the presence of mesopores makes it possible to improve the average distillate selectivity of the hydrocracking catalysts using such a zeolite by facilitating the diffusion of the primary products of the reaction (jet fuels and gas oils) and thus limiting overcracking to light products.
  • the extraction of the aluminum atoms from the framework decreases the Bronsted acidity of said zeolite and therefore its catalytic activity.
  • the gain in selectivity in middle distillates linked to the mesoporosity of the zeolite is therefore to the detriment of the catalytic activity.
  • a catalyst for the hydroisomerization of paraffinic hydrocarbon feedstocks and in particular hydrotreating feedstock from a renewable source comprising at least one hydro-dehydrogenating metal selected from the group consisting of Group VIB metals and Group VIII of the Periodic Table, taken alone or as a mixture and a carrier comprising at least one a dealuminated Y zeolite containing a specific weight fraction of extra-lattice aluminum atoms, said zeolite being modified by a) a basic treatment step consisting of the mixture of said dealuminated zeolite Y with a basic aqueous solution making it possible to remove silicon atoms of the structure and insert alum atoms extra-lattice inium in the framework of the zeolite, and at least one step c) heat treatment, allowed to obtain an activity, ie
  • the basic treatment of the dealuminated zeolite and containing a specific weight fraction of initial extra-lattice aluminum atoms allows the creation of mesopores forming an interconnected network of mesopores to the surface of the crystals of zeolite, by desilication, that is to say by extraction of silicon atoms from the framework of the initial zeolite.
  • the creation of mesoporosity accessible via the external surface of the zeolite crystals promoting the intercrystalline diffusion of the molecules makes it possible for a catalyst employing said modified zeolite according to the invention, used in a process for producing middle distillates, to obtain a selectivity in distillate means higher.
  • the basic treatment also allows realumination, ie the reintroduction of at least a portion of extra-lattice aluminum atoms present in the initial zeolite in the framework of the modified zeolite, this realumination allowing an increase of the Bransted acidity of the modified zeolite, resulting in a catalyst implementing said modified zeolite according to the invention, by improved catalytic properties, ie a better conversion.
  • An object of the invention is therefore to provide a process for the treatment of charges from a renewable source implementing, in a hydroisomerisation step, downstream of a hydrotreatment step, a hydroisomerization catalyst comprising a support for modified zeolite base making it possible to obtain high yields of gasolines and kerosene bases.
  • Another object of the invention is to provide a process for the treatment of charges from a renewable source implementing, in a hydroisomerisation step, downstream of a hydrotreating step, a catalyst comprising as a support a modified zeolite allowing minimize the production of light fraction 150 ° C
  • the invention relates to a process for treating charges from a renewable source comprising the following steps:
  • step b) hydroisomerization of at least a portion of said hydrocarbon base resulting from step b) in the presence of a fixed bed hydroisomerization catalyst, said catalyst comprising at least one hydro-dehydrogenating metal chosen from the group formed by the Group VIB and Group VIII metals of the Periodic Table, taken singly or in admixture and a carrier comprising at least one dealuminated Y zeolite having an initial total silicon to aluminum atomic ratio of between 2.5 and 20, a weight fraction of an extra initial network aluminum atom greater than 10%, relative to the total mass of aluminum present in the zeolite, an initial mesoporous volume measured by nitrogen porosimetry greater than 0.07 ml.
  • a fixed bed hydroisomerization catalyst said catalyst comprising at least one hydro-dehydrogenating metal chosen from the group formed by the Group VIB and Group VIII metals of the Periodic Table, taken singly or in admixture and a carrier comprising at least one dealuminated Y zeolite having an initial total
  • said zeolite being modified by a) a basic treatment step consisting of mixing said dealuminated zeolite Y with a basic aqueous solution, and at least one step c) of heat treatment, said hydroisomerization step being carried out at a temperature of between 150 and 500 ° C, at a pressure of between 1 MPa and 10 MPa, at an hourly space velocity of between 0.1 and 10 h -1 and in the presence of a total amount of hydrogen mixed with the feed such that the hydrogen / feed ratio is between 70 and 1000 Nm 3 / m 3 of feed,
  • step d) separation, from the effluent from step c) of hydrogen, gases and at least one gas oil base and a kerosene base.
  • the present invention is particularly dedicated to the preparation of gas oil and kerosene fuel bases corresponding to the new environmental standards, from charges from renewable sources.
  • the feedstocks derived from renewable sources used in the present invention are advantageously chosen from oils and fats of vegetable or animal origin, or mixtures of such fillers, containing triglycerides and / or free fatty acids and / or esters.
  • Vegetable oils can advantageously be crude or refined, wholly or in part, and derived from the following plants: rapeseed, sunflower, soybean, palm, palm kernel, olive, coconut, jatropha, this list not being limiting.
  • Algae or fish oils are also relevant.
  • Animal fats are advantageously chosen from lard or fats composed of residues from the food industry or from the catering industries.
  • fillers essentially contain triglyceride-type chemical structures which are also known to those skilled in the art as tri-ester of fatty acids as well as free fatty acids.
  • a fatty acid ester tri is thus composed of three chains of fatty acids.
  • These fatty acid chains in the form of triester ester or in the form of free fatty acid have a number of unsaturations per chain, also called number of carbon-carbon double bonds per chain, generally between 0 and 3 but which can be higher especially for oils derived from algae which generally have a number of unsaturations in chains of 5 to 6.
  • the molecules present in the feeds from renewable sources used in the present invention therefore have a number of unsaturations, expressed per molecule of triglyceride, advantageously between 0 and 18.
  • the level of unsaturation, expressed in number unsaturated hydrocarbon fatty chain is advantageously between 0 and 6.
  • Charges from renewable sources generally also include 5 different impurities and especially heteroatoms such as nitrogen.
  • Nitrogen levels in vegetable oils are generally between about 1 ppm and about 100 ppm by weight, depending on their nature. They can reach up to 1% weight on particular loads.
  • the feedstock may undergo prior to step a) of the process according to the invention a pre-treatment or pre-refining step so as to eliminate, by an appropriate treatment, contaminants such as metals, such as alkaline compounds for example on ion exchange resins, alkaline earths and phosphorus.
  • Suitable treatments may for example be heat treatments and / or
  • step a) of the process according to the invention the charge, possibly pretreated, is brought into contact with a catalyst in a fixed bed at a temperature of between 200 and 450 ° C., preferably between 220 and 350 ° C. preferably between 220 and 320 ° C,
  • the pressure is between 1 MPa and 10 MPa, preferably between 1 MPa and 6 MPa and even more preferably between 1 MPa and 4 MPa.
  • the hourly space velocity is between 0.1 hr-1 and 10 hr-1.
  • the fixed-bed catalyst is advantageously a hydrotreatment catalyst comprising a hydro-dehydrogenating function comprising at least one metal of group VIII and / or group VI B, taken alone or in a mixture and a support selected from the group consisting of alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals.
  • This support may also advantageously contain other compounds and for example oxides selected from the group formed by boron oxide, zirconia, titanium oxide, phosphoric anhydride.
  • the preferred support is an alumina support and very preferably alumina ⁇ , ⁇ or ⁇ .
  • Said catalyst is preferably a catalyst comprising metals of the VIII preferably group selected from nickel and cobalt, used alone or in admixture, preferably in * combination with at least one group VIB metal, preferably selected from molybdenum and tungsten , taken alone or in a mixture.
  • the content of metal oxides of groups VIII and preferably of nickel oxide is advantageously between 0.5 and 10% by weight of nickel oxide (NiO) and preferably between 1 and 5% by weight of oxide of nickel. and the content of metal oxides of groups VIB and preferably of molybdenum trioxide is advantageously between 1 and 30% by weight of molybdenum oxide (MoO 3 ), preferably from 5 to 25% by weight, the percentages being expressed in% by weight relative to the total mass of the catalyst.
  • the total content of metal oxides of groups VIB and VIII in the catalyst used in step a) is advantageously between 5 and 40% by weight and preferably between 6 and 30% by weight relative to the total mass. catalyst.
  • the weight ratio expressed as metal oxide between metal (or metals) of group VIB on metal (or metals) of group VIII is advantageously between 20 and 1 and preferably between 10 and 2.
  • Said catalyst used in step a) of the process according to the invention must advantageously be characterized by a high hydrogenating power so as to orient as much as possible the selectivity of the reaction towards a hydrogenation preserving the number of carbon atoms of the fatty chains. ie the hydrodeoxygenation route, this in order to maximize the yield of hydrocarbons entering the distillation field of kerosenes and / or gas oils. This is why, preferably, one operates at a relatively low temperature. Maximizing the hydrogenating function also makes it possible to limit the polymerization and / or condensation reactions leading to the formation of coke which would degrade the stability of the catalytic performances.
  • a Ni or NiMo type catalyst is used.
  • Said catalyst used in step a) of hydrotreating of the process according to the invention may also advantageously contain a doping element chosen from phosphorus and boron, taken alone or as a mixture.
  • Said doping element may be introduced into the matrix or preferably deposited on the support. It is also possible to deposit silicon on the support, alone or with phosphorus and / or boron and / or fluorine.
  • the oxide weight content of said doping element is advantageously less than 20% and preferably less than 10% and is advantageously at least 0.001%.
  • the metals of the catalysts used in step a) of hydrotreatment of the process according to the invention are sulphide metals or metal phases and preferably sulphurized metals. It would not be departing from the scope of the present invention by using in step a) of the process according to the invention, simultaneously or successively, a single catalyst or several different catalysts. This step can be carried out industrially in one or more reactors with one or more catalytic beds and preferably downflow of liquid.
  • the hydrotreated effluent from step a) is subjected at least in part, and preferably entirely, to one or more separations.
  • the purpose of this step is to separate the gases from the liquid, and in particular to recover the hydrogen-rich gases that may also contain gases such as CO and CO 2 and at least one liquid hydrocarbon base with a sulfur content of less than 10 ppm by weight. .
  • the separation is carried out according to all methods of separation known to those skilled in the art.
  • the separation step may advantageously be carried out by any method known to those skilled in the art such as, for example, the combination of one or more high and / or low pressure separators, and / or distillation and / or distillation stages. high and / or low pressure stripping.
  • the water that may be formed during step a) of hydrotreatment of the process according to the invention may also be advantageously separated at least in part from the liquid hydrocarbon base.
  • the separation step b) may therefore advantageously be followed by an optional step of removing at least a portion of the water and preferably all of the water.
  • the purpose of the optional water removal step is to remove at least a portion of the water produced during the hydrotreatment reactions.
  • the elimination of water is the elimination of the water produced by the hydrodeoxygenation (HDO) reactions.
  • the more or less complete elimination of water may be a function of the water tolerance of the hydroisomerization catalyst used in the subsequent step c) of the process according to the invention.
  • the elimination of water can be carried out by all the methods and techniques known to those skilled in the art, for example by drying, passing on a desiccant, flash, decantation ....
  • step c) of the process according to the invention at least part and preferably all of the liquid hydrocarbon base obtained at the end of step b) of the process according to the invention is hydroisomerized in the presence of a fixed bed hydroisomerization catalyst said catalyst comprising at least one hydrodehydrogenating metal selected from the group consisting of Group VIB metals and Group VIII of the Periodic Table, taken singly or in admixture and a carrier comprising at least one dealuminated Y zeolite having an atomic ratio initial total of silicon on aluminum between 2.5 and 20, a weight fraction of extra-initial network aluminum atom greater than 10%, relative to the total mass of aluminum present in the zeolite, an initial mesoporous volume measured by nitrogen porosimetry greater than 0.07 ml.g : 1 , and an initial crystal parameter at 0 of the unit cell between 24.38 A and 24.30A, said zeolite being modified according to a particular method.
  • the catalyst used in the hydroisomerization step c) of the process according to the invention comprises at least one hydro-dehydrogenating metal chosen from the group formed by the metals of group VIII and the metals of the group VIB, taken alone or as a mixture.
  • the group VIII elements are chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium or platinum, taken alone or as a mixture.
  • the elements of group VIII are chosen from the noble metals of group VIII, the elements of group VIII are advantageously chosen from platinum and palladium, taken alone or as a mixture.
  • the elements of group VIII are advantageously chosen from iron, cobalt and nickel, taken alone or as a mixture.
  • the group VIB elements of the catalyst according to the present invention are selected from tungsten and molybdenum, alone or as a mixture.
  • the hydrogenating function comprises a group VIII element and a group VIB element
  • the following metal combinations are preferred: nickel-molybdenum, cobalt-molybdenum, nickel-tungsten, cobalt-tungsten, and very preferably: nickel-molybdenum, cobalt-molybdenum, nickel-tungsten. It is also possible to use combinations of three metals such as for example nickel-cobalt-molybdenum.
  • the catalyst is preferably used in a sulfurous form.
  • the catalyst comprises at least one Group VIB metal in combination with at least one Group VIII non-noble metal
  • the Group VIB metal content is advantageously comprised, in oxide equivalent, of between 5 and 40% by weight per relative to the total mass of said catalyst, preferably between 10 and 35% by weight and very preferably between 15 and 30% by weight
  • the non-noble metal content of group VIII is advantageously comprised, in oxide equivalent, between 0 , 5 and 10% by weight relative to the total mass of said catalyst, preferably between 1 and 8% by weight and very preferably between 1, 5 and 6% by weight.
  • said catalyst may also advantageously comprise at least one doping element selected from the group consisting of silicon, boron and phosphorus, taken alone or as a mixture, the content of doping element being preferably between 0 and 20% by weight of oxide of the doping element, preferably between 0.1 and 15% by weight, very preferably preferred between 0.1 and 10% by weight and even more preferably between 0.5 and 6% by weight relative to the total mass of the catalyst.
  • doping element selected from the group consisting of silicon, boron and phosphorus, taken alone or as a mixture, the content of doping element being preferably between 0 and 20% by weight of oxide of the doping element, preferably between 0.1 and 15% by weight, very preferably preferred between 0.1 and 10% by weight and even more preferably between 0.5 and 6% by weight relative to the total mass of the catalyst.
  • the catalyst When the hydro-dehydrogenating element is a noble metal of group VIII, the catalyst preferably contains a noble metal content of between 0.01 and 10% by weight, even more preferably from 0.02 to 5% by weight relative to to the total mass of said catalyst.
  • the noble metal is preferably used in its reduced and non-sulphurized form.
  • the metal content in its oxide form is advantageously between 0.5 and 25% by weight relative to the finished catalyst.
  • the catalyst also contains, in addition to the reduced nickel, a group IB metal and preferably copper, or a group IVB metal and preferably tin in proportions such that the mass ratio of the group metal IB or IVB and nickel on the catalyst is advantageously between 0.03 and 1.
  • Said hydroisomerization catalyst used in stage c) of the process according to the invention comprises a support comprising at least one modified zeolite and advantageously a porous oxide matrix of oxide type, said support comprising and preferably consisting of, preferably:
  • zeolite modified according to the invention with respect to the total mass of the catalyst,
  • Zeolite according to the invention From 0.2 to 99.9% by weight, preferably from 20 to 99.9%, preferably from 30 to 99.9% by weight, and very preferably from 50 to 99.9% by weight relative to to the total mass of the catalyst, at least one oxide-type porous mineral matrix.
  • Zeolite according to the invention preferably from 20 to 99.9%, preferably from 30 to 99.9% by weight, and very preferably from 50 to 99.9% by weight relative to to the total mass of the catalyst, at least one oxide-type porous mineral matrix.
  • the zeolite initially used which is suitable for carrying out the support of the catalyst used in the hydroisomerization step c) of the process according to the invention is the dealuminated Y zeolite (USY) of structural type FAU .
  • the dealuminated initial zeolite Y which is suitable for carrying out the support of the catalyst used in the hydroisomerization step c) of the process according to the invention, has, before being modified, an initial overall atomic ratio.
  • said dealuminated initial zeolite Y having an initial total silicon / Si / Al atomic atomic ratio of between 2.5 and 20.0, preferably between 2.6 and 12.0, and preferably between 2, 7 and 10.0, said overall Si / Al atomic ratio being measured by X-ray fluorescence (FX) and exhibiting an aluminum network NMR fraction by weight of greater than 10%, preferably greater than 20% and preferably greater than 30% by weight relative to the total weight of the aluminum present in the zeolite is obtained by dealumination of a zeolite Y of FAU structural type by all the known de-lulmination methods of the skilled person.
  • FX X-ray fluorescence
  • the FAU structural zeolite Y which is advantageously in the NaY form after synthesis, may advantageously undergo one or more ionic exchanges before undergoing the dealumination step.
  • the dealumination treatment of the FAU structural zeolite Y generally having an overall Si / Al atomic ratio after synthesis of between 2.3 and 2.8 can advantageously be carried out by all the methods known to those skilled in the art.
  • the dealumination is carried out by a heat treatment in the presence of water vapor (or steaming according to the English terminology) and / or by one or more
  • Acid attacks advantageously carried out by treatment with an aqueous solution of mineral or organic acid.
  • the dealumination is carried out by a heat treatment followed by one or more acid attacks or only by one or more acid attacks.
  • the thermal treatment in the presence of water vapor to which zeolite Y is subjected is carried out at a temperature of between 200 and 900 ° C, preferably between 300 and 900 ° C, even more preferably between 400 and 750 ° C.
  • the duration of the said Heat treatment is advantageously greater than or equal to 0.5h, preferably between 0.5h and 24h, and very preferably between 1h and 12h.
  • the volume percentage of water vapor during the heat treatment is advantageously between 5 and 100%, preferably between 20 and 100%, so
  • the volume fraction other than the water vapor that may be present is formed of air.
  • the gas flow rate formed by water vapor and optionally air is advantageously between 0.2 L / h / g and 10 L / h / g of zeolite Y.
  • the heat treatment makes it possible to extract the aluminum atoms from the framework of zeolite Y while maintaining the overall atomic ratio Si / Al of the treated zeolite
  • the heat treatment in the presence of water vapor is advantageously repeated as many times as is necessary to obtain the dealuminized initial zeolite Y suitable for the implementation of the catalyst support used in step c) hydroisomerization of the process according to the invention having the desired characteristics and in particular a weight fraction S extra-network aluminum atom representing more than 10% by weight relative to the total weight of aluminum present in said zeolite.
  • the number of heat treatment is advantageously less than 4 and preferably, a single heat treatment is performed at the end of which the weight fraction of extra-initial network aluminum atom is measured by NMR of aluminum.
  • the nature and concentration of the acid used, the ratio of the amount of acid solution to the weight of zeolite treated, the duration of the acid attack treatment and the number of of treatment performed are significant parameters for the implementation of each acid attack step.
  • S0 is a mineral acid or an organic acid, preferably the acid is a mineral acid selected from nitric acid HN0 3 , hydrochloric acid HCl and sulfuric acid H 2 SO 4 . Most preferably, the acid is nitric acid. When an organic acid is used for etching, acetic acid CH 3 CO 2 H is preferred.
  • the acid etching treatment of zeolite Y with an aqueous solution of a mineral acid or an organic acid is carried out at a temperature of between 30 ° C and 120 ° C, preferably between 50 ° C. and 120 ° C, and preferably between 60 and 100 ° C.
  • concentration of the acid in the aqueous solution is advantageously between 0.05 and 20 mol.L -1 , preferably between 0.1 and 10 mol.l -1 , and more preferably between 0.5 and 5 mol .L "1.
  • the ratio between the volume V of acid solution in ml and the weight of zeolite Y treated P in grams is advantageously between 1 and 50 and preferably between 2 and 20.
  • the duration of the acid attack is advantageously greater than 1h, preferably between 2h and 10h, and preferably between 2h and 8h.
  • the number of successive acid etching treatment of the zeolite Y with an acidic aqueous solution is advantageously less than 4. In the case where several successive acid attack treatments are carried out, aqueous solutions of mineral or organic acid of different acid concentrations can be used.
  • the zeolite is then advantageously washed with distilled water and is then dried at a temperature of between 80 and 140 ° C. for a period of between 10 and 48 hours.
  • Acid etching treatment both extracts the aluminum atoms from the framework and extracts the aluminum atoms from the pores of the zeolitic solid.
  • the overall atomic ratio Si / Al of the dealuminated Y zeolite obtained increases to a value of between 2.5 and 20, said zeolite being suitable for carrying out the catalyst support used in the process according to the invention.
  • said dealuminated initial zeolite Y obtained and suitable for carrying out the support of the catalyst used in the hydroisomerization step c) of the process according to the invention has, after dealumination, an initial mesoporous volume measured by porosimetry at nitrogen greater than 0.07 ml.g -1 , preferably greater than 0.10 ml g -1 , and more preferably greater than 0.13 ml g -1 , the creation of mesoporosity resulting from the extraction of aluminum atoms out of the pores of the zeolithitic solid and an initial crystal parameter at 0 of the elemental mesh between 24.38 A and 24.30 A.
  • Said dealuminated initial zeolite Y also advantageously has an initial microporous volume measured by nitrogen porosimetry greater than 0.20 ml ⁇ g -1 , and preferably greater than 0.25 ml ⁇ g -1 .
  • the microporous and mesoporous volumes of the dealuminated zeolite Y are measured by nitrogen adsorption / desorption and the zeolite mesh parameter is measured by X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • the dealuminated initial zeolite Y which is suitable for carrying out the catalyst support used in the process according to the invention is modified by a specific modification process comprising a) a basic treatment step consisting in mixing said dealuminated Y zeolite with a basic aqueous solution, said basic aqueous solution being a solution of basic compounds chosen from alkaline bases and non-alkaline strong bases, said step a) being carried out at a temperature of between 40 and 100 ° C. and for a period of between 5 minutes and 5 hours and at least one c) heat treatment step performed at a temperature between 200 and 700 ° C.
  • Stage a ') of basic treatment makes it possible to remove silicon atoms from the structure and to insert extra-lattice aluminum atoms into the framework.
  • the process for modifying said dealuminated initial zeolite Y comprises a basic treatment step a ') consisting of mixing said dealuminated zeolite USY with a basic aqueous solution, said basic aqueous solution being a solution of selected basic compounds among the alkaline bases and the non-alkaline strong bases, said step a) being carried out at a temperature between 40 and 100 ° C and for a period of between 5 minutes and 5 hours.
  • the basic compounds chosen from alkaline bases are preferably chosen from alkali carbonates and alkali hydroxides, alkaline cations from alkali carbonates and alkali hydroxides advantageously belonging to groups IA or HA of the periodic table and the non-alkaline strong bases are from preferably chosen from quaternary ammoniums, taken alone or as a mixture and, preferably, the non-alkaline strong base is tetramethylammonium hydroxide.
  • Said alkaline cations of the alkali carbonates and alkali hydroxides advantageously belonging to the groups IA or HA of the periodic table are preferably chosen from Na + , Li + , K + , Rb + , Cs + , Ba 2+ and Ca 2+ cations. and very preferably, said cation is the Na + or K + cation.
  • the aqueous solution is a solution of sodium carbonate or sodium hydroxide and more preferably the aqueous solution is a solution of sodium hydroxide.
  • step a ') of basic treatment of the process for modifying said dealuminated initial USY zeolite is carried out under conditions of temperatures between 40 and 100 ° C. (reflux) and preferably between 40 and 90 ° C. ° C and for a period of between 5 min and 5h, preferably between 15 min and 4 h and even more preferably between 15 min and 3 h.
  • the solution is rapidly cooled to room temperature and then said zeolite is separated from the liquid by all the techniques known to those skilled in the art.
  • the separation can be carried out by filtration or by centrifugation, and preferably by centrifugation.
  • the modified modified USY zeolite is then washed with distilled water at a temperature of between 20 and 100.degree.
  • the zeolite contained in the catalyst support used in the process according to the invention contains, at the end of step a) of the modification process, a partial or total fraction of alkaline ions in the cationic position.
  • the basic treatment step a) consists in mixing said dealuminated initial zeolite Y with a basic aqueous solution of compounds selected from non-alkaline bases
  • the zeolite contained in the catalyst support used in the method according to the invention contains, at the end of step a ') of the modification process, a partial or total fraction of quaternary ammonium ions in the cationic position.
  • step a ') of basic treatment of the process of modification of the dealuminated initial zeolite Y according to the invention a part of the silicon atoms contained in the framework of said zeolite are extracted, the phenomenon is called desilication, creating in the structure and the formation of a mesoporosity and / or allowing the reinsertion of at least part of the fraction of extra-lattice aluminum atoms present in said dealuminated initial zeolite Y, in place of the atoms of silicon extracted by desilication and thus allowing the formation of new Bronsted acid sites.
  • This second phenomenon is called re-alumination.
  • the process for modifying said dealuminized initial USY zeolite advantageously comprises a step b ') of at least one partial or total exchange of said alkaline cations belonging to groups IA and IIA of the periodic table introduced during step a ') and present in the cationic position, by NH 4 + cations and preferably Na + cations by NH 4 + cations.
  • Partial or total exchange of the alkaline cations by NH + cations is understood to mean the exchange of 80 to 100%, preferably 85 to 99.5% and more preferably 88 to 99%, of said alkaline cations by NH 4 + cations.
  • the amount of alkaline cations remaining and preferably, the amount of Na + cations remaining in the modified zeolite, relative to the amount of NH 4 + cations initially present in the zeolite, at the end of step b ') is advantageously between 0 and 20%, preferably between 0.5 and 15%, preferably between 1 and 12%.
  • ion exchange (s) are carried out with a solution containing at least one ammonium salt chosen from the salts of chlorate, sulfate, nitrate, phosphate, or ammonium acetate, of in order to eliminate at least partly the alkaline cations and preferably the Na + cations present in the zeolite.
  • the ammonium salt is ammonium nitrate NH 4 NO 3 .
  • the content of alkaline cations remaining and preferably Na + cations in the zeolite modified at the end of step b ') is preferably such that the molar ratio alkali metal cation / aluminum and preferably the molar ratio Na / AI is between 0.2: 1 and 0: 1, preferably between 0.15: 1 and 0.005: 1, and more preferably between 0.12: 1 and 0.01: 1.
  • the desired Na / Al ratio is obtained by adjusting the NH + concentration of the cation exchange solution, the cation exchange temperature, and the cation exchange number.
  • concentration of the NH + solution in the solution advantageously varies between 0.01 and 12 mol / l, and preferably between 1 and 10 mol / l.
  • the temperature of the stage the exchange temperature is advantageously between 20 and 100 ° C., preferably between 60 and 95 ° C., preferably between 60 and 90 ° C., more preferably between 60 and 85 ° C. and even more preferably between 60 and 85 ° C. 80 ° C.
  • the cation exchange number advantageously varies between 1 and 10 and preferably between 1 and 4.
  • the modified zeolite from step a ') contains a partial or total fraction of quaternary ammonium ions in the cationic position.
  • the process for modifying said dealuminized initial USY zeolite advantageously does not comprise step b ') of at least one partial or total intermediate exchange, the modified zeolite resulting from step a) undergoes the step directly. c ') heat treatment.
  • the process for modifying the dealuminated initial zeolite Y then comprises at least one step c ') of heat treatment.
  • step a ') consists in mixing said USY dealuminated initial zeolite with a basic aqueous solution of compounds chosen from alkaline bases and preferably chosen from alkaline carbonates and alkaline hydroxides and very preferred with a solution of sodium hydroxide (NaOH), step c ') of heat treatment allows both the drying and the conversion of NH + cations exchanged during step b'), into protons.
  • the thermal treatment step c ') allows both the drying and the decomposition of the quaternary ammonium cations in the counter-ion position and the formation of protons.
  • Stage c ') of heat treatment according to the invention is carried out at a temperature between 200 and 700 ° C, more preferably between 300 and 500 ° C.
  • Said processing step Thermally is advantageously carried out under air, under oxygen, under hydrogen, under nitrogen or under argon or under a mixture of nitrogen and argon.
  • the duration of said treatment is advantageously between 1 and 5 hours.
  • the final modified zeolite used in the catalyst support used in the process according to the invention advantageously has a final mesoporous volume, measured by high nitrogen porosimetry. at least 10% relative to the initial mesoporous volume and preferably greater than at least 20% relative to the initial mesoporous volume of the dealuminated initial zeolite
  • a final microporous volume measured by nitrogen porosimetry which must not decrease by more than 40%, preferably by more than 30% and preferably by more than 20% relative to the initial microporous volume of said zeolite initial dealuminated USY, a higher Bronsted acidity of more than 10% and preferably more than 20% with respect to the Bronsted acidity of the initial dealuminated zeolite Y and a crystalline parameter
  • Maintaining a significant microporous volume relative to the initial dealuminated Y zeolite translate the creation of additional mesoporosity by desilication.
  • the increase in the Bronsted acidity of the final modified zeolite with respect to the initial dealuminated Y zeolite demonstrates the reintroduction of extra-lattice aluminum atoms in the framework of the zeolite, ie the phenomenon of
  • the catalyst support used in the hydroisomerization step c) of the process according to the invention advantageously contains a porous mineral matrix, preferably amorphous, which advantageously consists of at least one refractory oxide.
  • the matrix is advantageously chosen from the group formed by alumina, silica, clays, titanium oxide, boron oxide and zirconia, taken alone or as a mixture.
  • the matrix may consist of a mixture of at least two of the oxides mentioned above, and preferably silica-alumina. It is also possible to choose aluminates. It is preferred to use matrices containing alumina, in all these forms known to those skilled in the art, for example gamma-alumina. It is also advantageous to use mixtures of alumina and silica, mixtures of alumina and silica-alumina.
  • the overall Si / Al atomic ratio of the initial and final dealuminated Y zeolite, that is to die after modification is measured by X-ray fluorescence.
  • X-ray fluorescence is a global elemental analysis technique that allows the analysis of all elements of the periodic system from boron. It is possible to dose from a few ppm up to 100%. In this invention, this technique is used to measure the silicon and aluminum zeolites (in percent by weight) and thus allows to calculate the atomic ratio Si / Al.
  • the weight fraction of the tetracoordinated and hexacoordinated aluminum atoms present in the modified USY zeolite is determined by nuclear magnetic resonance of the 27 Al solid.
  • Aluminum NMR is indeed known to be used for identifying and quantifying the various coordination states of this nucleus ("Physico-chemical analysis of industrial catalysts", J. Lynch, Technip Publishing (2001) Chapter 13, pages 290 and 291).
  • the NMR spectrum of the aluminum of the original USY zeolite and that of the modified USY zeolite according to the invention has two signals, one of which is characteristic of the resonance of the tetracoordinated aluminum atoms (i.e.
  • the tetracoordinated aluminum atoms A ⁇ w resonate at a chemical shift of between +40 ppm and +75 ppm and the hexacoordinated or extra-lattice aluminum Alvi atoms resonate at a chemical shift between -15 ppm and +15 ppm.
  • is quantified by integrating the signals corresponding to each of these species.
  • the USY zeolite modified according to the present invention in the catalyst support according to the invention was analyzed by MAS-NMR of the solid on a 27 AI Briicker type of spectrometer Avance 400 MHz using a probe 4 mm optimized for F 27 AI.
  • the rotation speed of the sample is close to 14 kHz.
  • the aluminum atom is a quadrupole nucleus with a spin equal to 5/2.
  • the magic angle spinning NMR (MAS) technique referred to as MAS-NMR, is a quantitative technique.
  • each NMR-MAS spectrum gives direct access to the quantity of the different aluminum species, namely Aliv tetracoordinated aluminum atoms and hexacoordinated aluminum atoms or Alvi extra-network aluminum atoms.
  • Each spectrum is wedged in chemical shift with respect to a 1 M solution of aluminum nitrate for which the aluminum signal is at zero ppm.
  • the signals characterizing the Aliv tetracoordinated aluminum atoms are integrated between +40 ppm and +75 ppm which corresponds to the area 1 and the signals characterizing the Alvi hexacoordinated aluminum atoms are integrated between -15 ppm and +15 ppm. which corresponds to area 2.
  • the weight fraction of the hexacoordinated aluminum atoms Alvi is equal to the ratio area 2 / (area 1 + area 2).
  • the crystalline parameter of mesh aO zeolites Y dealuminated initial and final, that is to say after modification is measured by X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • the mesh parameter a0 is calculated from the peak positions corresponding to the Miller indices 533, 642 and 555 ("Theory and technique of radiocrystallography", A. Guinier, Dunod edition, 1964). . Since the length of the bond AI-O is greater than that of the bond Si-O, the larger the number of aluminum in the tetrahedral position in the framework of al zeolite, the greater the parameter aO is large.
  • the microporous and mesoporous volumes of the initial dealuminated zeolite Y and fianle are measured by adsorption / desorption of nitrogen.
  • the analysis of the nitrogen adsorption isotherm curves of the microporous and mesoporous solids allows the calculation of the porous volumes by the so-called volumetric technique technique.
  • Different types of models are usable.
  • the porous distribution measured by nitrogen adsorption was determined by the Barrett-Joyner-Halenda model (BJH).
  • BJH Barrett-Joyner-Halenda model
  • the nitrogen adsorption-desorption isotherm according to the BJH model is described in the periodical "The Journal of American Society", 73, 373, (1951) written by EPBarrett, LGJoyner and PPHalenda.
  • the mesoporous volume is obtained by subtracting the microporous volume from the total pore volume.
  • the acidity of Lewis and Bronsted zeolites is measured by Pyridine adsorption followed by infra-red spectroscopy (FTIR).
  • FTIR infra-red spectroscopy
  • the integration of the characteristic bands of the coordinated pyridine at 1455 cm -1 and the protonated pyridine at 1545 cm -1 makes it possible to compare the relative acidity of the Lewis and Bronsted type catalysts, respectively.
  • the zeolite is pretreated under secondary vacuum at 450 ° C. for 10 h with an intermediate plateau at 150 ° C. for 1 h, the pyridine is then adsorbed at 150 ° C. and then desorbed under secondary vacuum at this same temperature before taking the spectra.
  • the modified zeolite may be, but is not limited to, for example, powder, ground powder, suspension, deagglomeration-treated suspension.
  • the modified zeolite may advantageously be slurried acidulated or not at a concentration adjusted to the final zeolite content referred to the support. This suspension commonly called a slip is then advantageously mixed with the precursors of the matrix.
  • the modified zeolite can advantageously be introduced during the shaping of the support with the elements that constitute the matrix.
  • the modified zeolite according to the invention is added to a wet alumina gel during the carrier shaping step.
  • One of the preferred methods of forming the carrier in the present invention is to knead at least one modified zeolite with a wet alumina gel for a few tens of minutes and then pass the resulting paste through a die to form extrudates with a diameter of between 0.4 and 4 mm.
  • the modified zeolite can be introduced during the synthesis of the matrix.
  • the modified zeolite is added during the synthesis of the silicoaluminum matrix; the zeolite may be added to a mixture of an acidic alumina compound with a fully soluble silica compound.
  • the support can be shaped by any technique known to those skilled in the art. The shaping can be carried out for example by extrusion, pelletizing, by the method of coagulation in drop (oil-drop), by rotating plate granulation or by any other method well known to those skilled in the art.
  • At least one calcination may be performed after any of the steps of the preparation.
  • the calcination treatment is usually carried out in air at a temperature of at least 150 ° C, preferably at least 300 ° C, more preferably at about 350 to 1000 ° C.
  • Group VIB elements and / or Group VIII elements and optionally at least one doping element selected from boron, silicon and phosphorus and optionally elements of groups IVB, or IB in the case where the active phase contains nickel reduced can be optionally introduced, all or part, at any stage of the preparation, during the synthesis of the matrix, preferably during the shaping of the support, or very preferably after the shaping of the support by any method known to those skilled in the art. They can be introduced after forming the support and after or before the drying and calcining of the support.
  • all or part of the elements of groups VIB and / or elements of group VIII, and optionally at least one doping element chosen from boron, silicon and phosphorus and optionally elements of groups IVB , or IB in the case where the active phase contains reduced nickel may be introduced during the shaping of the support, for example, during the kneading step of the modified zeolite with a wet alumina gel.
  • all or part of the elements of groups VIB and / or elements of group VIII and optionally at least one doping element chosen from boron, silicon and phosphorus and optionally elements of groups IVB , or IB in the case where the active phase contains reduced nickel may be introduced by one or more impregnation operations of the shaped and calcined support, by a solution containing the precursors of said elements.
  • the support is impregnated with an aqueous solution.
  • the impregnation of the support is preferably carried out by the "dry" impregnation method well known to those skilled in the art.
  • the metals of group VIII are preferably introduced by one or more impregnation operations of the shaped and calcined support, after those of group VI B or at the same time as these.
  • the metals of group VIII are preferably introduced by one or more impregnation operations of the shaped and calcined support.
  • the deposition of the elements of group IVB or group IB can also be carried out simultaneously using, for example, a solution containing a tin salt or a copper salt.
  • the deposition of boron and silicon can also be carried out simultaneously using, for example, a solution containing a boron salt and a silicon-type silicon compound.
  • the distribution and location can be determined by techniques such as the Castaing microprobe (distribution profile of the various elements), electron microscopy by transmission coupled to an EDX analysis (energy dispersive analysis) of the catalyst components, or even by establishing a distribution map of the elements present in the catalyst by electron microprobe.
  • oxides and hydroxides, molybdic and tungstic acids and their salts in particular ammonium salts such as ammonium molybdate, ammonium heptamolybdate, ammonium tungstate, phosphomolybdic acid, phosphotungstic acid and their salts, silicomolybdic acid, silicotungstic acid and their salts.
  • oxides and hydroxides, molybdic and tungstic acids and their salts in particular ammonium salts such as ammonium molybdate, ammonium heptamolybdate, ammonium tungstate, phosphomolybdic acid, phosphotungstic acid and their salts, silicomolybdic acid, silicotungstic acid and their salts.
  • Oxides and ammonium salts such as ammonium molybdate, ammonium heptamolybdate and ammonium tungstate are preferably used.
  • non-noble group VIII elements that can be used are well known to those skilled in the art.
  • non-noble metals use will be made of nitrates, sulphates, hydroxides, phosphates and halides, for example chlorides, bromides and fluorides, carboxylates such as acetates and carbonates.
  • the noble element sources of group VIII which can advantageously be used are well known to those skilled in the art.
  • the noble metals halides are used, for example chlorides, nitrates, acids such as hexachloroplatinic acid, hydroxides, oxychlorides such as ammoniacal oxychloride ruthenium. It is also advantageous to use cationic complexes such as ammonium salts when it is desired to deposit the metal on the Y-type zeolite by cation exchange.
  • the noble metals of Group VIII of the catalyst of the present invention may advantageously be present in whole or in part in metallic and / or oxide form.
  • the element (s) promoter (s) chosen (s) in the group formed by silicon, boron and phosphorus can advantageously be introduced by one or more impregnation operations with excess solution on the calcined precursor.
  • the boron source may advantageously be boric acid, preferably orthoboric acid H3B03, biborate or ammonium pentaborate, boron oxide, boric esters.
  • Boron may for example be introduced in the form of a mixture of boric acid, hydrogen peroxide and a basic organic compound containing nitrogen such as ammonia, primary and secondary amines, cyclic amines, compounds of the family of pyridine and quinolines and compounds of the pyrrole family. Boron may be introduced for example by a boric acid solution in a water / alcohol mixture.
  • the preferred phosphorus source is orthophosphoric acid H 3 PO 4, but its salts and esters such as ammonium phosphates are also suitable.
  • the phosphorus may for example be introduced in the form of a mixture of phosphoric acid and a basic organic compound containing nitrogen such as ammonia, primary and secondary amines, cyclic amines, compounds of the family of pyridine and quinolines and compounds of the pyrrole family.
  • a basic organic compound containing nitrogen such as ammonia, primary and secondary amines, cyclic amines, compounds of the family of pyridine and quinolines and compounds of the pyrrole family.
  • ethyl orthosilicate Si (OEt) 4 siloxanes, polysiloxanes, silicones, silicone emulsions, halide silicates, such as ammonium fluorosilicate (NH4) 2SiF6 or fluorosilicate. sodium Na2SiF6.
  • Silicomolybdic acid and its salts, silicotungstic acid and its salts can also be advantageously employed.
  • Silicon may advantageously be added for example by impregnation of ethyl silicate in solution in a water / alcohol mixture. Silicon can be added for example by impregnation of a silicon-type silicon compound or silicic acid suspended in water.
  • Group IB source materials that can be used are well known to those skilled in the art.
  • copper sources Cu (N0 3 ) 2 copper nitrate can be used.
  • the sources of Group IVB elements that can be used are well known to those skilled in the art.
  • tin chloride SnCl 2 can be used .
  • the catalysts used in the process according to the invention advantageously have the form of spheres or extrudates. It is however advantageous that the catalyst is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm.
  • the shapes are cylindrical (which may be hollow or not), cylindrical 5 twisted, multilobed (2, 3, 4 or 5 lobes for example), rings.
  • the cylindrical shape is preferably used, but any other shape may be used.
  • the catalysts according to the invention may optionally be manufactured and used in the form of crushed powder, tablets, rings, balls, wheels.
  • the noble metal contained in said hydroisomerization catalyst must advantageously be reduced.
  • One of the preferred methods for conducting the reduction of the metal is hydrogen treatment at a temperature between 150 ° C and 650 ° C and a total pressure of between 1 and 250 bar. For example, a reduction consists of a plateau at 150 ° C of
  • step c) of hydroisomerization of the process according to the invention at least a portion of the hydrocarbon base resulting from step b) is brought into contact, in the presence of hydrogen with said hydroisomerization catalyst, with operating temperatures and pressures advantageously allowing for hydroisomerization of the non-converting filler.
  • the hydroisomerisation is carried out with a converting the 150 ° C + fraction to 150 ° C * fraction less than 20% by weight, preferably less than 10% by weight and very preferably less than 5% by weight.
  • step c) of hydroisomerization of the process according to the invention operates at a temperature of between 150 and 500 ° C., preferably between 150 ° C. and 450 ° C., and very preferred, between 200 and 450 ° C, at a pressure of between 1 MPa and 10 MPa, preferably between 2 MPa and 10 MPa and very preferably between 1 MPa and 9 MPa, at an hourly space velocity advantageously between 0 1 hr "1 to 10 h" 1, preferably between 0.2 and 7 h "1 and very preferably between 0.5 and 5 h" 0 1, with a hydrogen flow rate such that the volume ratio hydrogen / hydrocarbons is advantageously between 70 and 1000 Nm 3 / m 3 of filler, between 100 and 1000 normal m 3 of hydrogen per m 3 of filler and preferably between 150 and 1000 normal m 3 of hydrogen per m 3 charge.
  • the optional hydroisomerization step operates cocurrently.
  • the diesel base obtained, after mixing with a petroleum diesel fuel derived from renewable fuels such as coal or lignocellulosic biomass, and / or with an additive, is of excellent quality:
  • its total aromatics content is less than 5% by weight, and the polyaromatic content is less than 2% by weight.
  • the cetane number is excellent, greater than 55.
  • the density is less than 840 kg / m3, and most often greater than 820 kg / m3.
  • the kerosene cut obtained, after mixing with a petroleum kerosene derived from renewable fuels such as coal or lignocellulosic biomass and / or with an additive, has the following characteristics:
  • the catalyst In a temperature controlled reactor so as to provide isothermal and fixed bed operation charged with 190 ml of hydrotreatment catalyst based on nickel and molybdenum, having a nickel oxide content equal to 3% by weight, and a content in molybdenum oxide equal to 16% by weight and a P 2 O 5 content equal to 6%, the catalyst
  • 100 g of the crude synthetic NaY zeolite is exchanged 3 times with a 1N solution of NH 4 NO 3 at a temperature of 80 ° C. to obtain the NH 4 Y zeolite.
  • the NH 4 Y zeolite then undergoes a 700 ° heat treatment. C for 3h in the presence of 60% water vapor.
  • the heat treatment is done using a gas flow of water vapor and air of 2 L / h / g zeolite.
  • the zeolite is finally filtered and dried for 12 hours at 120 ° C.
  • the zeolite is then in dealuminated HY form.
  • the catalyst supports according to the invention containing the modified zeolite (Z2 conforming) or not (Z1) are manufactured using 19.5 g of zeolite mixed with 80.5 g of a matrix composed of ultrafine tabular boehmite or gel of alumina marketed under the name SB3 by Condisputeda Chemie Gmbh. This powder mixture is then mixed with an aqueous solution containing nitric acid at 66% by weight (7% by weight of acid per gram of dry gel) and then kneaded for 15 minutes. The kneaded paste is then extruded through a die having a diameter of 1.2 mm. The extrudates are then calcined at 500 ° C. for 2 hours in air.
  • the carrier extrudates thus prepared are dry impregnated with a solution of a mixture of ammonium heptamolybdate and nickel nitrate and calcined in air at 550 ° C. in situ in the reactor.
  • the oxide weight contents of the catalysts obtained are shown in Table 2.
  • Catalysts C1 and C2 are thus prepared from unmodified zeolites Z1 and modified according to the invention Z2.
  • the oxide weight contents of the catalysts obtained are shown in Table 2.
  • Table 2 Characteristics of the catalysts.
  • hydrotreated hydrocarbon effluent obtained at the end of step b / is hydroisomerized with hydrogen lost in a hydroisomerisation reactor under the operating conditions below:
  • the reaction temperature is set so as to reach a gross conversion (denoted by CB) equal to 70% by weight.
  • the charge thus prepared is injected into the hydroisomerisation test unit which comprises a fixed-bed reactor with up-flow of the charge ("up-flow") into which 100 ml of catalyst is introduced.
  • the catalyst is sulphurized with a straight-run diesel / DMDS and aniline mixture up to 320 ° C. It should be noted that any in situ or ex situ sulphurization method is suitable. Once the sulphurization is complete, the charge can be transformed.
  • the operating conditions of the test unit are indicated above.
  • the yield of jet fuel (kerosene, 150-250 ° C. cut, below Yt Kero) is equal to the weight percentage of compounds having a boiling point of between 150 and 250 ° C. in the effluents.
  • the gas oil yield (250 ° C + fraction) is equal to the weight percentage of compounds having a boiling point greater than 250 ° C in the effluents.
  • the temperature of 300 ° C. is adjusted so as to have a conversion of the fraction 150 ° C + fraction 150 ° C " less than 5% by weight during the hydroisomerization in the case where the hydroisomerization catalyst used in the Step c) of the process according to the invention contains the modified zeolite according to the invention
  • Table 3 we have reported the temperature the yields of kerosene and gas oil for the catalysts described in the examples above.
  • Table 3 Catalytic Activities of Catalysts in Hydroisomerization.
  • the process employing, in the hydroisomerization step c), a catalyst containing an unmodified zeolite produces a light 150 ⁇ -cutting at a yield of 13% and therefore the production of middle distillate at a lower yield compared with the implementation in step c) hydroisomerization of the process according to the invention, a catalyst containing a zeolite modified according to the invention.
  • the method according to the invention thus demonstrates that the catalyst containing a zeolite modified according to the invention and used in said process according to the invention is more active than the non-compliant catalysts to obtain a conversion level of the fraction 150 ° C + less than 5% by weight, while making it possible to obtain higher middle distillate yields, and thus a better selectivity in middle distillates, compared to a hydroisomerisation process using a non-catalytic catalyst.

Abstract

The present invention describes a process for treating feedstocks resulting from a renewable source using, in a hydroisomerization step, a catalyst comprising at least one hydro-dehydrogenating metal chosen from the group formed by the metals from group VIB and from group VIII of the Periodic Table and a support comprising at least one dealuminated zeolite Y having an initial overall atomic ratio of silicon to aluminium of between 2.5 and 20, an initial extra-lattice aluminium atom weight fraction of greater than 10%, relative to the total weight of the aluminium present in the zeolite, an initial mesoporous volume measured by nitrogen porosimetry of greater than 0.07 ml g-1, and an initial lattice parameter a0 of the unit cell between 24.38 Å and 24.30 Å, said zeolite being modified by a) a step of basic treatment consisting of mixing said dealuminated zeolite Y with a basic aqueous solution, and at least one step c) of heat treatment.

Description

PROCEDE D'HYDROTRAITEMENT ET D' HYDROISOMERISATION DE CHARGES ISSUES DE SOURCE RENOUVELABLE METTANT EN OEUVRE UNE ZEOLITHE MODIFIEE PAR UN TRAITEMENT BASIQUE  METHOD FOR HYDROTREATING AND HYDROISOMERIZING RENEWABLE SOURCE-BASED LOADS USING MODIFIED ZEOLITHE BY BASIC TREATMENT
Domaine technique Technical area
Dans un contexte international marqué par la croissance rapide des besoins en carburants, en particulier de bases gazoles et kérosènes dans la communauté européenne, la recherche de nouvelles sources d'énergie renouvelables pouvant être intégrées au schéma traditionnel du raffinage et de la production de carburants constitue un enjeu majeur.  In an international context marked by the rapid growth of fuel requirements, particularly diesel and kerosene bases in the European community, the search for new renewable energy sources that can be included in the traditional refining and fuel production scheme is a major issue.
A ce titre, l'intégration dans le processus de raffinage de nouveaux produits d'origine végétale, issus de la conversion de la biomasse lignocellulosique ou issus de la production d'huiles végétales ou de graisses animales, a connu ces dernières années un très vif regain d'intérêt en raison de l'augmentation du coût des matières fossiles. De même, les biocarburants traditionnels (éthanol ou esters méthyliques d'huiles végétales principalement) ont acquis un réel statut de complément aux carburants de type pétroliers dans les pools carburants. En outre, les procédés connus à ce jour utilisant des huiles végétales ou des graisses animales sont à l'origine d'émissions de C02, connus pour ces effets négatifs sur l'environnement. Une meilleure utilisation de ces bio ressources, comme par exemple leur intégration dans le pool carburant présenterait donc un avantage certain. As such, the integration into the refining process of new products of plant origin, resulting from the conversion of lignocellulosic biomass or from the production of vegetable oils or animal fats, has in recent years experienced a very lively renewed interest due to the rising cost of fossil fuels. Similarly, traditional biofuels (mainly ethanol or methyl esters of vegetable oils) have acquired a real status of supplementing petroleum fuels in fuel pools. In addition, the processes known to date using vegetable oils or animal fats are responsible for C0 2 emissions, known for these negative effects on the environment. A better use of these bio-resources, such as for example their integration in the fuel pool would therefore be a definite advantage.
La forte demande en carburants gazoles et kérosènes, couplée avec l'importance des préoccupations liées à l'environnement renforce l'intérêt d'utiliser des charges issues de sources renouvelables. Parmi ces charges on peut citer par exemple les huiles végétales, les graisses animales, brutes ou ayant subi un traitement préalable, ainsi que les mélanges de telles charges. Ces charges contiennent des structures chimiques de type triglycérides ou esters ou acides gras, la structure et la longueur de chaîne hydrocarbonée de ces derniers étant compatible avec les hydrocarbures présents dans les gazoles et le kérosène. The strong demand for diesel fuels and kerosene, coupled with the importance of environmental concerns, reinforces the interest of using renewable sources. These fillers include for example vegetable oils, animal fats, raw or having undergone prior treatment, as well as mixtures of such fillers. These fillers contain chemical structures of the triglyceride or ester or fatty acid type, the structure and the hydrocarbon chain length of the latter being compatible with the hydrocarbons present in gas oils and kerosene.
Une voie possible est la transformation catalytique de la charge issue de source renouvelable en carburant paraffinique désoxygéné en présence d'hydrogène (hydrotraitement). De nombreux catalyseurs métalliques ou sulfures sont connus pour être actifs pour ce type de réaction. One possible route is the catalytic conversion of the renewable source feedstock into deoxygenated paraffinic fuel in the presence of hydrogen (hydrotreatment). Many metal catalysts or sulfides are known to be active for this type of reaction.
Ces procédés d'hydrotraitement de charge issue de source renouvelable sont déjà bien connus et sont décrits dans de nombreux brevets. On peut citer par exemple les brevets : US 4,992,605, US 5,705,722, EP 1 ,681 ,337 et EP 1 ,741 ,768. These hydrotreatment processes from renewable source are already well known and are described in many patents. For example, patents include US Pat. No. 4,992,605, US Pat. No. 5,705,722, EP 1, 681, 337 and EP 1, 741, 768.
L'utilisation de solides à base de sulfures de métaux de transition permet la production de paraffines à partir de molécule de type ester selon deux voies réactionnelles : - L'hydrodésoxygénation conduisant à la formation d'eau par consommation d'hydrogène et à la formation d'hydrocarbures de nombre de carbone (Cn) égal à celui des chaînes d'acides gras initiales, The use of transition metal sulphide solids allows the production of paraffins from ester-type molecules in two reaction routes: - The hydrodeoxygenation leading to the formation of water by hydrogen consumption and the formation of carbon number (Cn) hydrocarbons equal to that of the initial fatty acid chains,
- La décarboxylation/décarbonylation conduisant à la formation d'oxydes de carbone 5 (monoxyde et dioxyde de carbone : CO et C02) et à la formation d'hydrocarbures comptant un carbone en moins (Cn-1) par rapport aux chaînes d'acides gras initiales.  Decarboxylation / decarbonylation leading to the formation of carbon oxides (carbon monoxide and carbon dioxide: CO and CO2) and the formation of hydrocarbons having one less carbon (Cn-1) relative to the acid chains initial fat.
L'effluent liquide issu de ces procédés d'hydrotraitement est essentiellement constitué de n- 3 paraffines qui peuvent être incorporées au pool gazole et kérosène. De manière à améliorer les propriétés à froid de cet effluent liquide hydrotraité, une étape d'hydroisomérisation est nécessaire pour transformer les n-paraffines en paraffines branchées présentant de meilleures propriétés à froid. The liquid effluent from these hydrotreatment processes consists essentially of n-paraffins which can be incorporated into the diesel fuel and kerosene pool. In order to improve the cold properties of this hydrotreated liquid effluent, a hydroisomerization step is necessary to convert n-paraffins into branched paraffins having better properties when cold.
5 La demande de brevet EP1 741 768 par exemple décrit un procédé comprenant un hydrotraitement suivi d'une étape d'hydroisomérisation afin d'améliorer les propriétés à froid des paraffines linéaires obtenues. Les catalyseurs utilisés dans l'étape d'hydroisomérisation sont des catalyseurs bifonctionnels sont constitués d'une phase active métallique comprenant un métal du groupe VIII choisi parmi le palladium, le platine et le nickel,Patent application EP 1 741 768, for example, describes a process comprising a hydrotreatment followed by a hydroisomerization step in order to improve the cold properties of the linear paraffins obtained. The catalysts used in the hydroisomerization step are bifunctional catalysts consist of a metal active phase comprising a Group VIII metal chosen from palladium, platinum and nickel,
Q dispersé sur un support acide de type tamis moléculaire choisi parmi la SAPO-11 , la SAPO- 41 , la ZSM-22, la ferrierite ou la ZSM-23, ledit procédé opérant à une température comprise entre 200 et 500°C, et à une pression comprise entre 2 et 15 MPa. Néanmoins, l'utilisation de ce type de solide entraîne une perte de rendement en distillats moyen. Q dispersed on a molecular sieve acidic support selected from SAPO-11, SAPO-41, ZSM-22, ferrierite or ZSM-23, said process operating at a temperature between 200 and 500 ° C, and at a pressure of between 2 and 15 MPa. Nevertheless, the use of this type of solid results in a loss of average distillate yield.
S La modification de zéolithe par traitement alcalin est un procédé qui a été étudié dans la littérature ouverte. Ce procédé de modification par traitement alcalin permet de créer de la mésoporosité dans certain type de zéolithe comme la zéolithe microporeuse ZSM-5 dans Ogura et al., Applied Catal. A:General, 219 (2001) 33, Groen et al., Colloids and surfaces A: Physicochem. Eng. Aspects 241 (2004) 53, et Groen et al., Microporous and MesoporousZeolite modification by alkaline treatment is a process that has been studied in the open literature. This modification method by alkaline treatment makes it possible to create mesoporosity in certain type of zeolite, such as the microporous zeolite ZSM-5 in Ogura et al., Applied Catal. A: General, 219 (2001) 33, Groen et al., Colloids and Surfaces A: Physicochem. Eng. Aspects 241 (2004) 53, and Groen et al., Microporous and Mesoporous
0 Materials, 69 (2004) 29, la FER dans Groen et al., Microporous and Mesoporous Materials, 69 (2004) 29, la MOR dans Groen et al., Microporous and Mesoporous Materials, 69 (2004) 29 et Groen et al., J. Catal. 243 (2006) 212 ou la zéolithe BEA Groen et al., Microporous and Mesoporous Materials, 69 (2004) 29, Groen et al., J. Catal. 243 (2006) 212 et Groen et al., Microporous and Mesoporous Materials, 114 (2008) 93 et les catalyseurs obtenus été0 Materials, 69 (2004) 29, FER in Groen et al., Microporous and Mesoporous Materials, 69 (2004) 29, MOR in Groen et al., Microporous and Mesoporous Materials, 69 (2004) 29 and Groen et al. J. Catal. 243 (2006) 212 or Zeolite BEA Groen et al., Microporous and Mesoporous Materials, 69 (2004) 29, Groen et al., J. Catal. 243 (2006) 212 and Groen et al., Microporous and Mesoporous Materials, 114 (2008) 93 and the catalysts obtained
5 utilisés pour différentes réactions catalytiques. Ces études montrent que le traitement alcalin permet de retirer des atomes de silicium de la structure créant ainsi une mésoporosité. La création de mésoporosité et le maintient de la cristallinité et des propriétés acides de la zéolithe sont identifiés dans ces publications comme étant liés au rapport molaire global Si/AI initial des zéolithes, ledit rapport global Si/AI optimal devant être compris entre 20 et de 50. En effet, en dehors de cette gamme de rapport global Si/AI compris entre 20 et 50, et par exemple pour un rapport Si/AI global inférieure à 20, la structure de la zéolithe est très stable du fait de la présence d'un grand nombre d'atome d'aluminium qui empêchent l'extraction des atomes de silicium et donc la création de mésoporosité supplémentaire. Intérêt de l'invention Used for different catalytic reactions. These studies show that alkaline treatment allows to remove silicon atoms from the structure thus creating a mesoporosity. The creation of mesoporosity and the maintenance of the crystallinity and the acidic properties of the zeolite are identified in these publications as being related to the initial Si / Al global molar ratio of the zeolites, said optimum Si / Al global ratio to be between 20 and 20%. 50. In fact, apart from this range of global Si / Al ratio of between 20 and 50, and for example for an overall Si / Al ratio of less than 20, the structure of the zeolite is very stable because of the presence of a large number of aluminum atoms which prevent the extraction of silicon atoms and thus the creation of additional mesoporosity. Interest of the invention
La zéolithe Y désaluminée contient des mésopores, créés en extrayant des atomes d'aluminium de la charpente de la zéolithe. La présence de mésopores permet d'améliorer la sélectivité en distillais moyens des catalyseurs d'hydrocraquage mettant en oeuvre une telle zéolithe en facilitant la diffusion des produits primaires de la réaction (carburéacteurs et gazoles) et ainsi en limitant le surcraquage en produits légers. Cependant, l'extraction des atomes d'aluminium de la charpente diminue l'acidité de Bronsted de ladite zéolithe et donc son activité catalytique. Le gain en sélectivité en distillais moyens liée à la mésoporosité de la zéolithe se fait donc au détriment de l'activité catalytique. Les travaux de recherche effectués par le demandeur sur la modification de nombreuses zéolithes et solides microporeux cristallisés et sur les phases actives hydrogénantes, l'ont conduit à découvrir que, de façon surprenante, un catalyseur d'hydroisomérisation de charges hydrocarbonées paraffiniques et en particulier issues de l'hydrotraitement de charges issues de source renouvelable, comprenant au moins un métal hydro- déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII de la classification périodique, pris seuls ou en mélange et un support comprenant au moins une zéolithe Y désaluminée et contenant une fraction pondérale spécifique d'atomes d'aluminium extra-réseau, ladite zéolithe étant modifiée par a) une étape de traitement basique consistant en le mélange de ladite zéolithe Y désaluminée avec une solution aqueuse basique permettant de retirer des atomes de silicium de la structure et d'insérer des atomes d'aluminium extra-réseau dans la charpente de la zéolithe, et au moins une étape c) de traitement thermique, permettait d'obtenir une activité, c'est à dire un niveau de conversion plus élevé, et une sélectivité en distillât moyens (kérosène et gazoles) plus élevées, l'étape d'hydroisomérisation étant mise en œuvre dans un procédé de traitement de charges issues de source renouvelable comportant en amont de ladite étape d'hydroisomérisation, une étape d'hydrotraitement. The dealuminated Y zeolite contains mesopores, created by extracting aluminum atoms from the framework of the zeolite. The presence of mesopores makes it possible to improve the average distillate selectivity of the hydrocracking catalysts using such a zeolite by facilitating the diffusion of the primary products of the reaction (jet fuels and gas oils) and thus limiting overcracking to light products. However, the extraction of the aluminum atoms from the framework decreases the Bronsted acidity of said zeolite and therefore its catalytic activity. The gain in selectivity in middle distillates linked to the mesoporosity of the zeolite is therefore to the detriment of the catalytic activity. The research work carried out by the applicant on the modification of numerous crystallized microporous zeolites and solids and on the hydrogenating active phases led him to discover that, surprisingly, a catalyst for the hydroisomerization of paraffinic hydrocarbon feedstocks and in particular hydrotreating feedstock from a renewable source, comprising at least one hydro-dehydrogenating metal selected from the group consisting of Group VIB metals and Group VIII of the Periodic Table, taken alone or as a mixture and a carrier comprising at least one a dealuminated Y zeolite containing a specific weight fraction of extra-lattice aluminum atoms, said zeolite being modified by a) a basic treatment step consisting of the mixture of said dealuminated zeolite Y with a basic aqueous solution making it possible to remove silicon atoms of the structure and insert alum atoms extra-lattice inium in the framework of the zeolite, and at least one step c) heat treatment, allowed to obtain an activity, ie a higher conversion level, and a selectivity distillate means (kerosene and higher gas oils), the hydroisomerization step being carried out in a treatment method charges originating from a renewable source comprising, upstream of said hydroisomerization step, a hydrotreating step.
Sans être lié par une quelconque théorie, le traitement basique de la zéolithe désaluminée et contenant une fraction pondérale spécifique d'atomes d'aluminium extra-réseau initiale permet la création de mésopores formant un réseau de mésopores interconnectés jusqu'à la surface des cristaux de zéolithe, par désilication, c'est à dire par extraction des atomes de silicium de la charpente de la zéolithe initiale. La création de mésoporosité accessible par la surface externe des cristaux de zéolithe favorisant la diffusion intercristalline des molécules, permet pour un catalyseur mettant en œuvre ladite zéolithe modifiée selon l'invention, utilisé dans un procédé de production de distillats moyens, d'obtenir une sélectivité en distillât moyens plus élevée. Par ailleurs, le traitement basique permet également la réalumination, c'est à dire la réintroduction d'au moins une partie des atomes d'aluminium extra-réseau présents dans la zéolithe initiale dans la charpente de la zéolithe modifiée, cette réalumination permettant une augmentation de l'acidité de Bransted de la zéolithe modifiée, se traduisant pour un catalyseur mettant en œuvre ladite zéolithe modifiée selon l'invention, par des propriétés catalytiques améliorées, c'est à dire une meilleure conversion. Without being bound by any theory, the basic treatment of the dealuminated zeolite and containing a specific weight fraction of initial extra-lattice aluminum atoms allows the creation of mesopores forming an interconnected network of mesopores to the surface of the crystals of zeolite, by desilication, that is to say by extraction of silicon atoms from the framework of the initial zeolite. The creation of mesoporosity accessible via the external surface of the zeolite crystals promoting the intercrystalline diffusion of the molecules, makes it possible for a catalyst employing said modified zeolite according to the invention, used in a process for producing middle distillates, to obtain a selectivity in distillate means higher. Furthermore, the basic treatment also allows realumination, ie the reintroduction of at least a portion of extra-lattice aluminum atoms present in the initial zeolite in the framework of the modified zeolite, this realumination allowing an increase of the Bransted acidity of the modified zeolite, resulting in a catalyst implementing said modified zeolite according to the invention, by improved catalytic properties, ie a better conversion.
Un objectif de l'invention est donc de fournir un procédé de traitement de charges issues de source renouvelable mettant en œuvre, dans une étape d'hydroisomérisation, en aval d'une étape d'hydrotraitement, un catalyseur d'hydroisomérisation comprenant un support à base de zéolithe modifiée permettant d'obtenir des rendements élevés en bases gazoles et kérosène. An object of the invention is therefore to provide a process for the treatment of charges from a renewable source implementing, in a hydroisomerisation step, downstream of a hydrotreatment step, a hydroisomerization catalyst comprising a support for modified zeolite base making it possible to obtain high yields of gasolines and kerosene bases.
Un autre objectif de l'invention est de fournir un procédé de traitement de charges issues de source renouvelable mettant en œuvre dans une étape d'hydroisomérisation, en aval d'une étape d'hydrotraitement, un catalyseur comprenant comme support une zéolithe modifiée permettant de minimiser la production de fraction légère 150°C- Another object of the invention is to provide a process for the treatment of charges from a renewable source implementing, in a hydroisomerisation step, downstream of a hydrotreating step, a catalyst comprising as a support a modified zeolite allowing minimize the production of light fraction 150 ° C
Objet de l'invention Plus précisément, l'invention concerne un procédé de traitement de charges issues de source renouvelable comprenant les étapes suivantes : OBJECT OF THE INVENTION More specifically, the invention relates to a process for treating charges from a renewable source comprising the following steps:
a) hydrotraitement en présence d'un catalyseur en lit fixe, à une température comprise entre 200 et 450°C, à une pression comprise entre 1 MPa et 10 MPa, à une vitesse spatiale horaire comprise entre 0,1 h"1 et 10 h"1 et en présence d'une quantité totale d'hydrogène mélangée à la charge telle que le ratio hydrogène/charge soit compris entre 70 et 1000 Nm3 d'hydrogène/m3 de charge, b) séparation à partir de l'effluent issu de l'étape a) de l'hydrogène, des gaz et d'au moins une base hydrocarbonée, a) hydrotreatment in the presence of a fixed bed catalyst, at a temperature between 200 and 450 ° C, at a pressure of between 1 MPa and 10 MPa, at a space velocity of between 0.1 h "1 and 10 h "1 and in the presence of a total amount of hydrogen mixed with the feed such that the hydrogen / feed ratio is between 70 and 1000 Nm 3 of hydrogen / m 3 of feed, b) separation from the effluent from step a) of hydrogen, gases and at least one hydrocarbon base,
c) hydroisomérisation d'au moins une partie de ladite base hydrocarbonée issue de l'étape b) en présence d'un catalyseur d'hydroisomérisation en lit fixe, ledit catalyseur comprenant au moins un métal hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII de la classification périodique, pris seul ou en mélange et un support comprenant au moins une zéolithe Y désaluminée présentant un rapport atomique global initial de silicium sur aluminium compris entre 2,5 et 20, une fraction pondérale d'atome d'aluminium extra réseau initiale supérieure à 10%, par rapport à la masse totale de l'aluminium présent dans la zéolithe, un volume mésoporeux initial mesuré par porosimétrie à l'azote supérieur à 0,07 ml. g"1, et un paramètre cristallin initial a0 de la maille élémentaire compris entre 24,38 A et 24,30 A, ladite zéolithe étant modifiée par a) une étape de traitement basique consistant en le mélange de ladite zéolithe Y désaluminée avec une solution aqueuse basique, et au moins une étape c) de traitement thermique, ladite étape d'hydroisomérisation étant effectuée à une température comprise entre 150 et 500°C, à une pression comprise entre 1 MPa et 10 MPa, à une vitesse spatiale horaire comprise entre 0,1 et 10 h'1 et en présence d'une quantité totale d'hydrogène mélangée à la charge telle que le ratio hydrogène/charge soit compris entre 70 et 1000 Nm3/m3 de charge, c) hydroisomerization of at least a portion of said hydrocarbon base resulting from step b) in the presence of a fixed bed hydroisomerization catalyst, said catalyst comprising at least one hydro-dehydrogenating metal chosen from the group formed by the Group VIB and Group VIII metals of the Periodic Table, taken singly or in admixture and a carrier comprising at least one dealuminated Y zeolite having an initial total silicon to aluminum atomic ratio of between 2.5 and 20, a weight fraction of an extra initial network aluminum atom greater than 10%, relative to the total mass of aluminum present in the zeolite, an initial mesoporous volume measured by nitrogen porosimetry greater than 0.07 ml. g "1 , and an initial crystal parameter at 0 of the elemental mesh between 24.38 A and 24.30 A, said zeolite being modified by a) a basic treatment step consisting of mixing said dealuminated zeolite Y with a basic aqueous solution, and at least one step c) of heat treatment, said hydroisomerization step being carried out at a temperature of between 150 and 500 ° C, at a pressure of between 1 MPa and 10 MPa, at an hourly space velocity of between 0.1 and 10 h -1 and in the presence of a total amount of hydrogen mixed with the feed such that the hydrogen / feed ratio is between 70 and 1000 Nm 3 / m 3 of feed,
d) séparation, à partir de l'effluent issu de l'étape c) de l'hydrogène, des gaz et d'au moins une base gazole et d'une base kérosène. d) separation, from the effluent from step c) of hydrogen, gases and at least one gas oil base and a kerosene base.
Description détaillée de l'invention Detailed description of the invention
La présente invention est particulièrement dédiée à la préparation de bases carburant gazoles et kérosènes correspondant aux nouvelles normes environnementales, à partir de charges issues de sources renouvelables.  The present invention is particularly dedicated to the preparation of gas oil and kerosene fuel bases corresponding to the new environmental standards, from charges from renewable sources.
Les charges issues de sources renouvelables utilisées dans la présente invention sont avantageusement choisies parmi les huiles et graisses d'origine végétale ou animale, ou des mélanges de telles charges, contenant des triglycérides et/ou des acides gras libres et/ou des esters. Les huiles végétales peuvent avantageusement être brutes ou raffinées, totalement ou en partie, et issues des végétaux suivants : colza, tournesol, soja, palme, palmiste, olive, noix de coco, jatropha, cette liste n'étant pas limitative. Les huiles d'algues ou de poisson sont également pertinentes. Les graisses animales sont avantageusement choisies parmi le lard ou les graisses composées de résidus de l'industrie alimentaire ou issus des industries de la restauration. Ces charges contiennent essentiellement des structures chimiques de type triglycérides que l'homme du métier connaît également sous l'appellation tri ester d'acides gras ainsi que des acides gras libres. Un tri ester d'acide gras est ainsi composé de trois chaînes d'acides gras. Ces chaînes d'acide gras sous forme de tri ester ou sous forme d'acide gras libres, 5 possèdent un nombre d'insaturations par chaîne, également appelé nombre de doubles liaisons carbone carbone par chaîne, généralement compris entre 0 et 3 mais qui peut être plus élevé notamment pour les huiles issues d'algues qui présentent généralement un nombre d'insaturations par chaînes de 5 à 6. The feedstocks derived from renewable sources used in the present invention are advantageously chosen from oils and fats of vegetable or animal origin, or mixtures of such fillers, containing triglycerides and / or free fatty acids and / or esters. Vegetable oils can advantageously be crude or refined, wholly or in part, and derived from the following plants: rapeseed, sunflower, soybean, palm, palm kernel, olive, coconut, jatropha, this list not being limiting. Algae or fish oils are also relevant. Animal fats are advantageously chosen from lard or fats composed of residues from the food industry or from the catering industries. These fillers essentially contain triglyceride-type chemical structures which are also known to those skilled in the art as tri-ester of fatty acids as well as free fatty acids. A fatty acid ester tri is thus composed of three chains of fatty acids. These fatty acid chains in the form of triester ester or in the form of free fatty acid have a number of unsaturations per chain, also called number of carbon-carbon double bonds per chain, generally between 0 and 3 but which can be higher especially for oils derived from algae which generally have a number of unsaturations in chains of 5 to 6.
Les molécules présentes dans les charges issues de sources renouvelables utilisées dans 0 la présente invention présentent donc un nombre d'insaturations, exprimé par molécule de triglycéride, avantageusement compris entre 0 et 18. Dans ces charges, le taux d'insaturation, exprimé en nombre d'insaturations par chaîne grasse hydrocarbonée, est avantageusement compris entre 0 et 6.  The molecules present in the feeds from renewable sources used in the present invention therefore have a number of unsaturations, expressed per molecule of triglyceride, advantageously between 0 and 18. In these feeds, the level of unsaturation, expressed in number unsaturated hydrocarbon fatty chain, is advantageously between 0 and 6.
Les charges issues de sources renouvelables comportent généralement également 5 différentes impuretés et notamment des hétéroatomes tels que l'azote. Les teneurs en azote dans les huiles végétales sont généralement comprises entre 1 ppm et 100 ppm poids environ, selon leur nature. Elles peuvent atteindre jusqu'à 1 % poids sur des charges particulières.  Charges from renewable sources generally also include 5 different impurities and especially heteroatoms such as nitrogen. Nitrogen levels in vegetable oils are generally between about 1 ppm and about 100 ppm by weight, depending on their nature. They can reach up to 1% weight on particular loads.
0 De manière avantageuse, la charge peut subir préalablement à l'étape a) du procédé selon l'invention une étape de pré-traitement ou pré-raffinage de façon à éliminer, par un traitement approprié, des contaminants tels que des métaux, comme les composés alcalins par exemple sur des résines échangeuses d'ions, les alcalino-terreux et le phosphore. Des traitements appropriés peuvent par exemple être des traitements thermiques et/ouAdvantageously, the feedstock may undergo prior to step a) of the process according to the invention a pre-treatment or pre-refining step so as to eliminate, by an appropriate treatment, contaminants such as metals, such as alkaline compounds for example on ion exchange resins, alkaline earths and phosphorus. Suitable treatments may for example be heat treatments and / or
:5 chimiques bien connus de l'homme du métier. : 5 chemicals well known to those skilled in the art.
Conformément à l'étape a) du procédé selon l'invention, la charge, éventuellement prétraitée, est mise au contact d'un catalyseur en lit fixe à une température comprise entre 200 et 450°C, de préférence entre 220 et 350°C, de manière préférée entre 220 et 320°C,According to step a) of the process according to the invention, the charge, possibly pretreated, is brought into contact with a catalyst in a fixed bed at a temperature of between 200 and 450 ° C., preferably between 220 and 350 ° C. preferably between 220 and 320 ° C,
I0 et de manière encore plus préférée entre 220 et 310°C. La pression est comprise entre 1 MPa et 10 MPa, de manière préférée entre 1 MPa et 6 MPa et de manière encore plus préférée entre 1 MPa et 4 MPa. La vitesse spatiale horaire est comprise entre 0,1 h-1 et 10 h-1. La charge est mise au contact du catalyseur en présence d'hydrogène. La quantité totale d'hydrogène mélangée à la charge est telle que le ratio hydrogène/charge est comprisI0 and even more preferably between 220 and 310 ° C. The pressure is between 1 MPa and 10 MPa, preferably between 1 MPa and 6 MPa and even more preferably between 1 MPa and 4 MPa. The hourly space velocity is between 0.1 hr-1 and 10 hr-1. The filler is contacted with the catalyst in the presence of hydrogen. The total amount of hydrogen mixed with the feed is such that the hydrogen / feed ratio is included
55 entre 70 et 1000 Nm3 d'hydrogène/m3 de charge et de manière préférée compris entre 150 et 750 Nm3 d'hydrogène/m3 de charge. Dans l'étape a) du procédé selon l'invention, le catalyseur en lit fixe est avantageusement un catalyseur d'hydrotraitement comprenant une fonction hydro-déshydrogénante comprenant au moins un métal du groupe VIII et/ou du groupe VI B, pris seul ou en mélange et un support choisi dans le groupe formé par l'alumine, la silice, les silices-alumines, la magnésie, les argiles et les mélanges d'au moins deux de ces minéraux. Ce support peut également avantageusement renfermer d'autres composés et par exemple des oxydes choisis dans le groupe formé par l'oxyde de bore, la zircone, l'oxyde de titane, l'anhydride phosphorique. Le support préférée est un support d'alumine et de manière très préférée d'alumine η, δ ou γ. Between 70 and 1000 Nm3 of hydrogen / m 3 of filler and preferably between 150 and 750 Nm3 of hydrogen / m 3 of filler. In step a) of the process according to the invention, the fixed-bed catalyst is advantageously a hydrotreatment catalyst comprising a hydro-dehydrogenating function comprising at least one metal of group VIII and / or group VI B, taken alone or in a mixture and a support selected from the group consisting of alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals. This support may also advantageously contain other compounds and for example oxides selected from the group formed by boron oxide, zirconia, titanium oxide, phosphoric anhydride. The preferred support is an alumina support and very preferably alumina η, δ or γ.
Ledit catalyseur est avantageusement un catalyseur comprenant des métaux du groupe VIII de préférence choisis parmi le nickel et le cobalt, pris seul ou en mélange, de préférence en * association avec au moins un métal du groupe VIB de préférence choisi parmi le molybdène et le tungstène, pris seul ou en mélange. Said catalyst is preferably a catalyst comprising metals of the VIII preferably group selected from nickel and cobalt, used alone or in admixture, preferably in * combination with at least one group VIB metal, preferably selected from molybdenum and tungsten , taken alone or in a mixture.
La teneur en oxydes de métaux des groupes VIII et de préférence en oxyde de nickel est avantageusement comprise entre 0,5 et 10 % en poids d'oxyde de nickel (NiO) et de préférence entre 1 et 5 % en poids d'oxyde de nickel et la teneur en oxydes de métaux des groupes VIB et de préférence en trioxyde de molybdène est avantageusement comprise entre 1 et 30 % en poids d'oxyde de molybdène (Mo03), de préférence de 5 à 25 % en poids, les pourcentages étant exprimés en % poids par rapport à la masse totale du catalyseur. The content of metal oxides of groups VIII and preferably of nickel oxide is advantageously between 0.5 and 10% by weight of nickel oxide (NiO) and preferably between 1 and 5% by weight of oxide of nickel. and the content of metal oxides of groups VIB and preferably of molybdenum trioxide is advantageously between 1 and 30% by weight of molybdenum oxide (MoO 3 ), preferably from 5 to 25% by weight, the percentages being expressed in% by weight relative to the total mass of the catalyst.
La teneur totale en oxydes de métaux des groupes VIB et VIII dans le catalyseur utilisé dans l'étape a) est avantageusement comprise entre 5 et 40 % en poids et de manière préférée comprise entre 6 et 30 % en poids par rapport à la masse totale du catalyseur. The total content of metal oxides of groups VIB and VIII in the catalyst used in step a) is advantageously between 5 and 40% by weight and preferably between 6 and 30% by weight relative to the total mass. catalyst.
Le rapport pondéral exprimé en oxyde métallique entre métal (ou métaux) du groupe VIB sur métal (ou métaux) du groupe VIII est avantageusement compris entre 20 et 1 et de manière préférée entre 10 et 2. The weight ratio expressed as metal oxide between metal (or metals) of group VIB on metal (or metals) of group VIII is advantageously between 20 and 1 and preferably between 10 and 2.
Ledit catalyseur utilisé dans l'étape a) du procédé selon l'invention doit être avantageusement caractérisé par un fort pouvoir hydrogénant de façon à orienter le plus possible la sélectivité de la réaction vers une hydrogénation conservant le nombre d'atomes de carbone des chaînes grasses c'est à dire la voie hydrodéoxygénation, ceci afin de maximiser le rendement en hydrocarbures entrant dans le domaine de distillation des kérosènes et/ou des gazoles. C'est pourquoi de manière préférée, on opère à une température relativement basse. Maximiser la fonction hydrogénante permet également de limiter les réactions de polymérisation et/ou de condensation conduisant à la formation de coke qui dégraderait la stabilité des performances catalytiques. De façon préférée on utilise un catalyseur de type Ni ou NiMo. Said catalyst used in step a) of the process according to the invention must advantageously be characterized by a high hydrogenating power so as to orient as much as possible the selectivity of the reaction towards a hydrogenation preserving the number of carbon atoms of the fatty chains. ie the hydrodeoxygenation route, this in order to maximize the yield of hydrocarbons entering the distillation field of kerosenes and / or gas oils. This is why, preferably, one operates at a relatively low temperature. Maximizing the hydrogenating function also makes it possible to limit the polymerization and / or condensation reactions leading to the formation of coke which would degrade the stability of the catalytic performances. Preferably, a Ni or NiMo type catalyst is used.
Ledit catalyseur utilisé dans l'étape a) d'hydrotraitement du procédé selon l'invention peut également avantageusement contenir un élément dopant choisi parmi le phosphore et le bore, pris seuls ou en mélange. Ledit élément dopant peut être introduit dans la matrice ou de préférence être déposé sur le support. On peut également déposer du silicium sur le support, seul ou avec le phosphore et/ou le bore et/ou le fluor. Said catalyst used in step a) of hydrotreating of the process according to the invention may also advantageously contain a doping element chosen from phosphorus and boron, taken alone or as a mixture. Said doping element may be introduced into the matrix or preferably deposited on the support. It is also possible to deposit silicon on the support, alone or with phosphorus and / or boron and / or fluorine.
La teneur en poids d'oxyde dudit élément dopant est avantageusement inférieure à 20 % et de manière préférée inférieure à 10 % et elle est avantageusement d'au moins 0.001 %.  The oxide weight content of said doping element is advantageously less than 20% and preferably less than 10% and is advantageously at least 0.001%.
Les métaux des catalyseurs utilisés dans l'étape a) d'hydrotraitement du procédé selon l'invention sont des métaux sulfurés ou des phases métalliques et de préférence des métaux sulfurés. On ne sortirait pas du cadre de la présente invention en utilisant dans l'étape a) du procédé selon l'invention, de manière simultanée ou de manière successive, un seul catalyseur ou plusieurs catalyseurs différents. Cette étape peut être effectuée industriellement dans un ou plusieurs réacteurs avec un ou plusieurs lits catalytiques et de préférence à courant descendant de liquide. The metals of the catalysts used in step a) of hydrotreatment of the process according to the invention are sulphide metals or metal phases and preferably sulphurized metals. It would not be departing from the scope of the present invention by using in step a) of the process according to the invention, simultaneously or successively, a single catalyst or several different catalysts. This step can be carried out industrially in one or more reactors with one or more catalytic beds and preferably downflow of liquid.
Conformément à l'étape b) du procédé selon l'invention, l'effluent hydrotraité issu de l'étape a) est soumis au moins en partie, et de préférence en totalité, à une ou plusieurs séparations. Le but de cette étape est de séparer les gaz du liquide, et notamment, de récupérer les gaz riches en hydrogène pouvant contenir également des gaz tels que CO et C02 et au moins une base hydrocarbonée liquide à teneur en soufre inférieure à 10 ppm poids. La séparation est effectuée selon toutes méthodes de séparation connue de l'homme du métier. L'étape de séparation peut avantageusement être mise en œuvre par toute méthode connue de l'homme du métier telle que par exemple la combinaison de un ou plusieurs séparateurs haute et/ou basse pression, et/ou d'étapes de distillation et/ou de strippage haute et/ou basse pression. L'eau éventuellement formée lors de l'étape a) d'hydrotraitement du procédé selon l'invention peut également être avantageusement séparée au moins en partie de la base hydrocarbonée liquide. L'étape b) de séparation peut donc avantageusement être suivie d'une étape optionnelle d'élimination d'au moins une partie de l'eau et de préférence la totalité de l'eau. According to step b) of the process according to the invention, the hydrotreated effluent from step a) is subjected at least in part, and preferably entirely, to one or more separations. The purpose of this step is to separate the gases from the liquid, and in particular to recover the hydrogen-rich gases that may also contain gases such as CO and CO 2 and at least one liquid hydrocarbon base with a sulfur content of less than 10 ppm by weight. . The separation is carried out according to all methods of separation known to those skilled in the art. The separation step may advantageously be carried out by any method known to those skilled in the art such as, for example, the combination of one or more high and / or low pressure separators, and / or distillation and / or distillation stages. high and / or low pressure stripping. The water that may be formed during step a) of hydrotreatment of the process according to the invention may also be advantageously separated at least in part from the liquid hydrocarbon base. The separation step b) may therefore advantageously be followed by an optional step of removing at least a portion of the water and preferably all of the water.
L'étape optionnelle d'enlèvement d'eau a pour but d'éliminer au moins en partie l'eau produite lors des réactions d'hydrotraitement. On entend par élimination de l'eau, l'élimination de l'eau produite par les réactions d'hydrodeoxygénation (HDO). L'élimination plus ou moins complète de l'eau peut être fonction de la tolérance à l'eau du catalyseur d'hydroisomérisation utilisé dans l'étape c) ultérieure du procédé selon l'invention. L'élimination de l'eau peut être réalisée par toutes les méthodes et techniques connues de l'homme du métier, par exemple par séchage, passage sur un dessicant, flash, décantation.... Conformément à l'étape c) du procédé selon l'invention, une partie au moins et de préférence la totalité de la base hydrocarbonée liquide obtenue à l'issu de l'étape b) du procédé selon l'invention est hydroisomérisée en présence d'un catalyseur d'hydroisomérisation en lit fixe, ledit catalyseur comprenant au moins un métal hydro- déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII de la classification périodique, pris seul ou en mélange et un support comprenant au moins une zéolithe Y désaluminée présentant un rapport atomique global initial de silicium sur aluminium compris entre 2,5 et 20, une fraction pondérale d'atome d'aluminium extra réseau initiale supérieure à 10%, par rapport à la masse totale de l'aluminium présent dans la zéolithe, un volume mésoporeux initial mesuré par porosimétrie à l'azote supérieur à 0,07 ml.g:1, et un paramètre cristallin initial a0 de la maille élémentaire compris entre 24,38 A et 24,30 Â, ladite zéolithe étant modifiée selon un procédé particulier. The purpose of the optional water removal step is to remove at least a portion of the water produced during the hydrotreatment reactions. The elimination of water is the elimination of the water produced by the hydrodeoxygenation (HDO) reactions. The more or less complete elimination of water may be a function of the water tolerance of the hydroisomerization catalyst used in the subsequent step c) of the process according to the invention. The elimination of water can be carried out by all the methods and techniques known to those skilled in the art, for example by drying, passing on a desiccant, flash, decantation .... In accordance with step c) of the process according to the invention, at least part and preferably all of the liquid hydrocarbon base obtained at the end of step b) of the process according to the invention is hydroisomerized in the presence of a fixed bed hydroisomerization catalyst said catalyst comprising at least one hydrodehydrogenating metal selected from the group consisting of Group VIB metals and Group VIII of the Periodic Table, taken singly or in admixture and a carrier comprising at least one dealuminated Y zeolite having an atomic ratio initial total of silicon on aluminum between 2.5 and 20, a weight fraction of extra-initial network aluminum atom greater than 10%, relative to the total mass of aluminum present in the zeolite, an initial mesoporous volume measured by nitrogen porosimetry greater than 0.07 ml.g : 1 , and an initial crystal parameter at 0 of the unit cell between 24.38 A and 24.30A, said zeolite being modified according to a particular method.
La phase hvdroqénante The hydrogen phase
Conformément à l'invention, le catalyseur mis en oeuvre dans l'étape c) d'hydroisomérisation du procédé selon l'invention comprend au moins un métal hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIII et les métaux du groupe VIB, pris seuls ou en mélange.  According to the invention, the catalyst used in the hydroisomerization step c) of the process according to the invention comprises at least one hydro-dehydrogenating metal chosen from the group formed by the metals of group VIII and the metals of the group VIB, taken alone or as a mixture.
De préférence, les éléments du groupe VIII sont choisis parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium, l'osmium, l'iridium ou le platine, pris seuls ou en mélange. Dans le cas où les éléments du groupe VIII sont choisis parmi les métaux nobles du groupe VIII, les éléments du groupe VIII sont avantageusement choisis parmi le platine et le palladium, pris seuls ou en mélange. Dans le cas où les éléments du groupe VIII sont choisis parmi les métaux non nobles du groupe VIII, les éléments du groupe VIII sont avantageusement choisis parmi le fer, le cobalt et le nickel, pris seuls ou en mélange. Preferably, the group VIII elements are chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium or platinum, taken alone or as a mixture. In the case where the elements of group VIII are chosen from the noble metals of group VIII, the elements of group VIII are advantageously chosen from platinum and palladium, taken alone or as a mixture. In the case where the elements of group VIII are selected from non-noble metals of group VIII, the elements of group VIII are advantageously chosen from iron, cobalt and nickel, taken alone or as a mixture.
De préférence, les éléments du groupe VIB du catalyseur selon la présente invention sont choisis parmi le tungstène et le molybdène, pris seuls ou en mélange. Preferably, the group VIB elements of the catalyst according to the present invention are selected from tungsten and molybdenum, alone or as a mixture.
Dans le cas où la fonction hydrogénante comprend un élément du groupe VIII et un élément du groupe VIB, les associations de métaux suivants sont préférées : nickel-molybdène, cobalt-molybdène, nickel-tungstène, cobalt-tungstène, et de manière très préférée : nickel- molybdène, cobalt-molybdène, nickel-tungstène. Il est également possible d'utiliser des associations de trois métaux tel que par exemple nickel-cobalt-molybdène. In the case where the hydrogenating function comprises a group VIII element and a group VIB element, the following metal combinations are preferred: nickel-molybdenum, cobalt-molybdenum, nickel-tungsten, cobalt-tungsten, and very preferably: nickel-molybdenum, cobalt-molybdenum, nickel-tungsten. It is also possible to use combinations of three metals such as for example nickel-cobalt-molybdenum.
Lorsqu'une combinaison de métaux du groupe VIB et du groupe VIII est utilisée, le catalyseur est alors de préférence utilisé sous une forme sulfurée. Dans le cas où le catalyseur comprend au moins un métal du groupe VIB en combinaison avec au moins un métal non noble du groupe VIII, la teneur en métal du groupe VIB est avantageusement comprise, en équivalent oxyde, entre 5 et 40 % en poids par rapport à la masse totale dudit catalyseur, de manière préférée entre 10 et 35 % en poids et de manière très préférée entre 15 et 30 % en poids et la teneur en métal non noble du groupe VIII est avantageusement comprise, en équivalent oxyde, entre 0,5 et 10 % en poids par rapport à la masse totale dudit catalyseur, de manière préférée entre 1 et 8 % en poids et de manière très préférée entre 1 ,5 et 6 % en poids. When a combination of Group VIB and Group VIII metals is used, then the catalyst is preferably used in a sulfurous form. In the case where the catalyst comprises at least one Group VIB metal in combination with at least one Group VIII non-noble metal, the Group VIB metal content is advantageously comprised, in oxide equivalent, of between 5 and 40% by weight per relative to the total mass of said catalyst, preferably between 10 and 35% by weight and very preferably between 15 and 30% by weight and the non-noble metal content of group VIII is advantageously comprised, in oxide equivalent, between 0 , 5 and 10% by weight relative to the total mass of said catalyst, preferably between 1 and 8% by weight and very preferably between 1, 5 and 6% by weight.
Dans le cas ou le catalyseur comprend au moins un métal du groupe VIB en combinaison avec au moins un métal non noble du groupe VIII, ledit catalyseur peut également avantageusement comprendre au moins un élément dopant choisi dans le groupe constitué par le silicium, le bore et le phosphore, pris seul ou en mélange, la teneur en élément dopant étant de préférence comprise entre 0 et 20% en poids d'oxyde de l'élément dopant, de manière préférée entre 0,1 et 15% en poids, de manière très préférée entre 0,1 et 10% en poids et de manière encore plus préférée entre 0,5 et 6% poids par rapport à la masse totale du catalyseur. Lorsque l'élément hydro-déshydrogénant est un métal noble du groupe VIII, le catalyseur renferme de préférence une teneur en métal noble comprise entre 0,01 et 10 % poids, de manière encore plus préférée de 0,02 à 5 % poids par rapport à la masse totale dudit catalyseur . Le métal noble est de préférence utilisé sous sa forme réduite et non sulfurée. In the case where the catalyst comprises at least one Group VIB metal in combination with at least one Group VIII non-noble metal, said catalyst may also advantageously comprise at least one doping element selected from the group consisting of silicon, boron and phosphorus, taken alone or as a mixture, the content of doping element being preferably between 0 and 20% by weight of oxide of the doping element, preferably between 0.1 and 15% by weight, very preferably preferred between 0.1 and 10% by weight and even more preferably between 0.5 and 6% by weight relative to the total mass of the catalyst. When the hydro-dehydrogenating element is a noble metal of group VIII, the catalyst preferably contains a noble metal content of between 0.01 and 10% by weight, even more preferably from 0.02 to 5% by weight relative to to the total mass of said catalyst. The noble metal is preferably used in its reduced and non-sulphurized form.
Il est avantageusement également possible d'employer un catalyseur à base de nickel réduit et non sulfuré. Dans ce cas la teneur en métal sous sa forme oxyde est avantageusement comprise entre 0,5 et 25 % en poids par rapport au catalyseur fini. De préférence, le catalyseur contient également, en plus du nickel réduit, un métal du groupe IB et de préférence le cuivre, ou un métal du groupe IVB et de préférence, l'étain dans des proportions telles que le rapport massique du métal du groupe IB ou IVB et du nickel sur le catalyseur soit avantageusement compris entre 0,03 et 1. It is also advantageously possible to employ a reduced, non-sulfurized nickel-based catalyst. In this case the metal content in its oxide form is advantageously between 0.5 and 25% by weight relative to the finished catalyst. Preferably, the catalyst also contains, in addition to the reduced nickel, a group IB metal and preferably copper, or a group IVB metal and preferably tin in proportions such that the mass ratio of the group metal IB or IVB and nickel on the catalyst is advantageously between 0.03 and 1.
Ledit catalyseur d'hydroisomérisation utilisé dans l'étape c) du procédé selon l'invention comporte un support comprenant au moins une zéolithe modifiée et avantageusement une matrice minérale poreuse de type oxyde, ledit support comprenant et de préférence étant constitué de, de préférence : Said hydroisomerization catalyst used in stage c) of the process according to the invention comprises a support comprising at least one modified zeolite and advantageously a porous oxide matrix of oxide type, said support comprising and preferably consisting of, preferably:
- 0,1 à 99,8% en poids, de préférence de 0,1 à 80% en poids, de manière encore plus préférée de 0,1 à 70% en poids, et de manière très préférée 0,1 à 50% en poids de zéolithe modifiée selon l'invention par rapport à la masse totale du catalyseur, 0.1 to 99.8% by weight, preferably 0.1 to 80% by weight, even more preferably 0.1 to 70% by weight, and very preferably 0.1 to 50% by weight; by weight of zeolite modified according to the invention with respect to the total mass of the catalyst,
- 0,2 à 99,9% en poids, de préférence de 20 à 99,9% de manière préférée de 30 à 99,9% en poids, et de manière très préférée de 50 à 99,9% en poids par rapport à la masse totale du catalyseur, d'au moins une matrice minérale poreuse de type oxyde. La zéolithe selon l'invention From 0.2 to 99.9% by weight, preferably from 20 to 99.9%, preferably from 30 to 99.9% by weight, and very preferably from 50 to 99.9% by weight relative to to the total mass of the catalyst, at least one oxide-type porous mineral matrix. Zeolite according to the invention
Conformément à l'invention, la zéolithe initialement utilisée convenant pour la mise en oeuvre du support du catalyseur mis en oeuvre dans l'étape c) d'hydroisomérisation du procédé selon l'invention est la zéolithe Y désaluminée (USY) de type structurale FAU. Conformément à l'invention, la zéolithe initiale Y désaluminée convenant pour la mise en oeuvre du support du catalyseur utilisé dans l'étape c) d'hydroisomérisation du procédé selon l'invention, présente avant d'être modifiée, un rapport atomique global initial de silicium sur aluminium compris entre 2,5 et 20,0, de préférence entre 2,6 et 12,0 et de manière préférée entre 2,7 et 10,0, une fraction pondérale d'atome d'aluminium extra réseau initiale supérieure à 10%, de préférence supérieure à 20% et de manière préférée supérieure à 30% poids par rapport à la masse totale de l'aluminium présent dans la zeolithe, un volume mésoporeux initial mesuré par porosimétrie à l'azote supérieur à 0,07 ml.g"1, de préférence supérieur à 0,10 ml.g"1, et de manière préférée supérieur à 0,13 ml.g"1 et un paramètre cristallin initial a0 de la maille élémentaire compris entre 24,38 À et 24,30 Â. i De préférence, la zéolithe initiale Y désaluminée convenant pour la mise en oeuvre du support du catalyseur utilisé dans l'étape c) d'hydroisomérisation du procédé selon l'invention, présente avant d'être modifiée, un volume microporeux initial mesuré par porosimétrie à l'azote supérieur à 0,20 ml.g'1, et de préférence supérieur à 0,25 ml.g"1. According to the invention, the zeolite initially used which is suitable for carrying out the support of the catalyst used in the hydroisomerization step c) of the process according to the invention is the dealuminated Y zeolite (USY) of structural type FAU . According to the invention, the dealuminated initial zeolite Y, which is suitable for carrying out the support of the catalyst used in the hydroisomerization step c) of the process according to the invention, has, before being modified, an initial overall atomic ratio. of silicon on aluminum of between 2.5 and 20.0, preferably between 2.6 and 12.0, and preferably between 2.7 and 10.0, a weight fraction of extra high initial network aluminum atom at 10%, preferably greater than 20% and preferably greater than 30% by weight relative to the total weight of the aluminum present in the zeolite, an initial mesoporous volume measured by nitrogen porosimetry greater than 0.07 ml · g -1 , preferably greater than 0.10 ml · g -1 , and more preferably greater than 0.13 ml g " 1 and an initial crystal parameter at 0 of the elemental mesh of between 24.38 Å and 24.30 Å, preferably the dealuminated initial zeolite Y which is suitable for carrying out the support of the catalyst used in step c) hydroisomerization of the process according to the invention, before being modified, an initial microporous volume measured by nitrogen porosimetry greater than 0.20 ml.g -1 , and preferably greater than 0.25 ml.g. "1 .
) Selon l'invention, ladite zéolithe initiale Y désaluminée présentant un rapport atomique global initial de silicium sur Si/AI compris entre 2,5 et 20,0, de préférence entre 2,6 et 12,0 et de manière préférée entre 2,7 et 10,0, ledit rapport atomique global Si/AI étant mesuré par Fluorescence X (FX) et présentant une fraction pondérale d'atome d'aluminium extra réseau initiale mesurée par RMN de l'aluminium est supérieure à 10%, de préférence i supérieure à 20% et de manière préférée supérieure à 30% poids par rapport à la masse totale de l'aluminium présent dans la zéolithe est obtenue par désalumination d'une zéolithe Y de type structural FAU par toutes les méthodes de désalulmination connues de l'homme du métier. According to the invention, said dealuminated initial zeolite Y having an initial total silicon / Si / Al atomic atomic ratio of between 2.5 and 20.0, preferably between 2.6 and 12.0, and preferably between 2, 7 and 10.0, said overall Si / Al atomic ratio being measured by X-ray fluorescence (FX) and exhibiting an aluminum network NMR fraction by weight of greater than 10%, preferably greater than 20% and preferably greater than 30% by weight relative to the total weight of the aluminum present in the zeolite is obtained by dealumination of a zeolite Y of FAU structural type by all the known de-lulmination methods of the skilled person.
) Préparation de la zéolithe initiale Y désaluminée. Preparation of the initial zeolite Y dealuminated.
La zéolithe Y de type structural FAU se présentant avantageusement sous forme NaY après synthèse, peut avantageusement subir un ou plusieurs échanges ioniques avant de subir l'étape de désalumination. The FAU structural zeolite Y, which is advantageously in the NaY form after synthesis, may advantageously undergo one or more ionic exchanges before undergoing the dealumination step.
> Le traitement de désalumination de la zéolithe Y de type structural FAU présentant généralement un rapport atomique global Si/AI après synthèse compris entre 2,3 et 2,8 peut avantageusement être réalisé par toutes les méthodes connues de l'homme du métier. De manière préférée, la désalumination est réalisé par un traitement thermique en présence de vapeur d'eau (ou steaming selon la terminologie anglo-saxonne) et/ou par une ou plusieurs The dealumination treatment of the FAU structural zeolite Y generally having an overall Si / Al atomic ratio after synthesis of between 2.3 and 2.8 can advantageously be carried out by all the methods known to those skilled in the art. Preferably, the dealumination is carried out by a heat treatment in the presence of water vapor (or steaming according to the English terminology) and / or by one or more
) attaques acides avantageusement réalisées par traitement avec une solution aqueuse d'acide minéral ou organique. ) Acid attacks advantageously carried out by treatment with an aqueous solution of mineral or organic acid.
De préférence, la désalumination est réalisée par un traitement thermique suivi d'une ou plusieurs attaques acides ou seulement par une ou plusieurs attaques acides.  Preferably, the dealumination is carried out by a heat treatment followed by one or more acid attacks or only by one or more acid attacks.
De préférence, le traitement thermique en présence de vapeur d'eau auquel est soumis la 5 zéolithe Y est réalisé à une température comprise entre 200 et 900°C, de préférence entre 300 et 900°C, de manière encore plus préférée entre 400 et 750°C. La durée dudit traitement thermique est avantageusement supérieure ou égale à 0,5h, de préférence comprise entre 0,5h et 24h, et de manière très préférée comprise entre 1 h et 12h. Le pourcentage volumique de vapeur d'eau durant le traitement thermique est avantageusement compris entre 5 et 100%, de préférence entre 20 et 100%, de manièrePreferably, the thermal treatment in the presence of water vapor to which zeolite Y is subjected is carried out at a temperature of between 200 and 900 ° C, preferably between 300 and 900 ° C, even more preferably between 400 and 750 ° C. The duration of the said Heat treatment is advantageously greater than or equal to 0.5h, preferably between 0.5h and 24h, and very preferably between 1h and 12h. The volume percentage of water vapor during the heat treatment is advantageously between 5 and 100%, preferably between 20 and 100%, so
5 entre 40% et 100%. La fraction volumique autre que la vapeur d'eau éventuellement présente est formée d'air. Le débit de gaz formé de vapeur d'eau et éventuellement d'air est avantageusement compris entre 0,2 L/h/g et 10 L/h/g de la zéolithe Y. 5 between 40% and 100%. The volume fraction other than the water vapor that may be present is formed of air. The gas flow rate formed by water vapor and optionally air is advantageously between 0.2 L / h / g and 10 L / h / g of zeolite Y.
Le traitement thermique permet d'extraire les atomes d'aluminium de la charpente de la zéolithe Y tout en maintenant le rapport atomique global Si/AI de la zéolithe traitée The heat treatment makes it possible to extract the aluminum atoms from the framework of zeolite Y while maintaining the overall atomic ratio Si / Al of the treated zeolite
0 inchangé. 0 unchanged.
Le traitement thermique en présence de vapeur d'eau est avantageusement répété autant de fois qu'il est nécessaire pour obtenir la zéolithe Y initiale désaluminée convenant pour la mise en œuvre du support du catalyseur utilisé dans l'étape c) d'hydroisomérisation du procédé selon l'invention possédant les caractéristiques désirées et en particulier une S fraction pondérale d'atome d'aluminium extra réseau représentant plus de 10% poids par rapport à la masse totale d'aluminium présents dans ladite zéolithe. Le nombre de traitement thermique est avantageusement inférieur à 4 et de préférence, on réalise un seul traitement thermique à l'issu duquel la fraction pondérale d'atome d'aluminium extra réseau initiale est mesurée par RMN de l'aluminium.  The heat treatment in the presence of water vapor is advantageously repeated as many times as is necessary to obtain the dealuminized initial zeolite Y suitable for the implementation of the catalyst support used in step c) hydroisomerization of the process according to the invention having the desired characteristics and in particular a weight fraction S extra-network aluminum atom representing more than 10% by weight relative to the total weight of aluminum present in said zeolite. The number of heat treatment is advantageously less than 4 and preferably, a single heat treatment is performed at the end of which the weight fraction of extra-initial network aluminum atom is measured by NMR of aluminum.
0  0
Afin de réaliser une désalumination de ladite zéolithe Y et d'ajuster le rapport atomique global Si/AI de la zéolithe Y désaluminée à une valeur comprise entre 2,5 et 20 selon l'invention, il est nécessaire de bien choisir et contrôler les conditions opératoires de chaque étape d'attaque acide. En particulier, la température à laquelle le traitement par la solution In order to carry out a dealumination of said zeolite Y and to adjust the overall Si / Al atomic ratio of the dealuminated zeolite Y to a value of between 2.5 and 20 according to the invention, it is necessary to choose and control the conditions operations of each acid etching step. In particular, the temperature at which treatment with the solution
'.5 aqueuse d"acide minéral ou organique est réalisé, la nature et la concentration de l'acide utilisé, le rapport entre la quantité de solution acide et le poids de zéolithe traitée, la durée du traitement d'attaque acide et le nombre de traitement réalisés sont des paramètres significatifs pour la mise en oeuvre de chaque étape d'attaque acide. The nature and concentration of the acid used, the ratio of the amount of acid solution to the weight of zeolite treated, the duration of the acid attack treatment and the number of of treatment performed are significant parameters for the implementation of each acid attack step.
L'acide choisi pour la mise en oeuvre de ladite étape d'attaque acide est avantageusement The acid chosen for the implementation of said acid attack step is advantageously
S0 soit un acide minéral soit un acide organique, de préférence l'acide est un acide minéral choisi parmi l'acide nitrique HN03, l'acide chlorhydrique HCI et l'acide sulfurique H2S04. De manière très préférée, l'acide est l'acide nitrique. Lorsqu'un acide organique est utilisé pour l'attaque acide, l'acide acétique CH3C02H est préféré. S0 is a mineral acid or an organic acid, preferably the acid is a mineral acid selected from nitric acid HN0 3 , hydrochloric acid HCl and sulfuric acid H 2 SO 4 . Most preferably, the acid is nitric acid. When an organic acid is used for etching, acetic acid CH 3 CO 2 H is preferred.
De préférence, le traitement d'attaque acide de la zéolithe Y par une solution aqueuse d'un î5 acide minéral ou d'un acide organique est réalisé à une température comprise entre 30°C et 120°C, de préférence entre 50°C et 120°C, et de manière préférée entre 60 et 100°C. La 00738 Preferably, the acid etching treatment of zeolite Y with an aqueous solution of a mineral acid or an organic acid is carried out at a temperature of between 30 ° C and 120 ° C, preferably between 50 ° C. and 120 ° C, and preferably between 60 and 100 ° C. The 00738
14  14
concentration de l'acide dans la solution aqueuse est avantageusement comprise entre 0,05 et 20 mol.L"1, de préférence entre 0,1 et 10 mol.L"1, et de manière plus préférée entre 0,5 et 5 mol.L"1. Le rapport entre le volume de solution acide V en ml et le poids de zéolithe Y traitée P en gramme est avantageusement compris entre 1 et 50, et de préférence entre 2 et 20. La durée de l'attaque acide est avantageusement supérieure à 1h, de préférence comprise entre 2h et 10h, et de manière préférée entre 2h et 8h. Le nombre de traitement d'attaque acide successif de la zéolithe Y par une solution aqueuse acide est avantageusement inférieur à 4. Dans le cas où plusieurs traitement d'attaques acides successives sont réalisées, des solutions aqueuses d'acide minéral ou organique de concentrations différentes en acide peuvent être utilisées. concentration of the acid in the aqueous solution is advantageously between 0.05 and 20 mol.L -1 , preferably between 0.1 and 10 mol.l -1 , and more preferably between 0.5 and 5 mol .L "1. the ratio between the volume V of acid solution in ml and the weight of zeolite Y treated P in grams is advantageously between 1 and 50 and preferably between 2 and 20. the duration of the acid attack is advantageously greater than 1h, preferably between 2h and 10h, and preferably between 2h and 8h.The number of successive acid etching treatment of the zeolite Y with an acidic aqueous solution is advantageously less than 4. In the case where several successive acid attack treatments are carried out, aqueous solutions of mineral or organic acid of different acid concentrations can be used.
Afin d'ajuster le rapport atomique global Si/AI de la zéolithe Y désaluminée à une valeur comprise entre 2,5 et 20, ledit rapport est mesuré par Fluorescence X à l'issue de chaque traitement d'attaque acide réalisé. Après avoir effectué le(s) traitement(s) d'attaque acide, la zéolithe est ensuite avantageusement lavée à l'eau distillée puis est séchée à une température comprise entre 80 et 140°C pendant une durée comprise entre 10 et 48h.  In order to adjust the overall Si / Al atomic ratio of the dealuminated Y zeolite to a value between 2.5 and 20, said ratio is measured by X-ray fluorescence after each acid etching treatment carried out. After carrying out the acid etching treatment (s), the zeolite is then advantageously washed with distilled water and is then dried at a temperature of between 80 and 140 ° C. for a period of between 10 and 48 hours.
Le traitement par attaque acide permet à la fois d'extraire les atomes d'Aluminium de la charpente et d'extraire les atomes d'Aluminium des pores du solide zéolithique. Ainsi, le rapport atomique global Si/AI de la zéolithe Y désaluminée obtenue augmente jusqu'à une valeur comprise entre 2,5 et 20, ladite zéolithe convenant pour la mise en oeuvre du support du catalyseur utilisé dans le procédé selon l'invention. De même, ladite zéolithe initiale Y désaluminée obtenue et convenant pour la mise en oeuvre du support du catalyseur utilisé dans l'étape c) d'hydroisomérisation du procédé selon l'invention, présente après désalumination un volume mésoporeux initial mesuré par porosimétrie à l'azote supérieur à 0,07 ml.g"1, de préférence supérieur à 0,10 ml.g'1, et de manière préférée supérieur à 0,13 ml.g"1, la création de mésoporosité résultant de l'extraction des atomes d'aluminium hors des pores du solide zéolithitique et un paramètre cristallin initial a0 de la maille élémentaire compris entre 24,38 A et 24,30 A. Acid etching treatment both extracts the aluminum atoms from the framework and extracts the aluminum atoms from the pores of the zeolitic solid. Thus, the overall atomic ratio Si / Al of the dealuminated Y zeolite obtained increases to a value of between 2.5 and 20, said zeolite being suitable for carrying out the catalyst support used in the process according to the invention. Similarly, said dealuminated initial zeolite Y obtained and suitable for carrying out the support of the catalyst used in the hydroisomerization step c) of the process according to the invention has, after dealumination, an initial mesoporous volume measured by porosimetry at nitrogen greater than 0.07 ml.g -1 , preferably greater than 0.10 ml g -1 , and more preferably greater than 0.13 ml g -1 , the creation of mesoporosity resulting from the extraction of aluminum atoms out of the pores of the zeolithitic solid and an initial crystal parameter at 0 of the elemental mesh between 24.38 A and 24.30 A.
Ladite zéolithe initiale Y désaluminée obtenue présente également avantageusement un volume microporeux initial mesuré par porosimétrie à l'azote supérieur à 0,20 ml.g'1, et de préférence supérieur à 0,25 ml.g'1. Les volumes microporeux et mésoporeux de la zéolithe Y désaluminée sont mesurés par adsorption / désorption d'azote et le paramètre de maille de la zéolithe est mesuré par diffraction des Rayons X (DRX). Procédé de modification de la zéolithe Y désaluminée initiale selon l'invention Said dealuminated initial zeolite Y also advantageously has an initial microporous volume measured by nitrogen porosimetry greater than 0.20 ml · g -1 , and preferably greater than 0.25 ml · g -1 . The microporous and mesoporous volumes of the dealuminated zeolite Y are measured by nitrogen adsorption / desorption and the zeolite mesh parameter is measured by X-ray diffraction (XRD). Process for modifying the initial dealuminated zeolite Y according to the invention
Conformément à l'invention, la zéolithe initiale Y désaluminée convenant pour la mise en oeuvre du support du catalyseur utilisé dans le procédé selon l'invention est modifiée par un procédé de modification spécifique comprenant a') une étape de traitement basique consistant en le mélange de ladite zéolithe Y désaluminée avec une solution aqueuse basique, ladite solution aqueuse basique étant une solution de composés basiques choisis parmi les bases alcalines et les bases fortes non alcalines, ladite étape a) étant réalisée à une température comprise entre 40 et 100°C et pendant une durée comprise entre 5 minutes et 5h et au moins une étape c) de traitement thermique réalisée à une température comprise entre 200 et 700°C.  According to the invention, the dealuminated initial zeolite Y which is suitable for carrying out the catalyst support used in the process according to the invention is modified by a specific modification process comprising a) a basic treatment step consisting in mixing said dealuminated Y zeolite with a basic aqueous solution, said basic aqueous solution being a solution of basic compounds chosen from alkaline bases and non-alkaline strong bases, said step a) being carried out at a temperature of between 40 and 100 ° C. and for a period of between 5 minutes and 5 hours and at least one c) heat treatment step performed at a temperature between 200 and 700 ° C.
L'étape a') de traitement basique permet de retirer des atomes de silicium de la structure et d'insérer des atomes d'aluminium extra-réseau dans la charpente. Stage a ') of basic treatment makes it possible to remove silicon atoms from the structure and to insert extra-lattice aluminum atoms into the framework.
Selon l'invention, le procédé de modification de ladite zéolithe initiale Y désaluminée comporte une étape a') de traitement basique consistant en le mélange de ladite zéolithe désaluminée USY avec une solution aqueuse basique, ladite solution aqueuse basique étant une solution de composés basiques choisis parmi les bases alcalines et les bases fortes non alcalines, ladite étape a) étant réalisée à une température comprise entre 40 et 100°C et pendant une durée comprise entre 5 minutes et 5h. According to the invention, the process for modifying said dealuminated initial zeolite Y comprises a basic treatment step a ') consisting of mixing said dealuminated zeolite USY with a basic aqueous solution, said basic aqueous solution being a solution of selected basic compounds among the alkaline bases and the non-alkaline strong bases, said step a) being carried out at a temperature between 40 and 100 ° C and for a period of between 5 minutes and 5 hours.
Les composés basiques choisis parmi les bases alcalines sont de préférence choisis parmi les carbonates alcalins et les hydroxydes alcalins, les cations alcalins des carbonates alcalins et des hydroxydes alcalins appartenant avantageusement aux groupes IA ou HA de la classification périodique et les bases fortes non alcalines sont de préférence choisies parmi les ammoniums quaternaires pris seuls ou en mélange et de manière préférée, la base forte non alcaline est Phydroxyde de tétraméthylammonium.  The basic compounds chosen from alkaline bases are preferably chosen from alkali carbonates and alkali hydroxides, alkaline cations from alkali carbonates and alkali hydroxides advantageously belonging to groups IA or HA of the periodic table and the non-alkaline strong bases are from preferably chosen from quaternary ammoniums, taken alone or as a mixture and, preferably, the non-alkaline strong base is tetramethylammonium hydroxide.
Lesdits cations alcalins des carbonates alcalins et des hydroxydes alcalins appartenant avantageusement aux groupes IA ou HA de la classification périodique sont de préférence choisis parmi les cations Na+, Li+, K+, Rb+, Cs+, Ba2+ et Ca2+ et de manière très préférée, ledit cation est le cation Na+ ou K+. Said alkaline cations of the alkali carbonates and alkali hydroxides advantageously belonging to the groups IA or HA of the periodic table are preferably chosen from Na + , Li + , K + , Rb + , Cs + , Ba 2+ and Ca 2+ cations. and very preferably, said cation is the Na + or K + cation.
De préférence, la solution aqueuse est une solution de carbonate de sodium ou d'hydroxyde de sodium et de manière préférée, la solution aqueuse est une solution d'hydroxyde de sodium. Ladite solution aqueuse basique de concentration comprise entre 0,001 mol/L et 12 mol/L, de manière préférée de concentration entre 0,005 mol/L et 11 mol/L et de manière encore plus préférées de concentration entre 0,01 mol/L et 9 mol/L. Preferably, the aqueous solution is a solution of sodium carbonate or sodium hydroxide and more preferably the aqueous solution is a solution of sodium hydroxide. Said basic aqueous solution of concentration of between 0.001 mol / L and 12 mol / L, preferably of concentration between 0.005 mol / L and 11 mol / L and even more preferably of concentration between 0.01 mol / L and 9 mol / L mol / L.
Selon l'invention, l'étape a') de traitement basique du procédé de modification de ladite 5 zéolithe initiale USY désaluminée est réalisée dans des conditions de températures comprises entre 40 et 100°C (reflux) et de manière préférée entre 40 et 90°C et pendant une durée comprise entre 5 min et 5h, de manière préférée entre 15 min et 4 h et de manière encore plus préférée entre 15 min et 3 h.  According to the invention, step a ') of basic treatment of the process for modifying said dealuminated initial USY zeolite is carried out under conditions of temperatures between 40 and 100 ° C. (reflux) and preferably between 40 and 90 ° C. ° C and for a period of between 5 min and 5h, preferably between 15 min and 4 h and even more preferably between 15 min and 3 h.
D Une fois le traitement basique de ladite zéolithe terminée, la solution est refroidie rapidement à température ambiante puis ladite zéolithe est séparée du liquide par toutes les techniques connues de l'homme du métier. La séparation peut-être réalisée par filtration ou par centrifugation, et de manière préférée par centrifugation. La zéolithe USY modifiée obtenue est ensuite lavée à l'eau distillée à une température comprise entre 20 et 100°C et deOnce the basic treatment of said zeolite is complete, the solution is rapidly cooled to room temperature and then said zeolite is separated from the liquid by all the techniques known to those skilled in the art. The separation can be carried out by filtration or by centrifugation, and preferably by centrifugation. The modified modified USY zeolite is then washed with distilled water at a temperature of between 20 and 100.degree.
5 préférence à une température comprise entre 40 et 80°C et de manière très préférée à 50°C et séchée à une température comprise entre 80 et 150°C et de préférence entre 100 et 130°C et de manière très préférée à 120°C. Preferably at a temperature between 40 and 80 ° C and very preferably at 50 ° C and dried at a temperature between 80 and 150 ° C and preferably between 100 and 130 ° C and very preferably at 120 ° C vs.
Dans le cas ou l'étape a') de traitement basique consiste en le mélange de ladite zéolithe 0 initiale Y désaluminée avec une solution aqueuse basique de composés choisis parmi les bases alcalines, la zéolithe contenue dans le support du catalyseur utilisé dans le procédé selon l'invention contient, à l'issue de l'étape a) du procédé de modification une fraction partielle ou totale d'ions alcalins en position cationique. In the case where the basic treatment step a ') consists of mixing said dealuminated initial zeolite Y with a basic aqueous solution of compounds selected from alkaline bases, the zeolite contained in the catalyst support used in the process according to the invention contains, at the end of step a) of the modification process, a partial or total fraction of alkaline ions in the cationic position.
:5 Dans le cas ou l'étape a)' de traitement basique consiste en le mélange de ladite zéolithe initiale Y désaluminée avec une solution aqueuse basique de composés choisis parmi les bases non alcalines, la zéolithe contenue dans le support du catalyseur utilisé dans le procédé selon l'invention contient, à l'issue de l'étape a') du procédé de modification une fraction partielle ou totale d'ions ammonium quaternaires en position cationique. In the case where the basic treatment step a) consists in mixing said dealuminated initial zeolite Y with a basic aqueous solution of compounds selected from non-alkaline bases, the zeolite contained in the catalyst support used in the method according to the invention contains, at the end of step a ') of the modification process, a partial or total fraction of quaternary ammonium ions in the cationic position.
S0  S0
Lors de l'étape a') de traitement basique du procédé de modification de la zéolithe Y initiale désaluminée selon l'invention, une partie des atomes de silicium contenu dans la charpente de ladite zéolithe sont extraits, le phénomène est appelé désilication, créant des vides dans la structure et la formation d'une mésoporosité et/ou permettant la réinsertion d'au moins J5 une partie de la fraction des atomes d'aluminium extra-réseau présents dans ladite zéolithe Y initiale désaluminée, en lieu et place des atomes de silicium extraits par désilication et permettant ainsi la formation de nouveau sites acides de Bronsted. Ce deuxième phénomène est appelé ré-alumination. During step a ') of basic treatment of the process of modification of the dealuminated initial zeolite Y according to the invention, a part of the silicon atoms contained in the framework of said zeolite are extracted, the phenomenon is called desilication, creating in the structure and the formation of a mesoporosity and / or allowing the reinsertion of at least part of the fraction of extra-lattice aluminum atoms present in said dealuminated initial zeolite Y, in place of the atoms of silicon extracted by desilication and thus allowing the formation of new Bronsted acid sites. This second phenomenon is called re-alumination.
Dans le cas ou l'étape a') de traitement basique consiste en le mélange de ladite zéolithe initiale désaluminée USY avec une solution aqueuse basique de composés basiques choisis parmi les bases alcalines et de préférence choisis parmi les carbonates alcalins et les hydroxydes alcalins et de manière très préférée avec une solution d'hydroxyde de sodium (NaOH), le procédé de modification de ladite zéolithe initiale USY désaluminée comporte avantageusement une étape b') d'au moins un échange partiel ou total desdits cations alcalins appartenant aux groupes IA et IIA de la classification périodique introduits lors de l'étape a') et présents en position cationique, par des cations NH4 + et de préférence des cations Na+ par des cations NH4 +. In the case where the basic treatment step a ') consists in mixing said USY dealuminated initial zeolite with a basic aqueous solution of basic compounds chosen from alkaline bases and preferably chosen from alkaline carbonates and alkali hydroxides and from very preferably with a solution of sodium hydroxide (NaOH), the process for modifying said dealuminized initial USY zeolite advantageously comprises a step b ') of at least one partial or total exchange of said alkaline cations belonging to groups IA and IIA of the periodic table introduced during step a ') and present in the cationic position, by NH 4 + cations and preferably Na + cations by NH 4 + cations.
On entend par échange partiel ou total des cations alcalins par des cations NH +, l'échange de 80 à 100%, de manière préférée de 85 à 99,5% et de manière plus préférée de 88 et 99%, desdits cations alcalins par des cations NH4 +. La quantité de cations alcalins restante et de préférence, la quantité de cations Na+ restante dans la zéolithe modifiée, par rapport à la quantité de cations NH4 + initialement présente dans la zéolithe, à l'issue de l'étape b') est avantageusement comprise entre 0 et 20%, de préférence entre 0,5 et 15% de manière préférée, entre 1 et 12%. Partial or total exchange of the alkaline cations by NH + cations is understood to mean the exchange of 80 to 100%, preferably 85 to 99.5% and more preferably 88 to 99%, of said alkaline cations by NH 4 + cations. The amount of alkaline cations remaining and preferably, the amount of Na + cations remaining in the modified zeolite, relative to the amount of NH 4 + cations initially present in the zeolite, at the end of step b ') is advantageously between 0 and 20%, preferably between 0.5 and 15%, preferably between 1 and 12%.
De préférence, pour cette étape, on procède à plusieurs échange(s) ionique(s) avec une solution contenant au moins un sel d'ammonium choisi parmi les sels de chlorate, sulfate, nitrate, phosphate, ou acétate d'ammonium, de manière à éliminer au moins en partie, les cations alcalins et de préférence les cations Na+ présents dans la zéolithe. De préférence, le sel d'ammonium est le nitrate d'ammonium NH4N03. Preferably, for this step, several ion exchange (s) are carried out with a solution containing at least one ammonium salt chosen from the salts of chlorate, sulfate, nitrate, phosphate, or ammonium acetate, of in order to eliminate at least partly the alkaline cations and preferably the Na + cations present in the zeolite. Preferably, the ammonium salt is ammonium nitrate NH 4 NO 3 .
Ainsi, la teneur en cations alcalins restante et de préférence en cations Na+ dans la zéolithe modifiée à l'issue de l'étape b') est de préférence telle que le rapport molaire cation alcalin/Aluminium et de préférence le rapport molaire Na/AI, est compris entre 0,2:1 et 0:1 , de préférence compris entre 0,15:1 et 0,005:1 , et de manière plus préférée compris entre 0,12:1 et 0,01 :1. Thus, the content of alkaline cations remaining and preferably Na + cations in the zeolite modified at the end of step b ') is preferably such that the molar ratio alkali metal cation / aluminum and preferably the molar ratio Na / AI is between 0.2: 1 and 0: 1, preferably between 0.15: 1 and 0.005: 1, and more preferably between 0.12: 1 and 0.01: 1.
Le rapport Na/AI désiré est obtenu en ajustant la concentration en NH + de la solution d'échange cationique, la température de l'échange cationique et le nombre d'échange cationique. La concentration de la solution en NH + dans la solution varie avantageusement entre 0,01 et 12 mol/L, et de préférence entre 1 et 10 mol/L. La température de l'étape d'échange est avantageusement comprise entre 20 et 100°C, de préférence entre 60 et 95°C, de manière préférée entre 60 et 90°C de manière plus préférée entre 60 et 85°C et de manière encore plus préférée entre 60 et 80°C. Le nombre d'échange cationique varie avantageusement entre 1 et 10 et de préférence entre 1 et 4. The desired Na / Al ratio is obtained by adjusting the NH + concentration of the cation exchange solution, the cation exchange temperature, and the cation exchange number. The concentration of the NH + solution in the solution advantageously varies between 0.01 and 12 mol / l, and preferably between 1 and 10 mol / l. The temperature of the stage the exchange temperature is advantageously between 20 and 100 ° C., preferably between 60 and 95 ° C., preferably between 60 and 90 ° C., more preferably between 60 and 85 ° C. and even more preferably between 60 and 85 ° C. 80 ° C. The cation exchange number advantageously varies between 1 and 10 and preferably between 1 and 4.
Dans le cas ou l'étape a') de traitement basique consiste en le mélange de ladite zéolithe initiale désaluminée USY avec une solution aqueuse de composés basiques choisis parmi les bases fortes non alcalines de préférence choisies parmi les ammoniums quaternaires pris seuls ou en mélange et de manière préférée la base forte non alcaline étant l'hydroxyde de tétraméthylammonium, la zéolithe modifiée issue de l'étape a') contient une fraction partielle ou totale d'ions ammonium quaternaires en position cationique. In the case where the basic treatment stage a ') consists in mixing said USY dealuminated initial zeolite with an aqueous solution of basic compounds chosen from non-alkaline strong bases, preferably chosen from quaternary ammoniums, taken alone or as a mixture and preferably, the non-alkaline strong base being tetramethylammonium hydroxide, the modified zeolite from step a ') contains a partial or total fraction of quaternary ammonium ions in the cationic position.
Dans ce cas, le procédé de modification de ladite zéolithe initiale USY désaluminée ne comporte avantageusement pas d'étape b') d'au moins un échange partiel ou total intermédiaire, la zéolithe modifiée issue de l'étape a) subit directement l'étape c') de traitement thermique. In this case, the process for modifying said dealuminized initial USY zeolite advantageously does not comprise step b ') of at least one partial or total intermediate exchange, the modified zeolite resulting from step a) undergoes the step directly. c ') heat treatment.
Selon l'invention, le procédé de modification de la zéolithe Y initiale désaluminée comporte ensuite au moins une étape c') de traitement thermique. According to the invention, the process for modifying the dealuminated initial zeolite Y then comprises at least one step c ') of heat treatment.
Dans le cas ou l'étape a') de traitement basique consiste en le mélange de ladite zéolithe initiale désaluminée USY avec une solution aqueuse basique de composés choisis parmi les bases alcalines et de préférence choisis parmi les carbonates alcalins et les hydroxydes alcalins et de manière très préférée avec une solution d'hydroxyde de sodium (NaOH), l'étape c') de traitement thermique permet à la fois le séchage et la transformation des cations NH + échangés lors de l'étape b'), en protons. In the case where the basic treatment step a ') consists in mixing said USY dealuminated initial zeolite with a basic aqueous solution of compounds chosen from alkaline bases and preferably chosen from alkaline carbonates and alkaline hydroxides and very preferred with a solution of sodium hydroxide (NaOH), step c ') of heat treatment allows both the drying and the conversion of NH + cations exchanged during step b'), into protons.
Dans le cas ou l'étape a') de traitement basique consiste en le mélange de ladite zéolithe initiale désaluminée USY avec une solution aqueuse basique de composés choisis parmi les bases fortes non alcalines et de préférence choisies parmi les ammoniums quaternaires pris seuls ou en mélange et de manière préférée la base forte non alcaline étant l'hydroxyde de tétraméthylammonium, l'étape c') de traitement thermique permet à la fois le séchage et la décomposition du cations d'ammonium quaternaire en position de contre-ions et la formation de protons. In the case where the basic treatment step a ') consists in mixing said USY dealuminated initial zeolite with a basic aqueous solution of compounds chosen from non-alkaline strong bases and preferably chosen from quaternary ammoniums, taken alone or as a mixture and, preferably, the non-alkaline strong base being tetramethylammonium hydroxide, the thermal treatment step c ') allows both the drying and the decomposition of the quaternary ammonium cations in the counter-ion position and the formation of protons.
Dans tous les cas, à l'issue de ladite étape c') de traitement thermique, les protons de la zéolithe sont partiellement ou totalement régénérés. L'étape c') de traitement thermique selon l'invention est réalisé à une température comprise entre 200 et 700°C, plus préférentiellement entre 300 et 500°C. Ladite étape de traitement thermique est avantageusement mise en oeuvre sous air, sous oxygène, sous hydrogène, sous azote ou sous argon ou sous un mélange d'azote et d'argon. La durée dudit traitement est avantageusement comprise entre 1 et 5 heures. In all cases, at the end of said heat treatment step c '), the protons of the zeolite are partially or completely regenerated. Stage c ') of heat treatment according to the invention is carried out at a temperature between 200 and 700 ° C, more preferably between 300 and 500 ° C. Said processing step Thermally is advantageously carried out under air, under oxygen, under hydrogen, under nitrogen or under argon or under a mixture of nitrogen and argon. The duration of said treatment is advantageously between 1 and 5 hours.
5 A l'issue du procédé de modification selon l'invention, la zéolithe modifiée finale mise en oeuvre dans le support du catalyseur utilisé dans le procédé selon l'invention, présente avantageusement un volume mésoporeux final, mesuré par porosimétrie à l'azote supérieur d'au moins 10% par rapport au volume mésoporeux initiale et de préférence supérieur d'au moins 20% par rapport au volume mésoporeux initiale de la zéolithe initiale désaluminéeAt the end of the modification process according to the invention, the final modified zeolite used in the catalyst support used in the process according to the invention advantageously has a final mesoporous volume, measured by high nitrogen porosimetry. at least 10% relative to the initial mesoporous volume and preferably greater than at least 20% relative to the initial mesoporous volume of the dealuminated initial zeolite
0 USY, un volume microporeux final mesuré par porosimétrie à l'azote qui ne doit pas diminuer de plus de 40%, de préférence de plus de 30% et de manière préférée de plus de 20% par rapport au volume microporeux initial de ladite zéolithe initiale désaluminée USY, une acidité de Bronsted supérieure de plus de 10% et de préférence de plus de 20% par rapport à l'acidité de Bronsted de la zéolithe Y désaluminée initiale et un paramètre cristallin0 USY, a final microporous volume measured by nitrogen porosimetry which must not decrease by more than 40%, preferably by more than 30% and preferably by more than 20% relative to the initial microporous volume of said zeolite initial dealuminated USY, a higher Bronsted acidity of more than 10% and preferably more than 20% with respect to the Bronsted acidity of the initial dealuminated zeolite Y and a crystalline parameter
S final a0 de la maille élémentaire supérieur au paramètre cristallin a0 initial de la maille de la zéolithe Y désaluminée initiale. S final a 0 of the elementary cell superior to the initial crystalline parameter at 0 of the mesh of the initial dealuminated zeolite Y.
A l'issue du procédé de modification de la zéolithe Y désaluminée selon l'invention, l'augmentation significative du volume mésoporeux de la zéolithe modifiée résultante et leAt the end of the process for modifying the dealuminated zeolite Y according to the invention, the significant increase in the mesoporous volume of the resulting modified zeolite and the
0 maintien d'un volume microporeux significatif par rapport à la zéolithe Y désaluminée initiale traduisent la création d'une mésoporosité supplémentaire par désilication. Maintaining a significant microporous volume relative to the initial dealuminated Y zeolite translate the creation of additional mesoporosity by desilication.
Par ailleurs, l'augmentation de l'acidité de Bronsted de la zéolithe modifiée finale par rapport à la zéolithe Y désaluminée initiale mettent en évidence la réintroduction des atomes d'aluminium extra réseau dans la charpente de la zéolithe c'est à dire le phénomène de Moreover, the increase in the Bronsted acidity of the final modified zeolite with respect to the initial dealuminated Y zeolite demonstrates the reintroduction of extra-lattice aluminum atoms in the framework of the zeolite, ie the phenomenon of
5 réalumination. 5 real estate.
La matrice minérale poreuse amorphe ou mal cristallisée de type oxyde  The amorphous or poorly crystallized porous mineral matrix of oxide type
Le support du catalyseur utilisé dans l'étape c) d'hydroisomérisation du procédé selon l'invention contient avantageusement une matrice minérale poreuse, de préférence amorphe, qui est avantageusement constituée d'au moins un oxyde réfractaire. Ladite The catalyst support used in the hydroisomerization step c) of the process according to the invention advantageously contains a porous mineral matrix, preferably amorphous, which advantageously consists of at least one refractory oxide. said
0 matrice est avantageusement choisie dans le groupe formé par l'alumine, la silice, les argiles, l'oxyde de titane, l'oxyde de bore et la zircone, pris seul ou en mélange. La matrice peut être constituée par un mélange d'au moins deux des oxydes cités ci dessus, et de préférence la silice-alumine. On peut choisir également les aluminates. On préfère utiliser des matrices contenant de l'alumine, sous toutes ces formes connues de l'homme du métier, i5 par exemple l'alumine gamma. On peut aussi avantageusement utiliser des mélanges d'alumine et de silice, des mélanges d'alumine et de silice-alumine. The matrix is advantageously chosen from the group formed by alumina, silica, clays, titanium oxide, boron oxide and zirconia, taken alone or as a mixture. The matrix may consist of a mixture of at least two of the oxides mentioned above, and preferably silica-alumina. It is also possible to choose aluminates. It is preferred to use matrices containing alumina, in all these forms known to those skilled in the art, for example gamma-alumina. It is also advantageous to use mixtures of alumina and silica, mixtures of alumina and silica-alumina.
Techniques de caractérisation Characterization techniques
Le rapport Si/AI atomique global de la zéolithe Y désaluminée initiale et finale, c'est à die après modification est mesurée par fluorescence X. La fluorescence X est une technique d'analyse élémentaire globale qui permet l'analyse de tous les éléments du système périodique à partir du bore. Il est possible de doser de quelques ppm jusqu'à 100%. Dans cette invention, cette technique est utilisée pour doser le silicium et l'aluminium des zéolithes (en pourcentage massique) et permet ainsi de calculer le ratio atomique Si/AI.  The overall Si / Al atomic ratio of the initial and final dealuminated Y zeolite, that is to die after modification is measured by X-ray fluorescence. X-ray fluorescence is a global elemental analysis technique that allows the analysis of all elements of the periodic system from boron. It is possible to dose from a few ppm up to 100%. In this invention, this technique is used to measure the silicon and aluminum zeolites (in percent by weight) and thus allows to calculate the atomic ratio Si / Al.
La fraction pondérale des atomes d'aluminium tétracoordinés et hexacoordinés présents dans la zéolithe USY modifiée est déterminé par résonance magnétique nucléaire du solide de 27 Al. La RMN de l'aluminium est en effet connue pour être utilisée en vue de repérer et de quantifier les différents états de coordination de ce noyau ("Analyse physico-chimiques des catalyseurs industriels", J. Lynch, Editions Technip (2001) chap. 13, pages 290 et 291). Le spectre RMN de l'aluminium de la zéolithe USY initiale et celui de la zéolithe USY modifiée selon l 'invention présente deux signaux, l'un étant caractéristique de la résonance des atomes d'aluminium tétracoordinés (c'est à dire des atomes d'aluminium compris dans le réseau cristallin de la zéolithe) et l'autre étant caractéristique de la résonance des atomes d'aluminium hexacoordinés (c'est à dire des atomes d'Aluminium en dehors du réseau cristallin ou atomes d'aluminium extra réseau). Les atomes d'aluminium tétracoordinés A\w résonnent à un déplacement chimique compris entre +40 ppm et +75 ppm et les atomes d'aluminium hexacoordinés ou extra réseau Alvi résonnent à un déplacement chimique compris entre -15 ppm et +15 ppm. La fraction pondérale des deux espèces aluminiques Aliv et AIV| est quantifié par intégration des signaux correspondant à chacune de ces espèces. The weight fraction of the tetracoordinated and hexacoordinated aluminum atoms present in the modified USY zeolite is determined by nuclear magnetic resonance of the 27 Al solid. Aluminum NMR is indeed known to be used for identifying and quantifying the various coordination states of this nucleus ("Physico-chemical analysis of industrial catalysts", J. Lynch, Technip Publishing (2001) Chapter 13, pages 290 and 291). The NMR spectrum of the aluminum of the original USY zeolite and that of the modified USY zeolite according to the invention has two signals, one of which is characteristic of the resonance of the tetracoordinated aluminum atoms (i.e. aluminum included in the crystal lattice of the zeolite) and the other being characteristic of the resonance of hexacoordinated aluminum atoms (ie aluminum atoms outside the lattice or extra-lattice aluminum atoms) . The tetracoordinated aluminum atoms A \ w resonate at a chemical shift of between +40 ppm and +75 ppm and the hexacoordinated or extra-lattice aluminum Alvi atoms resonate at a chemical shift between -15 ppm and +15 ppm. The weight fraction of the two aluminum species Aliv and AI V | is quantified by integrating the signals corresponding to each of these species.
Plus précisément, la zéolithe USY modifiée selon l'invention présente dans le support du catalyseur selon l'invention a été analysée par RMN-MAS du solide 27AI sur un spectromètre Briicker de type Avance 400 MHz à l'aide d'une sonde 4 mm optimisée pour F 27AI. La vitesse de rotation de l'échantillon est voisine de 14 kHz. L'atome d'aluminium est un noyau quadripolaire dont le spin est égal à 5/2. Dans des conditions d'analyse dites sélectives, à savoir un champs de radiofréquence faible égal à 30 kHz, un angle d'impulsion faible égal à π/2 et en présence d'un échantillon saturé en eau, la technique de RMN de rotation à l'angle magique (MAS), notée RMN-MAS, est une technique quantitative. La décomposition de chaque spectre RMN-MAS permet d'accéder directement à la quantité des différentes espèces aluminiques, à savoir des atomes d'aluminium tétracoordinés Aliv et des atomes d'aluminium hexacoordinés ou extra réseau Alvi. Chaque spectre est calé en déplacement chimique par rapport à une solution 1 M de nitrate d'aluminium pour laquelle le signal d'aluminium est à zéro ppm. Les signaux caractérisant les atomes d'aluminium tétracoordinés Aliv sont intégrés entre +40 ppm et +75 ppm ce qui correspond à l'aire 1 et les signaux caractérisant les atomes d'aluminium hexacoordinés Alvi sont intégrés entre -15 ppm et +15 ppm ce qui correspond à l'aire 2. La fraction pondérale des atomes d'aluminium hexacoordinés Alvi est égal au rapport aire 2/(aire 1 + aire 2). More specifically, the USY zeolite modified according to the present invention in the catalyst support according to the invention was analyzed by MAS-NMR of the solid on a 27 AI Briicker type of spectrometer Avance 400 MHz using a probe 4 mm optimized for F 27 AI. The rotation speed of the sample is close to 14 kHz. The aluminum atom is a quadrupole nucleus with a spin equal to 5/2. Under so-called selective analysis conditions, namely a low radiofrequency field equal to 30 kHz, a low pulse angle equal to π / 2 and in the presence of a water-saturated sample, the magic angle spinning NMR (MAS) technique, referred to as MAS-NMR, is a quantitative technique. The decomposition of each NMR-MAS spectrum gives direct access to the quantity of the different aluminum species, namely Aliv tetracoordinated aluminum atoms and hexacoordinated aluminum atoms or Alvi extra-network aluminum atoms. Each spectrum is wedged in chemical shift with respect to a 1 M solution of aluminum nitrate for which the aluminum signal is at zero ppm. The signals characterizing the Aliv tetracoordinated aluminum atoms are integrated between +40 ppm and +75 ppm which corresponds to the area 1 and the signals characterizing the Alvi hexacoordinated aluminum atoms are integrated between -15 ppm and +15 ppm. which corresponds to area 2. The weight fraction of the hexacoordinated aluminum atoms Alvi is equal to the ratio area 2 / (area 1 + area 2).
Le paramètre cristallin de maille aO des zéolithes Y désaluminée initiale et finale, c'est à dire après modification est mesurée par diffraction des Rayons X (DRX). Pour la zéolithe Y de type FAU, le paramètre de maille aO est calculé à partir des positions des pics correspondant aux indices de Miller 533, 642 et 555 ("Théorie et technique de la radiocristallographie", A. Guinier, édition Dunod, 1964). La longueur de la liaison AI-0 étant plus grande que celle de la liaison Si-O, plus le nombre d'aluminium en position tétraédrique dans la charpente de al zéolithe est grand, plus le paramètre aO est grand. Pour les cristaux constitués de mailles cubiques tels que les zéolithes Y de type FAU, une relation linéaire existe entre le paramètre de maille aO et le rapport Si/AI. ("Hydrocracking Science and Technology, J. Scherzer, A.J. Gruia, Marcel dekker Inc., 1996) The crystalline parameter of mesh aO zeolites Y dealuminated initial and final, that is to say after modification is measured by X-ray diffraction (XRD). For the FAU type Y zeolite, the mesh parameter a0 is calculated from the peak positions corresponding to the Miller indices 533, 642 and 555 ("Theory and technique of radiocrystallography", A. Guinier, Dunod edition, 1964). . Since the length of the bond AI-O is greater than that of the bond Si-O, the larger the number of aluminum in the tetrahedral position in the framework of al zeolite, the greater the parameter aO is large. For crystals consisting of cubic meshes such as F-type Y zeolites, a linear relationship exists between the mesh parameter a0 and the Si / Al ratio. ("Hydrocracking Science and Technology, Scherzer J., A. J. Gruia, Marcel Dekker Inc., 1996)
Les volumes microporeux et mésoporeux de la zéolithe Y désaluminée initiale et fianle sont mesurées par adsorption/désorption d'azote. L'analyse des courbes d'isothermes d'adsorption d'azote des solides microporeux et mésoporeux permet le calcul des volumes poreux par la technique appelée technique volumétrique. Différents types de modèles sont utilisables. La distribution poreuse mesurée par adsorption d'azote a été déterminée par le modèle Barrett-Joyner-Halenda (BJH). L'isotherme d'adsorption - désorption d'azote selon le modèle BJH est décrit dans le périodique "The Journal of American Society" , 73, 373, (1951) écrit par E.P.Barrett, L.G.Joyner et P.P.Halenda. Dans l'exposé qui suit de l'invention, on entend par volume adsorption azote, le volume mesuré pour P/P0= 0,95. Le volume microporeux est obtenu par la méthode du "t-plot" ou bien en mesurant le volume adsorbé à P/P0=0,35 (P=pression d'adsorption; PO = pression de vapeur saturante de l'adsorbat à la température de l'essai). Le volume mésoporeux est obtenu en soustrayant le volume microporeux du volume poreux total. The microporous and mesoporous volumes of the initial dealuminated zeolite Y and fianle are measured by adsorption / desorption of nitrogen. The analysis of the nitrogen adsorption isotherm curves of the microporous and mesoporous solids allows the calculation of the porous volumes by the so-called volumetric technique technique. Different types of models are usable. The porous distribution measured by nitrogen adsorption was determined by the Barrett-Joyner-Halenda model (BJH). The nitrogen adsorption-desorption isotherm according to the BJH model is described in the periodical "The Journal of American Society", 73, 373, (1951) written by EPBarrett, LGJoyner and PPHalenda. In the following description of the invention, the term nitrogen adsorption volume, the volume measured for P / P0 = 0.95. The microporous volume is obtained by the "t-plot" method or by measuring the adsorbed volume at P / PO = 0.35 (P = adsorption pressure, PO = saturation vapor pressure of the adsorbate at the test temperature). The mesoporous volume is obtained by subtracting the microporous volume from the total pore volume.
L'acidité de Lewis et de Bronsted des zéolithes est mesurée par adsorption de Pyridine suivi î par spectroscopie infra-rouge (FTIR). L'intégration des bandes caractéristiques de la pyridine coordinée à 1455 cm'1 et de la pyridine protonée à 1545 cm"1 permet de comparer l'acidité relative des catalyseurs de type Lewis et Bronsted, respectivement. Avant adsorption de la pyridine, la zéolithe est prétraitée sous vide secondaire à 450°C pendant 10h avec un palier intermédiaire à 150°C pendant 1 h. La pyridine est ensuite adsorbée à ) 150°C puis désorber sous vide secondaire à cette même température avant de prendre les spectres. The acidity of Lewis and Bronsted zeolites is measured by Pyridine adsorption followed by infra-red spectroscopy (FTIR). The integration of the characteristic bands of the coordinated pyridine at 1455 cm -1 and the protonated pyridine at 1545 cm -1 makes it possible to compare the relative acidity of the Lewis and Bronsted type catalysts, respectively.Before adsorption of the pyridine, the zeolite is pretreated under secondary vacuum at 450 ° C. for 10 h with an intermediate plateau at 150 ° C. for 1 h, the pyridine is then adsorbed at 150 ° C. and then desorbed under secondary vacuum at this same temperature before taking the spectra.
Préparation du catalyseur Catalyst preparation
La zéolithe modifiée peut être, sans que cela soit limitatif, par exemple sous forme de 5 poudre, poudre broyée, suspension, suspension ayant subi un traitement de désagglomération. Ainsi, par exemple, la zéolithe modifiée peut avantageusement être mise en suspension acidulée ou non à une concentration ajustée à la teneur finale en zéolithe visée sur le support. Cette suspension appelée couramment une barbotine est alors avantageusement mélangée avec les précurseurs de la matrice.  The modified zeolite may be, but is not limited to, for example, powder, ground powder, suspension, deagglomeration-treated suspension. Thus, for example, the modified zeolite may advantageously be slurried acidulated or not at a concentration adjusted to the final zeolite content referred to the support. This suspension commonly called a slip is then advantageously mixed with the precursors of the matrix.
)  )
Selon un mode de préparation préféré, la zéolithe modifiée peut avantageusement être introduite lors de la mise en forme du support avec les éléments qui constituent la matrice. Par exemple, selon ce mode préféré de la présente invention, la zéolithe modifiée selon l'invention est ajoutée à un gel humide d'alumine au cours de l'étape de mise en forme du 5 support.  According to a preferred method of preparation, the modified zeolite can advantageously be introduced during the shaping of the support with the elements that constitute the matrix. For example, according to this preferred embodiment of the present invention, the modified zeolite according to the invention is added to a wet alumina gel during the carrier shaping step.
Une des méthodes préférées de la mise ne forme du support dans la présente invention consiste à malaxer au moins une zéolithe modifiée, avec un gel humide d'alumine pendant quelques dizaines de minutes, puis à passer la pâte ainsi obtenue à travers une filière pour former des extrudés de diamètre compris entre 0,4 et 4 mm.  One of the preferred methods of forming the carrier in the present invention is to knead at least one modified zeolite with a wet alumina gel for a few tens of minutes and then pass the resulting paste through a die to form extrudates with a diameter of between 0.4 and 4 mm.
0  0
Selon un autre mode de préparation préférée, la zéolithe modifiée peut être introduite au cours de la synthèse de la matrice. Par exemple, selon ce mode préféré de la présente invention, la zéolithe modifiée est ajoutée au cours de la synthèse de la matrice silico- aluminique ; la zéolithe peut être ajoutée à un mélange composé d'un composé d'alumine 5 en milieu acide avec un composé de silice totalement soluble. Le support peut être mis en forme par toute technique connue de l'homme du métier. La mise en forme peut être réalisée par exemple par extrusion, par pastillage, par la méthode de la coagulation en goutte (oil-drop), par granulation au plateau tournant ou par toute autre méthode bien connue de l'homme du métier. According to another preferred method of preparation, the modified zeolite can be introduced during the synthesis of the matrix. For example, according to this preferred embodiment of the present invention, the modified zeolite is added during the synthesis of the silicoaluminum matrix; the zeolite may be added to a mixture of an acidic alumina compound with a fully soluble silica compound. The support can be shaped by any technique known to those skilled in the art. The shaping can be carried out for example by extrusion, pelletizing, by the method of coagulation in drop (oil-drop), by rotating plate granulation or by any other method well known to those skilled in the art.
Au moins une calcination peut être effectuée après l'une quelconque des étapes de la préparation. Le traitement de calcination est habituellement effectué sous air à une température d'au moins 150°C, de préférence au moins 300°C, de manière plus préférée entre environ 350 et 1000°C. At least one calcination may be performed after any of the steps of the preparation. The calcination treatment is usually carried out in air at a temperature of at least 150 ° C, preferably at least 300 ° C, more preferably at about 350 to 1000 ° C.
Les éléments des groupes VIB et/ou les éléments du groupe VIII et éventuellement au moins un élément dopant choisi parmi le bore, le silicium et le phosphore et éventuellement les éléments des groupes IVB, ou IB dans le cas ou la phase active contient du nickel réduit, peuvent être éventuellement introduits, tout ou partie, à toute étape de la préparation, au cours de la synthèse de la matrice, de préférence lors de la mise en forme du support, ou de manière très préférée après la mise en forme du support par toute méthode connue de l'homme du métier. Ils peuvent être introduits après la mise en forme du support et ce après ou avant le séchage et la calcination du support. Group VIB elements and / or Group VIII elements and optionally at least one doping element selected from boron, silicon and phosphorus and optionally elements of groups IVB, or IB in the case where the active phase contains nickel reduced, can be optionally introduced, all or part, at any stage of the preparation, during the synthesis of the matrix, preferably during the shaping of the support, or very preferably after the shaping of the support by any method known to those skilled in the art. They can be introduced after forming the support and after or before the drying and calcining of the support.
Selon un mode préféré de la présente invention, tout ou partie des éléments des groupes VIB et/ou des éléments du groupe VIII, et éventuellement au moins un élément dopant choisi parmi le bore, le silicium et le phosphore et éventuellement les éléments des groupes IVB, ou IB dans le cas ou la phase active contient du nickel réduit, peuvent être introduits au cours de la mise en forme du support, par exemple, lors de l'étape de malaxage de la zéolithe modifiée avec un gel d'alumine humide. According to a preferred embodiment of the present invention, all or part of the elements of groups VIB and / or elements of group VIII, and optionally at least one doping element chosen from boron, silicon and phosphorus and optionally elements of groups IVB , or IB in the case where the active phase contains reduced nickel, may be introduced during the shaping of the support, for example, during the kneading step of the modified zeolite with a wet alumina gel.
Selon un autre mode préféré de la présente invention, tout ou partie des éléments des groupes VIB et/ou des éléments du groupe VIII et éventuellement au moins un élément dopant choisi parmi le bore, le silicium et le phosphore et éventuellement les éléments des groupes IVB, ou IB dans le cas ou la phase active contient du nickel réduit, peuvent être introduits par une ou plusieurs opérations d'imprégnation du support mis en forme et calciné, par une solution contenant les précurseurs desdits éléments. D'une façon préférée, le support est imprégné par une solution aqueuse. L'imprégnation du support est de préférence effectuée par la méthode d'imprégnation dite "à sec" bien connue de l'homme du métier. Dans le cas ou le catalyseur de la présente invention contient un métal non noble du groupe VIII, les métaux du groupe VIII sont de préférence introduits par une ou plusieurs opérations d'imprégnation du support mis en forme et calciné, après ceux du groupe VI B ou en même ) temps que ces derniers. According to another preferred embodiment of the present invention, all or part of the elements of groups VIB and / or elements of group VIII and optionally at least one doping element chosen from boron, silicon and phosphorus and optionally elements of groups IVB , or IB in the case where the active phase contains reduced nickel, may be introduced by one or more impregnation operations of the shaped and calcined support, by a solution containing the precursors of said elements. In a preferred manner, the support is impregnated with an aqueous solution. The impregnation of the support is preferably carried out by the "dry" impregnation method well known to those skilled in the art. In the case where the catalyst of the present invention contains a non-noble metal of group VIII, the metals of group VIII are preferably introduced by one or more impregnation operations of the shaped and calcined support, after those of group VI B or at the same time as these.
Dans le cas ou le catalyseur de la présente invention contient un métal noble du groupe VIII, les métaux du groupe VIII sont de préférence introduits par une ou plusieurs opérations d'imprégnation du support mis en forme et calciné. In the case where the catalyst of the present invention contains a noble metal of group VIII, the metals of group VIII are preferably introduced by one or more impregnation operations of the shaped and calcined support.
)  )
Selon un autre mode préféré de la présente invention, le dépôt des éléments du groupe IVB ou du groupe IB peut aussi être réalisé de manière simultanée en utilisant par exemple une solution contenant un sel de d'étain ou un sel de cuivre.  According to another preferred embodiment of the present invention, the deposition of the elements of group IVB or group IB can also be carried out simultaneously using, for example, a solution containing a tin salt or a copper salt.
5 Selon un autre mode préféré de la présente invention, le dépôt de bore et de silicium peut aussi être réalisé de manière simultanée en utilisant par exemple une solution contenant un sel de bore et un composé du silicium de type silicone. According to another preferred embodiment of the present invention, the deposition of boron and silicon can also be carried out simultaneously using, for example, a solution containing a boron salt and a silicon-type silicon compound.
Lorsque au moins un élément dopant, P et/ou B et/ou Si, est introduit, sa répartition et sa D localisation peuvent être déterminées par des techniques telles que la microsonde de Castaing (profil de répartition des divers éléments), la microscopie électronique par transmission couplée à une analyse EDX (analyse dispersive en énergie) des composants du catalyseur, ou bien encore par l'établissement d'une cartographie de répartition des éléments présents dans le catalyseur par microsonde électronique. When at least one doping element, P and / or B and / or Si, is introduced, its distribution and location can be determined by techniques such as the Castaing microprobe (distribution profile of the various elements), electron microscopy by transmission coupled to an EDX analysis (energy dispersive analysis) of the catalyst components, or even by establishing a distribution map of the elements present in the catalyst by electron microprobe.
5  5
Par exemple, parmi les sources de molybdène et de tungstène, on peut utiliser les oxydes et hydroxydes, les acides molybdiques et tungstiques et leurs sels en particulier les sels d'ammonium tels que le molybdate d'ammonium, l'heptamolybdate d'ammonium, le tungstate d'ammonium, l'acide phosphomolybdique, l'acide phosphotungstique et leurs sels, 0 l'acide silicomolybdique, l'acide silicotungstique et leurs sels. On utilise de préférence les oxydes et les sels d'ammonium tels que le molybdate d'ammonium, l'heptamolybdate d'ammonium et le tungstate d'ammonium.  For example, among the sources of molybdenum and tungsten, it is possible to use oxides and hydroxides, molybdic and tungstic acids and their salts, in particular ammonium salts such as ammonium molybdate, ammonium heptamolybdate, ammonium tungstate, phosphomolybdic acid, phosphotungstic acid and their salts, silicomolybdic acid, silicotungstic acid and their salts. Oxides and ammonium salts such as ammonium molybdate, ammonium heptamolybdate and ammonium tungstate are preferably used.
Les sources d'éléments du groupe VIII non nobles qui peuvent être utilisées sont bien 5 connues de l'homme du métier. Par exemple, pour les métaux non nobles on utilisera les nitrates, les sulfates, les hydroxydes, les phosphates, les halogénures comme par exemple, les chlorures, les bromures et les fluorures, les carboxylates comme par exemple les acétates et les carbonates. Sources of non-noble group VIII elements that can be used are well known to those skilled in the art. For example, for non-noble metals, use will be made of nitrates, sulphates, hydroxides, phosphates and halides, for example chlorides, bromides and fluorides, carboxylates such as acetates and carbonates.
Les sources d'éléments nobles du groupe VIII qui peuvent avantageusement être utilisées sont bien connues de l'homme du métier. Pour les métaux nobles on utilise les halogénures, par exemple les chlorures, les nitrates, les acides tels que l'acide hexachloroplatinique, les hydroxydes, les oxychlorures tels que l'oxychlorure ammoniacal de ruthénium. On peut également avantageusement utiliser les complexes cationiques tels que les sels d'ammonium lorsque l'on souhaite déposer le métal sur la zéolithe de type Y par échange cationique. The noble element sources of group VIII which can advantageously be used are well known to those skilled in the art. For the noble metals halides are used, for example chlorides, nitrates, acids such as hexachloroplatinic acid, hydroxides, oxychlorides such as ammoniacal oxychloride ruthenium. It is also advantageous to use cationic complexes such as ammonium salts when it is desired to deposit the metal on the Y-type zeolite by cation exchange.
Les métaux nobles du groupe VIII du catalyseur de fa présente invention peuvent avantageusement être présents en totalité ou partiellement sous forme métallique et/ou oxyde.  The noble metals of Group VIII of the catalyst of the present invention may advantageously be present in whole or in part in metallic and / or oxide form.
Le ou les élément(s) promoteur(s) choisi(s) dans le groupe formé par le silicium, le bore et le phosphore peuvent avantageusement être introduits par une ou plusieurs opérations d'imprégnation avec excès de solution sur le précurseur calciné.  The element (s) promoter (s) chosen (s) in the group formed by silicon, boron and phosphorus can advantageously be introduced by one or more impregnation operations with excess solution on the calcined precursor.
La source de bore peut avantageusement être l'acide borique, de préférence l'acide orthoborique H3B03, le biborate ou le pentaborate d'ammonium, l'oxyde de bore, les esters boriques. Le bore peut par exemple être introduit sous la forme d'un mélange d'acide borique, d'eau oxygénée et un composé organique basique contenant de l'azote tels que l'ammoniaque, les aminés primaires et secondaires, les aminés cycliques, les composés de la famille de la pyridine et des quinoléines et les composés de la famille du pyrrole. Le bore peut être introduit par exemple par une solution d'acide borique dans un mélange eau/alcool. La source de phosphore préférée est l'acide orthophosphorique H3P04, mais ses sels et esters comme les phosphates d'ammonium conviennent également. Le phosphore peut par exemple être introduit sous la forme d'un mélange d'acide phosphorique et un composé organique basique contenant de l'azote tels que l'ammoniaque, les aminés primaires et secondaires, les aminés cycliques, les composés de la famille de la pyridine et des quinoléines et les composés de la famille du pyrrole.  The boron source may advantageously be boric acid, preferably orthoboric acid H3B03, biborate or ammonium pentaborate, boron oxide, boric esters. Boron may for example be introduced in the form of a mixture of boric acid, hydrogen peroxide and a basic organic compound containing nitrogen such as ammonia, primary and secondary amines, cyclic amines, compounds of the family of pyridine and quinolines and compounds of the pyrrole family. Boron may be introduced for example by a boric acid solution in a water / alcohol mixture. The preferred phosphorus source is orthophosphoric acid H 3 PO 4, but its salts and esters such as ammonium phosphates are also suitable. The phosphorus may for example be introduced in the form of a mixture of phosphoric acid and a basic organic compound containing nitrogen such as ammonia, primary and secondary amines, cyclic amines, compounds of the family of pyridine and quinolines and compounds of the pyrrole family.
De nombreuses sources de silicium peuvent avantageusement être employées. Ainsi, on peut utiliser l'orthosilicate d'éthyle Si(OEt)4, les siloxanes, les polysiloxanes, les silicones, les émulsions de silicones, les silicates d'halogénures comme le fluorosilicate d'ammonium (NH4)2SiF6 ou le fluorosilicate de sodium Na2SiF6. L'acide silicomolybdique et ses sels, l'acide silicotungstique et ses sels peuvent également être avantageusement employés. Le silicium peut avantageusement être ajouté par exemple par imprégnation de silicate d'éthyle en solution dans un mélange eau/alcool. Le silicium peut être ajouté par exemple par imprégnation d'un composé du silicium de type silicone ou l'acide silicique mis en suspension dans l'eau. Many sources of silicon can advantageously be employed. Thus, it is possible to use ethyl orthosilicate Si (OEt) 4, siloxanes, polysiloxanes, silicones, silicone emulsions, halide silicates, such as ammonium fluorosilicate (NH4) 2SiF6 or fluorosilicate. sodium Na2SiF6. Silicomolybdic acid and its salts, silicotungstic acid and its salts can also be advantageously employed. Silicon may advantageously be added for example by impregnation of ethyl silicate in solution in a water / alcohol mixture. Silicon can be added for example by impregnation of a silicon-type silicon compound or silicic acid suspended in water.
Les sources d'élément du groupe IB qui peuvent être utilisées sont bien connues de 5 l'homme du métier. Par exemple, parmi les sources de cuivre, on peut utiliser le nitrate de cuivre Cu(N03)2. Group IB source materials that can be used are well known to those skilled in the art. For example, among copper sources, Cu (N0 3 ) 2 copper nitrate can be used.
Les sources d'éléments du groupe IVB qui peuvent être utilisées sont bien connues de l'homme du métier. Par exemple, parmi les sources d'étain, on peut utiliser le chlorure d'étain SnCI2. The sources of Group IVB elements that can be used are well known to those skilled in the art. For example, among the sources of tin, tin chloride SnCl 2 can be used .
D  D
Les catalyseurs utilisés dans le procédé selon l'invention ont avantageusement la forme de sphères ou d'extrudés. Il est toutefois avantageux que le catalyseur se présente sous forme d'extrudés d'un diamètre compris entre 0,5 et 5 mm et plus particulièrement entre 0,7 et 2,5 mm. Les formes sont cylindriques (qui peuvent être creuses ou non), cylindriques 5 torsadés, multilobées (2, 3, 4 ou 5 lobes par exemple), anneaux. La forme cylindrique est utilisée de manière préférée, mais toute autre forme peut être utilisée. Les catalyseurs selon l'invention peuvent éventuellement être fabriqués et employés sous la forme de poudre concassée, de tablettes, d'anneaux, de billes, de roues.  The catalysts used in the process according to the invention advantageously have the form of spheres or extrudates. It is however advantageous that the catalyst is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm. The shapes are cylindrical (which may be hollow or not), cylindrical 5 twisted, multilobed (2, 3, 4 or 5 lobes for example), rings. The cylindrical shape is preferably used, but any other shape may be used. The catalysts according to the invention may optionally be manufactured and used in the form of crushed powder, tablets, rings, balls, wheels.
0 Dans le cas où le catalyseur d'hydroisomérisation contient au moins un métal noble, le métal noble contenu dans ledit catalyseur d'hydroisomérisation doit avantageusement être réduit. Une des méthodes préférées pour conduire la réduction du métal est le traitement sous hydrogène à une température comprise entre 150°C et 650°C et une pression totale comprise entre 1 et 250 bar. Par exemple, une réduction consiste en un palier à 150°C deIn the case where the hydroisomerization catalyst contains at least one noble metal, the noble metal contained in said hydroisomerization catalyst must advantageously be reduced. One of the preferred methods for conducting the reduction of the metal is hydrogen treatment at a temperature between 150 ° C and 650 ° C and a total pressure of between 1 and 250 bar. For example, a reduction consists of a plateau at 150 ° C of
5 deux heures puis une montée en température jusqu'à 450°C à la vitesse de 1 °C/min puis un palier de deux heures à 450°C ; durant toute cette étape de réduction, le débit d'hydrogène est de 1000 normaux m3 hydrogène / m3 catalyseur et la pression totale maintenue constante à 1 bar. Toute méthode de réduction ex-situ peut avantageusement être envisagée. Two hours and then a rise in temperature up to 450 ° C at a rate of 1 ° C / min and then a two-hour stage at 450 ° C; throughout this reduction step, the hydrogen flow rate is 1000 normal m 3 hydrogen / m 3 catalyst and the total pressure kept constant at 1 bar. Any ex-situ reduction method can advantageously be considered.
0  0
Conformément à l'étape c) d'hydroisomérisation du procédé selon l'invention, au moins une partie de la base hydrocarbonée issue de l'étape b) est mise en contact, en présence d'hydrogène avec ledit catalyseur d'hydroisomérisation, à des températures et des pressions opératoires permettant avantageusement de réaliser une hydroisomérisation de la ;5 charge non convertissante. Cela signifie que l'hydroisomérisation s'effectue avec une conversion de la fraction 150°C+ en fraction 150°C* inférieure à 20% en poids, de manière préférée inférieure à 10% en poids et de manière très préférée inférieure à 5% en poids. According to step c) of hydroisomerization of the process according to the invention, at least a portion of the hydrocarbon base resulting from step b) is brought into contact, in the presence of hydrogen with said hydroisomerization catalyst, with operating temperatures and pressures advantageously allowing for hydroisomerization of the non-converting filler. This means that the hydroisomerisation is carried out with a converting the 150 ° C + fraction to 150 ° C * fraction less than 20% by weight, preferably less than 10% by weight and very preferably less than 5% by weight.
Ainsi, conformément à l'invention, l'étape c) d'hydroisomérisation du procédé selon 5 l'invention opère à une température comprise entre 150 et 500°C, de préférence entre 150°C et 450°C, et de manière très préférée, entre 200 et 450°C, à une pression comprise entre 1 MPa et 10 MPa, de préférence entre 2 MPa et 10 MPa et de manière très préférée, entre 1 MPa et 9 MPa, à une vitesse volumique horaire avantageusement comprise entre 0,1 h"1 et 10 h"1, de préférence entre 0,2 et 7 h"1 et de manière très préférée, entre 0,5 et 5 h" 0 1, à un débit d'hydrogène tel que le rapport volumique hydrogène/hydrocarbures est avantageusement compris entre 70 et 1000 Nm3/m3 de charge, entre 100 et 1000 normaux m3 d'hydrogène par m3 de charge et de manière préférée entre 150 et 1000 normaux m3 d'hydrogène par m3 de charge. Thus, according to the invention, step c) of hydroisomerization of the process according to the invention operates at a temperature of between 150 and 500 ° C., preferably between 150 ° C. and 450 ° C., and very preferred, between 200 and 450 ° C, at a pressure of between 1 MPa and 10 MPa, preferably between 2 MPa and 10 MPa and very preferably between 1 MPa and 9 MPa, at an hourly space velocity advantageously between 0 1 hr "1 to 10 h" 1, preferably between 0.2 and 7 h "1 and very preferably between 0.5 and 5 h" 0 1, with a hydrogen flow rate such that the volume ratio hydrogen / hydrocarbons is advantageously between 70 and 1000 Nm 3 / m 3 of filler, between 100 and 1000 normal m 3 of hydrogen per m 3 of filler and preferably between 150 and 1000 normal m 3 of hydrogen per m 3 charge.
De manière préférée, l'étape d'hydroisomérisation éventuelle opère à co-courant.  Preferably, the optional hydroisomerization step operates cocurrently.
5  5
Les produits, base gazole et kérosène, obtenus selon le procédé selon l'invention et en particulier après hydroisomérisation sont dotés d'excellentes caractéristiques.  The products, diesel base and kerosene, obtained according to the process according to the invention and in particular after hydroisomerization are endowed with excellent characteristics.
La base gazole obtenu, après mélange avec un gazole pétrolier issu de charge renouvelable telles que le charbon ou la biomasse lignocellulosique, et/ou avec un additif, est d'excellente 0 qualité :  The diesel base obtained, after mixing with a petroleum diesel fuel derived from renewable fuels such as coal or lignocellulosic biomass, and / or with an additive, is of excellent quality:
- sa teneur en soufre est inférieure à 10 ppm poids.  - Its sulfur content is less than 10 ppm by weight.
- sa teneur en aromatiques totaux est inférieure à 5% poids, et la teneur en polyaromatiques inférieure à 2% poids.  its total aromatics content is less than 5% by weight, and the polyaromatic content is less than 2% by weight.
- l'indice de cétane est excellent, supérieur à 55.  the cetane number is excellent, greater than 55.
5 - la densité est inférieure à 840 kg/m3, et le plus souvent supérieure à 820 kg/m3.  5 - the density is less than 840 kg / m3, and most often greater than 820 kg / m3.
- Sa viscosité cinématique à 40°C est 2 à 8 mm2/s.  - Its kinematic viscosity at 40 ° C is 2 to 8 mm2 / s.
- ses propriétés de tenue à froid sont compatibles avec les normes en vigueur, avec une température limite de filtrabilité inférieure à -15°C et un point de trouble inférieur à -5°C.  - its cold-holding properties are compatible with current standards, with a filterability limit of less than -15 ° C and a cloud point below -5 ° C.
>0 La coupe kérosène obtenue , après mélange avec un kérosène pétrolier issu de charge renouvelable telles que le charbon ou la biomasse lignocellulosique et/ou avec un additif présente les caractéristiques suivantes :  The kerosene cut obtained, after mixing with a petroleum kerosene derived from renewable fuels such as coal or lignocellulosic biomass and / or with an additive, has the following characteristics:
- une densité comprise entre 775 et 840 kg/m3  - a density of between 775 and 840 kg / m3
- une viscosité à -20°C inférieure à 8 mm2/s  a viscosity at -20 ° C. of less than 8 mm 2 / s
Î5 - un point de disparition de cristaux inférieur à -47°C - un point éclair supérieur à 38°C Î5 - a point of disappearance of crystals lower than -47 ° C - a flash point higher than 38 ° C
- un point de fumée supérieur à 25 mm.  - a smoke point greater than 25 mm.
Exemples Examples
> Étape a) : hvdrotraitement  > Step a): hdrdrocessing
Dans un réacteur régulé en température de manière à assurer un fonctionnement isotherme et à lit fixe chargé de 190 ml de catalyseur d'hydrotraitement à base de nickel et de molybdène, présentant une teneur en oxyde de nickel égale à 3 % poids, et une teneur en oxyde de molybdène égale à 16 % poids et une teneur en P205 égale à 6%, le catalyseurIn a temperature controlled reactor so as to provide isothermal and fixed bed operation charged with 190 ml of hydrotreatment catalyst based on nickel and molybdenum, having a nickel oxide content equal to 3% by weight, and a content in molybdenum oxide equal to 16% by weight and a P 2 O 5 content equal to 6%, the catalyst
3 étant préalablement sulfuré, on introduit 170g/h huile de colza pré-raffinée de densité 920 kg/m3 présentant une teneur en soufre inférieure à 10 ppm poids, d'indice de cétane de 35 et dont la composition est détaillée ci dessous : 3 being previously sulphurized, 170 g / h of pre-refined rapeseed oil with a density of 920 kg / m 3 having a sulfur content of less than 10 ppm by weight, with a cetane number of 35 and whose composition is detailed below:
5 700 Nm3 d'hydrogène/m3 de charge sont introduits dans le réacteur maintenu à une 5 700 Nm 3 of hydrogen / m 3 of feed are introduced into the reactor maintained at a
température de 300°C et à une pression de 5 MPa.  temperature of 300 ° C and a pressure of 5 MPa.
Étape b) : séparation de l'effluent issu de l'étape a). Step b): separation of the effluent from step a).
La totalité de l'effluent hydrotraité issu de l'étape a) est séparée de manière à récupérer les The totality of the hydrotreated effluent from step a) is separated so as to recover the
:0 gaz riches en hydrogène et une base hydrocarbonée. : 0 hydrogen-rich gases and a hydrocarbon base.
Étape c) : Hvdroisomérisation de l'effluent hvdrotraité issu de l'étape b) sur un catalyseur selon l'invention Step c): Hydroisomerization of the hydrotreated effluent from step b) on a catalyst according to the invention
Préparation de la zéolithe Y désaluminée initiale Z1 conforme à l'invention  Preparation of the initial dealuminated zeolite Y Z1 according to the invention
15 100g de la zéolithe NaY brute de synthèse est échangée 3 fois par une solution 1N de NH4NO3 à une température de 80°C pour obtenir la zéolithe NH4Y. La zéolithe NH4Y subit ensuite un traitement thermique à 700°C pendant 3h en présence de 60% de vapeur d'eau. Le traitement thermique est fait en utilisant un débit de gaz formé de vapeur d'eau et d'air de 2 L/h/g de zéolithe. La zéolithe subit ensuite un traitement avec une solution de 2 mol/L de HN03 (V/P = 15) pendant 3h à 80°C . La zéolithe est finalement filtrée et séchée 12h à 120°C. La zéolithe est alors sous forme HY désaluminée. 100 g of the crude synthetic NaY zeolite is exchanged 3 times with a 1N solution of NH 4 NO 3 at a temperature of 80 ° C. to obtain the NH 4 Y zeolite. The NH 4 Y zeolite then undergoes a 700 ° heat treatment. C for 3h in the presence of 60% water vapor. The heat treatment is done using a gas flow of water vapor and air of 2 L / h / g zeolite. The zeolite then undergoes treatment with a solution of 2 mol / l HN0 3 (V / P = 15) for 3 hours at 80 ° C. The zeolite is finally filtered and dried for 12 hours at 120 ° C. The zeolite is then in dealuminated HY form.
La zéolithe HY désaluminée obtenue Z1 présente un rapport atomique global Si/AI = 6,2 mesuré par Fluorescence X, une fraction pondérale d'atome d'aluminium extra réseau initiale égale à 37 % poids par rapport à la masse totale de l'aluminium présent dans la zéolithe et mesurée par RMN de l'aluminium, un volume mésoporeux initial mesuré par porosimétrie à l'azote égal à 0,15 ml. g"1, et un paramètre cristallin initial a0 de la maille élémentaire égal à 24,35 A, mesuré par DRX. The dealuminated Z zeolite obtained Z1 has an overall atomic ratio Si / Al = 6.2 measured by X-ray fluorescence, a weight fraction of extra-initial network aluminum atom equal to 37% by weight relative to the total mass of aluminum. present in the zeolite and measured by NMR of aluminum, an initial mesoporous volume measured by nitrogen porosimetry equal to 0.15 ml. g "1 , and an initial crystal parameter at 0 of the elemental mesh equal to 24.35 A, measured by XRD.
Préparation de la zéolithe modifiée Z2 conformément à l'invention utilisée dans le catalyseur selon l'invention. Preparation of the modified zeolite Z2 according to the invention used in the catalyst according to the invention.
100 g de zéolithes HY désaluminée Z1 de rapport atomique global Si/AI = 6,2 mesuré par FX préparée dans l'exemple 1 sont mélangés avec 1L d'une solution d'hydroxyde de sodium (NaOH) 0,1 N à 60°C pendant 30min. Après refroidissement rapide dans l'eau glacée, la suspension est ensuite filtrée et la zéolithe est lavée à 50°C et séchée une nuit à 120°C. La zéolithe Y désaluminée modifiée est ensuite échangée 3 fois par une solution 1N de NH4NO3 à une température de 80°C pour obtenir la forme NH4 + partiellement échangée. La zéolithe est finalement calcinée à 450°C pendant 2h sous un flux d'air de 1 L/h/g de zéolithe. Les caractérisations de la zéolithe Z2 mesurées par adsorption/désorption d'azote, par fluorescence X, par RMN de l'27AI et du 29Si et par adsorption de pyridine suivies par IR sont données dans le tableau 1. 100 g of dealuminated Z zeolites with an overall Si / Al = 6.2 atomic ratio measured by FX prepared in Example 1 are mixed with 1 L of 0.1 N sodium hydroxide (NaOH) solution at 60 ° C. C for 30min. After cooling rapidly in ice water, the suspension is then filtered and the zeolite is washed at 50 ° C and dried overnight at 120 ° C. The modified dealuminated Y zeolite is then exchanged 3 times with a 1N solution of NH 4 NO 3 at a temperature of 80 ° C. to obtain the partially exchanged NH 4 + form. The zeolite is finally calcined at 450 ° C. for 2 hours under an air flow of 1 L / h / g of zeolite. Characterizations of zeolite Z2 measured by nitrogen adsorption / desorption, X-ray fluorescence, 27 AI and 29 Si NMR and pyridine adsorption followed by IR are given in Table 1.
Tableau 1 : Caractérisation des échantillons. Table 1: Characterization of the samples.
zéolithe Z2  zeolite Z2
zéolithe Z1  zeolite Z1
modifiée  modified
initiale  initial
conforme à  in accordance with
non modifiée  unmodified
l'invention  the invention
Si/AI global(FX) 6,2 4,7  Si / Global AI (FX) 6.2 4.7
% Alvi (RMN) 37 33  % Alvi (NMR) 37 33
SBET (m2/g) 778 743 SBET (m 2 / g) 778,743
Vol. mésoporeux (ml/g) 0, 15 0,28 (+86%) Flight. mesoporous (ml / g) 0.28 (+ 86%)
Vol. microporeux (ml/g) 0,28 0,25 (-11 %)Flight. microporous (ml / g) 0.28 0.25 (-11%)
Acidité de Bronsted (a.u.) 4,3 5,4 (+25%) Brønsted acidity (a.u.) 4.3 5.4 (+ 25%)
Préparation des catalyseurs Preparation of catalysts
Les supports de catalyseur selon l'invention contenant la zéolithe modifiée (Z2 conforme) ou non (Z1) sont fabriqués en utilisant 19,5 g de zéolithe mélangés à 80,5 g d'une matrice composée de boehmite tabulaire ultrafine ou gel d'alumine commercialisée sous le nom SB3 par la société Condéa Chemie Gmbh. Ce mélange de poudre est ensuite mélangé à une solution aqueuse contenant de l'acide nitrique à 66% poids (7% poids d'acide par gramme de gel sec) puis malaxé pendant 15 minutes. La pâte malaxée est ensuite extrudée à travers une filière de diamètre 1,2 mm. Les extrudés sont ensuite calcinés à 500°C durant 2 heures sous air. The catalyst supports according to the invention containing the modified zeolite (Z2 conforming) or not (Z1) are manufactured using 19.5 g of zeolite mixed with 80.5 g of a matrix composed of ultrafine tabular boehmite or gel of alumina marketed under the name SB3 by Condéa Chemie Gmbh. This powder mixture is then mixed with an aqueous solution containing nitric acid at 66% by weight (7% by weight of acid per gram of dry gel) and then kneaded for 15 minutes. The kneaded paste is then extruded through a die having a diameter of 1.2 mm. The extrudates are then calcined at 500 ° C. for 2 hours in air.
Les extrudés de support ainsi préparés sont imprégnés à sec par une solution d'un mélange d'heptamolybdate d'ammonium et de nitrate de nickel et calcinés sous air à 550°C in-situ dans le réacteur. Les teneurs pondérales en oxydes des catalyseurs obtenus sont indiquées dans le Tableau 2. The carrier extrudates thus prepared are dry impregnated with a solution of a mixture of ammonium heptamolybdate and nickel nitrate and calcined in air at 550 ° C. in situ in the reactor. The oxide weight contents of the catalysts obtained are shown in Table 2.
Les catalyseurs C1 et C2, sont ainsi préparés à partir des zéolithes non modifiées Z1 et modifiée conformément à l'invention Z2. Les teneurs pondérales en oxydes des catalyseurs obtenus sont indiquées dans le Tableau 2. Tableau 2 : Caractéristiques des catalyseurs. Catalysts C1 and C2 are thus prepared from unmodified zeolites Z1 and modified according to the invention Z2. The oxide weight contents of the catalysts obtained are shown in Table 2. Table 2: Characteristics of the catalysts.
C1 C2  C1 C2
Référence du catalyseur  Catalyst reference
(non conforme) (conforme)  (non-compliant) (compliant)
Zéolithe à la base du Z1 non  Zeolite at the base of Z1 no
Z2 modifiée  Z2 modified
catalyseur modifiée  modified catalyst
Mo03 (%pds) 12,3 12,3 Mo0 3 (% wt) 12.3 12.3
NiO (%pds) 3 3, 1  NiO (% wt) 3 3, 1
Si02 (% poids) global 14,3 13,9 Si0 2 (% wt) overall 14.3 13.9
Complément à 100%  100% complement
(majoritairement  (mostly
70,4 70,4  70.4 70.4
composé de Al203, % composed of Al 2 0 3 ,%
poids)  weight)
L'effluent hydrocarboné hydrotraité obtenu à l'issu de l'étape b/ est hydroisomérisé à hydrogène perdu dans un réacteur d'hydroisomérisation dans les conditions opératoires ci- dessous: The hydrotreated hydrocarbon effluent obtained at the end of step b / is hydroisomerized with hydrogen lost in a hydroisomerisation reactor under the operating conditions below:
WH (volume de charge / volume de catalyseur / heure) = 1 h"1 WH (load volume / catalyst volume / hour) = 1 hr -1
pression totale de travail: 5 MPa  total working pressure: 5 MPa
température : 300°C  temperature: 300 ° C
- rapport hydrogène / charge: 700 normaux litres / litre - Hydrogen / charge ratio: 700 normal liters / liter
La température de réaction est fixée de façon à atteindre une conversion brute (notée CB) égale à 70% poids. The reaction temperature is set so as to reach a gross conversion (denoted by CB) equal to 70% by weight.
On ajoute à la charge 50 ppm poids de diméthyl-disulfure afin de simuler les pressions partielles de H2S et de maintenir le catalyseur sous forme sulfurée. La charge ainsi préparée est injectée dans l'unité de test d'hydroisomérisation qui comprend un réacteur en lit fixe, à circulation ascendante de la charge ("up-flow"), dans lequel est introduit 100 ml de catalyseur. Le catalyseur est sulfuré par un mélange gazole de distillation directe/DMDS et aniline jusqu'à 320°C. Notons que toute méthode de sulfuration in-situ ou ex-situ est convenable. Une fois la sulfuration réalisée, la charge peut être transformée. Les conditions opératoires de l'unité de test sont indiquées précédemment. 50 ppm by weight of dimethyl disulfide is added to the feed in order to simulate the partial pressures of H 2 S and to maintain the catalyst in sulphurized form. The charge thus prepared is injected into the hydroisomerisation test unit which comprises a fixed-bed reactor with up-flow of the charge ("up-flow") into which 100 ml of catalyst is introduced. The catalyst is sulphurized with a straight-run diesel / DMDS and aniline mixture up to 320 ° C. It should be noted that any in situ or ex situ sulphurization method is suitable. Once the sulphurization is complete, the charge can be transformed. The operating conditions of the test unit are indicated above.
Le rendement en carburéacteur (kérosène, coupe 150-250°C, ci dessous Rdt Kéro) est égal au pourcentage poids de composés ayant un point d'ébullition compris entre 150 et 250°C dans les effluents. Le rendement en gazole (coupe 250°C+) est égal au pourcentage poids de composés ayant un point d'ébullition supérieur à 250°C dans les effluents. The yield of jet fuel (kerosene, 150-250 ° C. cut, below Yt Kero) is equal to the weight percentage of compounds having a boiling point of between 150 and 250 ° C. in the effluents. The gas oil yield (250 ° C + fraction) is equal to the weight percentage of compounds having a boiling point greater than 250 ° C in the effluents.
La température de 300°C est ajustée de manière à avoir une conversion de la fraction 150°C+ en fraction 150°C" inférieure à 5% en poids lors de l'hydroisomérisation dans le cas ou le catalyseur d'hydroisomérisation utilisée dans l'étape c) du procédé selon l'invention contient la zéolithe modifiée conformément à l'invention. Dans le Tableau 3, nous avons reporté la température les rendements en kérosène et gazole pour les catalyseurs décrits dans les exemples ci-dessus. The temperature of 300 ° C. is adjusted so as to have a conversion of the fraction 150 ° C + fraction 150 ° C " less than 5% by weight during the hydroisomerization in the case where the hydroisomerization catalyst used in the Step c) of the process according to the invention contains the modified zeolite according to the invention In Table 3, we have reported the temperature the yields of kerosene and gas oil for the catalysts described in the examples above.
Tableau 3 : Activités catalytiques des catalyseurs en hydroisomérisation. Table 3: Catalytic Activities of Catalysts in Hydroisomerization.
Rdt kérosène Rdt gazole (% pds) (% pds) Yield kerosene Yield diesel (% wt) (% wt)
C1 non conforme C1 non-compliant
(préparé à partir de 30 57  (prepared from 30 57
Z1 non modifiée)  Z1 unmodified)
C2 conforme C2 compliant
(préparé à partir de g 34  (prepared from g 34
61  61
Z3 modifiée selon  Z3 modified according to
l'invention)  the invention)
A une température de 300°C, le procédé mettant en œuvre, dans l'étape c) d'hydroisomérisation, un catalyseur contenant une zéolithe non modifiée entraîne la production d'une coupe légère 150X- à un rendement de 13% et donc la production de distillât moyens à un rendement inférieur par rapport à la mise en œuvre dans l'étape c) d'hydroisomérisation du procédé selon l'invention, d'un catalyseur contenant une zéolithe modifiée conformément à l'invention. Le procédé selon l'invention met donc en évidence que le catalyseur contenant une zéolithe modifiée selon l'invention et utilisé dans ledit procédé selon l'invention est plus actif que les catalyseurs non conformes pour obtenir un niveau de conversion de la fraction 150°C+ inférieur à 5 % poids, tout en permettant d'obtenir des rendements en distillats moyens supérieurs, et donc une meilleure sélectivité en distillais moyens, par rapport à un procédé d'hydroisomérisation mettant en œuvre un catalyseur non conforme contenant une zéolithe non modifiée ou modifiée de manière non conforme à l'invention. At a temperature of 300 ° C., the process employing, in the hydroisomerization step c), a catalyst containing an unmodified zeolite, produces a light 150 × -cutting at a yield of 13% and therefore the production of middle distillate at a lower yield compared with the implementation in step c) hydroisomerization of the process according to the invention, a catalyst containing a zeolite modified according to the invention. The method according to the invention thus demonstrates that the catalyst containing a zeolite modified according to the invention and used in said process according to the invention is more active than the non-compliant catalysts to obtain a conversion level of the fraction 150 ° C + less than 5% by weight, while making it possible to obtain higher middle distillate yields, and thus a better selectivity in middle distillates, compared to a hydroisomerisation process using a non-catalytic catalyst. conformant containing a zeolite unmodified or modified in a manner not in accordance with the invention.

Claims

REVENDICATIONS
5 1. Procédé de traitement de charges issues de source renouvelable comprenant les étapes suivantes : a) hydrotraitement de ladite charge en présence d'un catalyseur en lit fixe comprenant une fonction hydro-déshydrogénante comprenant au moins un métal du groupe VIII et/ou duA process for treating renewable feedstock feeds comprising the steps of: a) hydrotreating said feedstock in the presence of a fixed bed catalyst comprising a hydro-dehydrogenating function comprising at least one Group VIII metal and / or
) groupe VIB, pris seul ou en mélange et un support choisi dans le groupe formé par l'alumine, la silice, les silices-alumines, la magnésie, les argiles et les mélanges d'au moins deux de ces minéraux, ladite étape à d'hydrotraitement opérant à une température comprise entre 200 et 450°C, à une pression comprise entre 1 MPa et 10 MPa, à une vitesse spatiale horaire comprise entre 0,1 h"1 et 10 h"1 et en présence d'une quantité totale d'hydrogène) VIB group, taken alone or in mixture and a support selected from the group formed by alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals, said step hydrotreater operating at a temperature between 200 and 450 ° C, at a pressure of between 1 MPa and 10 MPa, at a space velocity of between 0.1 h "1 and 10 h " 1 and in the presence of a total amount of hydrogen
5 mélangée à la charge telle que le ratio hydrogène/charge soit compris entre 70 et 1000 Nm3 d'hydrogène/m3 de charge, b) séparation à partir de l'effluent issu de l'étape a) de l'hydrogène, des gaz et d'au moins une base hydrocarbonée, Mixed with the feed such that the hydrogen / feed ratio is between 70 and 1000 Nm 3 of hydrogen / m 3 of feed, b) separation from the effluent from step a) of hydrogen, gases and at least one hydrocarbon base,
D  D
c) hydroisomérisation d'au moins une partie de ladite base hydrocarbonée issue de l'étape b) en présence d'un catalyseur d'hydroisomérisation en lit fixe, ledit catalyseur comprenant au moins un métal hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII de la classification périodique et un support comprenant au c) hydroisomerization of at least a portion of said hydrocarbon base resulting from step b) in the presence of a fixed bed hydroisomerization catalyst, said catalyst comprising at least one hydro-dehydrogenating metal chosen from the group formed by the Group VIB and Group VIII of the Periodic Table and a carrier comprising at least one
5 moins une zéolithe Y désaluminée présentant un rapport atomique global initial de silicium sur aluminium compris entre 2,5 et 20, une fraction pondérale d'atome d'aluminium extra réseau initiale supérieure à 10%, par rapport à la masse totale de l'aluminium présent dans la zéolithe, un volume mésoporeux initial mesuré par porosimétrie à l'azote supérieur à 0,07 ml.g-1 , et un paramètre cristallin initial aO de la maille élémentaire compris entre 24,38 À et5 minus a dealuminated Y zeolite having an initial overall silicon to aluminum atomic ratio of between 2.5 and 20, a weight fraction of extra-initial network aluminum atom greater than 10%, relative to the total mass of the aluminum present in the zeolite, an initial mesoporous volume measured by nitrogen porosimetry greater than 0.07 ml.g-1, and an initial crystal parameter aO of the elemental mesh of between 24.38 Å and
0 24,30 A, ladite zéolithe étant modifiée par a') une étape de traitement basique consistant en le mélange de ladite zéolithe Y désaluminée avec une solution aqueuse basique, ladite solution aqueuse basique étant une solution de composés basiques choisis parmi les bases alcalines et les bases fortes non alcalines et au moins une étape c') de traitement thermique réalisée à une température comprise entre 200 et 700°C, ladite étape d'hydroisomérisation24.30 A, said zeolite being modified by a ') a basic treatment step consisting of the mixture of said dealuminated zeolite Y with a basic aqueous solution, said basic aqueous solution being a solution of basic compounds chosen from alkaline bases and the non-alkaline strong bases and at least one heat treatment step c ') carried out at a temperature of between 200 and 700 ° C., said hydroisomerisation step
5 étant effectuée à une température comprise entre 150 et 500°C, à une pression comprise entre 1 MPa et 10 MPa, à une vitesse spatiale horaire comprise entre 0,1 et 10 h-1 et en présence d'une quantité totale d'hydrogène mélangée à la charge telle que le ratio hydrogène/charge soit compris entre 70 et 1000 Nm3/m3 de charge, 5 being carried out at a temperature between 150 and 500 ° C, at a pressure of between 1 MPa and 10 MPa, at a space velocity of between 0.1 and 10 h -1 and in the presence of a total amount of hydrogen mixed with the feed such that the hydrogen / feed ratio is between 70 and 1000. Nm3 / m3 of load,
5 d) séparation, à partir de l'effluent issu de l'étape c) de l'hydrogène, des gaz et d'au moins une base gazole et d'une base kérosène. D) separating from the effluent from step c) hydrogen, gases and at least one gas oil base and a kerosene base.
2. Procédé selon la revendication 1 dans lequel les métaux du groupe VIII dudit catalyseur utilisé dans l'étape c) d'hydroisomérisation sont choisis parmi les métaux nobles du groupe VIII, et sont choisis parmi le platine et le palladium, pris seuls ou en mélange.  2. The process as claimed in claim 1, in which the metals of group VIII of said catalyst used in step c) of hydroisomerization are chosen from noble metals of group VIII, and are chosen from platinum and palladium, taken alone or in mixed.
0  0
3. Procédé selon l'une des revendications 1 ou 2 dans lequel la teneur en métal noble dudit catalyseur utilisé dans l'étape c) d'hydroisomérisation est comprise entre 0,01 et 10 % poids par rapport à la masse totale dudit catalyseur.  3. Method according to one of claims 1 or 2 wherein the noble metal content of said catalyst used in step c) of hydroisomerisation is between 0.01 and 10% by weight relative to the total weight of said catalyst.
5 4. Procédé selon la revendication 1 dans lequel ledit catalyseur utilisé dans l'étape c) d'hydroisomérisation comprend au moins un métal du groupe VIB en combinaison avec au moins un métal non noble du groupe VIII, la teneur en métal du groupe VIB étant comprise, en équivalent oxyde, entre 5 et 40 % en poids par rapport à la masse totale dudit catalyseur et la teneur en métal non noble du groupe VIII étant comprise, en équivalent oxyde, entre4. The process of claim 1 wherein said catalyst used in the hydroisomerization step c) comprises at least one Group VIB metal in combination with at least one Group VIII non-noble metal, the Group VIB metal content. being, in oxide equivalent, between 5 and 40% by weight relative to the total mass of said catalyst and the non-noble metal content of group VIII being, in oxide equivalent, between
0 0,5 et 10 % en poids par rapport à la masse totale dudit catalyseur. 0 0.5 and 10% by weight relative to the total mass of said catalyst.
5. Procédé selon l'une des revendications 1 à 4 dans lequel la zéolithe initiale Y désaluminée présente avant d'être modifiée un rapport atomique global initial de silicium sur aluminium compris entre 2,7 et 10,0. 5. Method according to one of claims 1 to 4 wherein the dealuminated initial zeolite Y has before being modified an initial overall atomic ratio of silicon on aluminum of between 2.7 and 10.0.
:5  5
6. Procédé selon l'une des revendications 1 à 5 dans lequel la zéolithe initiale Y désaluminée présente avant d'être modifiée une fraction pondérale d'atome d'aluminium extra réseau initiale supérieure 30% poids par rapport à la masse totale de l'aluminium présent dans la zéolithe.  6. Method according to one of claims 1 to 5 wherein the dealuminated initial zeolite Y has before modification a weight fraction of extra large initial network aluminum atom 30% by weight relative to the total mass of the aluminum present in the zeolite.
10  10
7. Procédé selon l'une des revendications 1 à 6 dans lequel les bases alcalines mises en oeuvre dans la solution aqueuse basique de l'étape a') sont choisies parmi les carbonates alcalins et les hydroxydes alcalins, et les bases non alcalines sont choisies parmi les ammoniums quaternaires, pris seules ou en mélange  7. Method according to one of claims 1 to 6 wherein the alkali bases used in the basic aqueous solution of step a ') are selected from alkali carbonates and alkali hydroxides, and non-alkaline bases are chosen among quaternary ammoniums, taken alone or as a mixture
$5 8. Procédé selon la revendication 7 dans lequel la solution aqueuse est une solution de carbonate de sodium ou d'hydroxyde de sodium. <~ The method of claim 7 wherein the aqueous solution is a solution of sodium carbonate or sodium hydroxide. < ~
9. Procédé selon l'une des revendications 1 à 8 dans lequel dans le cas ou l'étape a') de traitement basique consiste en le mélange de ladite zéolithe initiale Y désaluminée avec une solution aqueuse basique de composés choisis parmi les bases alcalines, le procédé de modification de ladite zéolithe comporte une étape b') d'au moins un échange partiel ou total desdits cations alcalins appartenant aux groupes IA et IIA de la classification périodique introduits lors de l'étape a), par des cations NH4 +. 9. Method according to one of claims 1 to 8 wherein in the case where the basic treatment step a ') consists of mixing said dealuminated initial zeolite Y with a basic aqueous solution of compounds selected from alkaline bases, the process for modifying said zeolite comprises a step b ') of at least one partial or total exchange of said alkaline cations belonging to groups IA and IIA of the periodic table introduced during step a), by NH 4 + cations .
10. Procédé selon l'une des revendications 1 à 8 dans lequel dans le cas ou l'étape a') de traitement basique consiste en le mélange de ladite zéolithe initiale Y désaluminée avec une solution aqueuse basique de composés choisis parmi les bases non alcalines choisies parmi les ammoniums quaternaires, pris seules ou en mélange, le procédé de modification de ladite zéolithe initiale Y désaluminée ne comporte pas d'étape b') d'au moins un échange partiel ou total intermédiaire. 10. Method according to one of claims 1 to 8 wherein in the case where the basic treatment step a ') consists of mixing said dealuminated initial zeolite Y with a basic aqueous solution of compounds selected from non-alkaline bases. chosen from quaternary ammoniums, taken alone or as a mixture, the process for modifying said dealuminated initial zeolite Y does not comprise step b ') of at least one partial or total intermediate exchange.
11. Procédé selon l'une des revendications 1 à 10 dans lequel les charges issues de sources renouvelables sont choisies parmi les huiles et graisses d'origine végétale ou animale, ou des mélanges de telles charges, contenant des triglycérides et/ou des acides gras libres et/ou des esters et lesdites huiles végétales pouvant être brutes ou raffinées, totalement ou en partie, et issues des végétaux suivants : colza, tournesol, soja, palme, palmiste, olive, noix de coco, jatropha, et les graisses animales étant choisies parmi le lard ou les graisses composées de résidus de l'industrie alimentaire ou issus des industries de la restauration. 11. Method according to one of claims 1 to 10 wherein the charges from renewable sources are chosen from oils and fats of vegetable or animal origin, or mixtures of such fillers, containing triglycerides and / or fatty acids. and / or esters and said vegetable oils which may be raw or refined, wholly or in part, and derived from the following plants: rapeseed, sunflower, soya, palm, palm kernel, olive, coconut, jatropha, and animal fats being selected from fat or fat composed of residues from the food industry or from the food service industries.
EP10787509A 2009-11-10 2010-11-05 Process for hydrotreatment and hydroisomerization of feedstocks resulting from a renewable source using a zeolite modified by a basic treatment Withdrawn EP2499221A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0905403A FR2952378B1 (en) 2009-11-10 2009-11-10 METHOD FOR HYDROTREATING AND HYDROISOMERIZING RENEWABLE SOURCE CHARGES USING A MODIFIED ZEOLITHE BY BASIC TREATMENT
PCT/FR2010/000738 WO2011058241A1 (en) 2009-11-10 2010-11-05 Process for hydrotreatment and hydroisomerization of feedstocks resulting from a renewable source using a zeolite modified by a basic treatment

Publications (1)

Publication Number Publication Date
EP2499221A1 true EP2499221A1 (en) 2012-09-19

Family

ID=42237390

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10787509A Withdrawn EP2499221A1 (en) 2009-11-10 2010-11-05 Process for hydrotreatment and hydroisomerization of feedstocks resulting from a renewable source using a zeolite modified by a basic treatment

Country Status (4)

Country Link
US (1) US20110108460A1 (en)
EP (1) EP2499221A1 (en)
FR (1) FR2952378B1 (en)
WO (1) WO2011058241A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2970259B1 (en) * 2011-01-07 2014-07-18 IFP Energies Nouvelles HYDROCRACKING PROCESS USING A ZEOLITHIC CATALYST CONTAINING TWO DISTINCT HYDROGENANT FUNCTIONS
FI126203B (en) * 2011-07-06 2016-08-15 Upm Kymmene Corp Process for the production of hydrocarbon components
EP2880006B1 (en) 2012-08-03 2017-12-20 ExxonMobil Chemical Patents Inc. Non-symmetric catalysts comprising salan ligands
US9365661B2 (en) 2012-08-03 2016-06-14 Exxonmobil Chemical Patents Inc. Polyalphaolefins prepared using modified salan catalyst compounds
CN104364321A (en) 2012-08-03 2015-02-18 埃克森美孚化学专利公司 Halogenated catalysts comprising Salan ligands
CA2877754C (en) 2012-08-03 2018-12-11 Exxonmobil Chemical Patents Inc. Catalysts comprising salan ligands
CN104379680B (en) 2012-08-03 2017-11-28 埃克森美孚化学专利公司 The polyolefin of ethenyl blocking with long chain branching
EP2914636A4 (en) 2012-11-02 2016-07-06 Exxonmobil Chem Patents Inc Supported salan catalysts
FR2999596B1 (en) * 2012-12-19 2015-11-13 IFP Energies Nouvelles METHOD FOR CONVERTING CHARGES FROM RENEWABLE SOURCES TO MARINE FUEL BASES
US9150676B2 (en) 2013-06-20 2015-10-06 Exxonmobil Chemical Patents Inc. Thio-salalen catalyst
WO2014204625A1 (en) 2013-06-20 2014-12-24 Exxonmobil Chemical Patents Inc. Salenol catalyst
WO2014204681A1 (en) 2013-06-20 2014-12-24 Exxonmobil Chemical Patents Inc. Long-bridged salen catalyst
TW201602336A (en) 2014-06-09 2016-01-16 W R 康格雷氏公司 Method for catalytic deoxygenation of natural oils and greases
US20220073359A1 (en) * 2018-12-20 2022-03-10 Zeopore Technologies Nv Method for generating new faujasite zeolites

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116792A (en) * 1979-10-15 1992-05-26 Union Oil Company Of California Hydrocarbon conversion catalyst for use in selectively making middle distillates
US4645750A (en) * 1984-08-21 1987-02-24 Union Caride Corporation Urea rejuvenation of catalysts
US4992605A (en) 1988-02-16 1991-02-12 Craig Wayne K Production of hydrocarbons with a relatively high cetane rating
US5118482A (en) * 1989-06-30 1992-06-02 Shell Oil Company Process for realuminating zeolites
US5057203A (en) * 1990-05-07 1991-10-15 Mobil Oil Corporation Ultrastable Y containing framework gallium
US5646082A (en) * 1993-06-24 1997-07-08 Cosmo Research Institute Crystalline aluminosilicate, process for producing the same, and catalyst employing the same for catalytic cracking of hydrocarbon oil
US5601798A (en) * 1993-09-07 1997-02-11 Pq Corporation Process for preparing zeolite Y with increased mesopore volume
CA2149685C (en) 1994-06-30 1999-09-14 Jacques Monnier Conversion of depitched tall oil to diesel fuel additive
US6635681B2 (en) * 2001-05-21 2003-10-21 Chevron U.S.A. Inc. Method of fuel production from fischer-tropsch process
US7232935B2 (en) * 2002-09-06 2007-06-19 Fortum Oyj Process for producing a hydrocarbon component of biological origin
US6902664B2 (en) * 2002-11-08 2005-06-07 Chevron U.S.A. Inc. Extremely low acidity USY and homogeneous, amorphous silica-alumina hydrocracking catalyst and process
EP1661859A1 (en) * 2004-11-26 2006-05-31 Total France Zeolite compositions and preparation and use thereof
PT1681337E (en) 2005-01-14 2010-12-24 Neste Oil Oyj Method for the manufacture of hydrocarbons
US8142527B2 (en) * 2005-03-21 2012-03-27 Ben-Gurion University Of The Negev Research And Development Authority Production of diesel fuel from vegetable and animal oils
DK1741768T4 (en) 2005-07-04 2023-04-24 Neste Oyj Process for the production of diesel hydrocarbons
US8039682B2 (en) * 2008-03-17 2011-10-18 Uop Llc Production of aviation fuel from renewable feedstocks
US7960597B2 (en) * 2008-07-24 2011-06-14 Chevron U.S.A. Inc. Conversion of vegetable oils to base oils and transportation fuels
FR2952379B1 (en) * 2009-11-10 2012-05-11 Inst Francais Du Petrole HYDROCRACKING PROCESS EMPLOYING A MODIFIED ZEOLITHE BY BASIC TREATMENT
FR2952380B1 (en) * 2009-11-10 2012-05-18 Inst Francais Du Petrole PROCESS FOR PRODUCING MEDIUM DISTILLATE FROM FISCHER TROPSCH WAXES USING ZEOLITHE CATALYST MODIFIED BY BASIC TREATMENT

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011058241A1 *

Also Published As

Publication number Publication date
FR2952378A1 (en) 2011-05-13
FR2952378B1 (en) 2012-04-20
WO2011058241A1 (en) 2011-05-19
US20110108460A1 (en) 2011-05-12

Similar Documents

Publication Publication Date Title
WO2011058241A1 (en) Process for hydrotreatment and hydroisomerization of feedstocks resulting from a renewable source using a zeolite modified by a basic treatment
EP2228423B1 (en) Method for hydrodeoxygenation of oils or fats with limited conversion to decarboxylation with an heterogeneous catalyst
EP2210663B1 (en) Method for transforming feedstocks from renewable sources into top-quality fuel by implementing a molybdenum-based catalyst
EP2138552B1 (en) Conversion process of feedstocks derived from renewable sources to diesel fuel basestocks of good quality using a zeolite catalyst
EP2319902B1 (en) Hydrocracking method using a zeolite modified by a basic treatment
EP2138553B1 (en) Method for converting charges from renewable sources based on high-quality diesel fuels implementing a zeolitic catalyst with no intermediate gas-liquid separation
EP2316909B1 (en) Process for hydrotreating renewable sources with indirect heating implementing a molybdenum catalyst
EP2474357B1 (en) Process of preparation of a hydrocracking zeolite catalyst containing two separate hydrogenating functions
EP2654946A1 (en) Spherical material based on heteropolyanions trapped in a mesostructured oxide matrix and use thereof as catalyst in hydrocarbon refining processes
WO2011058242A1 (en) Process for producing middle distillate from fischer-tropsch waxes using a catalyst based on a zeolite modified by a basic treatment
WO2010015737A1 (en) Process for producing middle distillates by hydrocracking of feedstocks resulting from the fischer-tropsch process in the presence of a catalyst comprising an izm-2 solid
FR2934796A1 (en) IZM-2 ZEOLITE CATALYST AND METHOD FOR HYDROCONVERSION / HYDROCRACKING HYDROCARBON LOADS
FR2950895A1 (en) Treating charges comprises hydrotreating charges in presence of fixed bed catalyst, separating gas and hydrocarbon base from effluent of hydrogen, hydroisomerizing the base in presence of catalyst and separating gas and diesel base
EP2316908A1 (en) Process for hydrotreating renewable sources with indirect heating
WO2011045482A1 (en) Method for the hydroprocessing and hydroisomerisation of oils originating from renewable sources, using a modified zeolite
WO2011045484A1 (en) Method for producing middle distillates from fischer-tropsch waxes using a modified zeolite catalyst
FR2981942A1 (en) Method for processing load output from renewable source e.g. free fatty acids, involves allowing separated portion of effluent to undergo fractional distillation to obtain distillate fraction of liquid at moderate value

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120611

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150602