EP2487665A1 - Data transfer method and line of sight independent system - Google Patents

Data transfer method and line of sight independent system Download PDF

Info

Publication number
EP2487665A1
EP2487665A1 EP12000762A EP12000762A EP2487665A1 EP 2487665 A1 EP2487665 A1 EP 2487665A1 EP 12000762 A EP12000762 A EP 12000762A EP 12000762 A EP12000762 A EP 12000762A EP 2487665 A1 EP2487665 A1 EP 2487665A1
Authority
EP
European Patent Office
Prior art keywords
electromagnetic radiation
traffic
receiver
car
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12000762A
Other languages
German (de)
French (fr)
Other versions
EP2487665B1 (en
Inventor
Christoph Ullrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG filed Critical Audi AG
Publication of EP2487665A1 publication Critical patent/EP2487665A1/en
Application granted granted Critical
Publication of EP2487665B1 publication Critical patent/EP2487665B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/164Centralised systems, e.g. external to vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • H01Q15/165Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal composed of a plurality of rigid panels
    • H01Q15/166Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal composed of a plurality of rigid panels sector shaped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/18Reflecting surfaces; Equivalent structures comprising plurality of mutually inclined plane surfaces, e.g. corner reflector

Definitions

  • the invention relates to a method for visual connection-independent data transmission from a transmitter to a receiver in a car-to-car or car-to-infrastructure communication system.
  • the invention also relates to a system for visual connection-independent data transmission.
  • Car-to-X (Car-to-Car) communication services used in future road vehicles are known in the art. These communication services allow the exchange of data and information between motor vehicles with each other or between motor vehicles and traffic facilities.
  • the communication standard is recorded in IEEE 802.11p.
  • the communication between vehicles with each other and vehicles and infrastructure should be used in particular to warn subsequent, oncoming and laterally arriving traffic from dangerous situations.
  • One possible scenario is, for example, the warning of road users from fast-moving emergency vehicles with blue light, in order to avoid a possible collision at traffic light intersections with the blue light vehicle crossing at red.
  • an active node is usually used (see. EP 21 78 064 and DE 10 2008 015 778 ). This receives the signals from the transmitter, evaluates them in their own electronics and forwards them to the recipient after processing. Such systems are very expensive, require external power supply and are maintenance-prone by the complex electronics.
  • reflectors have long been in use, making visible a structure otherwise permeable to electromagnetic waves. Examples of such devices are those in DE 10 2006 019 170 and DE 29 52 10 19 described reflectors, and the usual in sailing ships so-called Topsets. However, these reflectors are not used in the context of data transmission.
  • a device for car-to-car communication in which the emitted from a transmitter of a first motor vehicle electromagnetic wave is received by a receiver of a second motor vehicle.
  • the direction of reception is hereby aligned with the weakly bent wave, so that the communication can be improved.
  • the car-to-car or car-to-infrastructure communication system can be distinguished, in particular, by the fact that a motor vehicle acquires its own driving data (speed, direction of movement, position, etc.) and this data is recorded via radio to other road users, for example, motor vehicles and / or traffic infrastructure objects (Traffic signal, traffic information display unit, traffic control center, etc.).
  • the electromagnetic radiation may in particular be radio waves (eg WLAN, UMTS, etc.).
  • the data which are encoded in the electromagnetic radiation may in particular be data relating to driving information of the vehicle in which the transmitter is present.
  • the reflector device can in particular be designed such that it has a very high reflection coefficient for the respective frequency band of the electromagnetic radiation emitted by the transmitter. When arranging the reflector device, the desired reflection direction can be determined in particular via the laws of geometric optics from the main incident direction of the electromagnetic radiation emitted by the transmitter.
  • transmitters and receivers in the respective vehicles can each also be operated as a receiver or transmitter
  • This method is particularly easy to implement or implement in road traffic. All that is required is to provide a suitable reflector device and attach and align it at a selected point. For the reflector device no own power supply is necessary, so that their operation can be done free of charge after a single installation.
  • the very simple construction of the reflector device allows it to be little or no maintenance. An elaborate and maintenance-intensive active node, which acts as a receiver and re-transmitter, can be omitted. Still, a very reliable car-to-car or car-to-infrastructure communication ensured. The process is robust and not prone to error.
  • the reflector device is arranged on a building flanking a traffic route.
  • it may be provided that it is arranged on a traffic signal system, in particular a traffic light system.
  • the reflector device is placed in a curve or in the vicinity of a curve of a traffic route.
  • the reflector device is arranged in a junction of several traffic routes, in particular in the center of an intersection.
  • the reflector device is arranged at an intersection of a first and a second traffic route so that it reflects the emitted substantially in the direction of the first traffic route electromagnetic radiation substantially in the direction of the second traffic route. If the vehicle is located with the transmitter on the first traffic route and the vehicle with the receiver on the second traffic route, it may not be ensured on the basis of the intersection of the two traffic routes that there is a line of sight connection between transmitter and receiver. For example, this may be interrupted by a building flanking the traffic routes between the first and the second traffic route. Then, the reflector device still allows car-to-car communication between the transmitter and receiver of the two vehicles, since the reflector device is arranged at the intersection of the two traffic routes.
  • the beam angle of the electromagnetic radiation emitted by the transmitter can be suitably changed by the reflector so that the electromagnetic radiation is redirected to the receiver.
  • the reflector can in particular have a strong preferred direction.
  • the reflector be designed and arranged so that the angle between incident and reflected electromagnetic radiation is 90 °. This embodiment is particularly advantageous at intersections, the traffic routes intersect at 90 ° angle, the reflector device is then particularly preferably mounted in the middle of the intersection.
  • the electromagnetic radiation has a frequency in the range of 4 GHz to 7 GHz, and in particular a frequency in the range 5.8 GHz to 6 GHz. Particularly preferred here is a frequency of 5.85 GHz to 5.925 GHz.
  • This range corresponds to the Dedicated Short Range Communication (DSRC) frequency band, which results from the standard IEEE 802.11p.
  • DSRC Dedicated Short Range Communication
  • all other arbitrary frequencies can be provided within the frequency bands, which are defined in the standard IEEE 802.11 or IEEE 802.11p.
  • the frequency of the electromagnetic radiation used in the method is then optimally adapted to the frequency bands usually used in car-to-car or car-to-infrastructure communication systems.
  • the system according to the invention serves for the visual connection-independent data transmission from a transmitter to a receiver in traffic. It comprises a transmitter, which is designed to emit electromagnetic radiation in which data is coded and which is present in a vehicle or in a traffic infrastructure object. It also comprises a receiver which is adapted to receive the electromagnetic radiation and which is present in a vehicle or in a traffic infrastructure object. Finally, it also includes a reflector device, which is designed to at least partially reflect the emitted electromagnetic radiation, and which can be arranged so that the emitted electromagnetic radiation can be received by the receiver.
  • the reflector device comprises at least one planar reflector element made of metal, which may be in particular a sheet metal.
  • the reflector device can then be produced very inexpensively, for example, by welding the sheets.
  • This embodiment is extremely robust, mechanically stable, low-maintenance, weather-resistant, low error prone and at the same time guarantees a very effective reflection of electromagnetic radiation.
  • the reflector device comprises at least three reflector elements, which are arranged to each other so that they form outer sides of a pyramid or a cube.
  • the pyramid or the cube can then be arranged in particular with respect to perpendicular traffic routes so that at the intersection of the traffic routes have edges of the pyramid or the cube in the direction of the traffic routes.
  • This embodiment of the reflector device is particularly suitable for mounting at the intersection of road intersections or T-intersections.
  • the shape of the reflector device can also be derived from that of a pyramid, in that the reflector elements are configured convexly curved. Then the incident electromagnetic radiation can be reflected in many different directions.
  • Fig. 1 shows in plan two roads 2a and 2b, which meet at a road junction 3 perpendicular.
  • the streets 2a and 2b are flanked on all sides by adjacent buildings.
  • the buildings 5a, 5b, 5c and 5d complicate or prevent a direct line of sight between the road canyons formed by the roads 2a and 2b.
  • Carts 1 a and 1 c drive in the opposite direction on the road 2a and are in direct line of sight with each other.
  • electronic communication devices belonging to a car-to-car communication system are installed in all of the vehicles 1 a to 1 c. These devices can serve both as a transmitter and as a receiver for radio frequency 5.8 GHz.
  • the motor vehicle 1a detects its current position and speed and transmits this data via a radio link to other road users.
  • the car-to-car communication device is ready in the motor vehicle 1a, which can emit radio radiation as a transmitter S.
  • a similar device is provided in the motor vehicle 1c, which serves as a receiver E1 for this electromagnetic radiation. Since there is a direct line of sight between the vehicles 1 a and 1 c, a direct transmission of the data via an electromagnetic radio beam R3 from the transmitter S to the receiver E1 is possible.
  • a reflector device in the form of a reflector pyramid 4 is in the middle of the intersection 3, that is at the intersection of the streets 2a and 2b, attached.
  • This reflector pyramid is constructed so that it has a square base.
  • the pyramid forming side surfaces are formed by welded together metal sheets, which are able to reflect the electromagnetic radiation of 5.8 GHz particularly well.
  • the reflector pyramid 4 is attached to a traffic light installation 6 in such a way that the tip of the pyramid points perpendicular to the road surface at the intersection of the roads 2a and 2b.
  • the reflector pyramid 4 is in this case aligned so that two of its edges facing in the direction of the course of the road 2a and two of its edges in the direction of the course of the road 2b.
  • the electromagnetic radiation emitted by the transmitter S in the beam direction R1 then impinges on the reflector pyramid 4 and is reflected there at an angle ⁇ in the direction of the road 2b.
  • the reflected radio beam is denoted by R2. This beam R2 can now be easily received by the receiver E of the motor vehicle 1b.
  • the reflector pyramid 4 of the radio beam R1 is deflected so that it meets as a radio beam R2 to the receiver E, so that despite the lack of a line of sight, a car-to-car communication between the cars 1 a and 1b is possible.
  • the reflector device is neither aligned nor designed such that it sends back the electromagnetic waves in the direction of irradiation (as in the top set), nor evenly distributes them in space.
  • the Figs. 3A to 3C show further possible road constellations and arrangements of a reflector device.
  • the reflector device is formed in these embodiments as a reflector cube, wherein in the FIGS. 3A to 3C Cube surfaces shown in plan must not necessarily be formed of reflective material. However, the vertical cube side surfaces are again made of metal sheets welded together.
  • the intersection 3 is formed as a T-junction of two roads 2c and 2d. Direct radio communication between transmitter S and receiver E is prevented by a building 5.
  • the reflector cube 7 is aligned at the T-crossing point so that, according to the laws of geometric optics, the radio beam R1 emitted by the transmitter S can reach the receiver E as a reflected radio-ray R2. A car-to-car communication is thereby made possible.
  • Fig. 3B shows a curve 8 between the streets 2c and 2d, in turn, a building 5 prevents the direct radio communication between transmitter S and receiver E.
  • the reflector cube 7 is now mounted in the curve 8 on the flanking building 5e and in turn allows a 90 ° reflection of the incoming electromagnetic radiation, ie the rays R1 and R2 are perpendicular to each other.
  • Fig. 3C shows a situation in which the roads 2c and 2d do not intersect at right angles to the intersection 3.
  • a geometrical situation can again be established which allows the electromagnetic beam R1 emitted by the transmitter S to reach the receiver E as a ray R2 by reflection on the reflector cube 7. It can be seen that the invention improves car-to-car communication, especially in the area of intersections in densely built-up areas.
  • Fig. 4 shows a further possible embodiment of a reflector device 9, which comprises four convex curved reflector elements 10.
  • a reflector device 9 which comprises four convex curved reflector elements 10.
  • this reflector device 9 as well as the reflector pyramid 4 in Fig. 1 and 2 attached to a traffic light system, it is ensured that the motor vehicle 1b can receive the electromagnetic radiation R2 both very well when he is far away from the traffic light system 6 or is very close to her.
  • a very good reception is ensured even when the motor vehicle 1b is already almost below the reflector device 9 on the intersection 3.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)

Abstract

The data related to electromagnetic radiation (R1) of a transmitter (S) in a vehicle (1a) or in a transport infrastructure object, is encoded. Reflectors are adapted to electromagnetic radiation, to emit partially reflected electromagnetic radiation (R2). The reflectors are arranged so that the emitted electromagnetic radiations are received by a receiver (E) located in vehicle or in transport infrastructure object. The partially reflected electromagnetic radiation is received by receiver. An independent claim is included for system for visual connection independent data transmission from transmitter to receiver in car-to-car or car-to-infrastructure communication system.

Description

Die Erfindung betrifft ein Verfahren zur sichtverbindungsunabhängigen Datenübertragung von einem Sender zu einem Empfänger in einem Car-to-Car oder Car-to-Infrastructure Kommunikationssystem. Die Erfindung betrifft auch ein System zur sichtverbindungsunabhängigen Datenübertragung.The invention relates to a method for visual connection-independent data transmission from a transmitter to a receiver in a car-to-car or car-to-infrastructure communication system. The invention also relates to a system for visual connection-independent data transmission.

Aus dem Stand der Technik sind Car-to-X (Car-to-Car bzw. Car-to-Infrastructure) Kommunikationsdienste bekannt, die in zukünftigen Straßenfahrzeugen eingesetzt werden. Diese Kommunikationsdienste ermöglichen den Austausch von Daten und Informationen zwischen Kraftfahrzeugen untereinander oder zwischen Kraftfahrzeugen und Verkehrseinrichtungen. Der Kommunikationsstandard ist in IEEE 802.11p festgehalten. Die Kommunikation zwischen Fahrzeugen untereinander und Fahrzeugen und Infrastruktur soll insbesondere eingesetzt werden, um nachfolgenden, entgegenkommenden und seitlich eintreffenden Verkehr vor Gefahrensituationen zu warnen. Ein mögliches Szenario ist beispielsweise auch die Warnung von Verkehrsteilnehmern vor schnell fahrenden Einsatzfahrzeugen mit Blaulicht, um eine mögliche Kollision an Ampelkreuzungen mit dem bei Rot kreuzenden Blaulichtfahrzeug zu vermeiden.Car-to-X (Car-to-Car) communication services used in future road vehicles are known in the art. These communication services allow the exchange of data and information between motor vehicles with each other or between motor vehicles and traffic facilities. The communication standard is recorded in IEEE 802.11p. The communication between vehicles with each other and vehicles and infrastructure should be used in particular to warn subsequent, oncoming and laterally arriving traffic from dangerous situations. One possible scenario is, for example, the warning of road users from fast-moving emergency vehicles with blue light, in order to avoid a possible collision at traffic light intersections with the blue light vehicle crossing at red.

Da gemäß dem IEEE 802.11p Standard die Kommunikation bei vergleichsweise hohen Frequenzen von typischerweise 5,8 GHz stattfindet, ist für den Datenaustausch sogenannte Line-of-Sight-Propagation erforderlich. Das bedeutet, dass in vielen Fällen direkter Sichtkontakt zwischen Sender und Empfänger der Nachricht vorhanden sein muss. Ist der direkte Sichtkontakt beispielsweise durch Gebäude eingeschränkt, ist eine Kommunikation nur unzureichend oder überhaupt nicht möglich.Since, according to the IEEE 802.11p standard, the communication takes place at comparatively high frequencies of typically 5.8 GHz, so-called line-of-sight propagation is required for the data exchange. This means that in many cases direct visual contact between sender and receiver of the message must be present. If direct visual contact is restricted, for example, by buildings, communication is insufficient or not possible at all.

In bisherigen Ansätzen zur Lösung dieses Problems wird in der Regel ein aktiver Knoten eingesetzt (vgl. EP 21 78 064 und DE 10 2008 015 778 ). Dieser empfängt die Signale vom Sender, wertet sie in einer eigenen Elektronik aus und leitet sie nach Bearbeitung an den Empfänger weiter. Solche Systeme sind sehr teuer, benötigen externe Stromversorgung und sind durch die komplexe Elektronik wartungsanfällig.In previous approaches to solve this problem, an active node is usually used (see. EP 21 78 064 and DE 10 2008 015 778 ). This receives the signals from the transmitter, evaluates them in their own electronics and forwards them to the recipient after processing. Such systems are very expensive, require external power supply and are maintenance-prone by the complex electronics.

In anderen Bereichen, insbesondere der Radarortung, sind bereits seit längerem Reflektoren im Einsatz, die eine sonst für elektromagnetische Wellen durchlässige Struktur sichtbar machen. Beispiele für solche Vorrichtungen sind die in DE 10 2006 019 170 und DE 29 52 10 19 beschriebenen Reflektoren, sowie die bei Segelschiffen üblichen sogenannten Topsets. Diese Reflektoren werden jedoch nicht im Rahmen einer Datenübertragung eingesetzt.In other areas, in particular radar tracking, reflectors have long been in use, making visible a structure otherwise permeable to electromagnetic waves. Examples of such devices are those in DE 10 2006 019 170 and DE 29 52 10 19 described reflectors, and the usual in sailing ships so-called Topsets. However, these reflectors are not used in the context of data transmission.

Aus der JP 2005 17 42 37 A ist eine Vorrichtung zur Car-to-Car Kommunikation bekannt, bei der die von einem Transmitter eines ersten Kraftwagens ausgesendete elektromagnetische Welle von einem Empfänger eines zweiten Kraftwagens empfangen wird. Die Empfangsrichtung wird hierbei auf die schwach gebeugte Welle ausgerichtet, sodass sich die Kommunikation verbessern lässt.From the JP 2005 17 42 37 A a device for car-to-car communication is known, in which the emitted from a transmitter of a first motor vehicle electromagnetic wave is received by a receiver of a second motor vehicle. The direction of reception is hereby aligned with the weakly bent wave, so that the communication can be improved.

Aus der DE 10 2007 042 792 A1 ist ein Verfahren zur Umfeldüberwachung für ein Kraftfahrzeug bekannt. Dieses kann sich einer sichtverbindungsunabhängigen Car-to-Car Kommunikation bedienen, die auf Funk basiert. Die Reaktion des Fahrzeugs lässt sich auf das Verhalten anderer Verkehrsteilnehmer abstimmen.From the DE 10 2007 042 792 A1 a method for environmental monitoring for a motor vehicle is known. This can use visibility-independent car-to-car communication based on radio. The reaction of the vehicle can be tuned to the behavior of other road users.

Es ist Aufgabe der Erfindung, ein einfach zu implementierendes Verfahren sowie ein kostengünstiges und wartungsarmes System zur sichtverbindungsunabhängigen Datenübertragung von einem Sender zu einem Empfänger im Straßenverkehr bereitzustellen.It is an object of the invention to provide an easy-to-implement method and a low-cost and low-maintenance system for visual connection-independent data transmission from a transmitter to a receiver in traffic.

Diese Aufgabe wird durch ein Verfahren, welches die Merkmale des Patentanspruchs 1 aufweist, sowie ein System mit den Merkmalen des Patentanspruchs 5 gelöst.This object is achieved by a method having the features of claim 1, and a system having the features of claim 5.

Die Erfindung betrifft ein Verfahren zur sichtverbindungsunabhängigen Datenübertragung von einem Sender zu einem Empfänger in einem Car-to-Car oder Car-to-Infrastructure Kommunikationssystem, und umfasst die folgenden Schritte:

  • Aussenden von elektromagnetischer Strahlung, in der Daten codiert sind, durch den Sender, welcher in einem Fahrzeug oder in einem Verkehrsinfrastrukturobjekt vorliegt;
  • Bereitstellen einer Reflektorvorrichtung, welche dazu ausgebildet ist, die ausgesendete elektromagnetische Strahlung zumindest teilweise zu reflektieren;
  • Anordnen der Reflektorvorrichtung, so dass die ausgesendete elektromagnetische Strahlung vom Empfänger empfangen werden kann; und
  • Empfangen der elektromagnetischen Strahlung durch den Empfänger, welcher in einem Fahrzeug oder in einem Verkehrsinfrastrukturobjekt vorliegt.
The invention relates to a method for view-independent data transmission from a transmitter to a receiver in a car-to-car or car-to-infrastructure communication system, and comprising the following steps:
  • Transmitting electromagnetic radiation in which data is encoded by the transmitter which is present in a vehicle or in a traffic infrastructure object;
  • Providing a reflector device which is designed to at least partially reflect the emitted electromagnetic radiation;
  • Arranging the reflector device so that the emitted electromagnetic radiation can be received by the receiver; and
  • Receiving the electromagnetic radiation by the receiver, which is present in a vehicle or in a traffic infrastructure object.

Das Car-to-Car oder Car-to-Infrastructure Kommunikationssystem kann sich insbesondere dadurch auszeichnen, dass ein Kraftwagen eigene Fahrdaten (Geschwindigkeit, Bewegungsrichtung, Position etc.) erfasst und diese Daten über Funk anderen Verkehrsteilnehmern, zum Beispiel Kraftwägen, und/oder Verkehrsinfrastrukturobjekten (Lichtsignalanlage, Verkehrsinformationsanzeigeeinheit, Verkehrsleitstelle etc.) bereitstellt. Bei der elektromagnetischen Strahlung kann es sich insbesondere um Funkwellen (z. B. WLAN, UMTS etc.) handeln. Bei den Daten, welche in der elektromagnetischen Strahlung codiert sind, kann es sich insbesondere um solche Daten handeln, die Fahrinformationen des Fahrzeugs betreffen, in welchem der Sender vorliegt. Die Reflektorvorrichtung kann insbesondere so ausgebildet sein, dass sie für das jeweilige Frequenzband der vom Sender ausgesendeten elektromagnetischen Strahlung einen sehr hohen Reflektionskoeffizienten aufweist. Beim Anordnen der Reflektorvorrichtung kann die Sollreflektionsrichtung insbesondere über die Gesetze der geometrischen Optik aus der Haupteinfallsrichtung der vom Sender ausgestrahlten elektromagnetischen Strahlung ermittelt werden. Insbesondere können Sender und Empfänger in den jeweiligen Fahrzeugen jeweils auch als Empfänger bzw. Sender betrieben werdenThe car-to-car or car-to-infrastructure communication system can be distinguished, in particular, by the fact that a motor vehicle acquires its own driving data (speed, direction of movement, position, etc.) and this data is recorded via radio to other road users, for example, motor vehicles and / or traffic infrastructure objects (Traffic signal, traffic information display unit, traffic control center, etc.). The electromagnetic radiation may in particular be radio waves (eg WLAN, UMTS, etc.). The data which are encoded in the electromagnetic radiation may in particular be data relating to driving information of the vehicle in which the transmitter is present. The reflector device can in particular be designed such that it has a very high reflection coefficient for the respective frequency band of the electromagnetic radiation emitted by the transmitter. When arranging the reflector device, the desired reflection direction can be determined in particular via the laws of geometric optics from the main incident direction of the electromagnetic radiation emitted by the transmitter. In particular, transmitters and receivers in the respective vehicles can each also be operated as a receiver or transmitter

Dieses Verfahren ist besonders einfach zu implementieren bzw. im Straßenverkehr umzusetzen. Es muss lediglich eine geeignete Reflektorvorrichtung bereitgestellt und an einem ausgewählten Punkt angebracht und ausgerichtet werden. Für die Reflektorvorrichtung ist keine eigene Stromversorgung notwendig, so dass ihr Betrieb nach einmaliger Installation kostenfrei erfolgen kann. Die sehr einfache Konstruktion der Reflektorvorrichtung erlaubt, dass sie kaum oder überhaupt nicht gewartet werden muss. Ein aufwändiger und wartungsintensiver aktiver Knoten, welcher als Empfänger und Re-Transmitter wirkt, kann entfallen. Dennoch ist eine sehr zuverlässige Car-to-Car bzw. Car-to-Infrastructure Kommunikation sichergestellt. Das Verfahren ist robust und wenig fehleranfällig.This method is particularly easy to implement or implement in road traffic. All that is required is to provide a suitable reflector device and attach and align it at a selected point. For the reflector device no own power supply is necessary, so that their operation can be done free of charge after a single installation. The very simple construction of the reflector device allows it to be little or no maintenance. An elaborate and maintenance-intensive active node, which acts as a receiver and re-transmitter, can be omitted. Still, a very reliable car-to-car or car-to-infrastructure communication ensured. The process is robust and not prone to error.

Vorzugsweise wird die Reflektorvorrichtung an einem einen Verkehrsweg flankierenden Gebäude angeordnet. Alternativ oder zusätzlich kann vorgesehen sein, dass sie an einer Lichtsignalanlage, insbesondere einer Ampelanlage, angeordnet wird. Es kann auch vorgesehen sein, dass die Reflektorvorrichtung in einer Kurve oder in der Nähe einer Kurve eines Verkehrsweges platziert wird. Schließlich kann auch vorgesehen sein, dass die Reflektorvorrichtung in einem Knotenpunkt mehrerer Verkehrswege, insbesondere im Zentrum einer Kreuzung, angeordnet wird. Diese Positionen für die Reflektorvorrichtung sind besonders geeignet, um eine einfache, unkomplizierte und zuverlässige Anbringung zu gewährleisten und gleichzeitig die Reflektion elektromagnetischer Strahlung in Gebiete zu gewährleisten, in welchen sich potentiell das Fahrzeug mit dem Empfänger aufhalten kann. Für die Anbringung sind insbesondere keine aufwändigen und zusätzlichen Anlagen, wie Pfosten, Säulen etc., erforderlich, sondern die Reflektorvorrichtung kann an Objekten angeordnet werden, die bereits vorhanden sind und ggf. schon zu anderen Zwecken dienen. Kostenintensive Installationen und Redundanz werden hierdurch vermieden.Preferably, the reflector device is arranged on a building flanking a traffic route. Alternatively or additionally, it may be provided that it is arranged on a traffic signal system, in particular a traffic light system. It can also be provided that the reflector device is placed in a curve or in the vicinity of a curve of a traffic route. Finally, it can also be provided that the reflector device is arranged in a junction of several traffic routes, in particular in the center of an intersection. These positions for the reflector device are particularly well suited to ensure easy, uncomplicated and reliable mounting while ensuring the reflection of electromagnetic radiation into areas in which the vehicle may potentially be with the receiver. In particular, no complex and additional equipment, such as posts, columns, etc., are required for the attachment, but the reflector device can be arranged on objects that are already present and possibly already serve for other purposes. Costly installations and redundancy are thereby avoided.

Besonders bevorzugt ist es hierbei, wenn die Reflektorvorrichtung an einem Schnittpunkt eines ersten und eines zweiten Verkehrsweges so angeordnet wird, dass sie die im Wesentlichen in Richtung des ersten Verkehrsweges ausgesendete elektromagnetische Strahlung im Wesentlichen in Richtung des zweiten Verkehrsweges reflektiert. Befindet sich das Fahrzeug mit dem Sender auf dem ersten Verkehrsweg und das Fahrzeug mit dem Empfänger auf dem zweiten Verkehrsweg, so ist aufgrund des Schnittpunktes der beiden Verkehrswege ggf. nicht sichergestellt, dass eine Sichtverbindung zwischen Sender und Empfänger besteht. Beispielsweise kann diese durch ein die Verkehrswege flankierendes Gebäude zwischen dem ersten und dem zweiten Verkehrsweg unterbrochen sein. Dann ermöglicht die Reflektorvorrichtung dennoch eine Car-to-Car Kommunikation zwischen Sender und Empfänger der beiden Fahrzeuge, da die Reflektorvorrichtung an dem Schnittpunkt der beiden Verkehrswege angeordnet wird. Der Strahlwinkel der vom Sender ausgestrahlten elektromagnetischen Strahlung kann durch den Reflektor in geeigneter Weise geändert werden, so dass die elektromagnetische Strahlung zum Empfänger umgeleitet wird. Der Reflektor kann hierzu insbesondere eine starke Vorzugsrichtung aufweisen. Vorzugsweise kann der Reflektor so ausgebildet sein und so angeordnet werden, dass der Winkel zwischen einfallender und reflektierter elektromagnetischer Strahlung 90° beträgt. Diese Ausführungsform ist insbesondere bei Straßenkreuzungen vorteilhaft, deren Verkehrswege sich im 90° Winkel schneiden, wobei die Reflektorvorrichtung dann besonders bevorzugt in der Mitte der Straßenkreuzung angebracht wird.It is particularly preferred in this case if the reflector device is arranged at an intersection of a first and a second traffic route so that it reflects the emitted substantially in the direction of the first traffic route electromagnetic radiation substantially in the direction of the second traffic route. If the vehicle is located with the transmitter on the first traffic route and the vehicle with the receiver on the second traffic route, it may not be ensured on the basis of the intersection of the two traffic routes that there is a line of sight connection between transmitter and receiver. For example, this may be interrupted by a building flanking the traffic routes between the first and the second traffic route. Then, the reflector device still allows car-to-car communication between the transmitter and receiver of the two vehicles, since the reflector device is arranged at the intersection of the two traffic routes. The beam angle of the electromagnetic radiation emitted by the transmitter can be suitably changed by the reflector so that the electromagnetic radiation is redirected to the receiver. For this purpose, the reflector can in particular have a strong preferred direction. Preferably the reflector be designed and arranged so that the angle between incident and reflected electromagnetic radiation is 90 °. This embodiment is particularly advantageous at intersections, the traffic routes intersect at 90 ° angle, the reflector device is then particularly preferably mounted in the middle of the intersection.

Vorzugsweise besitzt die elektromagnetische Strahlung eine Frequenz im Bereich von 4 GHz bis 7 GHz, und hierbei insbesondere eine Frequenz im Bereich 5,8 GHz bis 6 GHz. Besonders bevorzugt ist hierbei eine Frequenz von 5,85 GHz bis 5,925 GHz. Dieser Bereich entspricht dem Dedicated Short Range Communication (DSRC) Frequenzband, welches sich aus dem Standart IEEE 802.11p ergibt. Für die elektromagnetische Strahlung können jedoch auch alle anderen beliebigen Frequenzen innerhalb der Frequenzbänder vorgesehen sein, die im Standard IEEE 802.11 oder IEEE 802.11p festgelegt sind. Die im Verfahren eingesetzte Frequenz der elektromagnetischen Strahlung ist dann optimal auf die in Car-to-Car oder Car-to-Infrastructure Kommunikationssystemen üblicherweise eingesetzten Frequenzbänder abgestimmt.Preferably, the electromagnetic radiation has a frequency in the range of 4 GHz to 7 GHz, and in particular a frequency in the range 5.8 GHz to 6 GHz. Particularly preferred here is a frequency of 5.85 GHz to 5.925 GHz. This range corresponds to the Dedicated Short Range Communication (DSRC) frequency band, which results from the standard IEEE 802.11p. For the electromagnetic radiation, however, all other arbitrary frequencies can be provided within the frequency bands, which are defined in the standard IEEE 802.11 or IEEE 802.11p. The frequency of the electromagnetic radiation used in the method is then optimally adapted to the frequency bands usually used in car-to-car or car-to-infrastructure communication systems.

Das erfindungsgemäße System dient zur sichtverbindungsunabhängigen Datenübertragung von einem Sender zu einem Empfänger im Straßenverkehr. Es umfasst einem Sender, welcher dazu ausgebildet ist, elektromagnetischer Strahlung, in der Daten codiert sind, auszusenden und welcher in einem Fahrzeug oder in einem Verkehrsinfrastrukturobjekt vorliegt. Es umfasst auch einen Empfänger, welcher dazu ausgebildet ist, die elektromagnetische Strahlung zu empfangen und welcher in einem Fahrzeug oder in einem Verkehrsinfrastrukturobjekt vorliegt. Schließlich umfasst es auch eine Reflektorvorrichtung, welche dazu ausgebildet ist, die ausgesendete elektromagnetische Strahlung zumindest teilweise zu reflektieren, und welche so anordenbar ist, dass die ausgesendete elektromagnetische Strahlung vom Empfänger empfangen werden kann.The system according to the invention serves for the visual connection-independent data transmission from a transmitter to a receiver in traffic. It comprises a transmitter, which is designed to emit electromagnetic radiation in which data is coded and which is present in a vehicle or in a traffic infrastructure object. It also comprises a receiver which is adapted to receive the electromagnetic radiation and which is present in a vehicle or in a traffic infrastructure object. Finally, it also includes a reflector device, which is designed to at least partially reflect the emitted electromagnetic radiation, and which can be arranged so that the emitted electromagnetic radiation can be received by the receiver.

Vorzugsweise umfasst die Reflektorvorrichtung zumindest ein flächig ausgebildetes Reflektorelement aus Metall, welches insbesondere ein Blech sein kann. Die Reflektorvorrichtung kann dann beispielsweise durch verschweißen der Bleche sehr kostengünstig hergestellt werden. Diese Ausführungsform ist extrem robust, mechanisch stabil, wartungsarm, witterungsbeständig, wenig fehleranfällig und garantiert gleichzeitig eine sehr effektive Reflektion elektromagnetischer Strahlung.Preferably, the reflector device comprises at least one planar reflector element made of metal, which may be in particular a sheet metal. The reflector device can then be produced very inexpensively, for example, by welding the sheets. This embodiment is extremely robust, mechanically stable, low-maintenance, weather-resistant, low error prone and at the same time guarantees a very effective reflection of electromagnetic radiation.

Vorzugsweise umfasst die Reflektorvorrichtung zumindest drei Reflektorelemente, welche zueinander so angeordnet sind, dass sie Außenseiten einer Pyramide oder eines Würfels bilden. Die Pyramide bzw. der Würfel kann dann insbesondere bezüglich senkrecht aufeinandertreffenden Verkehrswege so angeordnet werden, dass am Kreuzungspunkt der Verkehrswege Kanten der Pyramide bzw. des Würfels in Richtung der Verkehrswege weisen. Diese Ausführungsform der Reflektorvorrichtung eignet sich insbesondere für die Anbringung am Kreuzungspunkt von Straßenkreuzungen bzw. T-Kreuzungen. Die Form der Reflektorvorrichtung kann auch von der einer Pyramide abgeleitet sein, indem die Reflektorelemente konvex gebogen ausgeführt sind. Dann kann die auftreffende elektromagnetische Strahlung in viele verschiedene Richtungen reflektiert werden.Preferably, the reflector device comprises at least three reflector elements, which are arranged to each other so that they form outer sides of a pyramid or a cube. The pyramid or the cube can then be arranged in particular with respect to perpendicular traffic routes so that at the intersection of the traffic routes have edges of the pyramid or the cube in the direction of the traffic routes. This embodiment of the reflector device is particularly suitable for mounting at the intersection of road intersections or T-intersections. The shape of the reflector device can also be derived from that of a pyramid, in that the reflector elements are configured convexly curved. Then the incident electromagnetic radiation can be reflected in many different directions.

Die mit Bezug auf das erfindungsgemäße Verfahren vorgestellten bevorzugten Ausführungsformen und deren Vorteile gelten entsprechend für das erfindungsgemäße System.The preferred embodiments presented with reference to the method according to the invention and their advantages apply correspondingly to the system according to the invention.

Anhand von Ausführungsbeispielen wird die Erfindung im Folgenden näher erläutert. Es zeigen:

Fig. 1
eine schematische Aufsicht auf eine Straßenkreuzung mit Fahrzeugen, die über eine Car-to-Car Kommunikation mitein-ander in Verbindung stehen;
Fig. 2
eine perspektivische Ansicht einer Straßenflucht;
Fig. 3A
ein erstes Ausführungsbeispiel für eine mögliche Anbringung einer Reflektorvorrichtung;
Fig. 3B
ein zweites Ausführungsbeispiel für eine mögliche Anbringung einer Reflektorvorrichtung;
Fig. 3C
ein drittes Ausführungsbeispiel für eine mögliche Anbringung einer Reflektorvorrichtung; und
Fig. 4
ein Ausführungsbeispiel für eine Reflektorvorrichtung.
Reference to exemplary embodiments, the invention is explained in more detail below. Show it:
Fig. 1
a schematic plan view of a road intersection with vehicles that communicate with each other via a car-to-car communication;
Fig. 2
a perspective view of a street escape;
Fig. 3A
a first embodiment of a possible attachment of a reflector device;
Fig. 3B
a second embodiment for a possible attachment of a reflector device;
Fig. 3C
a third embodiment for a possible attachment of a reflector device; and
Fig. 4
an embodiment of a reflector device.

In den Figuren sind gleiche oder funktionsgleiche Elemente mit den gleichen Bezugszeichen versehen.In the figures, identical or functionally identical elements are provided with the same reference numerals.

Fig. 1 zeigt in Aufsicht zwei Straßen 2a und 2b, die an einer Straßenkreuzung 3 senkrecht aufeinandertreffen. Die Straßen 2a und 2b sind an allen Seiten von angrenzender Bebauung flankiert. Die Gebäude 5a, 5b, 5c und 5d erschweren bzw. verhindern eine direkte Sichtverbindung zwischen den von den Straßen 2a und 2b gebildeten Straßenschluchten. Fig. 1 shows in plan two roads 2a and 2b, which meet at a road junction 3 perpendicular. The streets 2a and 2b are flanked on all sides by adjacent buildings. The buildings 5a, 5b, 5c and 5d complicate or prevent a direct line of sight between the road canyons formed by the roads 2a and 2b.

Auf den Straßen 2a und 2b befinden sich insgesamt drei Kraftwägen 1 a, 1b und 1 c. Kraftwägen 1 a und 1 c fahren in entgegengesetzter Richtung auf der Straße 2a und befinden sich in direkter Sichtverbindung zueinander. In allen Kraftwägen 1 a bis 1 c sind elektronische Kommunikationsvorrichtungen, welche zu einem Car-to-Car Kommunikationssystem gehören, installiert. Diese Vorrichtungen können sowohl als Sender als auch als Empfänger für Funkstrahlung der Frequenz 5,8 GHz dienen. Beispielsweise erfasst der Kraftwagen 1a seine momentane Position und Geschwindigkeit und gibt diese Daten über eine Funkverbindung an andere Verkehrsteilnehmer weiter. Hierzu steht im Kraftwagen 1a die Car-to-Car Kommunikationsvorrichtung bereit, die als Sender S Funkstrahlung aussenden kann. Eine ähnliche Vorrichtung ist im Kraftwagen 1c vorgesehen, welche als Empfänger E1 für diese elektromagnetische Strahlung dient. Da eine direkte Sichtverbindung zwischen den Kraftwägen 1 a und 1 c besteht, ist eine direkte Übertragung der Daten über einen elektromagnetischen Funkstrahl R3 vom Sender S zum Empfänger E1 möglich.On the roads 2a and 2b are a total of three carriages 1 a, 1 b and 1 c. Carts 1 a and 1 c drive in the opposite direction on the road 2a and are in direct line of sight with each other. In all of the vehicles 1 a to 1 c, electronic communication devices belonging to a car-to-car communication system are installed. These devices can serve both as a transmitter and as a receiver for radio frequency 5.8 GHz. For example, the motor vehicle 1a detects its current position and speed and transmits this data via a radio link to other road users. For this purpose, the car-to-car communication device is ready in the motor vehicle 1a, which can emit radio radiation as a transmitter S. A similar device is provided in the motor vehicle 1c, which serves as a receiver E1 for this electromagnetic radiation. Since there is a direct line of sight between the vehicles 1 a and 1 c, a direct transmission of the data via an electromagnetic radio beam R3 from the transmitter S to the receiver E1 is possible.

Dagegen besteht zwischen den Kraftwägen 1 a und 1b keine direkte Sichtverbindung. Der vom Sender S zu einem Empfänger E des Kraftwagens 1 b ausgesandte Funkstrahl R4 kann aufgrund des Gebäudes 5a den Empfänger E nicht erreichen. Die direkte Line-of-Sight-Propagation ist durch das Gebäude 5a unterbrochen. Gerade zwischen den Kraftwägen 1 a und 1b wäre jedoch ein Datenaustausch über die Car-to-Car Kommunikation besonders hilfreich, z. B. um eine Kollision beider Kraftwägen 1 a und 1b an der Kreuzung 3 zu vermeiden. Nach dem Stand der Technik ist jedoch eine solche Kommunikation nicht ohne Weiteres möglich, da der Funkkontakt durch das Gebäude 5a unterbrochen wird.In contrast, there is no direct line of sight between the cars 1 a and 1 b. The transmitted by the transmitter S to a receiver E of the motor vehicle 1 b radio beam R4 can not reach the receiver E due to the building 5a. The direct line-of-sight propagation is interrupted by the building 5a. Just between the cars 1 a and 1 b, however, a data exchange on car-to-car communication would be particularly helpful, eg. B. to avoid a collision of the two carriages 1 a and 1 b at the intersection 3. According to the prior art, however, such a communication is not readily possible because the radio contact is interrupted by the building 5a.

Um dennoch den Funkkontakt zu ermöglichen, wird in der Mitte der Kreuzung 3, das heißt am Kreuzungspunkt der Straßen 2a und 2b, eine Reflektorvorrichtung in Form einer Reflektorpyramide 4 angebracht. Diese Reflektorpyramide ist so aufgebaut, dass sie eine quadratische Grundfläche aufweist. Die die Pyramide formenden Seitenflächen werden durch miteinander verschweißte Metallbleche gebildet, welche in der Lage sind, die elektromagnetische Strahlung von 5,8 GHz besonders gut zu reflektieren.In order nevertheless to enable the radio contact, a reflector device in the form of a reflector pyramid 4 is in the middle of the intersection 3, that is at the intersection of the streets 2a and 2b, attached. This reflector pyramid is constructed so that it has a square base. The pyramid forming side surfaces are formed by welded together metal sheets, which are able to reflect the electromagnetic radiation of 5.8 GHz particularly well.

Wie in Fig. 2 dargestellt, wird die Reflektorpyramide 4 an einer Ampelanlage 6 so angebracht, dass die Spitze der Pyramide senkrecht auf die Fahrbahnfläche am Kreuzungspunkt der Straßen 2a und 2b weist. Die Reflektorpyramide 4 wird hierbei so ausgerichtet, dass zwei ihrer Kanten in Richtung des Verlaufs der Straße 2a und zwei ihrer Kanten in Richtung des Verlaufs der Straße 2b weisen. Die vom Sender S in Strahlrichtung R1 ausgesandte elektromagnetische Strahlung trifft dann auf die Reflektorpyramide 4 und wird dort unter einem Winkel a in Richtung der Straße 2b reflektiert. Der reflektierte Funkstrahl ist mit R2 bezeichnet. Dieser Strahl R2 kann nun problemlos vom Empfänger E des Kraftwagens 1b empfangen werden. Über die Reflektorpyramide 4 wird der Funkstrahl R1 so umgelenkt, dass er als Funkstrahl R2 auf den Empfänger E trifft, so dass trotz des Mangels einer Sichtverbindung eine Car-to-Car Kommunikation zwischen den Kraftwägen 1 a und 1b möglich wird. Die Reflektorvorrichtung wird insbesondere weder so ausgerichtet bzw. ausgebildet, dass sie die elektromagnetischen Wellen in die Einstrahlrichtung zurücksendet (wie beim Topset), noch diese gleichmäßig im Raum verteilt.As in Fig. 2 2, the reflector pyramid 4 is attached to a traffic light installation 6 in such a way that the tip of the pyramid points perpendicular to the road surface at the intersection of the roads 2a and 2b. The reflector pyramid 4 is in this case aligned so that two of its edges facing in the direction of the course of the road 2a and two of its edges in the direction of the course of the road 2b. The electromagnetic radiation emitted by the transmitter S in the beam direction R1 then impinges on the reflector pyramid 4 and is reflected there at an angle α in the direction of the road 2b. The reflected radio beam is denoted by R2. This beam R2 can now be easily received by the receiver E of the motor vehicle 1b. About the reflector pyramid 4 of the radio beam R1 is deflected so that it meets as a radio beam R2 to the receiver E, so that despite the lack of a line of sight, a car-to-car communication between the cars 1 a and 1b is possible. In particular, the reflector device is neither aligned nor designed such that it sends back the electromagnetic waves in the direction of irradiation (as in the top set), nor evenly distributes them in space.

Die Fig. 3A bis 3C zeigen weitere mögliche Straßenkonstellationen und Anordnungen einer Reflektorvorrichtung. Die Reflektorvorrichtung ist in diesen Ausführungsbeispielen als Reflektorwürfel ausgebildet, wobei die in den Fig. 3A bis Fig. 3C in Aufsicht dargestellten Würfelflächen nicht notwendiger Weise aus reflektierendem Material ausgebildet sein müssen. Die hierzu senkrecht stehenden Würfelseitenflächen sind jedoch wieder aus miteinander verschweißten Metallblechen hergestellt. In Fig. 3A ist die Kreuzung 3 als T-Kreuzung zweier Straßen 2c und 2d gebildet. Eine direkte Funkkommunikation zwischen Sender S und Empfänger E ist durch ein Gebäude 5 verhindert. Jedoch wird der Reflektorwürfel 7 am T-Kreuzungspunkt so ausgerichtet, dass gemäß den Gesetzen der geometrischen Optik der vom Sender S ausgesandte Funkstrahl R1 den Empfänger E als reflektierter Funkstrahl R2 erreichen kann. Eine Car-to-Car Kommunikation ist hierdurch ermöglicht.The Figs. 3A to 3C show further possible road constellations and arrangements of a reflector device. The reflector device is formed in these embodiments as a reflector cube, wherein in the FIGS. 3A to 3C Cube surfaces shown in plan must not necessarily be formed of reflective material. However, the vertical cube side surfaces are again made of metal sheets welded together. In Fig. 3A the intersection 3 is formed as a T-junction of two roads 2c and 2d. Direct radio communication between transmitter S and receiver E is prevented by a building 5. However, the reflector cube 7 is aligned at the T-crossing point so that, according to the laws of geometric optics, the radio beam R1 emitted by the transmitter S can reach the receiver E as a reflected radio-ray R2. A car-to-car communication is thereby made possible.

Fig. 3B zeigt eine Kurve 8 zwischen den Straßen 2c und 2d, wobei wiederum ein Gebäude 5 die direkte Funkkommunikation zwischen Sender S und Empfänger E verhindert. Der Reflektorwürfel 7 ist nunmehr in der Kurve 8 an dem flankierenden Gebäude 5e angebracht und ermöglicht wiederum eine 90° Reflektion der eintreffenden elektromagnetischen Strahlung, d.h. die Strahlen R1 und R2 stehen senkrecht aufeinander. Fig. 3B shows a curve 8 between the streets 2c and 2d, in turn, a building 5 prevents the direct radio communication between transmitter S and receiver E. The reflector cube 7 is now mounted in the curve 8 on the flanking building 5e and in turn allows a 90 ° reflection of the incoming electromagnetic radiation, ie the rays R1 and R2 are perpendicular to each other.

Fig. 3C zeigt eine Situation, in der sich die Straßen 2c und 2d nicht im rechten Winkel an der Kreuzung 3 schneiden. Durch geeignete Anbringung des Reflektorwürfels 7 kann jedoch wiederum eine geometrische Situation hergestellt werden, die erlaubt, dass der vom Sender S ausgesandte elektromagnetische Strahl R1 durch Reflektion am Reflektorwürfel 7 als Strahl R2 den Empfänger E erreicht. Man erkennt, dass die Erfindung die Car-to-Car Kommunikation insbesondere im Bereich von Kreuzungen in dicht bebauten Gebieten verbessert. Fig. 3C shows a situation in which the roads 2c and 2d do not intersect at right angles to the intersection 3. By suitable attachment of the reflector cube 7, however, a geometrical situation can again be established which allows the electromagnetic beam R1 emitted by the transmitter S to reach the receiver E as a ray R2 by reflection on the reflector cube 7. It can be seen that the invention improves car-to-car communication, especially in the area of intersections in densely built-up areas.

Fig. 4 zeigt ein weiteres mögliches Ausführungsbeispiel für eine Reflektorvorrichtung 9, welche vier konvex gebogene Reflektorelemente 10 umfasst. Wie man der Figur entnimmt, findet dann nicht nur eine Reflexion der einfallenden Strahlen R1 in horizontaler Richtung, sondern auch in vertikaler Richtung statt. Ist diese Reflektorvorrichtung 9 genauso wie die Reflektorpyramide 4 in Fig. 1 und 2 an einer Ampelanlage angebracht, so ist sichergestellt, dass der Kraftwagen 1b die elektromagnetische Strahlung R2 sowohl dann sehr gut empfangen kann, wenn er sich weit von der Ampelanlage 6 entfernt oder sich sehr nahe bei ihr befindet. Insbesondere ist ein sehr guter Empfang auch dann sichergestellt, wenn sich der Kraftwagen 1b bereits nahezu unterhalb der Reflektorvorrichtung 9 auf der Kreuzung 3 befindet. Fig. 4 shows a further possible embodiment of a reflector device 9, which comprises four convex curved reflector elements 10. As can be seen from the figure, then not only a reflection of the incident rays R1 in the horizontal direction, but also in the vertical direction takes place. Is this reflector device 9 as well as the reflector pyramid 4 in Fig. 1 and 2 attached to a traffic light system, it is ensured that the motor vehicle 1b can receive the electromagnetic radiation R2 both very well when he is far away from the traffic light system 6 or is very close to her. In particular, a very good reception is ensured even when the motor vehicle 1b is already almost below the reflector device 9 on the intersection 3.

Claims (7)

Verfahren zur sichtverbindungsunabhängigen Datenübertragung von einem Sender (S) zu einem Empfänger (E) in einem Car-to-Car oder Car-to-Infrastructure Kommunikationssystem, gekennzeichnet durch die Schritte: - Aussenden von elektromagnetischer Strahlung (R1), in der Daten codiert sind, durch den Sender (S), welcher in einem Fahrzeug (1a) oder in einem Verkehrsinfrastrukturobjekt (6) vorliegt; - Bereitstellen einer Reflektorvorrichtung (4, 7, 9), welche dazu ausgebildet ist, die ausgesendete elektromagnetische Strahlung (R1) zumindest teilweise zu reflektieren (R2); - Anordnen der Reflektorvorrichtung (4, 7, 9), so dass die ausgesendete elektromagnetische Strahlung (R1, R2) vom Empfänger (E) empfangen werden kann; und - Empfangen der elektromagnetischen Strahlung (R2) durch den Empfänger (E), welcher in einem Fahrzeug (1 b) oder in einem Verkehrsinfrastrukturobjekt (6) vorliegt. A method for view-independent data transmission from a transmitter (S) to a receiver (E) in a car-to-car or car-to-infrastructure communication system, characterized by the steps of: Emitting electromagnetic radiation (R1) in which data is coded by the transmitter (S) present in a vehicle (1a) or in a traffic infrastructure object (6); - Providing a reflector device (4, 7, 9) which is adapted to at least partially reflect the emitted electromagnetic radiation (R1) (R2); Arranging the reflector device (4, 7, 9) so that the emitted electromagnetic radiation (R1, R2) can be received by the receiver (E); and - Receiving the electromagnetic radiation (R2) by the receiver (E), which is present in a vehicle (1 b) or in a traffic infrastructure object (6). Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
die Reflektorvorrichtung (4, 7, 9) an einem einen Verkehrsweg (2a, 2b, 2c, 2d) flankierenden Gebäude (5, 5a, 5b, 5c, 5d, 5e) und/oder an einer Lichtsignalanlage (6) und/oder in einer Kurve (8) eines Verkehrsweges (2c, 2d) und/oder in einem Knotenpunkt (3) mehrerer Verkehrswege (2a, 2b; 2c, 2d) angeordnet wird.
Method according to claim 1,
characterized in that
the reflector device (4, 7, 9) on a building (5, 5a, 5b, 5c, 5d, 5e) flanking a traffic route (2a, 2b, 2c, 2d) and / or on a traffic signal system (6) and / or in a curve (8) of a traffic route (2c, 2d) and / or in a junction (3) of several traffic routes (2a, 2b, 2c, 2d) is arranged.
Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
die Reflektorvorrichtung (4, 7, 9) an einem Schnittpunkt (3) eines ersten (2a; 2c) und eines zweiten Verkehrsweges (2b; 2d) so angeordnet wird, dass sie die im Wesentlichen in Richtung (R1) des ersten Verkehrsweges (2a, 2c) ausgesendete elektromagnetische Strahlung im Wesentlichen in Richtung (R2) des zweiten Verkehrsweges (2b, 2d) reflektiert.
Method according to claim 1 or 2,
characterized in that
the reflector device (4, 7, 9) is arranged at an intersection (3) of a first (2a; 2c) and a second traffic route (2b; 2d) so as to be substantially in the direction (R1) of the first traffic route (2a , 2c) emits emitted electromagnetic radiation substantially in the direction (R2) of the second traffic route (2b, 2d).
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die elektromagnetische Strahlung (R1, R2, R3, R4) eine Frequenz im Bereich 4 bis 7 GHz, vorzugsweise 5,8 bis 6 GHz, besonders bevorzugt 5,85 bis 5,925 GHz, besitzt.
Method according to one of the preceding claims,
characterized in that
the electromagnetic radiation (R1, R2, R3, R4) has a frequency in the range 4 to 7 GHz, preferably 5.8 to 6 GHz, particularly preferably 5.85 to 5.925 GHz.
System zur sichtverbindungsunabhängigen Datenübertragung von einem Sender (S) zu einem Empfänger (E) im Straßenverkehr mit einem Sender (S), welcher dazu ausgebildet ist, elektromagnetischer Strahlung (R1), in der Daten codiert sind, auszusenden und welcher in einem Fahrzeug (1a) oder in einem Verkehrsinfrastrukturobjekt (6) vorliegt, und mit einem Empfänger (E), welcher dazu ausgebildet ist, die elektromagnetische Strahlung (R1, R2) zu empfangen und welcher in einem Fahrzeug (1 b) oder in einem Verkehrsinfrastrukturobjekt (6) vorliegt, gekennzeichnet durch
eine Reflektorvorrichtung (4, 7, 9), welche dazu ausgebildet ist, die ausgesendete elektromagnetische Strahlung (R1) zumindest teilweise zu reflektieren (R2), und welche so anordenbar ist, dass die ausgesendete elektromagnetische Strahlung (R1, R2) vom Empfänger (E) empfangen werden kann.
A system for visible connection-independent data transmission from a transmitter (S) to a receiver (E) in traffic with a transmitter (S), which is adapted to emit electromagnetic radiation (R1) in which data is coded and which in a vehicle (1a ) or in a traffic infrastructure object (6) and with a receiver (E) which is designed to receive the electromagnetic radiation (R1, R2) and which is present in a vehicle (1b) or in a traffic infrastructure object (6) , characterized by
a reflector device (4, 7, 9), which is designed to at least partially reflect the emitted electromagnetic radiation (R1) (R2), and which can be arranged so that the emitted electromagnetic radiation (R1, R2) from the receiver (E ) can be received.
System nach Anspruch 5,
dadurch gekennzeichnet, dass
die Reflektorvorrichtung (4, 7, 9) zumindest ein flächig ausgebildetes Reflektorelement aus Metall, insbesondere Blech, umfasst.
System according to claim 5,
characterized in that
the reflector device (4, 7, 9) comprises at least one planar reflector element made of metal, in particular sheet metal.
System nach Anspruch 5 oder 6,
dadurch gekennzeichnet, dass
die Reflektorvorrichtung (4, 7, 9) zumindest drei Reflektorelemente (10) umfasst, welche zueinander so angeordnet sind, dass sie Außenseiten einer Pyramide (4, 9) oder eines Würfels (7) bilden.
System according to claim 5 or 6,
characterized in that
the reflector device (4, 7, 9) comprises at least three reflector elements (10), which are arranged to one another such that they form outer sides of a pyramid (4, 9) or a cube (7).
EP12000762.0A 2011-02-10 2012-02-06 Data transfer method and line of sight independent system Not-in-force EP2487665B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011010846.7A DE102011010846B4 (en) 2011-02-10 2011-02-10 Method and system for visual connection-independent data transmission

Publications (2)

Publication Number Publication Date
EP2487665A1 true EP2487665A1 (en) 2012-08-15
EP2487665B1 EP2487665B1 (en) 2013-06-26

Family

ID=45654864

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12000762.0A Not-in-force EP2487665B1 (en) 2011-02-10 2012-02-06 Data transfer method and line of sight independent system

Country Status (4)

Country Link
US (1) US8928468B2 (en)
EP (1) EP2487665B1 (en)
CN (1) CN102710318B (en)
DE (1) DE102011010846B4 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015169516A1 (en) * 2014-05-07 2015-11-12 Volkswagen Aktiengesellschaft Method and apparatus for estimating an expected reception quality
DE102016011414A1 (en) 2016-09-22 2018-03-22 Daimler Ag A method for warning a driver of a motor vehicle taking into account a current field of vision of the driver, computing device and detection vehicle
DE102018000600A1 (en) 2018-01-25 2018-08-09 Daimler Ag Radar traffic arrangement, in particular radar traffic mirror
WO2019081295A1 (en) * 2017-10-27 2019-05-02 Continental Automotive Gmbh Arrangement for communication between motor vehicles and reflector device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012024859B3 (en) * 2012-12-19 2014-01-09 Audi Ag Method for providing an operating strategy for a motor vehicle
DE102013222174A1 (en) 2013-06-24 2014-12-24 Volkswagen Aktiengesellschaft Method and device for forwarding information
US20150316387A1 (en) * 2014-04-30 2015-11-05 Toyota Motor Engineering & Manufacturing North America, Inc. Detailed map format for autonomous driving
US20150316386A1 (en) 2014-04-30 2015-11-05 Toyota Motor Engineering & Manufacturing North America, Inc. Detailed map format for autonomous driving
JP6398759B2 (en) * 2015-02-03 2018-10-03 株式会社デンソー Vehicle communication equipment
DE102016001495B4 (en) 2016-02-10 2021-10-21 Audi Ag Method for operating a motor vehicle that can be driven electrically at least at times, a control device for a motor vehicle and a corresponding motor vehicle
DE102016207608B3 (en) * 2016-05-03 2017-09-21 Volkswagen Aktiengesellschaft Apparatus and method for a vehicle-to-vehicle message relay station
GB2575241B (en) * 2018-05-17 2023-02-01 Swisscom Ag A telecommunications system
CN110416733B (en) * 2019-03-25 2021-04-20 华北水利水电大学 Electromagnetic energy focusing method and device in non-line-of-sight environment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29521019U1 (en) 1995-06-02 1996-08-01 Bauer, Walter, Dipl.-Ing., 23556 Lübeck Top set for sailboats
US6487423B1 (en) * 1998-12-22 2002-11-26 Telefonaktiebolaget Lm Ericsson Method and an arrangement in a mobile radio system
JP2005174237A (en) 2003-12-15 2005-06-30 Denso Corp Car-to-car communication apparatus
DE102006019170A1 (en) 2006-04-21 2007-10-25 Haindl Kunststoffverarbeitung Gmbh Schifffahrtszeichen
DE102007042792A1 (en) 2007-09-07 2009-03-12 Bayerische Motoren Werke Aktiengesellschaft Method for monitoring external environment of motor vehicle, involves determining drive operation values of opponent vehicle in external environment of motor vehicle by signal concerned to opponent vehicle
DE102008015778A1 (en) 2008-03-26 2009-10-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for transmission of data between vehicles e.g. passenger car, involves transmitting information received from vehicle to receiver of another vehicle, which does not contain short range communication device, by routing device
EP2178064A1 (en) 2008-10-20 2010-04-21 Siemens AG Österreich Method for optimal forwarding of reports in car to X communication
WO2010139649A1 (en) * 2009-06-04 2010-12-09 Continental Teves Ag & Co. Ohg Method and device for the communication with another vehicle or with an infrastructure device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1596841A (en) 1977-07-15 1981-09-03 Firth J H Radar reflector
DE3333013A1 (en) 1983-09-13 1985-03-21 Autoflug Gmbh, 2084 Rellingen Radar reflector of flat shape
DE3712079A1 (en) 1987-04-09 1988-10-20 Marc Andrees De Ruiter Radar reflector
US5994984A (en) * 1997-11-13 1999-11-30 Carnegie Mellon University Wireless signal distribution in a building HVAC system
JP4052835B2 (en) * 2001-12-28 2008-02-27 株式会社日立製作所 Wireless transmission system for multipoint relay and wireless device used therefor
GB0406092D0 (en) * 2004-03-17 2004-04-21 Koninkl Philips Electronics Nv Radio communication device
US20070021095A1 (en) * 2005-07-22 2007-01-25 Tci International, Inc. Apparatus and method for local broadcasting in the twenty-six megahertz short wave band
DE102008037883A1 (en) * 2007-08-30 2009-04-09 Continental Teves Ag & Co. Ohg Mobile traffic light installation for e.g. communicating with security system of ambulance, has communication unit to transmit meta information to proximate vehicle, where meta information is processed for producing constant traffic flow
DE102007052993A1 (en) 2007-11-05 2009-05-07 Volkswagen Ag Communication nodes for car2X-communication network, has transmitter unit transmitting messages of applications to one of node in wireless manner, and authentication unit providing authentication between applications and nodes
JP5337432B2 (en) * 2007-11-30 2013-11-06 株式会社エヌ・ティ・ティ・ドコモ Wireless communication system
US8797211B2 (en) * 2011-02-10 2014-08-05 International Business Machines Corporation Millimeter-wave communications using a reflector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29521019U1 (en) 1995-06-02 1996-08-01 Bauer, Walter, Dipl.-Ing., 23556 Lübeck Top set for sailboats
US6487423B1 (en) * 1998-12-22 2002-11-26 Telefonaktiebolaget Lm Ericsson Method and an arrangement in a mobile radio system
JP2005174237A (en) 2003-12-15 2005-06-30 Denso Corp Car-to-car communication apparatus
DE102006019170A1 (en) 2006-04-21 2007-10-25 Haindl Kunststoffverarbeitung Gmbh Schifffahrtszeichen
DE102007042792A1 (en) 2007-09-07 2009-03-12 Bayerische Motoren Werke Aktiengesellschaft Method for monitoring external environment of motor vehicle, involves determining drive operation values of opponent vehicle in external environment of motor vehicle by signal concerned to opponent vehicle
DE102008015778A1 (en) 2008-03-26 2009-10-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for transmission of data between vehicles e.g. passenger car, involves transmitting information received from vehicle to receiver of another vehicle, which does not contain short range communication device, by routing device
EP2178064A1 (en) 2008-10-20 2010-04-21 Siemens AG Österreich Method for optimal forwarding of reports in car to X communication
WO2010139649A1 (en) * 2009-06-04 2010-12-09 Continental Teves Ag & Co. Ohg Method and device for the communication with another vehicle or with an infrastructure device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAR 2 CAR COMMUNICATION CONSORTIUM: "CAR 2 CAR Communication Consortium Manifesto", 28 August 2007 (2007-08-28), pages 1 - 94, XP002676332, Retrieved from the Internet <URL:http://www.car-2-car.org/index.php?id=31> [retrieved on 20120521] *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015169516A1 (en) * 2014-05-07 2015-11-12 Volkswagen Aktiengesellschaft Method and apparatus for estimating an expected reception quality
US10193641B2 (en) 2014-05-07 2019-01-29 Volkswagen Ag Method and apparatus for estimating an expected reception quality
DE102016011414A1 (en) 2016-09-22 2018-03-22 Daimler Ag A method for warning a driver of a motor vehicle taking into account a current field of vision of the driver, computing device and detection vehicle
WO2018054523A1 (en) 2016-09-22 2018-03-29 Daimler Ag Method for warning a driver of a motor vehicle, taking into consideration the current range of vision of the driver, computing device and detection vehicle
WO2019081295A1 (en) * 2017-10-27 2019-05-02 Continental Automotive Gmbh Arrangement for communication between motor vehicles and reflector device
US11575210B2 (en) 2017-10-27 2023-02-07 Continental Automotive Gmbh Arrangement for communication between motor vehicles, and reflector device
DE102018000600A1 (en) 2018-01-25 2018-08-09 Daimler Ag Radar traffic arrangement, in particular radar traffic mirror

Also Published As

Publication number Publication date
CN102710318B (en) 2015-04-15
CN102710318A (en) 2012-10-03
US20130038433A1 (en) 2013-02-14
US8928468B2 (en) 2015-01-06
DE102011010846A1 (en) 2012-08-16
EP2487665B1 (en) 2013-06-26
DE102011010846B4 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
EP2487665B1 (en) Data transfer method and line of sight independent system
EP0016417B1 (en) Airport surveillance system utilizing the secondary radar interrogation-response procedure
DE3012616C2 (en) Airport surveillance facility
DE2364084C2 (en) Device for addressing a specific area within a control field
DE102014011766A1 (en) Radar for vehicles and method of operating the same
EP3105857B1 (en) Vehicle-to-x communication system, vehicle, and method for transmitting vehicle-to-x messages
DE2032211B2 (en) YSTEM FOR THE MONITORING OF VEHICLES
DE102010025379A1 (en) Method for detecting and warning of wrong-way drivers as well as wrong-way reporting and warning system
EP2684300B1 (en) Satellite with a number of directional antennas for sending and / or receiving air traffic radio signals.
EP3014600B1 (en) Method and device for forwarding information
DE10016159A1 (en) Polarimetric blind spot detector with steerable beam
WO2016120236A1 (en) Application-controlled geo-beamforming
DE69925958T2 (en) Mirror for curves with radio wave reflecting plates
EP0594797B1 (en) Process for monitoring a zone
EP1838050B1 (en) Method for transmitting at least one information data set between a mobile actuator and at least one fixed station
EP2680024A2 (en) System and method for determining the position of a communication platform
DE102016226102A1 (en) Method and device for transmitting information by means of scatter
DE3109125A1 (en) AIRPORT MONITORING DEVICE
DE102012213881A1 (en) Device for detecting and monitoring surrounding of vessel, has units for receiving sensor signals for another sensor device of another vessel, where vessel surrounding is detected based on sensor signals generated by sensor device
EP1424566A1 (en) Radio-interferometric guidance system for automatic control of unmanned aircrafts
DE588867C (en) Signal transmission system for guiding air, sea vehicles and the like Like. On airways or routes of limited width
DE871322C (en) Transmit and receive antenna arrangement for ultra-short waves
DE102014119710A1 (en) Device and system for monitoring road traffic, vehicle and a method for monitoring road traffic
DE2156716C3 (en) Radio direction finder system for cross direction finding, preferably for air traffic control
DE19520253A1 (en) Linear radio transmission system esp. for millimetre wave band

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130215

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 15/00 20060101ALN20130228BHEP

Ipc: G08G 1/16 20060101AFI20130228BHEP

INTG Intention to grant announced

Effective date: 20130328

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 619000

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012000038

Country of ref document: DE

Effective date: 20130822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130926

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130927

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130926

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131028

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131026

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131007

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012000038

Country of ref document: DE

Effective date: 20140327

BERE Be: lapsed

Owner name: AUDI A.G.

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140206

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120206

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 619000

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200219

Year of fee payment: 9

Ref country code: DE

Payment date: 20200229

Year of fee payment: 9

Ref country code: IT

Payment date: 20200228

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200219

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012000038

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210206

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210206