EP2485504B1 - Generation of quiet areas within the listener zone of multi-channel playback systems - Google Patents

Generation of quiet areas within the listener zone of multi-channel playback systems Download PDF

Info

Publication number
EP2485504B1
EP2485504B1 EP20110153510 EP11153510A EP2485504B1 EP 2485504 B1 EP2485504 B1 EP 2485504B1 EP 20110153510 EP20110153510 EP 20110153510 EP 11153510 A EP11153510 A EP 11153510A EP 2485504 B1 EP2485504 B1 EP 2485504B1
Authority
EP
European Patent Office
Prior art keywords
wave field
loudspeakers
zone
listener
spatial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20110153510
Other languages
German (de)
French (fr)
Other versions
EP2485504A1 (en
Inventor
Sascha Spors
Karim Helwani
Herbert Buchner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Telekom AG
Original Assignee
Deutsche Telekom AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Telekom AG filed Critical Deutsche Telekom AG
Priority to EP20110153510 priority Critical patent/EP2485504B1/en
Publication of EP2485504A1 publication Critical patent/EP2485504A1/en
Application granted granted Critical
Publication of EP2485504B1 publication Critical patent/EP2485504B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2203/00Details of circuits for transducers, loudspeakers or microphones covered by H04R3/00 but not provided for in any of its subgroups
    • H04R2203/12Beamforming aspects for stereophonic sound reproduction with loudspeaker arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/11Application of ambisonics in stereophonic audio systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/13Application of wave-field synthesis in stereophonic audio systems

Definitions

  • the present invention relates to the reproduction of an acoustic wave field in a listener zone by means of several loudspeakers, and more particularly to the formation of a wave-free section within the listener zone.
  • the derivation of the control functions in Higher-Order Ambisonics is done by explicitly solving the underlying physical problem.
  • the speakers are characterized by a circular or spherical continuous distribution of typically models acoustic monopoles that are assigned a weighting function.
  • the integral equation following from this approach can be solved by the representation of the relevant acoustic fields in the form of spherical harmonics.
  • Higher-order Ambisonics allows, in principle, the exact reconstruction of almost any sound field within the secondary source distribution.
  • the continuous distribution of monopoles is realized by a spatially discrete distribution of a finite number of loudspeakers.
  • spectral division Spectral Division Method SDM, see for example J. Ahrens and S. Spors. Sound field reproduction using planar and linear arrays of loudspeakers. IEEE Transactions on Audio, Speech and Language Processing, 18 (8): 2038 - 2050, November 2010 , doi: 10.1109 / TASL.2010.2041106) represents in principle a transfer of the higher-order Ambisonics approach to planar and linear geometries.
  • SDM the underlying physical problem, formulated as an integral equation, is explicitly solved. The solution is achieved by the transition into the spatial spectral range by means of a spatial Fourier transformation. As with Higher-Order Ambisonics, the speaker drive functions in this range are calculated by spectral division.
  • the propagation function (Green's function) of the loudspeakers is needed. After back transformation of the control function from the spectral range to the local area, this is then available for implementation.
  • the thick black ring indicates the arrangement of the loudspeakers, which in the example shown are thus arranged in a circle around the listener zone.
  • the desired wave field is a plane wave that is displayed on the left side of the listener zone.
  • On the right is a small ring in which the sound field is suppressed.
  • the location of the quiet zones in the listener zone or the arrangement of the loudspeakers should be subject to as few restrictions as possible.
  • the object of the invention is achieved by in the method and a device according to claims 1 and 8, respectively.
  • the invention provides a method for reproducing an acoustic wave field in a listener zone by means of several loudspeakers.
  • Applying a spatial window function, such as a rectangular function, to the wave field to be rendered defines a wave-free section in the listener zone in which the wave field is suppressed. This can be done for example by a multiplication of the target sound field with the window function, this corresponds to a spatial convolution in the spatial frequency range.
  • the determination of the drive signals may be performed by a higher order Ambisonics method or a spectral division method.
  • the desired wave field is bandlimited to increase the quality of the suppression of the sound field in the corresponding area of the listener zone.
  • the invention provides a corresponding device for reproducing an acoustic wave field in the listener zone, wherein the wave field is suppressed in one or more predetermined sections of the listener zone.
  • the loudspeakers may be arranged on an open contour, in particular a line, or else on a contour surrounding the listener zone, that is to say for example on a circle or a rectangle.
  • All methods of multi-channel acoustic reproduction systems use a pre-defined mixing matrix which maps the source signals to particular loudspeaker signals to produce a desired auditory impression.
  • the derivation of the control functions in Higher-Order Ambisonics and SDM is done by explicitly solving the underlying physical problem.
  • the suppression of the wave field in certain zones can be interpreted as a multiplication of the original desired field with certain spatial window functions that suppress the sound field in certain areas.
  • this spatial multiplication is a spectral convolution and the spatial suppression is therefore done by a suitable spectral spread of the spatial spectrum of the reproduced spatial signal.
  • the synthesized sound field can be understood as the result of a spatial convolution integral.
  • P x ⁇ ⁇ ⁇ - ⁇ ⁇ D x 0 ⁇ ⁇ ⁇ G ⁇ x - x 0 . ⁇ d x 0 .
  • D represents the drive function of the secondary sources
  • the synthesized sound field corresponds to the desired sound field.
  • the quality of the suppression of the sound field in a certain area depends on the spatial aliasing frequency of the playback system and the cut-off frequency of the reproduced material, because only the spectral components of the reproduced material, which are below the aliasing frequency of the system can be selectively suppressed.
  • a band limitation of the material to be reproduced can be used to avoid spatial aliasing.
  • the mixing matrix on the reproduction side is determined frequency-selectively on the basis of the desired wave field, the position of the recording system and the geometry of the reproduction system.
  • a linear loudspeaker array is discussed, wherein the interception zone with two virtual lines, which are perpendicular to the array, should be divided into three areas. In one area, conventional flat wave reproduction should be based on the spectral division method. In the two other areas in which the recording system can be located, the wave field should be suppressed.
  • the desired wave field is a multiplication of the plane waves with the spatial rectangular function or another suitable window function.
  • the method of spectral division is used. This method requires an expression for both the desired wave field and Green's function in the spatially transformed region for linear array geometries. by means of the Fourier transformation along a reference line on which the reproduction should be exact.
  • the driving functions in the spatial spectral range are the result of element-wise division of the spectrum of the desired field by the spectrum of Green's function.
  • the thus determined spectra of the drive functions can be transformed back into the spatial domain by means of an inverse Fourier transformation.
  • Fig. 1 is the result of a simulation of the presented method and shown in Fig. 2 you can see the energy distribution of the wave field.
  • Fig. 3 the energy distribution is reproduced when the quiet zone, ie the wave-free section, divides the display area into two areas.
  • Array geometries that enclose the audience space in two dimensions, such as rectangular arrays, allow two-dimensional suppression of the field.
  • An example of this is in Fig. 4 shown.
  • the procedure for carrying out the method according to the invention is similar to that described above.
  • the main difference is that the window function here is two-dimensional.
  • the spatially limited wave field is in the spectral range a two-dimensional convolution of the desired field with the spatially transformed window function.
  • the in Fig. 4 Wave field shown a superposition of plane waves, wherein in the synthesis of the individual plane waves, the desired resting area was explicitly considered.
  • the driving functions of the speakers for the in. Fig. 4 The plane waves shown were determined by means of the aforementioned method of spectral division.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)

Description

Die vorliegende Erfindung betrifft die Wiedergabe eines akustischen Wellenfelds in einer Zuhörerzone mittels mehrerer Lautsprecher, und insbesondere die Ausbildung eines wellenfreien Abschnitts innerhalb der Zuhörerzone.The present invention relates to the reproduction of an acoustic wave field in a listener zone by means of several loudspeakers, and more particularly to the formation of a wave-free section within the listener zone.

Neben den bekannten stereophonischen Verfahren zur Schallwiedergabe gewinnen Verfahren, die eine physikalische Rekonstruktion eines beliebigen Wellenfeldes anstreben, in Forschung und Praxis an Bedeutung. Von besonderem Interesse sind Verfahren, die eine analytische Berechnung des Ansteuerungssignals für die Lautsprecher ermöglichen. Dies ist unter anderem bei der Wellenfeldsyntlzese und Higher-Order Ambisonics der Fall. Diese beiden Verfahren haben das gemeinsame Ziel, ein Wunschfeld in einem ausgedehnten Gebiet zu synthetisieren, so dass ein räumlicher Eindruck in einem, verglichen mit konventionellen stereophonischen Verfahren, relativ großen homogenen Zuhörerbereich hervorgerufen wird. Idealerweise umfasst der Zuhörerbereich die gesamte Fläche, die von den Lautsprechern umgeben ist.In addition to the known stereophonic methods for sound reproduction, methods aiming at a physical reconstruction of any wave field are gaining in importance in research and practice. Of particular interest are methods that allow analytic calculation of the drive signal for the speakers. This is the case, among others, with the Wellenfeldsyntlzese and Higher-Order Ambisonics. These two methods have the common goal of synthesizing a desired field in a broad area, so as to create a spatial impression in a relatively large homogeneous listening area compared to conventional stereophonic methods. Ideally, the listener area covers the entire area surrounded by the speakers.

Die physikalische Basis beider Verfahren beruht auf der Annahme einer kontinuierlichen Verteilung von Schallquellen um den zu beschallenden Zuhörerbereich. Die praktische Realisierung durch eine endliche Anzahl von räumlich diskreten Lautsprechern muss explizit berücksichtigt werden. Im Folgenden wird kurz auf die Theorie von Higher-Order Ambisonics und der Wellenfeldsynthese eingegangen, wobei die wiedergegebenen Quellen der auditiven Szene als virtuelle Quellen und die zur Wiedergabe verwendeten Lautsprecher als Sekundärquellen bezeichnet werden.The physical basis of both methods is based on the assumption of a continuous distribution of sound sources around the audience area to be sounded. The practical realization by a finite number of spatially discrete loudspeakers must be explicitly considered. In the following, the theory of Higher-Order Ambisonics and Wave Field Synthesis will be briefly discussed, with the reproduced sources of the auditory scene as virtual sources and the speakers used for reproduction as secondary sources.

Die Herleitung der Ansteuerungsfunktionen bei Higher-Order Ambisonics erfolgt durch die explizite Lösung des zugrundeliegenden physikalischen Problems. Dazu werden die Lautsprecher durch eine kreis- oder kugelförmige kontinuierliche Verteilung von typischerweise akustischen Monopolen modelliert, die mit einer Gewichtungsfunktion belegt sind. Die aus diesem Ansatz folgende Integralgleichung kann durch die Darstellung der relevanten akustischen Felder in Form von sphärischen Harmonischen gelöst werden. Higher-Order Ambisonics ermöglicht im Prinzip die exakte Rekonstruktion eines nahezu beliebigen Schallfeldes innerhalb der Sekundärquellenverteilung. In der Praxis wird die kontinuierliche Verteilung von Monopolen jedoch durch eine räumlich diskrete Verteilung einer endlichen Anzahl von Lautsprechern realisiert. Ein Überblick über Higher-Order Ambisonics kann beispielsweise der Arbeit von J. Daniel, "Représentation de champs acoustiques, application à la transmission et à la reproduction de scènes sonores complexes dans un contexte multimedia", PhD thesis, Université Paris 6, 2001 entnommen werden.The derivation of the control functions in Higher-Order Ambisonics is done by explicitly solving the underlying physical problem. For this purpose, the speakers are characterized by a circular or spherical continuous distribution of typically models acoustic monopoles that are assigned a weighting function. The integral equation following from this approach can be solved by the representation of the relevant acoustic fields in the form of spherical harmonics. Higher-order Ambisonics allows, in principle, the exact reconstruction of almost any sound field within the secondary source distribution. In practice, however, the continuous distribution of monopoles is realized by a spatially discrete distribution of a finite number of loudspeakers. An overview of Higher-Order Ambisonics, for example, the work of J. Daniel, "Representation of Acoustics Acoustics, Application for the Transmission and Playback of the Sound Effects of Multimedia", PhD thesis, Université Paris 6, 2001 be removed.

Das Verfahren der spektralen Division (Spectral Division Method SDM, siehe beispielsweise J. Ahrens and S. Spors. Sound field reproduction using planar and linear arrays of loudspeakers. IEEE Transactions on Audio, Speech and Language Processing, 18(8):2038 - 2050, November 2010 . doi:10.1109/TASL.2010.2041106) stellt im Prinzip eine Übertragung des Higher-Order Ambisonics Ansatzes auf planare und lineare Geometrien dar. Bei der SDM wird das zugrundeliegende physikalische Problem, formuliert als eine Integralgleichung, explizit gelöst. Die Lösung erfolgt durch den Übergang in den räumlichen Spektralbereich mittels einer räumlichen Fourier Transformation. Wie bei Higher-Order Ambisonics werden die Lautsprecheransteuerungsfunktionen in diesem Bereich durch spektrale Divison berechnet. Dazu wird neben dem analytischen Ausdruck für ein gewünschtes Schallfeld einer prototypischen Quelle die Ausbreitungsfunktion (Green'sche Funktion) der Lautsprecher benötigt. Nach Rücktransformation der Ansteuerungsfunktion aus dem spektralen Bereich in den Ortsbereich steht diese dann für eine Realisierung zur Verfügung.The method of spectral division (Spectral Division Method SDM, see for example J. Ahrens and S. Spors. Sound field reproduction using planar and linear arrays of loudspeakers. IEEE Transactions on Audio, Speech and Language Processing, 18 (8): 2038 - 2050, November 2010 , doi: 10.1109 / TASL.2010.2041106) represents in principle a transfer of the higher-order Ambisonics approach to planar and linear geometries. In SDM, the underlying physical problem, formulated as an integral equation, is explicitly solved. The solution is achieved by the transition into the spatial spectral range by means of a spatial Fourier transformation. As with Higher-Order Ambisonics, the speaker drive functions in this range are calculated by spectral division. In addition to the analytical expression for a desired sound field of a prototypical source, the propagation function (Green's function) of the loudspeakers is needed. After back transformation of the control function from the spectral range to the local area, this is then available for implementation.

Die physikalische Grundlage der Wellenfeldsynthese beruht qualitativ auf dem Huygens-Fresnel'schen Prinzip und quantitativ auf den Rayleigh Integralen (siehe beispielsweise S. Spors, R. Rabenstein, und J. Ahrens, "The theory of wave field synthesis revisited," Audio Eng. Soc. Conv. Paper, Bd. 124 ). Diese besagen, dass ein nahezu beliebiges Schallfeld innerhalb eines Halbraumes bzw. einer Halbebene durch eine Verteilung von Sekundärquellen auf dem Rand resynthetisiert werden kann. Die Sekundärquellen müssen dabei mit dem gerichteten Gradienten des gewünschten Schallfeldes auf dem Rand angesteuert werden. Dies bildet die physikalische Grundlage für die Verwendung linearer oder planarer Sekundärquellenverteilungen. In der Praxis werden jedoch meist stückweise lineare Lautsprecherarrays eingesetzt. Dafür werden entsprechende Erweiterung in der Theorie vorgenommen (siehe zum Beispiel S. Spors, R. Rabenstein, und J. Ahrens, "The theory ofwave field synthesis revisited," Audio Eng. Soc. Conv. Paper, Bd. 124 ).The physical basis of wave field synthesis is qualitatively based on the Huygens-Fresnel principle and quantitatively on the Rayleigh integrals (see for example S. Spors, R. Rabenstein, and J. Ahrens, "The theory of wave field synthesis revisited," Audio Eng. Soc. Conv. Paper, Vol. 124 ). These state that an almost arbitrary sound field within a half-space or a half-level can be resynthesized by a distribution of secondary sources on the edge. The secondary sources must be controlled with the directional gradient of the desired sound field on the edge. This forms the physical basis for the use of linear or planar secondary source distributions. In practice, however, are usually piecewise used linear loudspeaker arrays. For this purpose, appropriate extension is made in theory (see for example S. Spors, R. Rabenstein, and J. Ahrens, "The theory of wave field synthesis revisited," Audio Eng. Soc. Conv. Paper, Vol. 124 ).

Wie bei Higher-Order Ambisonics und SDM geht auch die Theorie der Wellenfeldsynthese von einer räumlich kontinuierlichen Verteilung der Sekundärquellen aus. In der Praxis werden jedoch räumlich diskrete Verteilungen von Lautsprechern verwendet. Diese räumliche Diskretisierung führt zu einer Reihe von Artefakten im Zuhörerbereich.As with Higher-Order Ambisonics and SDM, the theory of wave field synthesis assumes a spatially continuous distribution of secondary sources. In practice, however, spatially discrete distributions of loudspeakers are used. This spatial discretization leads to a number of artifacts in the audience.

Für einige Anwendungen kann es interessant sein, eine Ruhezone innerhalb eines Zielbeschallungsbereichs, also der Zuhörerzone, vorzusehen, oder auch die Wiedergabe in einem begrenzten Bereich umgeben von einer Ruhezone. Beispielhaft seien folgende mögliche Anwendungen genannt:

  1. 1 Wiedergabe in einem begrenzten Bereich umgeben von einer Ruhezonen. Zum Beispiel in einem Büro, Wohnzimner, etc.
  2. 2 Konstruktion von akustisch getrennten Bereichen, um verschiedene Inhalte in einem physikalisch offenen Gebiet so wiederzugeben, dass sich die Inhalte nicht vermischen. Zum Beispiel für die Wiedergabe von Stereosignalen ohne die Verwendung von Kopfhörern.
  3. 3 Minimieren des Einflusses des Raumes, in dem die Wiedergabe stattfinden soll. Eine Möglichkeit dies zu erzielen ist, die Reflektion an den Wänden zu verhindern, indem die Energie des Schallfeldes nahe den Wänden minimiert wird.
  4. 4 Unterdrückung des Schallfeldes in einem Ort, in dem sich ein Aufnahmesystem befindet, um Rückkopplungseffekte zu unterdrücken.
For some applications, it may be interesting to provide a quiet zone within a target PA, ie the listener zone, or to play in a limited area surrounded by a quiet zone. By way of example, the following possible applications may be mentioned:
  1. 1 Play in a limited area surrounded by quiet areas. For example in an office, living room, etc.
  2. 2 Construction of acoustically separated areas to render different contents in a physically open area so that the contents do not mix. For example, for the playback of stereo signals without the use of headphones.
  3. 3 Minimizing the influence of the room in which the playback is to take place. One way to do this is to prevent reflection on the walls by minimizing the energy of the sound field near the walls.
  4. 4 Suppression of the sound field in a location where a recording system is located to suppress feedback effects.

Ansätze zur Erzeugung von Ruhezonen, (acoustic contrast control) sind zum Beispiel aus dem Dokument von J.-W. Choi und Y.-H. Kim, "Generatian of an acoustically bright zone with an illuminated region using multiple sources", Journal of the Acoustic Society of America, Bd. 111, Nr. 4, S. 1695-1700, April 2002 bekannt. Diese Verfahren basieren auf dem Ansatz einer Reihe von Kontrollpunkten im Zuhörerbereich und der Ruhezonen. Durch Minimierung der Energie in den Ruhezonen bei gleichzeitiger Optimierung der Synthese im Zuhörerbereich werden die Lautsprecher-Ansteuerugssignale berechnet.Approaches for generating quiet zones (acoustic contrast control) are, for example, from the document of J.-W. Choi and Y.-H. Kim, "Generatian of an acoustically bright zone with an illuminated region using multiple sources," Journal of the Acoustic Society of America, Vol. 111, No. 4, pp. 1695-1700, April 2002 known. These methods are based on the approach of a series of control points in the audience area and quiet areas. By minimizing the energy in the quiet zones while optimizing synthesis in the listener area, the loudspeaker drive signals are calculated.

Auch existieren auf Higher-Order Ambisonics basierende Verfahren. So wird in T.W. Abhayapala und Y.J. Wu, "Spatial Soundfield Reproduction with Zones of Quiet", Audio Engineering Society Convention 127, 2009 ein Verfahren vorgeschlagen zur Unterdrückung des Wellenfeldes in einem zirkulären Gebiet bei einer Ambisonics-basierten Schallwiedergabe mithilfe eines zirkularen Arrays. Dies ist beispielhaft in Fig. 5 illustriert. Es entstehen im Wiedergaberaum neben dem gewünschten Wellenfeld Nullstellen. Dieses Verfahren ist numerisch motiviert und lässt sich auf lineare Arrays nicht übertragen. Des Weiteren gibt dieses Verfahren implizite Vorgaben für die Lage des Ruhegebiets vor. Die Ruhezonen dürfen sich mit dem Wiedergabegebiet nicht überschneiden, eine Ruhezone darf also nicht innerhalb des Ausbreitungspfades des gewünschten Wiedergabegebiets sein, wie in Fig. 5 dargestellt. Hier deutet der dicke schwarze Ring die Anordnung der Lautsprecher an, die in dem gezeigten Beispiel also kreisförmig um die Zuhörerzone angeordnet sind. Das gewünschte Wellenfeld ist eine ebene Welle, die auf der linken Seite der Zuhörerzone wiedergegeben wird. Rechts ist ein kleiner Ring gezeigt, in dem das Schallfeld unterdrückt wird.There are also higher order Ambisonics based procedures. So will in TW Abhayapala and YJ Wu, Spatial Soundfield Reproduction with Zones of Quiet, Audio Engineering Society Convention 127, 2009 a method proposed for suppressing the wave field in a circular area in an ambisonics-based sound reproduction using a circular array. This is exemplary in Fig. 5 illustrated. In the playback room, zeros occur next to the desired wave field. This method is numerically motivated and can not be transferred to linear arrays. Furthermore, this procedure provides implicit specifications for the location of the rest area. The quiet zones may not overlap with the rendering area, so a quiet zone may not be within the propagation path of the desired rendering area, as in Fig. 5 shown. Here the thick black ring indicates the arrangement of the loudspeakers, which in the example shown are thus arranged in a circle around the listener zone. The desired wave field is a plane wave that is displayed on the left side of the listener zone. On the right is a small ring in which the sound field is suppressed.

Es ist eine Aufgabe der vorliegenden Erfindung, die Einschränkungen des Standes der Technik auszuräumen und ein verbessertes Verfahren und eine Vorrichtung zur Unterdrückung des Schallfeldes in bestimmten Bereichen der Zuhörerzone, die auch als Ruhezonen bezeichnet werden, bei gleichzeitiger Synthetisierung eines wiederzugebenden Feldes in einem Zielbereich ― also außerhalb der Ruhezonen ― bereitzustellen. Die Lage der Ruhezonen in der Zuhörerzone bzw. die Anordnung der Lautsprecher soll hierbei möglichst wenigen Einschränkungen unterliegen. Die Aufgabe der Erfindung wird durch im Verfahren bzw. eine Vorrichtung gemäß der Ansprüche 1 bzw. 8 gelöst.It is an object of the present invention to overcome the limitations of the prior art and an improved method and apparatus for suppressing the sound field in certain areas of the listener zone, also referred to as quiet zones, while synthesizing a field to be displayed in a target area - ie outside the quiet zones - provide. The location of the quiet zones in the listener zone or the arrangement of the loudspeakers should be subject to as few restrictions as possible. The object of the invention is achieved by in the method and a device according to claims 1 and 8, respectively.

Mit der Erfindung wird ein Verfahren zur Wiedergabe eines akustischen Wellenfelds in einer Zuhörerzone mittels mehrerer Lautsprecher bereitgestellt. Durch Anwenden einer räumlichen Fensterfunktion, beispielsweise einer Rechteckfunktion, auf das wiederzugebende Wellenfeld wird ein wellenfreier Abschnitt in der Zuhörerzone definiert, in dem das Wellenfeld unterdrückt wird. Dies kann beispielsweise durch eine Multiplikation des Zielschallfeldes mit der Fensterfunktion geschehen, dies entspricht einer räumlichen Faltung im räumlichen Frequenzbereich.The invention provides a method for reproducing an acoustic wave field in a listener zone by means of several loudspeakers. Applying a spatial window function, such as a rectangular function, to the wave field to be rendered defines a wave-free section in the listener zone in which the wave field is suppressed. This can be done for example by a multiplication of the target sound field with the window function, this corresponds to a spatial convolution in the spatial frequency range.

Um das sich so ergebende gewünschte Wellenfeld mit den Lautsprechern wiedergeben zu können, werden entsprechende Lautsprecher- Ansteuerungssignale bestimmt und dieseTo be able to reproduce the resulting desired wave field with the speakers, corresponding loudspeaker drive signals are determined and these

Ansteueruxagssignale den Lautsprechern zugeführt. Das Bestimmen der Ansteuerungssignale kann durch ein Higher-Order-Ambisonics-Verfahren oder ein Verfahren der spektralen Division durchgeführt werden.. Vorzugsweise wird das gewünschte Wellenfeld bandbegrenzt, um die Güte der Unterdrückung des Schallfeldes in dem entsprechenden Bereich der Zuhörerzone zu erhöhen.Ansteueruxagssignale supplied to the speakers. The determination of the drive signals may be performed by a higher order Ambisonics method or a spectral division method. Preferably, the desired wave field is bandlimited to increase the quality of the suppression of the sound field in the corresponding area of the listener zone.

Weiterhin stellt die Erfindung eine entsprechende Vorrichtung zur Wiedergabe eines akustischen Wellenfelds in der Zuhörerzone bereit, wobei das Wellenfeld in einem oder mehreren vorbestimmten Abschnitten der Zuhörerzone unterdrückt wird. Hierbei können die Lautsprecher auf einer offenen Kontur, insbesondere einer Linie, oder auch auf einer die Zuhörerzone umgebenden Kontur, also beispielsweise auf einem Kreis oder einem Rechteck, angeordnet sein.Furthermore, the invention provides a corresponding device for reproducing an acoustic wave field in the listener zone, wherein the wave field is suppressed in one or more predetermined sections of the listener zone. In this case, the loudspeakers may be arranged on an open contour, in particular a line, or else on a contour surrounding the listener zone, that is to say for example on a circle or a rectangle.

Die Erfindung wird im Folgenden unter Bezugnahme auf die beigefügten Figuren näher beschrieben. Es zeigen:

  • Fig. 1 eine Simulation der Wiedergabe einer ebenen Welle umgeben von einer ruhigen Zone;
  • Fig. 2 die Energieverteilung des in Fig. 1. gezeigten Schallfeldes (in dB);
  • Fig. 3 die Energieverteilung des in Fig. 1 gezeigten Schallfeldes, wenn das Wellenfeld nur in einem bestimmten Gebiet unterdrückt werden soll (in dB);
  • Fig. 4 eine Simulation der Wiedergabe einer ebenen Welle umgeben von einer ruhigen Zone bei rechteckiger Arraygeometrie; und
  • Fig. 5 ein mit dem im Stand der Technik bekannten Ambisonics- Verfahren wieder gegebenes Schallfeld.
The invention will be described in more detail below with reference to the attached figures. Show it:
  • Fig. 1 a simulation of the reproduction of a plane wave surrounded by a quiet zone;
  • Fig. 2 the energy distribution of in Fig. 1 , shown sound field (in dB);
  • Fig. 3 the energy distribution of in Fig. 1 shown sound field, if the wave field is to be suppressed only in a certain area (in dB);
  • Fig. 4 a simulation of the reproduction of a plane wave surrounded by a quiet zone with rectangular array geometry; and
  • Fig. 5 a sound field reproduced with the Ambisonics method known in the art.

Alle Verfahren der mehrkanaligen akustischen Wiedergabesysteme verwenden eine vordefinierte Mischmatrix, die die Quellensignale auf bestimmte Lautsprechersignale abbildet, um einen gewünschten Höreindruck hervorzurufen. Die Herleitung der Ansteuerungsfunktionen bei Higher-Order Ambisonics und SDM erfolgt durch die explizite Lösung des zugrundeliegenden physikalischen Problems.All methods of multi-channel acoustic reproduction systems use a pre-defined mixing matrix which maps the source signals to particular loudspeaker signals to produce a desired auditory impression. The derivation of the control functions in Higher-Order Ambisonics and SDM is done by explicitly solving the underlying physical problem.

Die Unterdrückung des Wellenfeldes in bestimmten Zonen kann interpretiert werden als eine Multiplikation des ursprünglichen Wunschfeldes mit bestimmten räumlichen Fensterfünktionen, die das Schallfeld in bestimmten Gebieten unterdrücken. Im räumlichen Spektralbereich betrachtet, ist diese räumliche Multiplikation eine spektrale Faltung und die räumliche Unterdrückung geschieht daher durch eine geeignete spektrale Spreizung des räumlichen Spektrums des wiederzugebenden räumlichen Signals.The suppression of the wave field in certain zones can be interpreted as a multiplication of the original desired field with certain spatial window functions that suppress the sound field in certain areas. Considered in the spatial spectral range, this spatial multiplication is a spectral convolution and the spatial suppression is therefore done by a suitable spectral spread of the spatial spectrum of the reproduced spatial signal.

Zur Verdeutlichung des Wirkprinzips der Erfindung werden im Folgenden beispielhaft die der Synthese akustischer Wellenfelder mithilfe linearer Arrays zugrundeliegenden Gleichungen angegeben. Bei der Diskussion wird die Wiedergabe des Wellenfelds in einer Ebene beschrieben, es gilt also z=0. Die Ausdehnung des Arrays verläuft in Richtung der x-Achse.To clarify the principle of operation of the invention, the following is an example of the synthesis of acoustic wave fields using linear arrays underlying equations. In the discussion, the reproduction of the wave field is described in one plane, so z = 0. The extent of the array runs in the direction of the x-axis.

Das synthetisierte Schallfeld kann als das Ergebnis eines räumlichen Faltungsintegrals verstanden werden. P x ω = - D x 0 ω G x - x 0 , ω x 0 ,

Figure imgb0001

dabei stellt D die Ansteuerungsfunktion der Sekundärquellen dar und G die Green'sche Funktion, die den Ausbreitungspfad eines akustischen Monopols an der Position (x0=(x 0,y 0,z 0)) zum Punkt (x=(x,y,z))charakterisiert. Im Idealfall entspricht das synthetisiert Schallfeld dem gewünschten Schallfeld.The synthesized sound field can be understood as the result of a spatial convolution integral. P x ω = - D x 0 ω G x - x 0 . ω x 0 .
Figure imgb0001

where D represents the drive function of the secondary sources and G the Green's function, which determines the propagation path of an acoustic monopole at the position (x 0 = ( x 0 , y 0 , z 0 )) to the point (x = ( x , y , z )). Ideally, the synthesized sound field corresponds to the desired sound field.

Es sei das Wunschfeld zum Beipiel eine monochromatische ebene Welle, diese ist gegeben durch die Gleichung: p x y t = e - i k pw , x x + k pw , y - ω pw t ,

Figure imgb0002

eine zeitliche Fouriertransformation obiger Gleichung gefolgt von zwei räumlichen Fouriertransformationen entlang der x- und y-Achse liefern P k x k y z ω = 8 π 3 δ k x - k pw , x δ k y - k pw , y δ ω - ω pw .
Figure imgb0003
For example, the desired field is a monochromatic plane wave, which is given by the equation: p x y t = e - i k pw . x x + k pw . y - ω pw t .
Figure imgb0002

provide a temporal Fourier transform of the above equation followed by two spatial Fourier transforms along the x and y axes P ~ k x k y z ω = 8th π 3 δ k x - k pw . x δ k y - k pw . y δ ω - ω pw ,
Figure imgb0003

Gewünscht sei nun eine Begrenzung des Wellenfeldes auf einen Streifen, der zu dem Array senkrecht ist. Dieses kann als eine räumliche Fensterung verstanden werden. Eine mögliche Fensterfunktion ist die Rechteckfunktion. Die räumliche Fouriertransformation der Rechteckfunktion der Breite (1/a) lautet. Π x a x - 1 2 πa 2 sinc k x 2 πa .

Figure imgb0004
What is desired now is a boundary of the wave field on a stripe perpendicular to the array. This can be understood as a spatial fenestration. One possible window function is the rectangular function. The spatial Fourier transformation of the rectangular function of width (1 / a) is. Π x a x - 1 2 πa 2 sinc k x 2 πa ,
Figure imgb0004

Insgesamt ist das gewünschte räumlich begrenzte Wellenfeld durch die folgende Faltung gegeben: P Π k x k y ω = Π x a x * P k x k y ω , = 1 2 πa 2 sinc k x - k pw , x 2 πa δ k y - k pw , y δ ω - ω pw .

Figure imgb0005
Overall, the desired spatially limited wave field is given by the following convolution: P ~ Π k x k y ω = Π x a x * P ~ k x k y ω . = 1 2 πa 2 sinc k x - k pw . x 2 πa δ k y - k pw . y δ ω - ω pw ,
Figure imgb0005

Um die Ansteuenmgsfunktionen für die Lautsprecher zu berechnen kann das Verfahren der spektralen Division verwendet werden. Diese beruht darauf, dass sich das Faltungsintegral in (G1. 1) zu einer Multiplikation im räumlichen Fourierbereich transformieren lässt. Damit kann (G1. 1) wie folgt umgeformt werden D k x k y ω = P Π k x k y ω G k x k y ω .

Figure imgb0006
In order to calculate the driving functions for the speakers, the method of spectral division can be used. This is based on the fact that the convolution integral in (G1.1) can be transformed into a multiplication in the spatial Fourier domain. Thus, (G1.1) can be transformed as follows D ~ k x k y ω = P ~ Π k x k y ω G k x k y ω ,
Figure imgb0006

Die Güte der Unterdrückung des Schallfeldes in einem bestimmten Gebiet hängt von der räumlichen Aliasingfrequenz des Wiedergabesystems und der Grenzfrequenz des wiedergegebenen Materials ab, weil nur die Spektralanteile des wiedergegebenen Materials, die unterhalb der Aliasingfrequenz des Systems liegen, gezielt unterdrückt werden können. Zusätzlich kann eine Bandbegrenzung des wiederzugebenden Materials eingesetzt werden um räumliches Aliasing zu vermeiden.The quality of the suppression of the sound field in a certain area depends on the spatial aliasing frequency of the playback system and the cut-off frequency of the reproduced material, because only the spectral components of the reproduced material, which are below the aliasing frequency of the system can be selectively suppressed. In addition, a band limitation of the material to be reproduced can be used to avoid spatial aliasing.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Mischmatrix auf der Wiedergabeseite frequenzselektiv ausgehend von dem gewünschten Wellenfelds, der Lage des Aufnahmesystem und der Geometrie des Wiedergabesystems bestimmt. Als Anwendungsbeispiel wird ein lineares Lautsprecherarray diskutiert, wobei die Abhörzone mit zwei virtuellen Linien, die senkrecht zum Array stehen, in drei Gebiete unterteilt sein soll. In einem Gebiet soll eine konventionelle Wiedergabe ebener Wellen basierend auf dem Verfahren der spektralen Division erfolgen. In den beiden anderen Gebieten, in denen sich das Aufnahmesystem befinden kann, soll das Wellenfeld unterdrückt werden.In a preferred embodiment of the method according to the invention, the mixing matrix on the reproduction side is determined frequency-selectively on the basis of the desired wave field, the position of the recording system and the geometry of the reproduction system. As an application example, a linear loudspeaker array is discussed, wherein the interception zone with two virtual lines, which are perpendicular to the array, should be divided into three areas. In one area, conventional flat wave reproduction should be based on the spectral division method. In the two other areas in which the recording system can be located, the wave field should be suppressed.

Das Wunschwellenfeld ist eine Multiplikation der ebenen Wellen mit der räumlichen Rechteckfunktion oder einer anderen geeigneten Fensterfunktion. Für die Bestimmung der Ansteuerungsfunktionen für die Lautsprecher wird gemäß der Ausführungsform die Methode der spektralen Division eingesetzt. Dieses Verfahren benötigt bei linearen Arraygeometrien einen Ausdruck für sowohl das gewünschte Wellenfeld als auch die Green'sche Funktion im räumlich transformierten Bereich. mittels der Fouriertransformation entlang einer Referenzlinie, auf der die Wiedergabe exakt sein soll. Die Ansteuerfunktionen im räumlichen Spektralbereich sind das Ergebnis der elementweisen Division des Spektrums des Wunschfeldes durch das Spektrum der Green'schen Funktion. Die so ermittelten Spektren der Ansteuerfunktionen können mit Hilfe einer inversen Fouriertransformation in den räumlichen Bereich zurücktransformiert werden.The desired wave field is a multiplication of the plane waves with the spatial rectangular function or another suitable window function. For the determination of Driving functions for the speakers according to the embodiment, the method of spectral division is used. This method requires an expression for both the desired wave field and Green's function in the spatially transformed region for linear array geometries. by means of the Fourier transformation along a reference line on which the reproduction should be exact. The driving functions in the spatial spectral range are the result of element-wise division of the spectrum of the desired field by the spectrum of Green's function. The thus determined spectra of the drive functions can be transformed back into the spatial domain by means of an inverse Fourier transformation.

In Fig. 1 ist das Ergebnis einer Simulation des vorgestellten Verfahrens abgebildet und in Fig. 2 ist die Energieverteilung des Wellenfeldes zu sehen. In Fig. 3 ist die Energieverteilung wiedergegeben, wenn die Ruhezone, also der wellenfreie Abschnitt, das Wiedergabegebiet in zwei Gebiete trennt.In Fig. 1 is the result of a simulation of the presented method and shown in Fig. 2 you can see the energy distribution of the wave field. In Fig. 3 the energy distribution is reproduced when the quiet zone, ie the wave-free section, divides the display area into two areas.

Arraygeometrien, die den Zuhörerraum zweidimensional einschließen, wie z.B. rechteckige Arrays, erlauben eine zweidimensionale Unterdrückung des Feldes. Ein Beispiel hierfür ist in Fig. 4 gezeigt. Die Vorgehensweise zum Durchführen des erfindungsgemäßen Verfahrens ist dabei ähnlich wie oben beschrieben. Der Hauptunterschied besteht darin, dass die Fensterfunktion hier zweidimensional ist. Das gleiche gilt für die dreidimensionale Wiedergabe.Array geometries that enclose the audience space in two dimensions, such as rectangular arrays, allow two-dimensional suppression of the field. An example of this is in Fig. 4 shown. The procedure for carrying out the method according to the invention is similar to that described above. The main difference is that the window function here is two-dimensional. The same applies to the three-dimensional rendering.

Das räumlich begrenzte Wellenfeld ist im Spektralbereich eine zweidimensionale Faltung des Wunschfeldes mit der räumlich transformierten Fensterfunktion. So ist beispielsweise das in Fig. 4 gezeigte Wellenfeld eine Superposition von ebenen Wellen, wobei bei der Synthese der einzelnen ebenen Wellen das gewünschte Ruhegebiet explizit berücksichtigt wurde. Die Ansteuerungsfunktionen der Lautsprecher für die in. Fig. 4 gezeigten ebenen Wellen wurden mithilfe des genannten Verfahrens der spektralen Division ermittelt.The spatially limited wave field is in the spectral range a two-dimensional convolution of the desired field with the spatially transformed window function. For example, the in Fig. 4 Wave field shown a superposition of plane waves, wherein in the synthesis of the individual plane waves, the desired resting area was explicitly considered. The driving functions of the speakers for the in. Fig. 4 The plane waves shown were determined by means of the aforementioned method of spectral division.

Claims (11)

  1. A method of reproducing an acoustic wave field in a listener zone comprising the suppression of the wave field in one or more predetermined portions of the listener zone by means of a plurality of loudspeakers, the method comprising the steps of:
    - determining a desired wave field in the listener zone by applying a spatial window function for forming wave-free portions on a wave field to be reproduced;
    - determining gating signals for the loudspeakers for generating the desired wave field in the listener zone; and
    - supplying the gating signals to the loudspeakers.
  2. The method of claim 1, wherein the wave field to be reproduced is multiplied by the spatial window function for determining the desired wave field.
  3. The method of claim 1, wherein a spatial convolution of the spectrum of the wave field to be reproduced with the window function in the spatial frequency area is performed for determining the desired wave field.
  4. The method of claim 1, wherein the wave field to be reproduced is spectrally spread for forming the wave-free portion.
  5. The method of any of the preceding claims, wherein the window function is a rectangular function.
  6. The method of any of the preceding claims, wherein the gating signals are determined by a higher-order ambisonics method or a spectral division method.
  7. The method of any of the preceding claims, wherein the desired wave field is bandlimited.
  8. A device for reproducing an acoustic wave field in a listener zone comprising the suppression of the wave field in one or more predetermined portions of the listener zone by a plurality of loudspeakers, the device comprising:
    - a plurality of loudspeakers;
    - a device for supplying gating signals to the loudspeaker for generating a desired wave field comprising a wave-free portion in the listener zone, wherein the desired wave field is formed by applying a window function to a wave field to be reproduced.
  9. The device of claim 8, wherein the loudspeakers are arranged on an open contour, in particular a line.
  10. The device of claim 8, wherein the loudspeakers are arranged on a contour surrounding the listener zone.
  11. The device of claim 10, wherein the loudspeakers are arranged on a circle or a rectangle.
EP20110153510 2011-02-07 2011-02-07 Generation of quiet areas within the listener zone of multi-channel playback systems Active EP2485504B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20110153510 EP2485504B1 (en) 2011-02-07 2011-02-07 Generation of quiet areas within the listener zone of multi-channel playback systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20110153510 EP2485504B1 (en) 2011-02-07 2011-02-07 Generation of quiet areas within the listener zone of multi-channel playback systems

Publications (2)

Publication Number Publication Date
EP2485504A1 EP2485504A1 (en) 2012-08-08
EP2485504B1 true EP2485504B1 (en) 2013-10-09

Family

ID=44246997

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110153510 Active EP2485504B1 (en) 2011-02-07 2011-02-07 Generation of quiet areas within the listener zone of multi-channel playback systems

Country Status (1)

Country Link
EP (1) EP2485504B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2996094B1 (en) * 2012-09-27 2014-10-17 Sonic Emotion Labs METHOD AND SYSTEM FOR RECOVERING AN AUDIO SIGNAL
US9516440B2 (en) 2012-10-01 2016-12-06 Sonos Providing a multi-channel and a multi-zone audio environment

Also Published As

Publication number Publication date
EP2485504A1 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
EP2080411B1 (en) Device and method for generating a number of loudspeaker signals for a loudspeaker array which defines a reproduction area
EP3005737B1 (en) Mixing desk, method and computer program for providing a sound signal
EP1878308B1 (en) Device and method for generation and processing of sound effects in spatial audio reproduction systems using a graphical user interface
EP2189010B1 (en) Apparatus and method for determining a component signal with great accuracy
EP3117631B1 (en) Apparatus and method for processing a signal in the frequency domain
EP2656633B1 (en) Device and method for calculating speaker signals for a plurality of speakers using a delay in the frequency domain
EP3069530B1 (en) Method and device for compressing and decompressing sound field data of an area
EP3061271B1 (en) Wave field synthesis system
EP1972181B1 (en) Device and method for simulating wfs systems and compensating sound-influencing wfs characteristics
EP3044972B1 (en) Device and method for the decorrelation of loudspeaker signals
EP2891334B1 (en) Producing a multichannel sound from stereo audio signals
EP2754151B1 (en) Device, method and electro-acoustic system for prolonging a reverberation period
EP2485504B1 (en) Generation of quiet areas within the listener zone of multi-channel playback systems
EP2182744B1 (en) Replaying a sound field in a target sound area
DE102021207302A1 (en) Method and device for sound reinforcement of at least one audience area
DE102019208631A1 (en) Device and method for sounding a spatial area
EP2503799B1 (en) Method and system for calculating synthetic head related transfer functions by means of virtual local sound field synthesis
DE102022129642A1 (en) Method for direction-dependent correction of the frequency response of sound wave fronts
DE102011108788A1 (en) Method for processing an audio signal, audio reproduction system and processing unit for processing audio signals
EP2571290B1 (en) Local sound field synthesis with a virtual scattering body
DE102015104699A1 (en) Method for analyzing and decomposing stereo audio signals
EP2469892A1 (en) Reproduction of a sound field in a target sound area
EP2487891A1 (en) Prevention of an acoustic echo in full duplex systems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130502

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHE TELEKOM AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 635968

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011001446

Country of ref document: DE

Effective date: 20131205

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140109

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001446

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

BERE Be: lapsed

Owner name: DEUTSCHE TELEKOM A.G.

Effective date: 20140228

26N No opposition filed

Effective date: 20140710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140207

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001446

Country of ref document: DE

Effective date: 20140710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141031

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140207

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140110

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110207

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 635968

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231212

Year of fee payment: 14