EP2483664A1 - Chambre de circulation comportant un capteur à magnétorésistance géante et un dispositif de guidage de cellules - Google Patents

Chambre de circulation comportant un capteur à magnétorésistance géante et un dispositif de guidage de cellules

Info

Publication number
EP2483664A1
EP2483664A1 EP10751851A EP10751851A EP2483664A1 EP 2483664 A1 EP2483664 A1 EP 2483664A1 EP 10751851 A EP10751851 A EP 10751851A EP 10751851 A EP10751851 A EP 10751851A EP 2483664 A1 EP2483664 A1 EP 2483664A1
Authority
EP
European Patent Office
Prior art keywords
gmr sensor
flow
magnetic field
sensor
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10751851A
Other languages
German (de)
English (en)
Inventor
Ludwig BÄR
Oliver Hayden
Helmut Eckert
Sandro Francesco Tedde
Michael Vieth
Roland Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2483664A1 publication Critical patent/EP2483664A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • B03C1/01Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1207Testing individual magnetic storage devices, e.g. records carriers or digital storage elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0851Bottom walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation whereby the particles to be separated are in solid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/24Details of magnetic or electrostatic separation for measuring or calculating parameters, efficiency, etc.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00564Handling or washing solid phase elements, e.g. beads

Definitions

  • the invention relates to a flow chamber with a cell guide device and a GMR sensor for detecting magnetically marked cells.
  • labeled cells can be detected using special sensors.
  • a medium having both unlabeled and mar ⁇ kATOR cells, passed through a microfluidic channel of a flow-through chamber is positioned on the inner surface of the sensor.
  • the labeled cells ideally pass the sensor near the surface and are detected by it.
  • GMR sensors Gaant Magneto Resistance or giant magnetoresistance
  • the function of a GMR sensor is known to be based on the GMR effect, in which variations in an external magnetic field cause comparatively large changes in the electrical resistance of the sensor or the GMR structure contained therein.
  • is the area of the GMR sensor is located.
  • an external operating magnetic field B G MR is generated. Once a magnetic body enters or within reach of the GMR sensor in this operating magnetic field B G MR is moved ⁇ be through the field, the magnetic field changes at the location of the sensor with the result that the electrical resistance of the sensor changes measurably. That is, with the aid of the GMR sensor, the applicatio ⁇ ence of the magnetic body can be detected and registered.
  • magnetically marked cells can be detected with the sensor, the measurement principle being based on the effect described above: a magnetically marked cell passing through the GMR sensor influences the operating magnetic field B G MR am Location of the sensor, so that the presence of the cell can be detected by the measurement of the electrical ⁇ resistance of the sensor.
  • a necessary prerequisite for the function of the GMR sensor is the presence of the outer Radiomag netfeldes ⁇ B G MR
  • a corresponding magnet for example.
  • this is disadvantageous, for example, due to the limited space available and, in the case of the current-carrying coil, due to the required switching and supply of the coil.
  • a flow chamber according to the invention which is druchströmbar by a magnetically labeled cells having medium, has at least one, positioned on an inner surface of the flow chamber GMR sensor for cell detection and a Zellleit adopted with at least a first and a second magnetic or magnetizable flux strip.
  • the flux strips are arranged at a distance from one another such that a magnetic field B F is formed between them.
  • the GMR sensor is in the range of
  • Magnetic field B F is arranged between the flux strips, that the magnetic field B F of the flux strips as operating ⁇ magnetic field B G MR of the GMR sensor is available. It can therefore be advantageously dispensed with an additional magnet for operating the GMR sensor.
  • the first flow strip is positioned in front of the sensor in the flow direction and is arranged and designed such that it conducts the magnetically marked cells flowing in the flow direction via the GMR sensor.
  • the flow chamber is seen in the flow direction of the second
  • Flow cytometer which is flowed through by a medium with magnetically marked cells and having a cell guiding device with at least a first and a second magnetic or magnetizable flux strip, the flow strips are spaced apart from each other in such a way
  • the GMR sensor is arranged in the region of the magnetic field B F between the flux strips.
  • the magnetic field B F between the flux strips can thus be used according to the invention as Be ⁇ operating magnetic field B G MR of the GMR sensor.
  • the first directs
  • Flow strips flow in the direction of flow, magnetically labeled cells via the GMR sensor.
  • the second flux strip conducts magnetically marked cells flowing in the return flow direction via the GMR sensor.
  • FIG. 1 shows a flow chamber in cross section
  • Figure 2 is a plan view of a microfluidic channel of
  • FIG. 3 shows a side view of a cell conduction device and a GMR sensor
  • Figure 4 is a plan view of a microfluidic channel of a
  • FIG. 1 shows a flow chamber 10 of a flow cytometer in cross section.
  • a medium 70 which contains the magnetically marked cells 20 to be detected and unmarked cells 30, passes in the flow direction 130 through an opening 40 into the throughflow chamber 10.
  • the medium 70 flows through a microfluidic channel 11 of the chamber 10 and leaves it behind the detection again through a further opening 50.
  • the magnetically marked cells 20 are detected by means of a GMR sensor 60. When the magnetic cells 20 pass through the GMR sensor 60, they affect the operating magnetic field B GMR prevailing at the location of the sensor. This is registered by the GMR sensor 60 and used for detection.
  • the flow chamber 10 has a cell guide device 120.
  • This device 120 is to cause that at the entrance 40 of the flow chamber 10 in the medium 70 is still stochastic distributed, magnetically labeled cells 20 can be selectively directed over the sensor 60, ie at least within its range, ideally centered and immediately above the surface of the sensor 60. This has the consequence that a significantly larger number of cells 20 can be detected because significantly fewer cells, for example, flow laterally past the sensor 60. It is therefore no longer left to chance, whether a marked cell 20 comes within range of the sensor 60 and can be detected.
  • Various embodiments of such a cell conduction device are described in detail in the parallel German patent application "flow chamber with cell conduction device".
  • the cell guide device 120 has two flow strips 121, 122, the first flow strip 121 being arranged in front of the GMR sensor 60 and the second flow strip 122 behind the sensor 60, as seen in the flow direction 130, such that the first flow strip 121, the GMR Sensor 60 and the second flux strip 122 are in line.
  • the cells 20 which pass the sensor 60 are thus also conducted on intended paths after the detection.
  • the flow strips 121, 122 are aligned in the flow direction 130 of the medium.
  • the interaction between the magnetic cells 20 and the magnetic flux strip 121 causes the cells 20, as they flow past the strip 121 with the medium 70, to leave the stochastic distribution and to dispose on the strip 121 over time.
  • the first flux strip 121 has on the input side a wider region 121/1, by means of which the marked cells 121 are guided in the direction of the narrower region 121/2 (the term "width" here refers to the direction perpendicular to the flow direction 130, ie the y-direction).
  • the width of the strip 121 in the area 121/1 can in extreme cases correspond to the width of the microfluidic channel 11.
  • the width of the flow strip 121 in the rear narrower region 121/2 seen in the flow direction 130 may be substantially oriented at the diameter of the cells 20, but is generally smaller than the width of the sensor 60.
  • the shape of the flow strips shown here is to understand by way of example. Other shapes are of course conceivable depending on the desired effect.
  • the labeled cells 20, which are arranged on the first flux strip 121, are guided in a targeted manner via the GMR sensor 60 with the aid of the cell guiding device 120.
  • the flux strips 121, 122 are made of a magnetic or a magnetizable material, for example. Nickel. As noted for the first flux stripe 121, the width of the second flux stripe 122 may also be substantially oriented at the diameter of the cells 20, but is typically smaller than the width of the sensor 60. Typically, the striations 121, 122 are up to ⁇ wide as well as 100-500nm high (z-direction). Heights on the order of lum are also conceivable.
  • the microfluidic channel 11 is typically 100-400 ⁇ , ⁇ high and about 1mm long (x-direction).
  • the GMR sensors 60 are about 25-30 ⁇ wide.
  • FIG. 3 shows a side view or a cross section through the first flux strip 121, the GMR sensor 60 and the second flux strip 122.
  • the situation at a first instant tl is represented, on which the magnetically-labeled cell 20 is still so far away from the GMR sensor 60, the magnetic field produced by the surrounding at ⁇ , the sensor 60 flow strips 121, 122 B F , whose field lines are exemplarily from the first 121 to the second flux strip 122, is not affected by the cell 20.
  • the magnetically marked cell 20 has reached the GMR sensor 60.
  • the magnetic field B generated by the flow F strips 121, 122 in the area of the sensor 60 is changed ⁇ ver of the cell 20 so that the GMR sensor 60 can detect the cell 20 due to the initially be written ⁇ GMR effect.
  • a high field difference is effected between the ends of the flux strips 121, 122 and through the flux strips 121, 122 quasi-shorted by the magnetically marked cells 20.
  • the result is a high Nutzsignalhub, although no additional magnet for generating the external magnetic field B is used.
  • a third time t3, finally, is shown to which the cells 60 of the 20 have left the GMR sensor as already ⁇ .
  • the magnetic field B F between the flux strips 121, 122 has again set as demonstrated in Figure 3A.
  • This magnetic field is distorted in the presence of a magnetically marked cell 20, which causes the electrical resistance of the GMR sensor 60 to change measurably.
  • the flowing, labeled cells 20 are in contact with the first magnetic or magnetizable flux strip 121 of the cell conducting device 120 passed over the GMR sensor 60.
  • the second flux strip 122 is advantageously used, for example, when the medium 70 and with it the magnetically marked cells 20 are conducted not only in the flow direction 130 (positive x direction) via the sensor 60, but alternately in the flow direction 130 and in the return flow direction 130 '(negative x-direction, see Figure 2).
  • the cells 20 accordingly stroke over the sensors 60 several times. This can serve, for example, to improve the statistics.
  • the cells 60 passing through the sensor 60 are usually already arranged, ie no longer stochastically distributed.
  • the second flux strip 122 essentially serves to guide the cells 20 via the sensor 60, while the first flux strip 121, in particular its wider region 121/1, additionally has the function of collecting the initially stochastically distributed cells 20 and the narrower region 121/2 to lead.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

L'invention concerne une chambre de circulation d'un cytomètre à circulation, dans laquelle des cellules marquées magnétiquement peuvent être détectées à l'aide d'un capteur à magnétorésistance géante. La chambre de circulation comporte un dispositif de guidage de cellules présentant au moins une première et une deuxième bande de flux magnétique ou magnétisable. Les bandes de flux servant à guider les cellules en circulation de façon ciblée sur le capteur, sont espacées de telle manière qu'un champ magnétique BF se forme entre elles. Le capteur à magnétorésistance géante est disposé dans la zone du champ magnétique BF entre les bandes de flux de telle manière que le champ magnétique BF des bandes de flux peut être employé comme champ magnétique utile BGMR du capteur à magnétorésistance géante. Il est ainsi possible de se passer avantageusement d'un aimant supplémentaire, habituellement nécessaire pour faire fonctionner le capteur à magnétorésistance géante.
EP10751851A 2009-09-30 2010-08-17 Chambre de circulation comportant un capteur à magnétorésistance géante et un dispositif de guidage de cellules Withdrawn EP2483664A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009047793A DE102009047793A1 (de) 2009-09-30 2009-09-30 Durchflusskammer mit GMR-Sensor und Zellleiteinrichtung
PCT/EP2010/061944 WO2011038984A1 (fr) 2009-09-30 2010-08-17 Chambre de circulation comportant un capteur à magnétorésistance géante et un dispositif de guidage de cellules

Publications (1)

Publication Number Publication Date
EP2483664A1 true EP2483664A1 (fr) 2012-08-08

Family

ID=43242252

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10751851A Withdrawn EP2483664A1 (fr) 2009-09-30 2010-08-17 Chambre de circulation comportant un capteur à magnétorésistance géante et un dispositif de guidage de cellules

Country Status (5)

Country Link
US (1) US20120182007A1 (fr)
EP (1) EP2483664A1 (fr)
CN (1) CN102511002A (fr)
DE (1) DE102009047793A1 (fr)
WO (1) WO2011038984A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011118742A1 (de) * 2011-11-17 2013-05-23 Forschungszentrum Jülich GmbH Detektor für magnetische Partikel in einer Flüssigkeit
DE102012211626A1 (de) * 2012-07-04 2014-01-09 Siemens Aktiengesellschaft Anordnung zur Quantifizierung von Zellen einer Zellsuspension
EP3478416A4 (fr) * 2016-06-30 2019-12-18 General Automation Lab Technologies, Inc. Systèmes à haute résolution, kits, appareil et procédés utilisant des billes magnétiques pour des applications de microbiologie à haut débit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875621B2 (en) * 1999-10-13 2005-04-05 Nve Corporation Magnetizable bead detector
US6623984B1 (en) * 2000-11-01 2003-09-23 The Cleveland Clinic Foundation MEMS-based integrated magnetic particle identification system
US6736978B1 (en) * 2000-12-13 2004-05-18 Iowa State University Research Foundation, Inc. Method and apparatus for magnetoresistive monitoring of analytes in flow streams
EP1711793A1 (fr) * 2004-01-26 2006-10-18 Koninklijke Philips Electronics N.V. Procede et dispositif de spectroscopie par resonance magnetique realise sur la puce
WO2007060568A2 (fr) * 2005-11-23 2007-05-31 Koninklijke Philips Electronics N. V. Dispositif de detection magnetique dote d’une chambre d’echantillonnage
WO2008001266A2 (fr) * 2006-06-29 2008-01-03 Philips Intellectual Property & Standards Gmbh Dispositif microélectronique avec manipulateur magnétique
JP2009543088A (ja) * 2006-07-11 2009-12-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁気センサ素子
US20090001024A1 (en) * 2007-06-26 2009-01-01 Porter Marc D Using asymmetrical flow focusing to detect and enumerate magnetic particles in microscale flow systems with embedded magnetic-field sensors
DE102007057667A1 (de) * 2007-11-30 2009-09-03 Siemens Ag Vorrichtung zur Detektion von Partikeln in einem Fluid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011038984A1 *

Also Published As

Publication number Publication date
WO2011038984A1 (fr) 2011-04-07
US20120182007A1 (en) 2012-07-19
DE102009047793A1 (de) 2011-04-07
CN102511002A (zh) 2012-06-20

Similar Documents

Publication Publication Date Title
EP2483663B1 (fr) Chambre d'écoulement équipée d'un dispositif de guidage de cellules
EP2687827B1 (fr) Débitmètre à induction magnétique
EP2742492B1 (fr) Agencement d'essai pour le contrôle de documents de valeur
DE102008057755A1 (de) Magnetisch-induktives Durchflußmeßgerät
DE102015209195A1 (de) Einrastventilanordnung mit Positionserkennung
DE102014106582A1 (de) Füllnadel zum Befüllen eines Behälters mit einem Fluid
EP3108210B1 (fr) Dispositif de détection et procédé de détermination d'une position et/ou d'un changement de position d'un objet à mesurer
WO2011038984A1 (fr) Chambre de circulation comportant un capteur à magnétorésistance géante et un dispositif de guidage de cellules
DE102013104001B3 (de) Näherungssensor sowie Baugruppe
DE102011080012B4 (de) Strömungsmechanische Zellführung für Durchflusszytometrie
DE102011077905A1 (de) Hintergrundfreie magnetische Durchflusszytometrie
WO2012119713A1 (fr) Dispositif pour détecter un objet magnétiquement conducteur ainsi que système de mesure de position pour mesurer la position d'une barre de guidage et procédé de mesure de position associé
EP0966653B1 (fr) Dispositif et appareil permettant de detecter la position d'un organe de reglage mobile d'un verin
EP3058317B1 (fr) Système magnétique-inductif pour mesurer un débit
DE19711781C2 (de) Vorrichtung zur Positionserfassung eines beweglich angeordneten Magneten zum Erzeugen eines magnetischen Feldes durch eine Wandung aus ferromagnetischem Material hindurch, insbesondere Stellantrieb mit bewegbarem Stellglied
DE102011004806A1 (de) Magnetische Durchflusszytometrie für hohen Probendurchsatz
DE102013205588B4 (de) Ventilsystem
DE102011080947B3 (de) Einzelanalyterfassung mittels magnetischer Durchflussmessung
DE102011004805A1 (de) Miniaturisierte magnetische Durchflusszytometrie
DE102014205949A1 (de) Durchflusskammer für einen Durchflusszytometer sowie Durchflusszytometer
EP2400274B1 (fr) Dispositif de mesure de flux de liquide, dispositif de ventilation et procédé de mesure
DE10234965B4 (de) Wegsensor
DE102013019182A1 (de) Messrohr für magnetisch-induktive Durchflussmesssysteme
DE1473188C3 (de) Vorrichtung zum Überwachen der Durchflußmenge von Flüssigkeiten oder Gasen in Rohrsystemen
DE102014000054A1 (de) Positionsmessung mit einem variablen Flusskollektor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20150421

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160316

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 15/10 20060101AFI20160304BHEP

Ipc: G01R 33/09 20060101ALI20160304BHEP

Ipc: G01R 33/12 20060101ALI20160304BHEP

Ipc: G01N 35/00 20060101ALI20160304BHEP

Ipc: B03C 1/28 20060101ALI20160304BHEP

Ipc: G01N 15/06 20060101ALI20160304BHEP

Ipc: B03C 1/01 20060101ALI20160304BHEP

Ipc: B01L 3/00 20060101ALI20160304BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160727