EP2483431A1 - Rouleau de ligne de recuit haute temperature - Google Patents

Rouleau de ligne de recuit haute temperature

Info

Publication number
EP2483431A1
EP2483431A1 EP10770608A EP10770608A EP2483431A1 EP 2483431 A1 EP2483431 A1 EP 2483431A1 EP 10770608 A EP10770608 A EP 10770608A EP 10770608 A EP10770608 A EP 10770608A EP 2483431 A1 EP2483431 A1 EP 2483431A1
Authority
EP
European Patent Office
Prior art keywords
mandrel
rocket
teeth
cylindrical
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10770608A
Other languages
German (de)
English (en)
Other versions
EP2483431B1 (fr
Inventor
Alain Lacombe
Olivier Drevet
Rémi BESSETTES
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Ceramics SA
Original Assignee
SNECMA Propulsion Solide SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA Propulsion Solide SA filed Critical SNECMA Propulsion Solide SA
Publication of EP2483431A1 publication Critical patent/EP2483431A1/fr
Application granted granted Critical
Publication of EP2483431B1 publication Critical patent/EP2483431B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • C21D9/563Rolls; Drums; Roll arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/02Skids or tracks for heavy objects
    • F27D3/026Skids or tracks for heavy objects transport or conveyor rolls for furnaces; roller rails
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • C21D9/0012Rolls; Roll arrangements

Definitions

  • the present invention relates to the field of rollers used for transporting, guiding or shaping industrial products and intended to be subjected to significant temperatures and temperature gradients.
  • the invention particularly, but not exclusively, concerns rollers for very high temperature annealing lines such as those used for the manufacture of very high performance silicon steel and in which temperatures above 1100 ° C. are reached.
  • the very high temperature annealing line must have a roll every 0.5 m to 2 m, which represents a large number of rolls.
  • Each of these rollers is also motorized and all of them synchronized to accompany the movement of the band without effort of traction and friction.
  • rollers used in this type of annealing line typically have diameters, for example but not exclusively, of the order of 100 mm and generally less than 500 mm, and a table of length generally between 500 mm and 3000 mm.
  • rollers used in this type of industry are generally made of refractory steel with surface protection (zirconia type) but do not allow to exceed 1100 ° C in the annealing lines and must be replaced frequently (every month in general ) because of their wear.
  • Ceramic or graphite rollers for higher temperatures are generally used. However, these rolls are relatively fragile, which limits their life.
  • the invention also relates to the rollers present in annealing lines of steel sheets treated at lower temperatures, typically between 600 ° C and 900 ° C, but which are subject to significant traction.
  • steel rollers are commonly used but, because of their significant coefficient of expansion, they can deform under the effect of temperature, which can lead in some cases to fold formation in the sheet metal. (commonly known as "heat buckles") or poor guidance of it (deviation).
  • these rollers are generally of greater diameter, typically between 500 mm and 1000 mm, the table up to 2000 mm.
  • the object of the present invention is to propose a new roll structure capable of operating at high temperatures, especially greater than 110 ° C., and with a higher mechanical strength than that of prior art rolls.
  • the invention also aims to propose rollers whose external geometry does not vary under the effect of high temperatures and / or during rapid temperature changes, the roll further having a design which makes it possible to replace the existing rollers without modifying the facilities.
  • the present invention relates to a high-temperature annealing line roller comprising a cylindrical envelope and at least one rocket made of metallic material mounted at one end of the cylindrical envelope, the rocket or rockets comprising a mandrel suitable for driving in rotating the cylindrical envelope, the cylindrical envelope being made of thermostructural composite material and the roll further comprising at least one holding element of the envelope on the rocket, characterized in that the holding element comprises a crown or a plurality crown segments attached to one end of said casing, each crown or ring segment being extended by at least one resilient tongue whose end is resting on the rocket, and in that each rocket further comprises a shaft drive connected to the mandrel by a frustoconical portion, the elastic tab or tongues of each ring or ring segment being in abutment on the frustoconical portion.
  • the cylindrical casing of the roll of the invention namely the body of the roller for supporting the sheets at high temperatures, is made of thermostructural composite material. Thanks to the excellent thermal, mechanical and thermomechanical performance of thermostructural composite materials, the roll of the invention is capable of operating at temperatures higher than those supported by steel, that is to say temperatures above 1100 ° C. and up to 1300 ° C, without the fragility presented by ceramic or graphite.
  • thermostructural composite materials also have structural characteristics (fiber reinforcement densified by a matrix) sufficient to withstand the loads borne by the rollers of the prior art.
  • these materials and in particular the composite material CC has a low coefficient of thermal expansion to prevent the envelope from deforming under the effect of high temperatures and keep the external geometry of the roll during the ascents or descents in temperature.
  • These combined characteristics are also particularly interesting for making rolls equipping the annealing lines of high temperature and high temperature treated sheets as they make it possible to limit the risks of "heat buckles" and of deflection.
  • the roll of the invention retains an axial support member made of metallic material comprising one or two rockets for the support and / or the driving of the roll.
  • the parts (bearings, coupling shafts, etc.) of the installations intended to cooperate with the rollers do not need to be modified to receive the rollers of the invention, which allows a standard exchange of the existing rollers. by rollers according to the invention.
  • the power required for their training are significantly lower.
  • the rocket or rockets being metal material, they have a thermal expansion coefficient higher than that of the cylindrical envelope, which causes differential expansion between these elements and the envelope.
  • the envelope is held on each rocket by means of an element comprising one or more resilient tongues resting on the rocket. This elastic connection between the cylindrical envelope and the rockets makes it possible to compensate the differential expansions between these elements both axially and radially.
  • each rocket forms a bearing surface for the resilient tongues which is inclined relative to the axial and radial planes of each rocket of the cylindrical shell.
  • the resilient tongues exert on the cylindrical envelope reaction forces which each comprise an axial component and a radial component which are non-zero and which make it possible to maintain positions or centerings. both axial and radial.
  • the mandrel of each rocket comprises a plurality of teeth and splines respectively engaged with splines and teeth of the casing.
  • a cold radial clearance is preferably provided between the top of the teeth of each mandrel and the bottom of the grooves of the casing and a second cold radial clearance between the top of the teeth of the casing. and the bottom of the flutes of each mandrel.
  • the cylindrical envelope is mechanically coupled to the rocket or rockets in a configuration adapted to compensate for the differential expansions between these elements, which ensures the rotational drive of the cylindrical envelope without risk of deformation of the envelope.
  • the teeth and grooves vis-à-vis have straight or inclined radial edges, forming, in the latter case, a configuration of trapezoidal type more stable for self-centering of the cylinder and sleeves.
  • the roll further comprises an annular reinforcing element disposed around each ring of the one or more holding elements.
  • the annular reinforcement element makes it possible to secure the crowns on the envelope, in particular with respect to the centrifugal forces and vibrations to which the roller is subjected during operation.
  • Each annular reinforcing element may be formed of an elastic collar of prestressed metal material or of a collar or a ring of a material having a coefficient of thermal expansion identical to or slightly greater than the material of the rings.
  • the cylindrical envelope is made of carbon-carbon composite material (C-C) which has both a low coefficient of thermal expansion and good thermal conductivity.
  • C-C carbon-carbon composite material
  • Other thermostructural composite materials having a coefficient of thermal expansion / thermal conductivity close to 0 can also be used to make the cylindrical envelope.
  • the cylindrical envelope may further comprise on its outer surface, for example, a layer of chromium or zirconia carbide, which prevents carburizing products in contact with the roller (for example sheets).
  • a layer of chromium or zirconia carbide which prevents carburizing products in contact with the roller (for example sheets).
  • FIG. 1 is a schematic view of a roll for high temperature annealing line according to one embodiment of the invention
  • FIG. 1A is a part of the roller of Figure 1 showing an alternative embodiment of an annular reinforcing member
  • FIG. 1 is an exploded view of the roller of Figure 1;
  • FIG. 3 is a sectional view along the plane III-III of Figure 4;
  • FIG. 4 is a sectional view of a portion of the roller of Figure 1;
  • FIG. 5 and 6 are perspective views respectively of two embodiments of the elastic holding member according to the invention.
  • a particular but non-exclusive field of application of the invention is that of installations or continuous annealing lines in which strips of metal sheets, such as very high-performance steel sheets, are treated at temperatures above 1100.degree. ° C.
  • Figures 1 and 2 illustrate a roller 100 according to one embodiment of the invention that can be used interchangeably for transporting, guiding or shaping metal sheet strip in annealing lines.
  • the roll 100 comprises a table or cylindrical envelope 120 and two flares 130 and 140 mounted at each end of the cylindrical envelope.
  • the cylindrical envelope 120 consists of an axisymmetric part 121 made of thermostructural composite material, preferably carbon / carbon composite material (CC ) which, in known manner, is a material formed of a carbon fiber reinforcement densified by a carbon matrix.
  • thermostructural composite materials such as the material CC, are characterized by their high mechanical properties which make them suitable for constituting structural parts and by their capacity to preserve these mechanical properties at high temperatures up to 1300 ° C. case of the material CC.
  • the thermostructural composite material gives the casing sufficient mechanical strength to be self-supporting, that is to say, to withstand the forces to which the roller is subjected without an inner support.
  • This type of material also has a low coefficient of thermal expansion (about 2.5 ⁇ 10 -6 ° C. for the material DC) compared with metal materials such as steel (about 12 ⁇ 10 -6 ° C.).
  • the envelope 120 constituting the part of the roll 100 intended to be in contact with the sheets to be treated expands very little under the effect of temperature and does not deform by its mechanical characteristics at high temperatures.
  • the manufacture of parts made of composite material C-C is well known. It generally comprises the production of a carbon fiber preform whose shape is close to that of the part to be manufactured and the densification of the preform by the matrix.
  • the fiber preform is the reinforcement of the part whose role is essential vis-à-vis the mechanical properties.
  • the preform is obtained from fibrous textures of carbon fibers.
  • the fibrous textures used may be of various natures and forms such as, in particular:
  • UD Unidirectional web
  • nD multidirectional webs
  • the shaping is performed by filament winding, UD web winding on a mandrel, weaving, stacking, needling of two-dimensional / three-dimensional strata or plies of cables, etc.
  • the densification of the fibrous preform can be carried out by the liquid route by impregnating the latter with a precursor resin of the carbon matrix such as a phenolic-type resin.
  • the fibrous preform intended to constitute the fibrous reinforcement of the part to be produced is shaped by conformation using a holding tool.
  • the resin or resins are then converted (polymerization / carbonization) by heat treatment.
  • the impregnation and polymerization / carbonization operations can be repeated several times if necessary to obtain specific mechanical characteristics.
  • the densification of the fiber preform may also be carried out, in a known manner, by gaseous means by chemical vapor infiltration of the carbon matrix (CVI).
  • CVI carbon matrix
  • a densification combining liquid route and gaseous route is sometimes used to facilitate the implementation, limit costs and manufacturing cycles while obtaining satisfactory characteristics for the intended use.
  • the cylindrical envelope 120 may further comprise a coating (not shown in FIGS. 1 and 2) which makes it possible in particular to avoid the carburation of the metal of the sheets by the axisymmetrical part 121.
  • a coating surface can be in particular consisting of a layer of chromium carbide or zirconia.
  • a silicon carbide layer is preferably formed between the piece 121 and the chromium carbide layer to insulate the material C / C of the piece 121 of the metal of the chromium carbide layer.
  • the silicon carbide layer also acts as a bonding layer between the C / C material of the axisymmetric part 121 and the chromium carbide layer.
  • the silicon carbide and chromium carbide layers can be made by various known deposition techniques such as, for example, PVD (Physical Vapor Deposition) deposition.
  • the flares 130 and 140 are made of metal material, for example steel of the stainless steel type.
  • Each rocket 130, respectively 140 comprises a mandrel 131, respectively 141, a frustoconical portion 132, respectively 142, which is extended by a shaft 133, respectively 143.
  • the roll 100 is disposed inside an enclosure 10 of an annealing line (FIG. 1).
  • the shafts 133 and 143 are respectively supported by bearings 11 and 12 of the enclosure 10.
  • the shaft 133 is coupled with a rotational drive motor 13 while the shaft 143 is held in the bearing 12 by a nut 14.
  • the rocket 130 comprises a series of splines 1310 distributed annularly on the outer surface of the mandrel 131 and delimiting a series of teeth 1320.
  • the mandrel 141 of the rocket 140 comprises a series of flutes. 1410 uniformly distributed on the outer surface thereof and delimiting a series of teeth 1420.
  • the axisymmetric piece 121 of material C / C of the cylindrical envelope 120 comprises a series of splines 1210 distributed annularly on its inner surface and delimiting a series of teeth 1220.
  • the flutes 1210 may be directly formed during the manufacture of the composite material part by conformation of the fibrous reinforcement or after manufacture of the workpiece by machining its inner surface.
  • the flares 130 and 140 are mounted at each end of the cylindrical envelope 120 by engaging, on the one hand, the teeth 1320 and 1420 respectively of the flares 130 and 140 in the grooves 1210 formed on the inner surface of the axisymmetrical part 121 of the casing 120 and, secondly, the teeth 1220 of the cylindrical casing 120 in the grooves 1310 and 1410 respectively of the rockets 130 and 140.
  • the mandrel 131 of the fuse 130 is positioned inside the cylindrical casing 120 by providing a radial clearance between the facing surfaces of these two elements. More specifically, the mandrel 131 and the axisymmetrical part 121 of the casing 120 are sized so as to provide, on the one hand, a radial clearance 31 between the top of the teeth 1320 and the bottom 1210a of the grooves 1210 of the part 121 in FIG. view of the teeth 1320 and, secondly, a radial clearance J2 between the top of the teeth 1220 of the workpiece 121 and the bottom 1310a of the splines 1310 of the mandrel 131.
  • the radial clearances J1 and J2 correspond to "cold" games, that is to say games only present when the roll is at ambient temperature and which are defined to be filled during the expansion of the rockets at the temperature of 30.degree. roller operation.
  • part 121 of the cylindrical casing 120 made of thermostructural composite material has a coefficient of expansion much lower than that of the mandrel made of metallic material, the differential expansions between these two elements are compensated by the presence of the radial clearance between the 120 and the mandrels 131 and 141 of the flares 130 and 140.
  • the mandrel expands radially in the clearances without exerting force on the envelope, which prevents the deformation of the latter.
  • the mandrels of the rockets can be engaged in the cylindrical envelope without means for holding in radial position, the setting in radial position of the mandrels in the cylindrical envelope, or more precisely the positioning the respective teeth and grooves of the mandrels and the casing, being done automatically during the expansion of the flares at the operating temperature of the roller,
  • the casing 120 can be cold-held in the radial position on the mandrels by means of shims 115, which are respectively disposed between the adjacent edges of the teeth 1220 and the flutes 1310 or 1410.
  • the shims 115 are made of a fugitive material so as to disappear during the temperature rise.
  • the mechanical coupling between the cylindrical envelope 120 and the mandrel 110 is achieved by engaging the teeth 1320 and 1420 with the adjacent edges of the splines 1210, possibly via the adjustment wedges 115 when present.
  • the cylindrical casing 120 is further flanged in translation on the flares 130 and 140 by means of elastic holding elements 150 and 160 disposed at each end of the cylindrical casing 120.
  • each elastic holding element 150, respectively 160 is formed of two ring segments 151 and 152, respectively 161 and 162 extended by resilient tabs or lugs 153, respectively 163.
  • Each segment crown 151, 152, 161 and 162 may be formed from a metal part shaped and machined so as to form the elastic tabs 153 and 163.
  • the elastic holding elements 150 and 160 may in particular be made of high characteristic metal materials such as refractory steels of the type 15CDV6, 25CD4S, or 28CDV5 or stainless steel.
  • the elastic holding elements 150 and 160 namely in the embodiment described here the crown segments 151, 152 and 161, 162, are respectively fixed to the two ends 120a and 120b of the envelope 120 while the elastic tongues of these elements exert a holding pressure on the rockets 130 and 140. More specifically, the elastic tabs 153 of the two segments 151 and 152 bear against the frustoconical portion 132 of the rocket 130 while the resilient tabs 163 of the two ring segments 161 and 162 bear against the frustoconical portion 142 of the rocket 140.
  • the ring segments 151 and 152 are fixed on the end 120a of the casing 120 by screws 154 which pass through the ring segments 151 and 152 via passages orifices 155 and which are clamped in threaded portions 126 made in the casing 120.
  • the ring segments 161 and 162 are fixed on the end 120b of the casing 120 by screws 164 which pass through the ring segments 161 and 162 via orifices of passages 165 and which are tightened in threaded portions made in the casing 120 ( Figure 2).
  • these may comprise a heel, such as the heels 1510 and 1520 of the ring segments 151 and 152 shown in FIG. 4, which is positioned in a housing in the casing 120, such as the groove 127 shown in FIG. 4.
  • the ring segments can also be fixed by a foil or other. Those skilled in the art will consider without difficulty other means for fixing the elastic holding elements on the cylindrical envelope.
  • each annular reinforcement element 156, respectively 166 consists of a collar or elastic ring 1560, respectively 1660, made from a strip of metal strip, for example steel with high elastic characteristics.
  • Each elastic collar is preloaded on the corresponding ring segments, that is to say by enlarging during assembly the diameter of the collar by spacing these two ends 1561 and 1562, respectively 1661 and 1662, and then releasing the ends after positioning which creates an elastic return torque used as clamping.
  • FIG. 1A illustrates an alternative embodiment of an annular reinforcement element 176 formed of a collar 1760 preloaded around the ring segments 151, 152 and whose retention of its two ends 1761 and 1762 is ensured by the cooperation between a curved portion of the end 1762 and ears 1763 forming a stop.
  • the collar may be deformed by relative sliding between the overlapping ends while maintaining the tightening torque.
  • the annular reinforcing element may be formed of a collar or split ring preloaded on the rings, the collar or the ring being made of metal material (for example steel). In this case, the ends of each collar do not overlap but deviate more or less from each other according to the temperatures encountered.
  • the reinforcing element may be formed of a collar or ring made of a material having a coefficient of thermal expansion similar to or slightly greater than that of the material of the rings. In this case, it is not necessary to provide the possibility of elastic deformation for the holding element due to the absence of differential expansions between the rings and the annular reinforcing element.
  • the elastic holding elements 150 and 160 make it possible to maintain the cylindrical casing 120 in a longitudinal position on the frustoconical portions 132 and 142 of the flares 130 and 140 in a balanced manner while absorbing the axial variations due to the differential thermal expansions between the flares and the flange. 'envelope.
  • the flares 130 and 140 expand while the cylindrical casing 120 retains its volume due to its low coefficient of expansion.
  • the frustoconical portions 132 and 142 and the elastic tabs 153 and 163 resting on them the expansion of the rockets do not cause deformation of the cylindrical envelope.
  • the elastic tabs deform slightly and slide on the frustoconical portions of the rockets with which they are in contact and thus ensure a maintenance in axial position of the envelope while compensating for differential expansions.
  • the profile or the slope of the frustoconical portions 132 and 142 is defined as a function of the amplitude of the expansion of the rockets to be absorbed. If the rockets dilate little, the frustoconical portions may have a steep slope to ensure a good maintenance of the envelope at all temperatures by the elastic tongues. On the contrary, if the rockets expand more significantly, the frustoconical portions will have a lower slope to allow sliding over a greater distance of the tabs so as to maintain the envelope without exerting too much effort on this last.
  • the elastic holding members of the invention are not limited to a structure formed of two ring segments.
  • a holding member 250 may be formed of a single ring 251 having resilient tongues 252 distributed uniformly around one end of said ring.
  • the ring 251 may comprise partial slots 253a and 253b uniformly distributed and staggered around to compensate for the constraints during possible expansion of the crown.
  • an elastic holding element 350 is formed of four ring segments 351 to 354 each comprising elastic tongues 355. Whatever the number of segments used to form the elastic holding elements (1, 2, 4, etc.), the segment or segments are attached to the ends of the cylindrical envelope in the same manner as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

Rouleau (100) pour ligne de recuit haute température comprenant une enveloppe cylindrique (120) et au moins une fusée (130; 140) en matériau métallique montée à une des extrémités de l'enveloppe cylindrique, ladite au moins une fusée comprenant un mandrin (131; 141) apte à entraîner en rotation l'enveloppe cylindrique (120). L'enveloppe cylindrique (120) est en matériau composite thermostructural. Le rouleau (100) comprend en outre au moins un élément de maintien (150; 160) de l'enveloppe (120) sur la fusée (130; 140), ledit élément comprenant une couronne ou une pluralité de segments de couronne (151, 152; 161, 162) fixés sur une extrémité de ladite enveloppe, chaque couronne ou segment de couronne étant prolongé par au moins une languette élastique (153; 163) dont l'extrémité est en appui sur la fusée.

Description

Rouleau de ligne de recuit haute température
Arrière-plan de l'invention
La présente invention se rapporte au domaine des rouleaux de utilisés pour le transport, le guidage ou le façonnage de produits industriels et destinés à être soumis à des températures et gradients de température importants. L'invention concerne particulièrement, mais non exclusivement, des rouleaux pour lignes de recuit très haute température comme celles utilisées pour la fabrication d'acier au silicium très haute performance et dans lesquelles des températures supérieures à 1100°C sont atteintes.
Les tôles d'acier ayant très peu de tenue à de telles températures et une traction de la bande n'étant pas envisageable, il est donc nécessaire d'avoir un supportage très resserré de la bande afin d'éviter son fluage et assurer son guidage. Par conséquent, la ligne de recuit très haute température doit comporter un rouleau tous les 0,5 m à 2 m, ce qui représente un nombre de rouleaux important. Chacun de ces rouleaux est en outre motorisé et l'ensemble de ces derniers synchronisé afin d'accompagner le déplacement de la bande sans effort de traction et frottements.
Les rouleaux utilisés dans ce type de ligne de recuit ont typiquement des diamètres, par exemple mais non exclusivement, de l'ordre de 100 mm et généralement inférieur à 500 mm, et une table de longueur comprise en général entre 500 mm et 3000 mm.
Les rouleaux utilisés dans ce type d'industrie sont en général réalisés en acier réfractaire avec des protections de surface (type zircone) mais ne permettent pas de dépasser 1100°C dans les lignes de recuit et doivent être remplacés fréquemment (tous les mois en général) en raison de leur usure.
Des rouleaux en céramique ou en graphite permettant des températures plus élevées sont en général utilisés. Cependant, ces rouleaux sont relativement fragiles, ce qui limite leur durée de vie. L'invention concerne également les rouleaux présents dans des lignes de recuits de tôles d'acier traitées à des températures plus basses, typiquement entre 600°C et 900°C, mais qui sont soumises à des tractions importantes. Pour ce type de traitement, les rouleaux en acier sont couramment utilisés mais, de par leur coefficient de dilatation significatif, ils peuvent se déformer sous l'effet de la température, ce qui peut conduire dans certains cas à des formations de plis dans la tôle (communément appelés "heat buckles") ou à un mauvais guidage de celle-ci (déviation). Dans ce cas, ces rouleaux sont généralement d'un diamètre plus important, typiquement entre 500 mm et 1000 mm, la table pouvant atteindre 2000 mm.
Objet et résumé de l'invention
La présente invention a pour but de proposer une nouvelle structure de rouleau apte à fonctionner à des températures importantes, notamment supérieures à 11ÛÛ°C, et ce avec une résistance mécanique supérieure à celle des rouleaux de l'art antérieur. L'invention vise également à proposer des rouleaux dont la géométrie extérieure ne varie pas sous l'effet de fortes températures et/ou lors de changements rapides de température, le rouleau ayant en outre une conception qui permet de remplacer les rouleaux existants sans modification des installations.
A cet effet, la présente invention concerne un rouleau de ligne de recuit haute température comprenant une enveloppe cylindrique et au moins une fusée en matériau métallique montée à une des extrémités de l'enveloppe cylindrique, la ou les fusées comprenant un mandrin apte à entraîner en rotation l'enveloppe cylindrique, l'enveloppe cylindrique étant en matériau composite thermostructural et le rouleau comprenant en outre au moins un élément de maintien de l'enveloppe sur la fusée, caractérisé en ce que l'élément de maintien comprend une couronne ou une pluralité de segments de couronne fixés sur une extrémité de ladite enveloppe, chaque couronne ou segment de couronne étant prolongé par au moins une languette élastique dont l'extrémité est en appui sur la fusée, et en ce que chaque fusée comprend en outre un arbre d'entraînement relié au mandrin par une portion tronconique, la ou les languettes élastiques de chaque couronne ou segment de couronne étant en appui sur la portion tronconique.
L'enveloppe cylindrique du rouleau de l'invention, à savoir le corps du rouleau destiné à supporter les tôles à de hautes températures, est réalisée en matériau composite thermostructural. Grâce aux excellentes performances thermiques, mécaniques et thermomécaniques des matériaux composites thermostructuraux, le rouleau de l'invention est apte à fonctionner à des températures supérieures à celles supportées par l'acier, c'est-à-dire des températures supérieures à 1100°C et pouvant aller jusqu'à 1300°C, et ce sans la fragilité présentée par la céramique ou le graphite.
Les matériaux composites thermostructuraux présentent en outre des caractéristiques structurales (renfort fibreux densifié par une matrice) suffisantes pour résister aux charges supportées par les rouleaux de l'art antérieur. En outre, ces matériaux et en particulier le matériau composite C-C présente un faible coefficient de dilatation thermique permettant d'éviter à l'enveloppe de se déformer sous l'effet de températures élevées et conserver la géométrie externe du rouleau lors des montées ou descentes en température. Ces caractéristiques combinées sont aussi particulièrement intéressantes pour fabriquer des rouleaux équipant les lignes de recuit de tôles traitées sous forte tension et hautes températures car elles permettent de limiter les risques de "heat buckles" et de déviation.
Par ailleurs, pour permettre l'adaptation du rouleau de la présente invention dans les installations existantes (par exemple dans des installations de recuit en continu de tôles), le rouleau de l'invention conserve un élément de support axial en matériau métallique comprenant une ou deux fusées pour le support et/ou l'entraînement du rouleau. Ainsi, les parties (paliers, arbres d'accouplement, etc.) des installations destinées à coopérer avec les rouleaux n'ont pas besoin d'être modifiées pour recevoir les rouleaux de l'invention, ce qui permet un échange standard des rouleaux existants par des rouleaux selon l'invention. Par ailleurs, compte tenu de la faible masse et de la faible inertie du rouleau de l'invention par rapport aux rouleaux en acier, les puissances nécessaires à leur entraînement sont nettement inférieures.
Toutefois, la ou les fusées étant en matériau métallique, elles possèdent un coefficient de dilatation thermique plus élevé que celui de l'enveloppe cylindrique, ce qui entraîne des dilatations différentielles entre ces éléments et l'enveloppe. Afin d'éviter des déformations de l'enveloppe cylindrique sous l'effet des dilatations de la ou des fusées, l'enveloppe est maintenue sur chaque fusée au moyen d'un élément comprenant une ou plusieurs languettes élastiques en appui sur la fusée. Cette liaison élastique entre l'enveloppe cylindrique et les fusées permet de compenser les dilatations différentielles entre ces éléments aussi bien axialement que radialement.
La pente formée par la portion tronconique permet d'assurer des efforts de maintien suffisants par les languettes élastiques qu'elles que soient les sollicitations (en particulier thermiques) rencontrées. Plus précisément, en étant en appui sur la portion tronconique de chaque fusée, les languettes élastiques assurent à la fois un maintien en position axiale et un maintien en position radiale de l'enveloppe cylindrique par rapport à chaque fusée, En effet, la portion tronconique de chaque fusée forme une surface d'appui pour les languettes élastiques qui est inclinée par rapport aux plans axial et radial de chaque fusée de l'enveloppe cylindrique. Aussi, une fois en appui sur la portion tronconique, les languettes élastiques exercent sur l'enveloppe cylindrique des forces de réaction qui comportent chacune une composante axiale et une composante radiale qui sont non nulles et qui permettent d'assurer un maintien en positions ou centrages à la fois axiale et radiale.
Ce maintien en positions axiale et radiale est en outre assuré aussi bien à froid qu'à haute température par glissement des languettes sur la portion tronconique en cas de dilatation de la fusée par rapport à l'enveloppe cylindrique.
Selon un mode de réalisation et afin de permettre l'entraînement en rotation de l'enveloppe par la ou les fusées, le mandrin de chaque fusée comprend une pluralité de dents et de cannelures en prise respectivement avec des cannelures et des dents de l'enveloppe. Dans ce cas, on ménage de préférence un premier un jeu radial à froid entre le sommet des dents de chaque mandrin et le fond des cannelures de l'enveloppe ainsi qu'un deuxième jeu radial à froid entre le sommet des dents de l'enveloppe et le fond des cannelures de chaque mandrin.
Ainsi, l'enveloppe cylindrique est couplée mécaniquement à la ou les fusées dans une configuration apte à compenser les dilatations différentielles entre ces éléments, ce qui permet d'assurer l'entraînement en rotation de l'enveloppe cylindrique sans risque de déformation de l'enveloppe.
Les dents et cannelures en vis-à-vis présentent des bords radiaux droits ou inclinées, formant, dans ce dernier cas, une configuration de type trapézoïdale plus stable pour auto-centrage du cylindre et des manchons.
Selon un aspect de l'invention, le rouleau comprend en outre un élément annulaire de renfort disposé autour de chaque couronne du ou des éléments de maintien. L'élément annulaire de renfort permet d'assurer la fixation des couronnes sur l'enveloppe notamment vis-à-vis des forces centrifuges et des vibrations auxquelles est soumis le rouleau en fonctionnement. Chaque élément annulaire de renfort peut être formé d'un collier élastique en matériau métallique précontraint ou d'un collier ou d'une bague en un matériau présentant un coefficient de dilatation thermique identique ou légèrement supérieur au matériau des couronnes.
Selon un autre aspect de l'invention, l'enveloppe cylindrique est réalisée en matériau composite carbone-carbone (C-C) qui présente à la fois un coefficient de dilatation thermique faible et une bonne conductivité thermique. D'autres matériaux composites thermostructuraux présentant un rapport coefficient de dilatation thermique/conductivité thermique proche de 0 peuvent également être utilisés pour réaliser l'enveloppe cylindrique.
L'enveloppe cylindrique peut comprendre en outre sur sa surface externe, par exemple, une couche de carbure de chrome ou de zircone, qui permet de prévenir une carburation des produits en contact avec le rouleau (par exemple des tôles). Brève description des dessins
D'autres caractéristiques et avantages de l'invention assortiront de la description suivante de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, sur lesquels :
- la figure 1 est une vue schématique d'un rouleau pour ligne de recuit haute température selon un mode de réalisation de l'invention ;
- la figure 1A est une d'une partie du rouleau de la figure 1 montrant une variante de réalisation d'un élément annulaire de renfort ;
- la figure 2 est vue une éclatée du rouleau de la figure 1 ;
- la figure 3 est une vue en coupe selon le plan III-III de la figure 4 ;
- la figure 4 est une vue en coupe d'une partie du rouleau de la figure 1 ;
- les figures 5 et 6 sont des vues en perspective respectivement de deux mode de réalisation de l'élément de maintien élastique selon l'invention.
Description détaillée d'un mode de réalisation
Un domaine particulier mais non exclusif d'application de l'invention est celui des installations ou lignes de recuit en continu dans lesquelles on traite des bandes de tôles métalliques, telles que des tôles d'acier très haute performance, à des températures supérieures à 1100°C.
Les figures 1 et 2 illustrent un rouleau 100 conformément à un mode de réalisation de l'invention qui peut être utilisé indifféremment pour le transport, le guidage ou le façonnage de bande de tôles métalliques dans des lignes de recuit.
Le rouleau 100 comprend une table ou enveloppe cylindrique 120 et deux fusées 130 et 140 montées à chacune des extrémités de l'enveloppe cylindrique.
Afin d'assurer un fonctionnement fiable à des températures supérieures à 1200°C, qui ne sont pas supportables sans déformation pour des rouleaux métalliques, et ce tout en ayant une résistance mécanique supérieure à celle des céramiques ou du graphite, l'enveloppe cylindrique 120 est constituée d'une pièce axisymétrique 121 réalisée en matériau composite thermostructural, de préférence en matériau composite carbone/carbone (C-C) qui, de façon connue, est un matériau formé d'un renfort en fibres de carbone densifié par une matrice en carbone. Les matériaux composites thermostructuraux, comme le matériau C-C, sont caractérisés par leurs propriétés mécaniques élevées qui les rendent aptes a constituer des pièces de structure et par leur capacité à conserver ces propriétés mécaniques à des températures élevées pouvant aller jusqu'à 1300°C dans le cas du matériau C-C. Le matériau composite thermostructural confère à l'enveloppe une résistance mécanique suffisante pour être autoporteuse, c'est-à-dire pour supporter les efforts auxquels est soumis le rouleau sans support intérieur.
Ce type de matériau présente un outre un faible coefficient de dilatation thermique (environ 2,5xl0~6 °C pour le matériau C-C) en comparaison à ceux des matériaux métalliques tels que l'acier (environ 12xl0"6 °C). Par conséquent, l'enveloppe 120 constituant la partie du rouleau 100 destinée à être en contact avec les tôles à traiter se dilate très peu sous l'effet de la température et ne se déforme pas de par ses caractéristiques mécaniques à hautes températures.
La fabrication de pièces en matériau composite C-C est bien connue. Elle comprend généralement la réalisation d'une préforme fibreuse carbone dont la forme est voisine de celle de la pièce à fabriquer et la densification de la préforme par la matrice.
La préforme fibreuse constitue le renfort de la pièce dont le rôle est essentiel vis-à-vis des propriétés mécaniques. La préforme est obtenue à partir de textures fibreuses en fibres de carbone. Les textures fibreuses utilisées peuvent être de diverses natures et formes telles que notamment:
- tissu bidimensionnel (2D),
- tissu tridimensionnel (3D) obtenu par tissage 3D ou multicouches,
- tresse,
- tricot, - feutre,
- nappe unidirectionnelle (UD) de fils ou câbles ou nappes multidirectionnelle (nD) obtenue par superposition de plusieurs nappes UD dans des directions différentes et liaison des nappes UD entre elles par exemple par couture, par agent de liaison chimique ou par aiguilletage.
On peut aussi utiliser une structure fibreuse formée de plusieurs couches superposées de tissu, tresse, tricot, feutre, nappes, câbles ou autres, lesquelles couches sont liées entre elles par exemple par couture, par implantation de fils ou d'éléments rigides ou par aiguilletage.
La mise en forme est réalisée par bobinage filamentaire, enroulage de nappe UD sur un mandrin, tissage, empilage, aiguilletage de strates bidimensionnelles/tridimensionnelles ou de nappes de câbles, etc.
Dans le cas d'un matériau C-C, la densification de la préforme fibreuse peut être réalisée par voie liquide en imprégnant cette dernière avec une résine précurseur de la matrice carbone telle qu'une résine de type phénolique.
Après imprégnation, la préforme fibreuse destinée à constituer le renfort fibreux de la pièce à réaliser, et ayant une forme correspondant sensiblement à celle de cette pièce, est mise en forme par conformation à l'aide d'un outillage de maintien. La ou les résines sont ensuite transformées (polymérisation/carbonisation) par traitement thermique. Les opérations d'imprégnation et de polymérisation/carbonisation peuvent être répétés plusieurs fois si nécessaire pour obtenir des caractéristiques mécaniques déterminées.
La densification de la préforme fibreuse peut-être également réalisée, de façon connue, par voie gazeuse par infiltration chimique en phase vapeur de la matrice carbone (CVI).
Une densification combinant voie liquide et voie gazeuse est parfois utilisée pour faciliter la mise en œuvre, limiter les coûts et les cycles de fabrication tout obtenant des caractéristiques satisfaisantes pour l'utilisation envisagée.
Selon un aspect de l'invention, l'enveloppe cylindrique 120 peut comprendre en outre un revêtement (non représenté sur les figures 1 et 2) qui permet notamment d'éviter la carburation du métal des tôles par la pièce axisymétrique 121. Un tel revêtement de surface peut être notamment constitué d'une couche de carbure de chrome ou de zircone. Dans le cas d'une couche d'un revêtement tel que le carbure de chrome, une couche de carbure de silicium est de préférence formée entre la pièce 121 et la couche de carbure de chrome pour isoler le matériau C/C de la pièce 121 du métal de la couche de carbure de chrome. La couche de carbure de silicium joue également le rôle d'une couche de liaison entre le matériau C/C de la pièce axisymétrique 121 et la couche de carbure de chrome. Les couches de carbure de silicium et de carbure de chrome peuvent être réalisées par diverses techniques de dépôt connues comme, par exemple, le dépôt sous vide PVD ("Physical Vapor Déposition").
Les fusées 130 et 140 sont réalisées en matériau métallique, par exemple en acier du type Inox. Chaque fusée 130, respectivement 140, comprend un mandrin 131, respectivement 141, une portion tronconique 132, respectivement 142, qui est prolongée par un arbre 133, respectivement 143.
Dans l'exemple ici considéré, le rouleau 100 est disposé à l'intérieur d'une enceinte 10 d'une ligne de recuit (figure 1). Les arbres 133 et 143 sont respectivement supportés par des paliers 11 et 12 de l'enceinte 10. Dans le mode de réalisation de la figure 1, l'arbre 133 est accouplé avec un moteur d'entraînement en rotation 13 tandis que l'arbre 143 est maintenu dans le palier 12 par un écrou 14.
Comme illustrée sur la figure 2, la fusée 130 comprend une série de cannelures 1310 réparties de façon annulaire sur la surface externe du mandrin 131 et délimitant une série de dents 1320. De même, le mandrin 141 de la fusée 140 comporte une série de cannelures 1410 uniformément réparties sur la surface externe de ce dernier et délimitant une série de dents 1420.
La pièce axisymétrique 121 en matériau C/C de l'enveloppe cylindrique 120 comporte une série de cannelures 1210 réparties de façon annulaire sur sa surface interne et délimitant une série de dents 1220. Les cannelures 1210 peuvent être directement formées lors de la fabrication de la pièce en matériau composite par conformation du renfort fibreux ou après la fabrication de la pièce en usinant sa surface interne.
Les fusées 130 et 140 sont montées à chaque extrémité de l'enveloppe cylindrique 120 en engageant, d'une part, les dents 1320 et 1420 respectivement des fusées 130 et 140 dans les cannelures 1210 ménagées sur la surface interne de la pièce axisymétrique 121 de l'enveloppe 120 et, d'autre part, les dents 1220 de l'enveloppe cylindrique 120 dans les cannelures 1310 et 1410 respectivement des fusées 130 et 140.
Comme représenté sur la figure 3, le mandrin 131 de la fusée 130 est positionné à l'intérieur de l'enveloppe cylindrique 120 en ménageant un jeu radial entre les surfaces en regard de ces deux éléments. Plus précisément, le mandrin 131 et la pièce axisymétrique 121 de l'enveloppe 120 sont dimensionnés de manière à ménager, d'une part, un jeu radial 31 entre le sommet des dents 1320 et le fond 1210a des cannelures 1210 de la pièce 121 en regard des dents 1320 et, d'autre part, un jeu radial J2 entre le sommet des dents 1220 de la pièce 121 et le fond 1310a des cannelures 1310 du mandrin 131.
Les jeux radiaux Jl et J2 correspondent à des jeux "à froid", c'est-à-dire des jeux seulement présents lorsque le rouleau est à température ambiante et qui sont définis pour être comblés lors de la dilatation des fusées à la température de fonctionnement du rouleau.
Bien que non représentés sur la figure 3, des jeux similaires sont également ménagés entre, d'une part, le sommet des dents 1420 de la fusée 140 et le fond 1210a des cannelures 1210 de la pièce 121 en regard des dents 1420 et, d'autre part, entre le sommet des dents 1220 de la pièce 121 et le fond des cannelures 1410 du mandrin 141.
Ainsi, bien que la pièce 121 de l'enveloppe cylindrique 120 en matériau composite thermostructural présente un coefficient de dilatation bien inférieur à celui du mandrin en matériau métallique, les dilatations différentielles entre ces deux éléments sont compensées grâce à la présence du jeu radial entre l'enveloppe 120 et les mandrins 131 et 141 des fusées 130 et 140.
Lors des montées en température, le mandrin se dilate radialement dans les jeux ménagés sans exercer d'effort sur l'enveloppe, ce qui permet d'éviter la déformation de cette dernière.
Les mandrins des fusées peuvent être engagés dans l'enveloppe cylindrique sans moyen de maintien en position radiale, la mise en position radiale des mandrins dans l'enveloppe cylindrique, ou plus précisément la mise en position des dents et cannelures respectives des mandrins et de l'enveloppe, se faisant automatiquement lors de la dilatation des fusées à la température de fonctionnement du rouleau,
Toutefois, comme dans l'exemple décrit ici, l'enveloppe 120 peut être maintenue à froid en position radiale sur les mandrins au moyen de cales de réglage 115, qui sont respectivement disposées entre les bords adjacents des dents 1220 et des cannelures 1310 ou 1410. Afin de ne pas gêner la dilatation des mandrins dans les jeux ménagés, les cales de réglages 115 sont réalisées en un matériau fugitif de manière à disparaître lors des montées en température.
Le couplage mécanique entre l'enveloppe cylindrique 120 et le mandrin 110 est réalisé par mise en prise des dents 1320 et 1420 avec les bords adjacents des cannelures 1210 via éventuellement les cales de réglages 115 lorsqu'elles sont présentes.
Conformément à l'invention, l'enveloppe cylindrique 120 est en outre bridée en translation sur les fusées 130 et 140 au moyen d'éléments de maintien élastiques 150 et 160 disposés à chaque extrémité de l'enveloppe cylindrique 120.
Dans le mode de réalisation présenté dans la figure 2, chaque élément de maintien élastique 150, respectivement 160, est formé de deux segments de couronne 151 et 152, respectivement 161 et 162 prolongés par des languettes ou pattes élastiques 153, respectivement 163. Chaque segment de couronne 151, 152, 161 et 162 peut être formé à partir d'une pièce métallique conformée et usinée de manière à former les languettes élastiques 153 et 163. Les éléments de maintien élastiques 150 et 160 peuvent être notamment réalisés en matériaux métalliques hautes caractéristiques tels que des aciers réfractaires du type 15CDV6, 25CD4S, ou 28CDV5 ou bien en Inox.
Les éléments de maintien élastiques 150 et 160, à savoir dans le mode de réalisation décrit ici les segments de couronne 151, 152 et 161, 162, sont fixés respectivement aux deux extrémités 120a et 120b de l'enveloppe 120 tandis que les languettes élastiques de ces éléments exercent une pression de maintien sur les fusées 130 et 140. Plus précisément, les languettes élastiques 153 des deux segments 151 et 152 sont en appui sur la portion tronconique 132 de la fusée 130 tandis que les languettes élastiques 163 des deux segments de couronne 161 et 162 sont en appui sur la portion tronconique 142 de la fusée 140.
Comme illustré sur la figure 4, les segments de couronne 151 et 152 sont fixés sur l'extrémité 120a de l'enveloppe 120 par des vis 154 qui traversent les segments de couronne 151 et 152 via des orifices de passages 155 et qui sont serrées dans des portions filetées 126 réalisées dans l'enveloppe 120. De même, les segments de couronne 161 et 162 sont fixés sur l'extrémité 120b de l'enveloppe 120 par des vis 164 qui traversent les segments de couronne 161 et 162 via des orifices de passages 165 et qui sont serrées dans des portions filetées réalisées dans l'enveloppe 120 (figure 2). Afin de faciliter le montage des segments de couronne sur l'enveloppe 120, celles-ci peuvent comprendre un talon, tel que les talons 1510 et 1520 des segments de couronne 151 et 152 représentées sur la figure 4, qui est positionné dans un logement ménagé dans l'enveloppe 120, tel que la gorge 127 représentée sur la figure 4.
Les segments de couronne peuvent être également fixées par un clinquant ou autre. L'homme du métier envisagera sans difficultés d'autres moyens pour fixer les éléments de maintien élastiques sur l'enveloppe cylindrique.
Comme illustré sur la figure 1, le rouleau 100 comprend en outre deux éléments annulaires de renfort 156 et 166 disposés respectivement autour des segments de couronne 151, 152 et 161, 162. Dans l'exemple présente ici, chaque élément annulaire de renfort 156, respectivement 166, est constitué d'un collier ou bague élastique 1560, respectivement 1660, réalisé à partir d'une bande de feuillard métallique, par exemple en acier à hautes caractéristiques élastiques. Chaque collier élastique est monté en précontrainte sur les segments de couronne correspondants, c'est-à-dire en agrandissant lors du montage le diamètre du collier par écartement des ces deux extrémités 1561 et 1562, respectivement 1661 et 1662, puis en relâchant les extrémités après positionnement ce qui crée un couple de rappel élastique utilisé comme serrage. L'extrémité 1562 comporte en outre un tenon 1564 engagé dans une lumière 1563 ménagée dans l'extrémité 1561, ce qui permet d'assurer la retenue des deux extrémités 1561 et 1562 l'une par rapport à l'autre. La figure 1A illustre une variante de réalisation d'un élément annulaire de renfort 176 formé d'un collier 1760 monté en précontrainte autour des segments de couronne 151, 152 et dont la retenue de ses deux extrémités 1761 et 1762 est assurée par la coopération entre une portion recourbée de l'extrémité 1762 et des oreilles 1763 formant butée.
Lors des montées en température le collier pourra se déformer par glissement relatif entre les extrémités qui se chevauchent tout en maintenant le couple de serrage. Dans une variante de réalisation, l'élément annulaire de renfort peut être formé d'un collier ou bague fendu monté en précontrainte sur les couronnes, le collier ou la bague étant réalisé en matériau métallique (par exemple en acier). Dans ce cas, les extrémités de chaque collier ne se chevauchent pas mais s'écartent plus ou moins l'une de l'autre suivant les températures rencontrées.
Selon encore une autre variante de réalisation, l'élément de renfort peut être formé d'un collier ou bague réalisé en un matériau ayant un coefficient de dilatation thermique similaire ou très légèrement supérieur à celui du matériau des couronnes. Dans ce cas, il n'est pas nécessaire de prévoir la possibilité d'une déformation élastique pour l'élément de maintien en raison de l'absence de dilatations différentielles entre les couronnes et l'élément annulaire de renfort.
D'autres dispositifs tels que des colliers de type "serflex" peuvent être envisagés.
Les éléments de maintien élastiques 150 et 160 permettent de maintenir de façon équilibrée l'enveloppe cylindrique 120 en position longitudinale sur les portions tronconiques 132 et 142 des fusées 130 et 140 tout en absorbant les variations axiales dues aux dilatations thermiques différentielles entre les fusées et l'enveloppe. Lors de montées en température, les fusées 130 et 140 se dilatent tandis que l'enveloppe cylindrique 120 conserve son volume en raison de son faible coefficient de dilatation. Toutefois, grâce aux portions tronconiques 132 et 142 et les languettes élastiques 153 et 163 en appui sur ces dernières, les dilatations des fusées n'entraînent pas de déformation de l'enveloppe cylindrique. En effet, lors de la dilatation des fusées, les languettes élastiques se déforment légèrement et glissent sur les portions tronconiques des fusées avec lesquelles elles sont en contact et assurent ainsi un maintien en position axiale de l'enveloppe tout en compensant les dilatations différentielles. Lors du refroidissement, c'est-à-dire lors de la rétractation des fusées, le maintien axial de l'enveloppe est toujours assuré grâce au retour élastique des languettes. Le profil ou la pente des portions tronconiques 132 et 142 est défini en fonction de l'amplitude de la dilatation des fusées à absorber. Si les fusées se dilatent peu, les portions tronconiques pourront présenter une pente importante afin d'assurer un bon maintien de l'enveloppe à toutes les températures par les languettes élastiques. Au contraire, si les fusées se dilatent de façon plus importante, les portions tronconiques présenteront une pente plus faible afin de permettre un glissement sur une distance plus grande des languettes de manière à assurer le maintien de l'enveloppe sans exercer d'efforts trop importants sur cette dernière.
Les éléments de maintien élastiques de l'invention ne sont pas limités à une structure formée de deux segments de couronne. Comme illustrée sur la figure 5, un élément de maintien 250 peut être formé d'une seule couronne 251 comportant des languettes élastiques 252 réparties uniformément autour d'une extrémité de ladite couronne. Dans ce cas, comme illustrée sur la figure 5, la couronne 251 peut comporter des fentes partielles 253a et 253b réparties de façon uniforme et en quinconce autour afin de compenser les contraintes lors d'éventuelles dilatations de la couronne.
Selon une autre variante de réalisation illustrée à la figure 6, un élément de maintien élastique 350 est formé de quatre segments de couronne 351 à 354 comportant chacune des languettes élastiques 355. Quel que soit le nombre de segments utilisés pour former les éléments de maintien élastiques (1, 2, 4, etc.), le ou les segments sont fixés aux extrémités de l'enveloppe cylindrique de la même façon que décrite ci- avant.

Claims

REVENDICATIONS
1. Rouleau (100) de ligne de recuit haute température comprenant une enveloppe cylindrique (120) et au moins une fusée (130; 140) en matériau métallique montée à une des extrémités de l'enveloppe cylindrique, ladite au moins une fusée comprenant un mandrin (131; 141) apte à entraîner en rotation l'enveloppe cylindrique (120),
l'enveloppe cylindrique (120) étant en matériau composite thermostructural, le rouleau (100) comprenant en outre au moins un élément de maintien (150; 160) de l'enveloppe (120) sur la fusée (130; 140), caractérisé en ce que l'élément de maintien comprend une couronne ou une pluralité de segments de couronne (151, 152; 161, 162) fixés sur une extrémité de ladite enveloppe, chaque couronne ou segment de couronne étant prolongé par au moins une languette élastique (153; 163) dont l'extrémité est en appui sur la fusée, et en ce que chaque fusée comprend en outre un arbre d'entraînement (133; 143) relié au mandrin (131; 141) par une portion tronconique (132; 142), la ou les languettes élastiques (153; 163) de chaque couronne ou segment de couronne (151, 152; 161, 162) étant en appui sur ladite portion tronconique.
2. Rouleau selon la revendication 1, caractérisé en ce que le mandrin (131; 141) de chaque fusée comprend une pluralité de dents (1320; 1420) et de cannelures (1310; 1410) et en ce que l'enveloppe cylindrique (120) comprend une pluralité de dents (1220) et de cannelures (1210) en prise respectivement avec les cannelures et les dents de chaque mandrin.
3. Rouleau selon la revendication 2, caractérisé en ce qu'un premier jeu radial à froid (Jl) est ménagé entre le sommet des dents (1320; 1420) de chaque mandrin (131; 141) et le fond des cannelures (1210) de l'enveloppe (120) et en ce qu'un deuxième jeu radial à froid (32) est ménagé entre le sommet des dents (1220) de l'enveloppe (120) et le fond des cannelures (1310; 1410) de chaque mandrin (131; 141).
4. Rouleau selon la revendication 2 ou 3, caractérisé en ce qu'il comprend en outre des cales de réglage (115) disposées entre les bords adjacents des dents (1320; 1420, 1220) de chaque mandrin (131; 141) et de l'enveloppe cylindrique (120).
5. Rouleau selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comprend en outre un élément annulaire de renfort (156; 166) placé autour de chaque couronne ou chaque pluralité de segments de couronne (151, 152; 161, 162).
6. Rouleau selon la revendication 5, caractérisé en ce que l'élément annulaire de renfort (156; 166) comprend un collier élastique (1560, 1660) en matériau métallique précontraint.
7. Rouleau selon la revendication 5, caractérisé en ce que l'élément annulaire de renfort comprend un collier réalisé en un matériau présentant un coefficient de dilatation égale ou légèrement supérieur au coefficient de dilatation thermique de la couronne ou des segments de couronne.
8. Rouleau selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'enveloppe cylindrique (120) est réalisée en matériau composite C-C.
9. Rouleau selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'enveloppe cylindrique (120) comprend sur sa surface externe une couche de zircone.
10. Rouleau selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'enveloppe cylindrique (120) comprend sur sa surface externe une couche de carbure de chrome.
EP10770608.7A 2009-09-29 2010-09-22 Rouleau de ligne de recuit haute temperature Active EP2483431B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0956725A FR2950631B1 (fr) 2009-09-29 2009-09-29 Rouleau de ligne de recuit haute temperature.
PCT/FR2010/051991 WO2011039452A1 (fr) 2009-09-29 2010-09-22 Rouleau de ligne de recuit haute temperature

Publications (2)

Publication Number Publication Date
EP2483431A1 true EP2483431A1 (fr) 2012-08-08
EP2483431B1 EP2483431B1 (fr) 2016-07-13

Family

ID=42169482

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10770608.7A Active EP2483431B1 (fr) 2009-09-29 2010-09-22 Rouleau de ligne de recuit haute temperature

Country Status (3)

Country Link
EP (1) EP2483431B1 (fr)
FR (1) FR2950631B1 (fr)
WO (1) WO2011039452A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2975106B1 (fr) 2011-05-13 2013-06-14 Snecma Propulsion Solide Installation de traitement avec bain de metal fondu et rouleaux immerges
DE102014110565A1 (de) * 2014-07-25 2016-01-28 Montech Ag Antriebsrolle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2919511B1 (fr) * 2007-07-30 2010-01-29 Snecma Propulsion Solide Rouleau composite thermostructural

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011039452A1 *

Also Published As

Publication number Publication date
EP2483431B1 (fr) 2016-07-13
WO2011039452A1 (fr) 2011-04-07
FR2950631B1 (fr) 2013-03-08
FR2950631A1 (fr) 2011-04-01

Similar Documents

Publication Publication Date Title
EP3298246B1 (fr) Ensemble d'anneau de turbine permettant une dilatation thermique différentielle
EP0761978B1 (fr) Turbine en matériau composite thermostructural, en particulier à grand diamètre, et procédé pour sa fabrication
EP0761977B1 (fr) Turbine en matériau composite thermostructural, en particulier à petit diamètre, et procédé pour sa fabrication
EP2118448B1 (fr) Ensemble d'anneau de turbine pour turbine a gaz
EP2025422B1 (fr) Rouleau composite thermostructural
FR3056637A1 (fr) Ensemble d'anneau de turbine avec calage a froid
EP2625436B1 (fr) Rouleau en materiau composite pour recuit haute temperature
EP2501830B1 (fr) Rouleau composite de ligne de recuit
EP2406466A1 (fr) Ensemble d'anneau de turbine
FR2696219A1 (fr) Disque de frein en matériau composite au carbone et empilement de disques de frein comportant ce disque.
EP2555201B1 (fr) Procédé de fabrication amelioré d'une pièce à geometrie tubulaire en matériau composite à matrice céramique
CA2694370A1 (fr) Piece mecanique comportant un insert en materiau composite
WO2016151233A1 (fr) Ensemble d'anneau de turbine comprenant une pluralite de secteurs d'anneau en materiau composite a matrice ceramique
EP2483431B1 (fr) Rouleau de ligne de recuit haute temperature
EP0399879B1 (fr) Distributeur de turbine pour turbo-réacteur et son procédé de fabrication
FR2623246A1 (fr) Tuyere en composite a matrice de ceramique pour moteur a turbine
WO2017194860A1 (fr) Ensemble d'anneau de turbine avec calage a froid
FR3036409B1 (fr) Materiau composite a matrice metallique a base nickel et procede de fabrication d'un tel materiau composite
EP2522759B1 (fr) Installation de traîtment avec bain de métal fondu
FR3135363A1 (fr) Rotor à aimants permanents résistant à la dilatation thermique et procédé de fabrication associé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HERAKLES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 812390

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010034689

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160825

Year of fee payment: 7

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160823

Year of fee payment: 7

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161113

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161114

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161014

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160826

Year of fee payment: 7

Ref country code: RO

Payment date: 20160830

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010034689

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161013

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

26N No opposition filed

Effective date: 20170418

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160922

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010034689

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602010034689

Country of ref document: DE

Owner name: ARIANEGROUP SAS, FR

Free format text: FORMER OWNER: HERAKLES, LE HAILLAN, FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602010034689

Country of ref document: DE

Owner name: ARIANEGROUP SAS, FR

Free format text: FORMER OWNER: AIRBUS SAFRAN LAUNCHERS SAS, ISSY-LES-MOULINEAUX, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010034689

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170922

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 812390

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170922

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100922

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ARIANEGROUP SAS, FR

Effective date: 20180621

Ref country code: FR

Ref legal event code: TP

Owner name: ARIANEGROUP SAS, FR

Effective date: 20180621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170922

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170922

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 812390

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010034689

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240918

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240925

Year of fee payment: 15