EP2476963B1 - Method for filling and refilling water in a water circuit - Google Patents

Method for filling and refilling water in a water circuit Download PDF

Info

Publication number
EP2476963B1
EP2476963B1 EP12151256.0A EP12151256A EP2476963B1 EP 2476963 B1 EP2476963 B1 EP 2476963B1 EP 12151256 A EP12151256 A EP 12151256A EP 2476963 B1 EP2476963 B1 EP 2476963B1
Authority
EP
European Patent Office
Prior art keywords
water
temperature
pressure
water circuit
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12151256.0A
Other languages
German (de)
French (fr)
Other versions
EP2476963A3 (en
EP2476963A2 (en
Inventor
Hartmut Dopslaff
Carsten Dopslaff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Judo Wasseraufbereitung GmbH
Original Assignee
Judo Wasseraufbereitung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Judo Wasseraufbereitung GmbH filed Critical Judo Wasseraufbereitung GmbH
Publication of EP2476963A2 publication Critical patent/EP2476963A2/en
Publication of EP2476963A3 publication Critical patent/EP2476963A3/en
Application granted granted Critical
Publication of EP2476963B1 publication Critical patent/EP2476963B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • F24D3/1083Filling valves or arrangements for filling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/0092Devices for preventing or removing corrosion, slime or scale
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0278Expansion vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/044Flow sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/046Pressure sensors

Definitions

  • the invention relates to a method for filling and refilling of water in a water circuit, which is supplied by a water supply system with water, in particular in a heating or cooling circuit, wherein between the water cycle and the water supply system, a shut-off valve is arranged by the water in the open state can enter the water cycle, wherein by means of a pressure sensor, the pressure in the water cycle is measured, wherein the shut-off valve is controlled in response to the pressure prevailing in the water cycle pressure such that the shut-off valve opens when the pressure in the water cycle falls below a first limit and that the shut-off valve closes when the pressure exceeds a second threshold, the second threshold being greater than the first threshold.
  • a valve system for filling or refilling heating systems is, for example, from DE 10 2005 006 790 B4 known.
  • DE 10 2005 006 790 B4 discloses a valve assembly with a ball valve.
  • a pressure sensor controls a servomotor, by which the ball valve is turned into a closed position upon reaching a predetermined system pressure. When the system pressure falls below a predetermined value, the valve ball is rotated back into an open valve position by the servomotor.
  • DE 102 01 752 B4 discloses a heating system with a make-up valve, via which a Schuntzniklauf fresh water can be supplied to keep the pressure in the heating circuit to a predetermined value. If the pressure in the heating water circuit drops, a make-up valve opens and fresh water flows into the heating water circuit. At a given pressure in the heating water circuit, the connection to the fresh water network is interrupted.
  • shut-off or make-up valves are controlled exclusively via the pressure in the heating water circuit.
  • the problem with such valves is that, for example, during a nighttime lowering, night shutdown or at a weather-induced temperature reduction is replenished too much water, because the pressure in the heating circuit at the lowered temperature is low. At a later increase in temperature can then create an overpressure in the heating circuit. Sensitive system components can be damaged. To prevent this, the water must be drained via a pressure relief valve.
  • GB 2 377 745 A discloses a method according to the preamble of claim 1 and a system for replenishing water from a secondary system in a heating system, wherein a plurality of system parameters are used to control the system but the pressure limits for controlling the shut-off valve (make-up valve) are kept constant.
  • DE 202006016581 U1 is a pressure and temperature controlled safety valve for the protection of domestic water heaters disclosed.
  • the valve opens on the one hand, On the other hand, the valve is controlled by a temperature sensor located in the inlet, which expands as the temperature increases and also opens the valve disk against the preload of the spring. Both control criteria, pressure and temperature, are triggered independently of each other and are determined by the spring force.
  • This object is achieved in that a current water temperature of the water in the water cycle detected by a first temperature sensor and transmitted to a control unit, and that the limits for the pressure depending on the determined water temperature are set.
  • the first and second limit values are not set once but as a function of the measured water temperature.
  • the water cycle can be operated with the optimum capacity and under optimal pressure conditions, which ensures energy-saving operation.
  • An overpressure or underpressure after heating up or cooling down eg in the context of a night reduction or night shutdown and the consequences (damage of sensitive parts of the plant in case of overpressure, disturbances in the Circulation, entry of air or oxygen into the water cycle associated with noise and corrosion at low pressure) can thus be avoided.
  • the first limit value p GW1 is preferably selected in the range between 0.5 and 1.5 bar, in particular between 1 and 1.5 bar.
  • the second limit value p GW2 is preferably between 1.5 and 4 bar, in particular between 2 and 3 bar, the difference between the two limit values preferably having a value between 0.05 and 1.5 bar, in particular between 0.2 and 0.5 bar has.
  • the limits are preferably chosen as a function of the height of the building in which the water cycle is to be operated. The higher the building, the larger the limits are.
  • “Specification” of the limits means that in the memory of the control unit, an assignment of a respective first limit value p GW1 and a second limit value p GW2 to different water temperatures or temperature ranges is stored, for example in the form of a characteristic or a function term.
  • the determination of the first limit value p GW1 can be effected , for example, by establishing a minimum pressure p min which must not be exceeded in the water cycle (for example, in order to avoid the entry of air). Furthermore, a minimum temperature T min , which does not fall below the water in the water cycle, determined (eg due to an anti-freeze setting in the water cycle).
  • the first limit value at the minimum temperature is thus greater than the minimum pressure, but preferably only slightly larger, for example of the order of a few tenths bar above the minimum pressure, (p GW1 (T min )> ⁇ p min ).
  • the second limit value p GW2 (T1) for any current temperature T1 (T1 ⁇ T B ) is preferably set so that the operating pressure p B is not exceeded in the event of an assumed temperature increase of the water quantity in the water cycle to the operating temperature T B.
  • the second limit value p GW2 for the pressure is therefore dependent in the present case on the current water temperature T1 and the operating temperature T B at which the water cycle is to be operated.
  • the values for the operating temperature and the associated desired operating pressure can be, for example, empirical values or based on a manufacturer's specification (eg for a particularly economical or component-friendly operation of the water cycle). Based on the manufacturer's specifications or empirical values, characteristic curves, such as in Fig. 1 shown, the limits p GW1 and p GW2 are determined.
  • the operating temperature T B of the water in the water cycle can either be determined or determined as a function of another measured variable, eg the outside temperature (as explained in more detail below).
  • the operating temperature T B is then dependent on this additionally measured size.
  • the limit values depend on the current water temperature T1 and the additionally measured size.
  • the limits of the pressure p GW1 and p GW2 are set so that they decrease with decreasing water temperature T1.
  • the assignment p GW1 (T1) or p GW2 (T1) of the limit values for the water temperature is monotonically increasing, in particular strictly monotonically increasing. This avoids that in cooling phases (night reduction, night shutdown, weather-induced reduction) with decreasing pressure p too much water is refilled and at a later increase in the temperature T1 in the regular heating operation creates an overpressure.
  • a preferred variant of the method according to the invention provides that the shut-off valve opens only when in addition the condition is met that the water temperature exceeds a threshold T GW .
  • the shut-off valve does not open when the water temperature is less than or equal to the threshold T GW . In this way, refilling can be completely dispensed with if the water temperature T1 falls below a certain value. This is particularly relevant at times outside the heating season, at a night shutdown or even in case of malfunction of the heating system.
  • the water temperature of the water in the water cycle is detected at several points in the water cycle. This takes into account the fact that the water temperature is usually location-dependent. This is thus taken into account in the temperature dependence of the limits. Thus, for example, an average value of the detected temperatures can be used for the approximate determination of the two limit values p GW1 and p GW2 for the pressure in the water cycle. However, it should be taken into account that the real temperatures in the water cycle are sometimes higher or lower. The determination of the limit values p GW1 and p GW2 should therefore be correspondingly conservative. Another possibility is to determine the first limit value p GW1 on the basis of the lowest and the second limit value p GW2 on the basis of the highest detected temperature.
  • a flow temperature in the flow to a heat consumer and a return temperature in the return are detected by the heat consumer, since there the temperature differences are greatest.
  • the entire temperature interval in the water cycle is taken into account.
  • the shut-off valve opens only when in addition the condition is met that the difference between flow temperature T1 VL and return temperature T1 RL exceeds a limit .DELTA.T GW .
  • the limit value of the temperature difference ⁇ T GW is dependent on the flow temperature T1 VL , which influences the pressure p in the water cycle.
  • no filling or refilling takes place when ⁇ T GW is exceeded, ie when the heat output is too low, for example, outside the heating period, at a night shutdown or even in a malfunction of the heating system.
  • a particularly preferred variant of the method according to the invention provides that an outside temperature outside the water cycle is detected by means of a second temperature sensor, and that the limit values p GW1 and p GW2 are set as a function of the detected outside temperature.
  • the measured outside temperature is the temperature outside the building in which the water circuit is located.
  • the flow temperature T1 is VL (i.e. of the outside temperature) generally determined depending on the weather.
  • the pressure p is dependent on the outside temperature.
  • the operating temperature T B of the water is regulated / determined as a function of the detected outside temperature T2. This dependence of the operating temperature T B of the water on the outside temperature T2 is included in the determination of the limits.
  • the limits p GW1 and p GW2 may also be advantageous to set the limits p GW1 and p GW2 as a function of time.
  • the limits may be day / night-dependent or season-dependent.
  • a system separator separates the water loop from the water supply system when the pressure p of the water loop exceeds the pressure in the water supply system. This prevents that heating water flows back into the drinking water system and the standard DIN EN 1717 is not complied with.
  • shut-off valve closes when the pressure of the water cycle does not increase when water is added to the water cycle.
  • the shut-off valve should close when, after a refill, the pressure drops again within a short time. If the pressure does not increase during refilling or if it falls off after refilling within a short time, this indicates a leak. An accidental leakage of water due to such leakage is prevented by closing the shut-off valve.
  • the amount of water in the. Filled or refilled, detected e.g. by means of a flow meter.
  • the amount of water treated can be detected and, if necessary, an exhaustion of a water treatment element can be detected (as explained in more detail below).
  • the value of the measured amount of water is transmitted to the control unit, which according to the data controls the shut-off valve and / or the regeneration of the water treatment element accordingly.
  • shut-off valve closes when the amount of water filled or replenished in the water cycle exceeds a limit value V GW . So if exceptional quantities are detected, which indicate a defect or leakage in the heating circuit, the water supply is interrupted.
  • a time interval is set within which the limit must be reached for the shut-off valve to close. Instead of a fixed time interval can also be specified that a closing the shut-off valve occurs when the limit is reached during a valve opening (which can vary over time).
  • the conductivity of the water which is filled or refilled into the water cycle is determined.
  • the quality of the filling water is detected.
  • the quality of the filling water is crucial for a trouble-free and energy-optimized operation of a heating system.
  • a development of this variant provides that the water is filtered and / or treated during filling and refilling in the water cycle, preferably in accordance with VDI Guideline 2035. This damage and energy losses are prevented by corrosion and stone formation.
  • water treatment may include desalting and / or softening (replacement of calcium and magnesium ions with sodium ions).
  • desalting and / or softening replacement of calcium and magnesium ions with sodium ions.
  • increasing the conductivity of the treated water indicates a depletion of the water treatment unit; softening reduces the conductivity of the treated water in the event of exhaustion. Therefore, in order to monitor the exhaustion state of a water treatment unit, it is preferable that the measurement of the conductivity of the water after treatment of the water is performed, and the shut-off valve closes when the difference between the measured conductivity of the treated water and a target conductivity value exceeds a threshold indicating a depletion of the water treatment unit. Thus, the state of exhaustion can be monitored.
  • the nominal conductivity value is stored in the control unit.
  • the invention also relates to a device for carrying out the method according to the invention, in particular a heating filling station, comprising: a temperature sensor for measuring the water temperature in the water cycle; a shut-off valve, which is arranged between the water circuit and a water supply system, a pressure sensor for measuring the pressure in the water cycle, means for transmitting the measured temperature and Pressure values to a control unit for controlling the shut-off valve in dependence on the measured pressure in the water circuit and the measured water temperature, wherein the control unit has a memory in which the following values are stored: a first limit of the pressure prevailing in the water cycle as a function of the measured temperature and a second limit of the pressure prevailing in the water cycle as a function of the measured temperature, wherein the second limit value is greater than the first limit value.
  • the temperature sensor of the device according to the invention can also be a temperature sensor already present in the water cycle, which is connected to the control unit for the purpose of transmitting the measured temperature values.
  • a second temperature sensor is provided for measuring an outside temperature outside the water cycle, so that the limit values can be determined as a function of the outside temperature (as described above).
  • inventions may comprise the following components alone or in combination with each other: other temperature sensors for measuring the water temperature at different points of the water cycle; System separator for separating the water cycle from the water supply system; Water meter for measuring the amount of water that is filled in the water cycle or refilled; Water treatment unit for treating (e.g., filtering, desalinating, softening) the water that is being replenished into the water loop; and conductivity meter for measuring the conductivity of the treated or untreated water, which is filled in the water cycle or refilled.
  • other temperature sensors for measuring the water temperature at different points of the water cycle
  • System separator for separating the water cycle from the water supply system
  • Water meter for measuring the amount of water that is filled in the water cycle or refilled
  • Water treatment unit for treating (e.g., filtering, desalinating, softening) the water that is being replenished into the water loop
  • conductivity meter for measuring the conductivity of the treated or untreated water, which is filled in the water cycle or re
  • Fig. 1 shows by way of example the volume of the filling water in a heating circuit as a function of the temperature of the filling water (water temperature T1).
  • the filling volume here is 200 l at 20 ° C.
  • the specific volume as reciprocal of the density increases accordingly.
  • the volume of filling water has expanded to about 204 liters.
  • the increase in pressure due to this volume increase in a closed heating circuit with a membrane expansion vessel 6 is in Fig. 1 Approximated (dashed line).
  • the pressure p rises from 1.2 bar at 20 ° C to about 1.7 bar at 70 ° C. This situation occurs, for example, when the water in the water cycle is brought back to operating temperature after a night setback.
  • the volume and pressure increase described only by the temperature increase, but not by a Refill process is conditional. This must be taken into account during filling and refilling operations, which involve an additional pressure change.
  • Fig. 2 Ideally shows an allocation of the flow temperature T1 VL to the outside temperature T2, the so-called heating curve or heating curve.
  • the exact course of the heating curve is set for the plant and building. Generally, however, the colder it gets, the more heat is needed. This corresponds to a higher flow temperature T1 VL .
  • the resulting from the heat output of the radiator return temperature T1 RL as a function of the outside temperature T2 is in Fig. 2 also shown graphically. If the outside temperature T2 exceeds the heating limit, a controller switches off the heating system (here at + 15 ° C).
  • the pressure p in the heating circuit depends on the temperature T1 and, as just described, on the outside temperature T2. In filling and Nach spallfracen according to the inventive method, this is taken into account by the temperatures T1 and T2 are determined and the limits of the pressure p GW1 or p GW2 for controlling the shut-off valve are dependent on the detected temperatures T1 and T2.
  • Fig. 3 shows a Walkerungs spallstation 1 for performing the method according to the invention, which is connected to a water circuit 2, here a heating circuit of a heating system of a building.
  • a circulating pump 3 a plurality of radiators 4a, 4b, a boiler 5 and a diaphragm expansion vessel 6 are provided.
  • an inlet 7 of the heating filling station 1 flows to water, such as from the local drinking water network.
  • the water flow can be blocked with a main stopcock 8 .
  • the water passes through a system separator 9 type BA, which prevents backflow of water from the heating circuit 2 in the drinking water network at zulauf workedem negative pressure.
  • a subsequent pressure reducer 10 ensures a constant operating pressure and protects the heating circuit 2 against overpressure during loading and refilling.
  • the subsequent shut-off valve 11 is motor-actuated by an electronic control unit 12 , here by way of example by means of a servomotor 13th
  • the pressure p of the heating circuit 2 is detected by means of a pressure sensor 14 which is in communication with the downstream heating circuit 2. Furthermore, the current water temperature T1 of the water in the heating circuit 2 by means of a first temperature sensor 15 and the outside temperature T2 by means of a second temperature sensor 16 are determined. The pressure p and the two temperatures T1 and T2 are transmitted to the electronic control unit 12.
  • temperature-dependent pressure limit values p GW1 and p GW2 are stored in a memory 17
  • the shut-off valve 11 opens when the pressure p falls below the first limit value p GW1 , and closes when the pressure p exceeds the second limit value p GW2 ,
  • a characteristic curve for determining the limit values p GW1 and p GW2 can be input to the control unit 12 system-specifically via an input device 18 and displayed by means of a display 19 .
  • the incoming water is also passed through a water meter 20 , the measurement result (amount of water M) is also passed to the electronic control unit 12.
  • the shut-off valve 11 interrupts the water supply in this case.
  • the water is treated before entering the heating circuit 2 by means of a water treatment unit 21 (softening, desalination and / or filtration).
  • the shut-off valve 11 can interrupt the flow of water and thus the filling or refilling process even when the water treatment unit 21 is exhausted.
  • the electronic determines Control unit 12 from the treated amount of water M and from the measured with a conductivity sensor 22 conductivity of the untreated water, a residual capacity of the water treatment unit 21.
  • the exhaustion of the water treatment unit 21 may also be signaled by a second conductivity sensor 23 , which monitors the quality of the treated water.
  • the shut-off valve of the arrangement according to the invention opens in contrast to DE 202006016581 U1 not on admission of the valve with a (by pressure or temperature) induced force, which is determined by the design of the valve once, but the shut-off valve is controlled according to the invention by a control unit, which takes into account the associated with a temperature change pressure change in the determination of the limits.
  • the limit values for a certain water temperature can be selected so that even in case of a temperature change, previously definable minimum and maximum values for the pressure of the water cycle are not exceeded or fallen below.

Description

Hintergrund der ErfindungBackground of the invention

Die Erfindung betrifft ein Verfahren zum Füllen und Nachfüllen von Wasser in einen Wasserkreislauf, welcher von einem Wasserversorgungssystem mit Wasser versorgt wird, insbesondere in einen Heiz- oder Kühlkreislauf, wobei zwischen dem Wasserkreislauf und dem Wasserversorgungssystem ein Absperrventil angeordnet ist, durch das im geöffneten Zustand Wasser in den Wasserkreislauf eintreten kann, wobei mittels eines Drucksensors der Druck im Wasserkreislauf gemessen wird, wobei das Absperrventil in Abhängigkeit von dem im Wasserkreislauf herrschenden Druck derart gesteuert wird, dass das Absperrventil öffnet, wenn der Druck im Wasserkreislauf einen ersten Grenzwert unterschreitet und dass das Absperrventil schließt, wenn der Druck einen zweiten Grenzwert überschreitet, wobei der zweite Grenzwert größer ist als der erste Grenzwert.The invention relates to a method for filling and refilling of water in a water circuit, which is supplied by a water supply system with water, in particular in a heating or cooling circuit, wherein between the water cycle and the water supply system, a shut-off valve is arranged by the water in the open state can enter the water cycle, wherein by means of a pressure sensor, the pressure in the water cycle is measured, wherein the shut-off valve is controlled in response to the pressure prevailing in the water cycle pressure such that the shut-off valve opens when the pressure in the water cycle falls below a first limit and that the shut-off valve closes when the pressure exceeds a second threshold, the second threshold being greater than the first threshold.

Ein Ventilsystem zum Füllen bzw. Nachfüllen von Heizungsanlagen ist bspw. aus DE 10 2005 006 790 B4 bekannt. DE 10 2005 006 790 B4 offenbart eine Ventilanordnung mit einem Kugelventil. Ein Drucksensor steuert einen Stellmotor, durch den das Kugelventil bei Erreichen eines vorgegebenen Systemdrucks in eine Schließstellung verdreht wird. Bei Absinken des Systemdrucks unter einen vorgegebenen Wert, wird die Ventilkugel durch den Stellmotor wieder in eine geöffnete Ventilstellung zurückgedreht.A valve system for filling or refilling heating systems is, for example, from DE 10 2005 006 790 B4 known. DE 10 2005 006 790 B4 discloses a valve assembly with a ball valve. A pressure sensor controls a servomotor, by which the ball valve is turned into a closed position upon reaching a predetermined system pressure. When the system pressure falls below a predetermined value, the valve ball is rotated back into an open valve position by the servomotor.

DE 102 01 752 B4 offenbart ein Heizsystem mit einem Nachspeiseventil, über das einem Heizwasserkreislauf Frischwasser zugeführt werden kann, um den Druck im Heizkreislauf auf einen vorgegebenen Wert zu halten. Sinkt der Druck im Heizwasserkreislauf, öffnet ein Nachspeiseventil und Frischwasser strömt in den Heizwasserkreislauf. Bei einem vorgegebenen Druck im Heizwasserkreislauf wird die Verbindung zum Frischwassernetz unterbrochen. DE 102 01 752 B4 discloses a heating system with a make-up valve, via which a Heizwasserkreislauf fresh water can be supplied to keep the pressure in the heating circuit to a predetermined value. If the pressure in the heating water circuit drops, a make-up valve opens and fresh water flows into the heating water circuit. At a given pressure in the heating water circuit, the connection to the fresh water network is interrupted.

Sowohl in DE 10 2005 006 790 B4 als auch in DE 102 01 752 B4 erfolgt die Steuerung der Absperr- bzw. Nachspeiseventile ausschließlich über den Druck im Heizwasserkreislauf. Problematisch bei derartigen Ventilen ist, dass beispielsweise während einer Nachtabsenkung, Nachtabschaltung oder bei einer witterungsgeführten Temperaturabsenkung zu viel Wasser nachgefüllt wird, weil der Druck im Heizkreislauf bei der abgesenkten Temperatur gering ist. Bei einer späteren Temperaturerhöhung kann dann ein Überdruck im Heizkreislauf entstehen. Empfindliche Anlagenteile können beschädigt werden. Um dies zu verhindern, muss das Wasser über ein Überdruckventil abgelassen werden. Andererseits kann eine zu geringe Füll- und Nachfüllmenge bei einer bestimmten Temperatur im Heizkreislauf dazu führen, dass bei einer weiteren Temperaturabsenkung der Druck so stark absinkt, dass ein Unterdruck im Heizkreislauf entsteht. Bei einem Unterdruck im Heizkreislauf besteht die Gefahr, dass Luft und damit Sauerstoff in den Kreislauf gelangt und so Korrosionsvorgänge unterstützt werden. Außerdem kann es zu Störungen des Umwälzbetriebs kommen.As well in DE 10 2005 006 790 B4 as well as in DE 102 01 752 B4 the shut-off or make-up valves are controlled exclusively via the pressure in the heating water circuit. The problem with such valves is that, for example, during a nighttime lowering, night shutdown or at a weather-induced temperature reduction is replenished too much water, because the pressure in the heating circuit at the lowered temperature is low. At a later increase in temperature can then create an overpressure in the heating circuit. Sensitive system components can be damaged. To prevent this, the water must be drained via a pressure relief valve. On the other hand, a too low filling and refilling amount at a certain temperature in the heating circuit can cause the pressure to drop so much in the event of a further temperature reduction that a negative pressure arises in the heating circuit. If there is a negative pressure in the heating circuit, there is a risk that air and thus oxygen will get into the circulation, thus supporting corrosion processes. In addition, it can lead to disturbances of Umwälzbetriebs.

GB 2 377 745 A offenbart ein Verfahren nach dem Oberbegriff des Anspruchs 1 und ein System zum Nachfüllen von Wasser aus einem Sekundarsystem in einem Heizsystem, wobei mehrere Systemparameter zur Steuerung des Systems benutzt werden, jedoch die Druckgrenzwerte zur Steuerung des Absperrventils (Nachspeiseventils) konstant gehalten werden. GB 2 377 745 A discloses a method according to the preamble of claim 1 and a system for replenishing water from a secondary system in a heating system, wherein a plurality of system parameters are used to control the system but the pressure limits for controlling the shut-off valve (make-up valve) are kept constant.

In DE 202006016581 U1 ist ein druck- und temperaturgesteuertes Sicherheitsventil zum Schutz von Trinkwassererwärmern offenbart. Das Ventil öffnet einerseits, wenn der Eingangsdruck einen durch eine Federkraft bestimmten Schwellwert überschreitet und der Ventilteller dadurch nach oben gedrückt wird, andererseits wird das Ventil von einem im Einlass angeordneten Temperaturfühler gesteuert, der sich bei steigender Temperatur ausdehnt und den Ventilteller ebenfalls gegen die Vorlast der Feder öffnet. Beide Steuerungskriterien, Druck und Temperatur, werden unabhängig voneinander ausgelöst und sind fest durch die Federkraft vorgegeben.In DE 202006016581 U1 is a pressure and temperature controlled safety valve for the protection of domestic water heaters disclosed. The valve opens on the one hand, On the other hand, the valve is controlled by a temperature sensor located in the inlet, which expands as the temperature increases and also opens the valve disk against the preload of the spring. Both control criteria, pressure and temperature, are triggered independently of each other and are determined by the spring force.

Aufgabe der ErfindungObject of the invention

Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren zum Füllen und Nachfüllen von Wasser in einen Wasserkreislauf, insbesondere einen Heiz- oder Kühlkreislauf, vorzustellen, bei dem sowohl Beschädigungen der Anlagenteile durch Drucküberhöhung als auch Korrosion aufgrund eines Unterdrucks im Wasserkreislauf vermieden werden.It is an object of the present invention to provide a method for filling and refilling of water in a water cycle, in particular a heating or cooling circuit to be presented in which both damage to the equipment parts are avoided by pressure increase and corrosion due to a negative pressure in the water cycle.

Kurze Beschreibung der ErfindungBrief description of the invention

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass eine aktuelle Wassertemperatur des Wassers im Wasserkreislauf mittels eines ersten Temperatursensors erfasst und an eine Steuereinheit übermittelt wird, und dass die Grenzwerte für den Druck in Abhängigkeit von der ermittelten Wassertemperatur festgelegt werden.This object is achieved in that a current water temperature of the water in the water cycle detected by a first temperature sensor and transmitted to a control unit, and that the limits for the pressure depending on the determined water temperature are set.

Bei dem erfindungsgemäßen Verfahren werden der erste und der zweite Grenzwert nicht einmalig, sondern in Abhängigkeit von der gemessenen Wassertemperatur festgelegt. Durch diese Berücksichtigung der Wassertemperatur kann der Wasserkreislauf mit der optimalen Füllmenge und unter optimalen Druckverhältnissen betrieben werden, was einen energiesparenden Betrieb gewährleistet. Ein Überdruck bzw. Unterdruck nach Aufheizen bzw. Abkühlen z.B. im Rahmen einer Nachtabsenkung oder Nachtabschaltung und die damit verbundenen Folgen (Beschädigung von empfindlichen Anlagenteilen bei Überdruck, Störungen bei der Umwälzung, Eintritt von Luft bzw. Sauerstoff in den Wasserkreislauf verbunden mit Geräuschen und Korrosion bei Unterdruck) können somit vermieden werden.In the method according to the invention, the first and second limit values are not set once but as a function of the measured water temperature. This consideration of the water temperature, the water cycle can be operated with the optimum capacity and under optimal pressure conditions, which ensures energy-saving operation. An overpressure or underpressure after heating up or cooling down eg in the context of a night reduction or night shutdown and the consequences (damage of sensitive parts of the plant in case of overpressure, disturbances in the Circulation, entry of air or oxygen into the water cycle associated with noise and corrosion at low pressure) can thus be avoided.

Der erste Grenzwert pGW1 wird vorzugsweise im Bereich zwischen 0,5 und 1,5 bar, insbesondere zwischen 1 und 1,5 bar gewählt. Der zweite Grenzwert pGW2 liegt vorzugsweise zwischen 1,5 und 4 bar, insbesondere zwischen 2 und 3 bar, wobei die Differenz der beiden Grenzwerte vorzugsweise einen Wert zwischen 0,05 und 1,5 bar, insbesondere zwischen 0,2 und 0,5 bar aufweist.The first limit value p GW1 is preferably selected in the range between 0.5 and 1.5 bar, in particular between 1 and 1.5 bar. The second limit value p GW2 is preferably between 1.5 and 4 bar, in particular between 2 and 3 bar, the difference between the two limit values preferably having a value between 0.05 and 1.5 bar, in particular between 0.2 and 0.5 bar has.

Die Grenzwerte werden vorzugsweise in Abhängigkeit von der Höhe des Gebäudes gewählt, in dem der Wasserkreislauf betrieben werden soll. Je höher das Gebäude ist, desto größer sind die Grenzwerte zu wählen.The limits are preferably chosen as a function of the height of the building in which the water cycle is to be operated. The higher the building, the larger the limits are.

"Festlegung" der Grenzwerte bedeutet, dass im Speicher der Steuereinheit eine Zuordnung von jeweils einem ersten Grenzwert pGW1 und einem zweiten Grenzwert pGW2 zu verschiedenen Wassertemperaturen oder -temperaturbereichen hinterlegt wird, bspw. in Form einer Kennlinie oder eines Funktionsterms."Specification" of the limits means that in the memory of the control unit, an assignment of a respective first limit value p GW1 and a second limit value p GW2 to different water temperatures or temperature ranges is stored, for example in the form of a characteristic or a function term.

Die Bestimmung des ersten Grenzwertes pGW1 kann beispielsweise dadurch erfolgen, dass ein Minimaldruck pmin festgelegt wird, der im Wasserkreislauf nicht unterschritten werden darf (z.B. um Lufteintritt zu vermeiden). Des Weiteren wird eine Minimaltemperatur Tmin, die das Wasser im Wasserkreislauf nicht unterschreitet, festgelegt (z.B. aufgrund einer Frostschutzeinstellung im Wasserkreislauf). Der erste Grenzwert bei der Minimaltemperatur ist somit größer als der Minimaldruck, vorzugsweise aber nur wenig größer, z.B. in der Größenordnung von einigen Zehntel bar über dem Minimaldruck, (pGW1(Tmin) >≈ pmin). Ausgehend von diesem ersten Grenzwert pGW1(Tmin) bei Minimaltemperatur wird der erste Grenzwert pGW1(T1) für eine beliebige aktuelle Temperatur T1 (T1 > Tmin) vorzugsweise so festgelegt, dass der Druck p bei einer angenommenen Temperaturerniedrigung von der aktuellen Wassertemperatur T1 auf die Minimaltemperatur Tmin den Minimaldruck pmin nicht unterschreitet. Das Verhalten des Drucks bei Temperaturänderung ist bekannt bzw. kann auf einfache Weise ermittelt werden.The determination of the first limit value p GW1 can be effected , for example, by establishing a minimum pressure p min which must not be exceeded in the water cycle (for example, in order to avoid the entry of air). Furthermore, a minimum temperature T min , which does not fall below the water in the water cycle, determined (eg due to an anti-freeze setting in the water cycle). The first limit value at the minimum temperature is thus greater than the minimum pressure, but preferably only slightly larger, for example of the order of a few tenths bar above the minimum pressure, (p GW1 (T min )> ≈ p min ). Starting from this first limit value p GW1 (T min) at minimum temperature of the first limit value p GW1 (T1) for any current temperature T1 (T1> T min) is preferably set so that the pressure p, at an assumed temperature reduction from the current water temperature T1 on the minimum temperature T min the minimum pressure p min is not below. The behavior of the pressure at temperature change is known or can be determined easily.

Die Bestimmung des zweiten Grenzwertes pGW2 kann beispielsweise dadurch erfolgen, dass ein gewünschter Betriebsdruck pB festgelegt wird, der im Wasserkreislauf nicht überschritten werden soll. Falls ein Sicherheitsventil vorhanden ist, ist der Betriebsdruck kleiner als der Öffnungsdruck des Sicherheitsventils zu wählen. Darüber hinaus wird eine gewünschte Betriebstemperatur TB des Wassers im Wasserkreislauf festgelegt, bei welcher der Betriebsdruck pB erreicht werden soll. D.h. der zweite Grenzwert pGW2(TB) bei Betriebstemperatur TB ist der gewünschte Betriebsdruck (pGW2(TB) = pB). Sinkt die Wassertemperatur T1 unter die Betriebstemperatur TB (z.B. durch eine Nachtabsenkung) so sinkt auch der aktuelle Druck im Wasserkreislauf. Der zweite Grenzwert pGW2(T1) für eine beliebige aktuelle Temperatur T1 (T1 < TB) wird vorzugsweise so festgelegt, dass bei einer angenommenen Temperaturerhöhung der im Wasserkreislauf befindlichen Wassermenge auf die Betriebstemperatur TB der Betriebsdruck pB nicht überschritten wird. Der zweite Grenzwert pGW2 für den Druck ist daher im vorliegenden Fall abhängig von der aktuellen Wassertemperatur T1 und der Betriebstemperatur TB, bei welcher der Wasserkreislauf betrieben werden soll. Die Werte für die Betriebstemperatur und den zugehörigem gewünschten Betriebsdruck können z.B. Erfahrungswerte sein oder auf einer Herstellerangabe basieren (z.B. für einen besonders ökonomischen oder Komponenten schonenden Betrieb des Wasserkreislaufs). Ausgehend von den Angaben des Herstellers oder den Erfahrungswerten können mit Hilfe von Kennlinien, wie z.B. in Fig. 1 gezeigt, die Grenzwerte pGW1 und pGW2 bestimmt werden.The determination of the second limit value p GW2 can be effected , for example, by determining a desired operating pressure p B , which is in the water cycle should not be exceeded. If a safety valve is present, the operating pressure should be less than the opening pressure of the safety valve. In addition, a desired operating temperature T B of the water in the water cycle is determined at which the operating pressure p B is to be achieved. That is, the second limit value p GW2 (T B ) at operating temperature T B is the desired operating pressure (p GW2 (T B ) = p B ). If the water temperature T1 falls below the operating temperature T B (eg due to a night reduction), the current pressure in the water circuit also drops. The second limit value p GW2 (T1) for any current temperature T1 (T1 <T B ) is preferably set so that the operating pressure p B is not exceeded in the event of an assumed temperature increase of the water quantity in the water cycle to the operating temperature T B. The second limit value p GW2 for the pressure is therefore dependent in the present case on the current water temperature T1 and the operating temperature T B at which the water cycle is to be operated. The values for the operating temperature and the associated desired operating pressure can be, for example, empirical values or based on a manufacturer's specification (eg for a particularly economical or component-friendly operation of the water cycle). Based on the manufacturer's specifications or empirical values, characteristic curves, such as in Fig. 1 shown, the limits p GW1 and p GW2 are determined.

Die Betriebstemperatur TB des Wassers im Wasserkreislauf kann entweder festgelegt werden oder in Abhängigkeit einer anderen gemessenen Größe, z.B. der Außentemperatur (wie unten näher erläutert), bestimmt werden. Die Betriebstemperatur TB ist dann abhängig von dieser zusätzlich gemessenen Größe. Die Grenzwerte sind entsprechend abhängig von der aktuellen Wassertemperatur T1 und der zusätzlich gemessenen Größe.The operating temperature T B of the water in the water cycle can either be determined or determined as a function of another measured variable, eg the outside temperature (as explained in more detail below). The operating temperature T B is then dependent on this additionally measured size. The limit values depend on the current water temperature T1 and the additionally measured size.

Durch die Grenzwerte pGW1 und pGW2 wird also eine minimale und maximale Wassermenge festgelegt, die für den Betrieb des Wasserkreislaufes mit einer Betriebstemperatur TB im Wasserkreislauf enthalten sein darf. Enthält der Wasserkreislauf ein Ausdehnungsgefäß (z.B. ein Membranausdehnungsgefäß) als Pufferspeicher, erfolgt ein Nachspeisen von Wasser in den Wasserkreislauf erst, wenn die Kapazität des Ausdehnungsgefäßes erschöpft ist.By the limits p GW1 and p GW2 so a minimum and maximum amount of water is set, which may be included for the operation of the water cycle with an operating temperature T B in the water cycle. Does the water circuit contain an expansion tank (eg a membrane expansion tank) as a buffer tank, Dessert of water in the water cycle takes place only when the capacity of the expansion vessel is exhausted.

Vorteilhafte Varianten der ErfindungAdvantageous variants of the invention

Vorzugsweise werden die Grenzwerte des Drucks pGW1 und pGW2 so festgelegt, dass sie mit sinkender Wassertemperatur T1 abnehmen. Die Zuordnung pGW1(T1) bzw. pGW2(T1) der Grenzwerte zur Wassertemperatur ist monoton steigend, insbesondere streng monoton steigend. Dadurch wird vermieden, dass in Abkühlphasen (Nachtabsenkung, Nachtabschaltung, witterungsgeführte Absenkung) bei sinkendem Druck p zu viel Wasser nachgefüllt wird und bei einer späteren Erhöhung der Temperatur T1 im regulären Heizbetrieb ein Überdruck entsteht.Preferably, the limits of the pressure p GW1 and p GW2 are set so that they decrease with decreasing water temperature T1. The assignment p GW1 (T1) or p GW2 (T1) of the limit values for the water temperature is monotonically increasing, in particular strictly monotonically increasing. This avoids that in cooling phases (night reduction, night shutdown, weather-induced reduction) with decreasing pressure p too much water is refilled and at a later increase in the temperature T1 in the regular heating operation creates an overpressure.

Eine bevorzugte Variante des erfindungsgemäßen Verfahrens sieht vor, dass das Absperrventil nur dann öffnet, wenn zusätzlich die Bedingung erfüllt ist, dass die Wassertemperatur einen Grenzwert TGW überschreitet. Das Absperrventil öffnet also nicht, wenn die Wassertemperatur kleiner oder gleich dem Grenzwert TGW ist. Auf diese Weise kann auf eine Nachfüllung gänzlich verzichtet werden, wenn die Wassertemperatur T1 einen bestimmten Wert unterschreitet. Dies ist insbesondere zu Zeiten außerhalb der Heizperiode, bei einer Nachtabschaltung oder aber auch bei einer Funktionsstörung der Heizungsanlage relevant.A preferred variant of the method according to the invention provides that the shut-off valve opens only when in addition the condition is met that the water temperature exceeds a threshold T GW . The shut-off valve does not open when the water temperature is less than or equal to the threshold T GW . In this way, refilling can be completely dispensed with if the water temperature T1 falls below a certain value. This is particularly relevant at times outside the heating season, at a night shutdown or even in case of malfunction of the heating system.

Vorzugsweise wird die Wassertemperatur des Wassers im Wasserkreislauf an mehreren Stellen im Wasserkreislauf erfasst. Dadurch wird der Tatsache Rechnung getragen, dass die Wassertemperatur in der Regel ortsabhängig ist. Dies wird somit bei der Temperaturabhängigkeit der Grenzwerte berücksichtigt. So kann bspw. ein Mittelwert der erfassten Temperaturen zur näherungsweisen Bestimmung der beiden Grenzwerte pGW1 und pGW2 für den Druck im Wasserkreislauf verwendet werden. Dabei sollte jedoch berücksichtigt werden, dass die realen Temperaturen im Wasserkreislauf teilweise höher bzw. niedriger sind. Die Bestimmung der Grenzwerte pGW1 und pGW2 sollte demnach entsprechend konservativ ausfallen. Eine andere Möglichkeit besteht darin, den ersten Grenzwert pGW1 auf Basis der niedrigsten und den zweiten Grenzwert pGW2 auf Basis der höchsten erfassten Temperatur zu bestimmen.Preferably, the water temperature of the water in the water cycle is detected at several points in the water cycle. This takes into account the fact that the water temperature is usually location-dependent. This is thus taken into account in the temperature dependence of the limits. Thus, for example, an average value of the detected temperatures can be used for the approximate determination of the two limit values p GW1 and p GW2 for the pressure in the water cycle. However, it should be taken into account that the real temperatures in the water cycle are sometimes higher or lower. The determination of the limit values p GW1 and p GW2 should therefore be correspondingly conservative. Another possibility is to determine the first limit value p GW1 on the basis of the lowest and the second limit value p GW2 on the basis of the highest detected temperature.

Vorzugsweise werden eine Vorlauftemperatur im Vorlauf zu einem Wärmeverbraucher und eine Rücklauftemperatur im Rücklauf von dem Wärmeverbraucher erfasst, da dort die Temperaturunterschiede am größten sind. Es wird somit das gesamte im Wasserkreislauf vorliegende Temperaturintervall berücksichtigt.Preferably, a flow temperature in the flow to a heat consumer and a return temperature in the return are detected by the heat consumer, since there the temperature differences are greatest. Thus, the entire temperature interval in the water cycle is taken into account.

Bei einer besonderen Variante des erfindungsgemäßen Verfahrens öffnet das Absperrventil nur dann, wenn zusätzlich die Bedingung erfüllt ist, dass die Differenz zwischen Vorlauftemperatur T1VL und Rücklauftemperatur T1RL einen Grenzwert ΔTGW überschreitet. Der Grenzwert der Temperaturdifferenz ΔTGW ist abhängig von der Vorlauftemperatur T1VL, die den Druck p im Wasserkreislauf beeinflusst. Bei dieser Verfahrensvariante findet kein Füllen bzw. Nachfüllen statt, wenn ΔTGW unterschritten wird, d.h. wenn die Wärmeabgabe zu gering ist, beispielsweise außerhalb der Heizperiode, bei einer Nachtabschaltung oder aber auch bei einer Funktionsstörung der Heizungsanlage.In a particular variant of the method according to the invention, the shut-off valve opens only when in addition the condition is met that the difference between flow temperature T1 VL and return temperature T1 RL exceeds a limit .DELTA.T GW . The limit value of the temperature difference ΔT GW is dependent on the flow temperature T1 VL , which influences the pressure p in the water cycle. In this process variant, no filling or refilling takes place when ΔT GW is exceeded, ie when the heat output is too low, for example, outside the heating period, at a night shutdown or even in a malfunction of the heating system.

Eine besonders bevorzugte Variante des erfindungsgemäßen Verfahrens sieht vor, dass eine Außentemperatur außerhalb des Wasserkreislaufs mittels eines zweiten Temperatursensors erfasst wird, und dass die Grenzwerte pGW1 und pGW2 als Funktion der erfassten Außentemperatur festgelegt werden. Bei der gemessenen Außentemperatur handelt es sich um die Temperatur außerhalb des Gebäudes, in welchem sich der Wasserkreislauf befindet. Die Vorlauftemperatur T1VL wird im Allgemeinen in Abhängigkeit von der Witterung (also von der Außentemperatur) festgelegt. Somit ist auch der Druck p abhängig von der Außentemperatur. Mit steigender Außentemperatur sinkt die Vorlauftemperatur T1VL und damit der Druck p des Wasserkreislaufs. Bei der erfindungsgemäßen Variante wird die Betriebstemperatur TB des Wassers in Abhängigkeit von der erfassten Außentemperatur T2 geregelt/festgelegt. Diese Abhängigkeit der Betriebstemperatur TB des Wassers von der Außentemperatur T2 geht in die Festlegung der Grenzwerte ein.A particularly preferred variant of the method according to the invention provides that an outside temperature outside the water cycle is detected by means of a second temperature sensor, and that the limit values p GW1 and p GW2 are set as a function of the detected outside temperature. The measured outside temperature is the temperature outside the building in which the water circuit is located. The flow temperature T1 is VL (i.e. of the outside temperature) generally determined depending on the weather. Thus, the pressure p is dependent on the outside temperature. As the outside temperature increases, the flow temperature T1 VL and thus the pressure p of the water cycle decreases. In the variant according to the invention, the operating temperature T B of the water is regulated / determined as a function of the detected outside temperature T2. This dependence of the operating temperature T B of the water on the outside temperature T2 is included in the determination of the limits.

Es kann auch vorteilhaft sein, die Grenzwerte pGW1 und pGW2 als Funktion der Zeit festzulegen. So können die Grenzwerte beispielsweise Tag/Nacht-abhängig oder Saison-abhängig sein.It may also be advantageous to set the limits p GW1 and p GW2 as a function of time. For example, the limits may be day / night-dependent or season-dependent.

Vorzugsweise trennt ein Systemtrenner den Wasserkreislauf vom Wasserversorgungssystem, wenn der Druck p des Wasserkreislaufs den Druck im Wasserversorgungssystem übersteigt. Dadurch wird verhindert, dass Heizungswasser in das Trinkwassersystem zurückfließt und die Norm DIN EN 1717 nicht eingehalten wird.Preferably, a system separator separates the water loop from the water supply system when the pressure p of the water loop exceeds the pressure in the water supply system. This prevents that heating water flows back into the drinking water system and the standard DIN EN 1717 is not complied with.

Besonders vorteilhaft ist eine Variante des erfindungsgemäßen Verfahrens, bei der das Absperrventil schließt, wenn beim Nachfüllen von Wasser in den Wasserkreislauf der Druck des Wasserkreislaufs nicht ansteigt. Ebenso soll das Absperrventil schließen, wenn nach einem Nachfüllvorgang der Druck innerhalb kurzer Zeit wieder abfällt. Steigt der Druck beim Nachfüllen nicht an oder fällt er nach dem Nachfüllen innerhalb kurzer Zeit wieder ab, so deutet dies auf eine Leckage hin. Ein ungewolltes Austreten von Wasser aufgrund einer solchen Leckage wird durch das Schließen des Absperrventils verhindert.Particularly advantageous is a variant of the method according to the invention in which the shut-off valve closes when the pressure of the water cycle does not increase when water is added to the water cycle. Likewise, the shut-off valve should close when, after a refill, the pressure drops again within a short time. If the pressure does not increase during refilling or if it falls off after refilling within a short time, this indicates a leak. An accidental leakage of water due to such leakage is prevented by closing the shut-off valve.

Vorzugsweise wird die Menge an Wasser, die in den. Wasserkreislauf gefüllt bzw. nachgefüllt wird, erfasst, z.B. mittels eines Durchflussmessers. Durch die Bestimmung der in den Wasserkreislauf gefüllten und nachgefüllten Wassermenge können ungewöhnliche Füllmengen erkannt werden. Darüber hinaus kann im Falle einer Behandlung des Füllwassers die behandelte Wassermenge erfasst und gegebenenfalls eine Erschöpfung eines Wasserbehandlungselements erkannt werden (wie unten näher erläutert). Der Wert der gemessenen Wassermenge wird an die Steuereinheit übertragen, die aufgrund der Daten das Absperrventil und/oder die Regeneration des Wasserbehandlungselements entsprechend steuert.Preferably, the amount of water in the. Filled or refilled, detected, e.g. by means of a flow meter. By determining the amount of water filled and replenished in the water cycle, unusual quantities can be detected. In addition, in the case of a treatment of the filling water, the amount of water treated can be detected and, if necessary, an exhaustion of a water treatment element can be detected (as explained in more detail below). The value of the measured amount of water is transmitted to the control unit, which according to the data controls the shut-off valve and / or the regeneration of the water treatment element accordingly.

Ein weiteres Indiz für eine Leckage ist das Nachfüllen von ungewöhnlich hohen Wassermengen. Es ist daher vorteilhaft, dass das Absperrventil schließt, wenn die in den Wasserkreislauf gefüllte bzw. nachgefüllte Wassermenge einen Grenzwert VGW überschreitet. Werden also außergewöhnliche Füllmengen erkannt, die auf einen Defekt bzw. eine Leckage im Heizungskreislauf hindeuten, so wird die Wasserzufuhr unterbrochen. Vorzugsweise wird ein Zeitintervall festgelegt, innerhalb dessen der Grenzwert erreicht werden muss, damit das Absperrventil schließt. Statt eines festen Zeitintervalls kann auch festgelegt werden, dass ein Schließen des Absperrventils erfolgt, wenn der Grenzwert während einer Ventilöffnung (die zeitlich variieren kann) erreicht wird.Another indication of leakage is the replenishment of unusually high volumes of water. It is therefore advantageous that the shut-off valve closes when the amount of water filled or replenished in the water cycle exceeds a limit value V GW . So if exceptional quantities are detected, which indicate a defect or leakage in the heating circuit, the water supply is interrupted. Preferably, a time interval is set within which the limit must be reached for the shut-off valve to close. Instead of a fixed time interval can also be specified that a closing the shut-off valve occurs when the limit is reached during a valve opening (which can vary over time).

Bei einer speziellen Variante des erfindungsgemäßen Verfahrens wird die Leitfähigkeit des Wassers, das in den Wasserkreislauf gefüllt bzw. nachgefüllt wird, bestimmt. Somit wird die Qualität des Füllwassers erfasst. Die Qualität des Füllwassers ist entscheidend für einen störungsfreien und energieoptimierten Betrieb einer Heizungsanlage.In a special variant of the method according to the invention, the conductivity of the water which is filled or refilled into the water cycle is determined. Thus, the quality of the filling water is detected. The quality of the filling water is crucial for a trouble-free and energy-optimized operation of a heating system.

Eine Weiterbildung dieser Variante sieht vor, dass das Wasser beim Füllen und Nachfüllen in den Wasserkreislauf gefiltert und/oder behandelt wird, vorzugsweise gemäß VDI-Richtlinie 2035. Dadurch werden Schäden und Energieverluste durch Korrosion und Steinbildung verhindert.A development of this variant provides that the water is filtered and / or treated during filling and refilling in the water cycle, preferably in accordance with VDI Guideline 2035. This damage and energy losses are prevented by corrosion and stone formation.

Eine Wasserbehandlung kann beispielsweise eine Entsalzung und/oder eine Enthärtung (Austausch der Calcium- und Magnesium-Ionen gegen Natrium-Ionen) beinhalten. Bei einer Entsalzung deutet eine steigende Leitfähigkeit des behandelten Wassers auf eine Erschöpfung der Wasserbehandlungseinheit hin, bei einer Enthärtung sinkt die Leitfähigkeit des behandelten Wassers im Falle einer Erschöpfung. Um den Erschöpfungszustand einer Wasserbehandlungseinheit zu überwachen, ist es daher vorteilhaft, dass die Messung der Leitfähigkeit des Wassers nach Behandlung des Wassers durchgeführt wird, und das Absperrventil schließt, wenn die Differenz zwischen der gemessenen Leitfähigkeit des behandelten Wassers und einem Soll-Leitfähigkeitswert einen Grenzwert überschreitet, der auf eine Erschöpfung der Wasserbehandlungseinheit hindeutet. Somit kann der Erschöpfungszustand überwacht werden. Der Soll-Leitfähigkeitswert ist in der Steuerungseinheit abgespeichert.For example, water treatment may include desalting and / or softening (replacement of calcium and magnesium ions with sodium ions). In the case of desalination, increasing the conductivity of the treated water indicates a depletion of the water treatment unit; softening reduces the conductivity of the treated water in the event of exhaustion. Therefore, in order to monitor the exhaustion state of a water treatment unit, it is preferable that the measurement of the conductivity of the water after treatment of the water is performed, and the shut-off valve closes when the difference between the measured conductivity of the treated water and a target conductivity value exceeds a threshold indicating a depletion of the water treatment unit. Thus, the state of exhaustion can be monitored. The nominal conductivity value is stored in the control unit.

Die Erfindung betrifft auch eine Vorrichtung zum Durchführen des erfindungsgemäßen Verfahrens, insbesondere eine Heizungsfüllstation, umfassend: einen Temperatursensor zur Messung der Wassertemperatur im Wasserkreislauf; ein Absperrventil, welches zwischen dem Wasserkreislauf und einem Wasserversorgungssystem angeordnet ist, einen Drucksensor zur Messung des Drucks im Wasserkreislauf, Mittel zur Übermittlung der gemessenen Temperatur- und Druckwerte an eine Steuereinheit zur Steuerung des Absperrventils in Abhängigkeit von dem gemessenen Druck im Wasserkreislauf und der gemessenen Wassertemperatur, wobei die Steuereinheit einen Speicher aufweist, in welchem folgende Werte abgespeichert sind: ein erster Grenzwert des im Wasserkreislauf herrschenden Drucks in Abhängigkeit der gemessenen Temperatur und ein zweiter Grenzwert des im Wasserkreislauf herrschenden Drucks in Abhängigkeit der gemessenen Temperatur, wobei der zweite Grenzwert größer ist als der erste Grenzwert.The invention also relates to a device for carrying out the method according to the invention, in particular a heating filling station, comprising: a temperature sensor for measuring the water temperature in the water cycle; a shut-off valve, which is arranged between the water circuit and a water supply system, a pressure sensor for measuring the pressure in the water cycle, means for transmitting the measured temperature and Pressure values to a control unit for controlling the shut-off valve in dependence on the measured pressure in the water circuit and the measured water temperature, wherein the control unit has a memory in which the following values are stored: a first limit of the pressure prevailing in the water cycle as a function of the measured temperature and a second limit of the pressure prevailing in the water cycle as a function of the measured temperature, wherein the second limit value is greater than the first limit value.

Bei dem Temperatursensor der erfindungsgemäßen Vorrichtung kann es sich auch um einen bereits im Wasserkreislauf vorhandenen Temperatursensor handeln, der zur Übertragung der gemessenen Temperaturwerte mit der Steuereinheit verbunden wird.The temperature sensor of the device according to the invention can also be a temperature sensor already present in the water cycle, which is connected to the control unit for the purpose of transmitting the measured temperature values.

Vorzugsweise ist ein zweiter Temperatursensor zur Messung einer Außentemperatur außerhalb des Wasserkreislaufs vorgesehen, so dass die Grenzwerte in Abhängigkeit der Außentemperatur (wie oben beschrieben) bestimmt werden können.Preferably, a second temperature sensor is provided for measuring an outside temperature outside the water cycle, so that the limit values can be determined as a function of the outside temperature (as described above).

Weitere vorteilhafte Ausführungsformen der erfindungsgemäßen Vorrichtung können folgende Bauteile alleine oder in Kombination miteinander umfassen: weitere Temperatursensoren zur Messung der Wassertemperatur an verschiedenen Stellen des Wasserkreislaufs; Systemtrenner zur Trennung des Wasserkreislaufs vom Wasserversorgungssystem; Wasserzähler zur Messung der Menge an Wasser, die in den Wasserkreislauf gefüllt bzw. nachgefüllt wird; Wasserbehandlungseinheit zur Behandlung (z.B. Filterung, Entsalzung, Enthärtung) des Wassers, das in den Wasserkreislauf gefüllt bzw. nachgefüllt wird; und Leitfähigkeitsmesser zur Messung der Leitfähigkeit des behandelten oder unbehandelten Wassers, das in den Wasserkreislauf gefüllt bzw. nachgefüllt wird.Further advantageous embodiments of the device according to the invention may comprise the following components alone or in combination with each other: other temperature sensors for measuring the water temperature at different points of the water cycle; System separator for separating the water cycle from the water supply system; Water meter for measuring the amount of water that is filled in the water cycle or refilled; Water treatment unit for treating (e.g., filtering, desalinating, softening) the water that is being replenished into the water loop; and conductivity meter for measuring the conductivity of the treated or untreated water, which is filled in the water cycle or refilled.

Weitere Vorteile der Erfindung ergeben sich aus der Beschreibung und der Zeichnung. Ebenso können die vorstehend genannten und die weiter aufgeführten Merkmale je für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.Further advantages of the invention will become apparent from the description and the drawings. Likewise, the features mentioned above and those listed further may be used individually or in any combination Find. The embodiments shown and described are not to be understood as exhaustive enumeration, but rather have exemplary character for the description of the invention.

Zeichnung und detaillierte Beschreibung der ErfindungDrawing and detailed description of the invention

Es zeigen:

Fig. 1
eine grafische Darstellung des Füllvolumens eines Wasserkreislaufes und des Drucks im Heizkreislauf (Wassermenge im Wasserkreislauf) in Abhängigkeit von der Wassertemperatur des Wassers im Wasserkreislauf;
Fig. 2
eine grafische Darstellung der Abhängigkeit der Vorlauftemperatur und der Rücklauftemperatur von der Außentemperatur (Heizkurve); und
Fig. 3
eine schematische Darstellung eines Heizkreislaufs mit Zuflussleitung für Füll- und Nachfüllwasser mit Mitteln zur Durchführung des erfindungsgemäßen Verfahrens.
Show it:
Fig. 1
a graphic representation of the filling volume of a water cycle and the pressure in the heating circuit (amount of water in the water cycle) as a function of the water temperature of the water in the water cycle;
Fig. 2
a graphic representation of the dependence of the flow temperature and the return temperature of the outside temperature (heating curve); and
Fig. 3
a schematic representation of a heating circuit with inlet line for filling and refilling water with means for carrying out the method according to the invention.

Fig. 1 zeigt beispielhaft das Volumen des Füllwassers in einem Heizkreislauf in Abhängigkeit von der Temperatur des Füllwassers (Wassertemperatur T1). Das Füllvolumen beträgt hier 200 l bei 20°C. Mit zunehmender Temperatur nimmt die Dichte des Wassers ab. Das spezifische Volumen als Kehrwert der Dichte steigt entsprechend. Bei 70°C hat sich das Volumen des Füllwassers auf etwa 204 l ausgedehnt. Der durch diese Volumenzunahme bedingte Druckanstieg in einem geschlossenen Heizkreislauf mit einem Membranausdehnungsgefäß 6 ist in Fig. 1 näherungsweise dargestellt (gestrichelte Linie). Der Druck p steigt von 1,2 bar bei 20°C auf etwa 1,7 bar bei 70°C. Diese Situation tritt z.B. ein, wenn nach einer Nachtabsenkung das Wasser im Wasserkreislauf wieder auf Betriebstemperatur gebracht wird. An dieser Stelle sei betont, dass die beschriebene Volumen- und Druckzunahme lediglich durch die Temperaturerhöhung, nicht jedoch durch einen Nachfüllprozess bedingt ist. Dies ist bei Füll- und Nachfüllvorgängen zu berücksichtigen, die eine zusätzliche Druckänderung mit sich bringen. Fig. 1 shows by way of example the volume of the filling water in a heating circuit as a function of the temperature of the filling water (water temperature T1). The filling volume here is 200 l at 20 ° C. As the temperature increases, the density of the water decreases. The specific volume as reciprocal of the density increases accordingly. At 70 ° C, the volume of filling water has expanded to about 204 liters. The increase in pressure due to this volume increase in a closed heating circuit with a membrane expansion vessel 6 is in Fig. 1 Approximated (dashed line). The pressure p rises from 1.2 bar at 20 ° C to about 1.7 bar at 70 ° C. This situation occurs, for example, when the water in the water cycle is brought back to operating temperature after a night setback. At this point it should be emphasized that the volume and pressure increase described only by the temperature increase, but not by a Refill process is conditional. This must be taken into account during filling and refilling operations, which involve an additional pressure change.

Es ist üblich, die Vorlauftemperatur T1VL (Temperatur des Füllwassers vor Durchlaufen eines Wärmeverbrauchers) eines Heizungswasserkreislaufes in Abhängigkeit von der Außentemperatur T2 einzustellen. Fig. 2 zeigt idealisiert eine Zuordnung der Vorlauftemperatur T1VL zur Außentemperatur T2, die sogenannte Heizkurve oder Heizkennlinie. Der genaue Verlauf der Heizkurve wird anlagen- und gebäudespezifisch eingestellt. Allgemein gilt jedoch, je kälter es wird, desto mehr Wärme wird benötigt. Dies entspricht einer höheren Vorlauftemperatur T1VL. Die durch die Wärmeabgabe der Heizkörper entstehende Rücklauftemperatur T1RL in Abhängigkeit von der Außentemperatur T2 ist in Fig. 2 ebenfalls grafisch dargestellt. Überschreitet die Außentemperatur T2 die Heizgrenze, so stellt ein Regler die Heizungsanlage ab (hier bei + 15°C).It is customary to set the flow temperature T1 VL (temperature of the filling water before passing through a heat consumer) of a heating water circuit in dependence on the outside temperature T2. Fig. 2 Ideally shows an allocation of the flow temperature T1 VL to the outside temperature T2, the so-called heating curve or heating curve. The exact course of the heating curve is set for the plant and building. Generally, however, the colder it gets, the more heat is needed. This corresponds to a higher flow temperature T1 VL . The resulting from the heat output of the radiator return temperature T1 RL as a function of the outside temperature T2 is in Fig. 2 also shown graphically. If the outside temperature T2 exceeds the heating limit, a controller switches off the heating system (here at + 15 ° C).

Wie bei Fig. 1 erläutert, hängt der Druck p im Heizkreislauf von der Temperatur T1 ab und diese, wie eben dargestellt, von der Außentemperatur T2. Bei Füll- und Nachfüllprozessen gemäß des erfindungsgemäßen Verfahrens wird dies berücksichtigt, indem die Temperaturen T1 bzw. T2 bestimmt werden und die Grenzwerte des Drucks pGW1 bzw. pGW2 zur Steuerung des Absperrventils abhängig sind von den erfassten Temperaturen T1 bzw.T2.As in Fig. 1 1, the pressure p in the heating circuit depends on the temperature T1 and, as just described, on the outside temperature T2. In filling and Nachfüllprozessen according to the inventive method, this is taken into account by the temperatures T1 and T2 are determined and the limits of the pressure p GW1 or p GW2 for controlling the shut-off valve are dependent on the detected temperatures T1 and T2.

Fig. 3 zeigt eine Heizungsfüllstation 1 zur Durchführung des erfindungsgemäßen Verfahrens, die an einen Wasserkreislauf 2, hier einen Heizkreislauf einer Heizungsanlage eines Gebäudes, angeschlossen ist. Im Wasserkreislauf 2 sind eine Umwälzpumpe 3, mehrere Heizkörper 4a, 4b, ein Heizkessel 5 und ein Membranausdehnungsgefäß 6 vorgesehen. Fig. 3 shows a Heizungsfüllstation 1 for performing the method according to the invention, which is connected to a water circuit 2, here a heating circuit of a heating system of a building. In the water cycle 2, a circulating pump 3, a plurality of radiators 4a, 4b, a boiler 5 and a diaphragm expansion vessel 6 are provided.

Über einen Zulauf 7 fließt der Heizungsfüllstation 1 Wasser zu, etwa aus dem örtlichen Trinkwassernetz. Am Zulauf 7 kann der Wasserfluss mit einem Hauptabsperrhahn 8 blockiert werden. Das Wasser passiert einen Systemtrenner 9 vom Typ BA, der ein Rückfließen des Wassers aus dem Heizkreislauf 2 in das Trinkwassernetz bei zulaufseitigem Unterdruck verhindert. Ein nachfolgender Druckminderer 10 gewährleistet einen konstanten Betriebsdruck und schützt den Heizkreislauf 2 vor Überdruck bei der Be- und Nachfüllung. Das anschließende Absperrventil 11 ist durch eine elektronische Steuereinheit 12 motorisch betätigbar, hier beispielhaft mittels eines Stellmotors 13. Via an inlet 7 of the heating filling station 1 flows to water, such as from the local drinking water network. At the inlet 7, the water flow can be blocked with a main stopcock 8 . The water passes through a system separator 9 type BA, which prevents backflow of water from the heating circuit 2 in the drinking water network at zulaufseitigem negative pressure. A subsequent pressure reducer 10 ensures a constant operating pressure and protects the heating circuit 2 against overpressure during loading and refilling. The subsequent shut-off valve 11 is motor-actuated by an electronic control unit 12 , here by way of example by means of a servomotor 13th

Zur Steuerung des Absperrventils 11 und damit der Menge an Wasser, die in den Heizkreislauf 2 fließt, wird der Druck p des Heizkreislaufs 2 mittels eines Drucksensors 14 erfasst, der mit dem stromabwärtigen Heizkreislauf 2 in Verbindung steht. Weiterhin werden die aktuelle Wassertemperatur T1 des Wassers im Heizkreislauf 2 mittels eines ersten Temperatursensors 15 sowie die Außentemperatur T2 mittels eines zweiten Temperatursensors 16 bestimmt. Der Druck p sowie die beiden Temperaturen T1 und T2 werden an die elektronische Steuereinheit 12 übermittelt. In der Steuereinheit 12 sind temperaturabhängige Druck-Grenzwerte pGW1 und pGW2 in einem Speicher 17 abgespeichert, wobei das Absperrventil 11 öffnet, wenn der Druck p den ersten Grenzwert pGW1 unterschreitet, und schließt, wenn der Druck p den zweiten Grenzwert pGW2 überschreitet. Dadurch liegen der Druck p und die Menge an Wasser im Heizkreislauf 2 bei jeder Temperatur in einem für einen optimalen Betrieb des Heizkreislaufs 2 günstigen Bereich. Eine Kennlinie zur Bestimmung der Grenzwerte pGW1 und pGW2 kann über eine Eingabevorrichtung 18 an der Steuereinheit 12 anlagenspezifisch eingegeben und mittels eines Displays 19 angezeigt werden.To control the shut-off valve 11 and thus the amount of water flowing into the heating circuit 2, the pressure p of the heating circuit 2 is detected by means of a pressure sensor 14 which is in communication with the downstream heating circuit 2. Furthermore, the current water temperature T1 of the water in the heating circuit 2 by means of a first temperature sensor 15 and the outside temperature T2 by means of a second temperature sensor 16 are determined. The pressure p and the two temperatures T1 and T2 are transmitted to the electronic control unit 12. In the control unit 12, temperature-dependent pressure limit values p GW1 and p GW2 are stored in a memory 17 , the shut-off valve 11 opens when the pressure p falls below the first limit value p GW1 , and closes when the pressure p exceeds the second limit value p GW2 , As a result, the pressure p and the amount of water in the heating circuit 2 at each temperature in a favorable for optimal operation of the heating circuit 2 range. A characteristic curve for determining the limit values p GW1 and p GW2 can be input to the control unit 12 system-specifically via an input device 18 and displayed by means of a display 19 .

Das zulaufende Wasser wird weiterhin über einen Wasserzähler 20 geleitet, dessen Messergebnis (Wassermenge M) ebenfalls an die elektronische Steuereinheit 12 weitergegeben wird. Überschreitet die in den Heizkreislauf 2 gefüllte bzw. nachgefüllte Wassermenge M einen vom Volumen des Heizkreislaufs 2 abhängigen Grenzwert oder steigt der Druck p während des Füllvorgangs nicht an, deutet dies auf eine Leckage oder einen Defekt im Heizkreislauf 2 hin. Das Absperrventil 11 unterbricht in diesem Fall die Wasserzufuhr.The incoming water is also passed through a water meter 20 , the measurement result (amount of water M) is also passed to the electronic control unit 12. Exceeds the filled or refilled in the heating circuit 2 amount of water M a dependent on the volume of the heating circuit 2 limit or the pressure p does not increase during the filling, this indicates a leak or a defect in the heating circuit 2 out. The shut-off valve 11 interrupts the water supply in this case.

Zum Schutz vor Korrosion und Steinbildung im Heizkreislauf 2 wird das Wasser vor Eintritt in den Heizkreislauf 2 mittels einer Wasserbehandlungseinheit 21 (Enthärtung, Entsalzung und/oder Filtration) behandelt. Das Absperrventil 11 kann auch bei Erschöpfung der Wasserbehandlungseinheit 21 den Wasserzufluss und damit den Füll- bzw. Nachfüllprozess unterbrechen. Hierzu bestimmt die elektronische Steuereinheit 12 aus der behandelten Wassermenge M sowie aus der mit einem Leitfähigkeitssensor 22 gemessenen Leitfähigkeit des unbehandelten Wassers eine Restkapazität der Wasserbehandlungseinheit 21. Die Erschöpfung der Wasserbehandlungseinheit 21 kann ebenso durch einen zweiten Leitfähigkeitssensor 23 signalisiert werden, der die Qualität des behandelten Wassers überwacht.To protect against corrosion and scale formation in the heating circuit 2, the water is treated before entering the heating circuit 2 by means of a water treatment unit 21 (softening, desalination and / or filtration). The shut-off valve 11 can interrupt the flow of water and thus the filling or refilling process even when the water treatment unit 21 is exhausted. For this purpose, the electronic determines Control unit 12 from the treated amount of water M and from the measured with a conductivity sensor 22 conductivity of the untreated water, a residual capacity of the water treatment unit 21. The exhaustion of the water treatment unit 21 may also be signaled by a second conductivity sensor 23 , which monitors the quality of the treated water.

Bei dem erfindungsgemäßen Verfahren werden die Grenzwerte für den Druck im Wasserkreislauf, bei denen die Wasserzufuhr in den Wasserkreislauf begonnen bzw. unterbrochen wird, in Abhängigkeit von der Wassertemperatur festgelegt. Dadurch wird der Abhängigkeit des Drucks von der Wassertemperatur Rechnung getragen. Das Absperrventil der erfindungsgemäßen Anordnung öffnet im Gegensatz zu DE 202006016581 U1 nicht bei Beaufschlagung des Ventils mit einer (durch Druck oder Temperatur) induzierten Kraft, die durch die Bauart des Ventils einmalig festgelegt ist, sondern das Absperrventil wird erfindungsgemäß durch eine Steuereinheit angesteuert, welche die mit einer Temperaturänderung einhergehende Druckänderung bei der Festlegung der Grenzwerte berücksichtigt. Die Grenzwerte bei einer bestimmten Wassertemperatur können so gewählt werden, dass auch bei einer Temperaturänderung vorher festlegbare Minimal- und Maximalwerte für den Druck des Wasserkreislaufs nicht über- bzw. unterschritten werden.In the method according to the invention, the limits for the pressure in the water cycle at which the water supply to the water cycle is started or interrupted, depending on the water temperature set. This takes into account the dependence of the pressure on the water temperature. The shut-off valve of the arrangement according to the invention opens in contrast to DE 202006016581 U1 not on admission of the valve with a (by pressure or temperature) induced force, which is determined by the design of the valve once, but the shut-off valve is controlled according to the invention by a control unit, which takes into account the associated with a temperature change pressure change in the determination of the limits. The limit values for a certain water temperature can be selected so that even in case of a temperature change, previously definable minimum and maximum values for the pressure of the water cycle are not exceeded or fallen below.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
HeizungsfüllstationHeizungsfüllstation
22
Wasserkreislauf (hier: Heizkreislauf)Water cycle (here: heating cycle)
33
Umwälzpumpecirculating pump
4a, 4b4a, 4b
Wärmeverbraucher (hier: Heizkörper)Heat consumer (here: radiator)
55
Heizkesselboiler
66
MembranausdehnungsgefäßDiaphragm expansion vessel
77
ZulaufIntake
88th
Hauptabsperrhahnmain stopcock
99
Systemtrenner (z.B. Rohrtrenner vom Typ BA)System separator (e.g., type BA pipe separator)
1010
Druckmindererpressure reducer
1111
Absperrventil (Verschlussorgan)Shut-off valve
1212
elektronische Steuereinheitelectronic control unit
1313
Stellmotorservomotor
1414
Drucksensorpressure sensor
1515
Temperatursensor zur Messung der Wassertemperatur T1 im WasserkreislaufTemperature sensor for measuring the water temperature T1 in the water cycle
1616
Temperatursensor zur Messung der Außentemperatut T2Temperature sensor for measuring the outside temperature T2
1717
Speicher, in dem die Grenzwerte pGW1 und pGW2 für den Druck im Wasserkreislauf gespeichert sindMemory in which the limits p GW1 and p GW2 for the pressure in the water cycle are stored
1818
Eingabevorrichtunginput device
2020
Wasserzählerwater meter
2121
WasserbehandlungseinheitWater treatment unit
2222
erster Leitfähigkeitssensor zur Messung der Leitfähigkeit des unbehandelten Wassersfirst conductivity sensor for measuring the conductivity of the untreated water
2323
zweiter Leitfähigkeitssensor zur Messung der Leitfähigkeit des behandelten Wasserssecond conductivity sensor for measuring the conductivity of the treated water

Claims (17)

  1. Method for filling and refilling water into a water circuit (2), in particular, into a heating or cooling circuit, which is supplied with water from a water supply system,
    wherein a stop valve (11) is arranged between the water circuit (2) and the water supply system, through which stop valve in its open state water can enter the water circuit (2),
    wherein the pressure (p) in the water circuit is measured by means of a pressure sensor (14),
    wherein the stop valve (11) is controlled in dependence on the pressure (p) that prevails in the water circuit (2) such that the stop valve (11) opens when the pressure (p) in the water circuit (2) falls below a first limit value (pGW1) and that the stop valve (11) closes when the pressure (p) exceeds a second limit value (pGW2), wherein the second limit value (pGW2) is larger than the first limit value (PGW1),
    characterized in that
    an instantaneous water temperature (T1, T1VL, T1RL) of the water in the water circuit (2) is detected by means of a first temperature sensor (15) and is transferred to a control unit (12), and that the limit values (pGW1, pGW2) for the pressure (p) are set in dependence on the detected water temperature (T1, T1VL , T1RL).
  2. Method according to claim 1, characterized in that the limit values (pGW1, pGW2) for the pressure (p) decrease with decreasing water temperature (T1, T1VL, T1RL).
  3. Method according to any one of the preceding claims, characterized in that the stop valve (11) opens only if the condition is additionally met that the water temperature (T1, T1VL, T1RL) exceeds a limit value TGW.
  4. Method according to any one of the preceding claims, characterized in that the water temperature (T1VL, T1RL) of the water in the water circuit (2) is detected at a plurality of locations in the water circuit (2).
  5. Method according to claim 4, characterized in that a supply temperature (T1VL) is detected in the supply pipe towards a heat consumer (4a, 4b) and a return temperature (T1RL) is detected in the return pipe of the heat consumer (4a, 4b).
  6. Method according to claim 5, characterized in that the stop valve (11) opens only if the condition is additionally met that the difference between the supply temperature (T1VL) and the return temperature (T1RL) exceeds a limit value ΔTGW.
  7. Method according to any one of the preceding claims, characterized in that an outside temperature (T2) outside of the water circuit (2) is detected by means of a second temperature sensor (16) and that the limit values (pGW1, pGW2) are set as a function of the detected outside temperature (T2).
  8. Method according to any one of the preceding claims, characterized in that the limit values (pGW1, pGW2) are defined as a function of time.
  9. Method according to any one of the preceding claims, characterized in that a system separator (9) separates the water circuit from the water supply system if the pressure (p) in the water circuit (2) exceeds the pressure in the water supply system.
  10. Method according to any one of the preceding claims, characterized in that the stop valve (11) closes if during refilling of water into the water circuit (2) the pressure (p) does not increase.
  11. Method according to any one of the preceding claims, characterized in that the amount of water is detected, which is filled or refilled into the water circuit (2).
  12. Method according to claim 11, characterized in that the stop valve (11) closes if the amount of water that is filled or refilled into the water circuit (2) exceeds a limit value VGW.
  13. Method according to any one of the preceding claims, characterized in that the conductivity of the water which is filled or refilled into the water circuit (2) is determined.
  14. Method according to claim 13, characterized in that the water is filtered and/or treated during filling or refilling into the water circuit (2).
  15. Method according to claim 14, characterized in that the measurement of the conductivity of the water is performed after treatment of the water, and that
    the stop valve (11) closes if the difference between the measured conductivity of the treated water and a desired conductivity value exceeds a limit value which indicates depletion of a water treatment unit (21).
  16. Device for performing the method according to any one of the preceding claims, comprising:
    a temperature sensor (15) for measuring the water temperature in the water circuit (2),
    a stop valve (11) which is arranged between the water circuit (2) and a water supply system,
    a pressure sensor (14) for measuring the pressure (p) in the water circuit (2),
    means for transmitting the measured temperature values and pressure values to a control unit (12) for controlling the stop valve (11) in dependence on the measured pressure (p) in the water circuit (2) and the measured water temperature (T1, T1VL, T1RL), wherein the control unlit (12) has a storage in which the following values are stored:
    a first limit value (pGW1) of the pressure (p) that prevails in the water circuit (2) in dependence on the measured temperature (T1, T1VL, T1RL),
    a second limit value (pGW2) of the pressure (p) that prevails in the water circuit (2) in dependence on the measured temperature (T1, T1VL, T1RL),
    wherein the second limit value (pGW2) is larger than the first limit value (pGW1).
  17. Device according to claim 16, characterized in that a second temperature sensor (16) is provided for measuring an outside temperature (T2) outside of the water circuit (2).
EP12151256.0A 2011-01-17 2012-01-16 Method for filling and refilling water in a water circuit Active EP2476963B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011002774A DE102011002774A1 (en) 2011-01-17 2011-01-17 Method for filling and refilling water in a water cycle

Publications (3)

Publication Number Publication Date
EP2476963A2 EP2476963A2 (en) 2012-07-18
EP2476963A3 EP2476963A3 (en) 2015-06-03
EP2476963B1 true EP2476963B1 (en) 2016-08-24

Family

ID=45554475

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12151256.0A Active EP2476963B1 (en) 2011-01-17 2012-01-16 Method for filling and refilling water in a water circuit

Country Status (4)

Country Link
EP (1) EP2476963B1 (en)
DE (1) DE102011002774A1 (en)
ES (1) ES2589252T3 (en)
PL (1) PL2476963T3 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201319645D0 (en) * 2013-11-07 2013-12-25 Sentinel Performance Solutions Ltd Monitoring and operation of a liquid flow circuit containing a chemical additive
EP2975485B1 (en) * 2014-07-15 2018-12-19 Orkli, S. Coop. Valve assembly suitable for automatically connecting a water supply network to a primary circuit
GB2551192B (en) * 2016-06-10 2019-10-16 Cook Bernard Automatic heating-system filling apparatus
EP3415825A1 (en) * 2017-06-14 2018-12-19 Honeywell Technologies Sarl Heat circuit refilling device
TR201813500A2 (en) * 2018-09-19 2018-09-21 Bosch Termoteknik Isitma ve Klima Sanayi Ticaret Anonim Sirketi A HEATING DEVICE
TR201815989A2 (en) * 2018-10-25 2018-11-21 Bosch Termoteknik Isitma ve Klima Sanayi Ticaret Anonim Sirketi A HEATING DEVICE
DE102020125113A1 (en) * 2020-09-25 2022-03-31 Lauda Dr. R. Wobser Gmbh & Co. Kg temperature control unit
DE102021116441A1 (en) 2021-06-25 2022-12-29 Vaillant Gmbh Process for monitoring a surface heating system
EP4130585A1 (en) * 2021-08-05 2023-02-08 Automaatio-Center AC OY A system and a method for monitoring an expansion vessel
GB2611081A (en) * 2021-09-27 2023-03-29 Vexo Int Uk Ltd Apparatus and method for supplying liquid to a fluid circuit of a heating or a cooling system
EP4198404A1 (en) * 2021-12-15 2023-06-21 Dantaet A/S A leakage control system for heating installations

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4325685A1 (en) * 1993-07-30 1995-02-09 Klaus Dummann Automatic filling and refilling unit for existing or new heating installations with warning device for heating water and domestic hot water
GB2377745A (en) * 2001-02-07 2003-01-22 Heatrae Sadia Heating Ltd A replenishment system
DE10201752B4 (en) 2002-01-18 2007-01-25 Robert Bosch Gmbh Heating system with a heating water circuit
DE102005006790B4 (en) 2005-02-14 2007-06-06 Hans Sasserath & Co. Kg Valve arrangement with pressure-dependent controlled valve
DE102005051348B4 (en) * 2005-10-25 2007-10-18 Hans Sasserath & Co. Kg Assembly for supplying water to heating systems with water heaters
GB0607319D0 (en) * 2006-04-12 2006-05-24 Gledhill Water Storage Improvements to water heating systems
DE202006016581U1 (en) 2006-10-26 2007-03-15 Hans Sasserath & Co. Kg Safety valve arrangement has plastic housing with inlet and outlet, second inlet and outlet in safety valve, and pre-assembled metal sealing connecting part to connect piping

Also Published As

Publication number Publication date
EP2476963A3 (en) 2015-06-03
ES2589252T3 (en) 2016-11-11
EP2476963A2 (en) 2012-07-18
DE102011002774A1 (en) 2012-07-19
PL2476963T3 (en) 2017-02-28

Similar Documents

Publication Publication Date Title
EP2476963B1 (en) Method for filling and refilling water in a water circuit
EP2753999B1 (en) Method for operating and/or monitoring an hvac system
EP2912384B1 (en) Method of operating a heating installation
DE102009004319A1 (en) Method for performing hydraulic balance of heat exchanger of circulatory composite system in building, involves detecting return temperature at heat exchanger and controlling volumetric flow rate by heat exchanger as function of temperature
EP2913594B1 (en) Method for operating a heating system with no buffer storage, in particular for guaranteeing safe and correct operation
DE102008039667A1 (en) Water treatment device and method for a drinking water system, in particular in a passenger aircraft
EP2552836B1 (en) Method for monitoring a water-treatment system for a circuit-filling system
DE102014202738B4 (en) Process for automated hydraulic balancing of a heating system
WO2009146817A2 (en) Temperature device having flow measurement
DE102011016198A1 (en) Water-heater
EP2841869A1 (en) Method for providing a cooling medium in a secondary circuit
EP1074795A2 (en) Method for hydraulic calibrating a heating installation
DE102010017148A1 (en) Method for operation of heat producing plant for regenerating soil, involves producing circulation of heat distribution medium in circulation cycle for production of temperature value of heat accumulator
DE19512025C2 (en) Gas heater
EP3156656B1 (en) Pump control method and pressure increasing device
DE102012208994A1 (en) Device for regulating inlet temperature of water in heating circuit of heating system in room of e.g. residential building, has flow measurement unit i.e. flow sensor, detecting flow rate of carrier fluid flowing through heating circuit
EP2604946A2 (en) Hot water tank with delivery temperature setting based on flow information
EP3168540A1 (en) Method for carrying out an automated hydraulic balance, valve and heating system for same
EP3121523B1 (en) Heating system and method for operating a heating system
DE102015113340A1 (en) Heating system and method for operating a heating system
DE102013012724A1 (en) Water heating device has control device which is connected with water charging pump to control power of water charging pump, so that temperature of water heated by electric water heater is set to predetermined value
EP2908058B1 (en) Device for extracting heat from a heat carrying medium
DE202017005347U1 (en) Apparatus for treating heating circuit water with make-up
DE102009038450A1 (en) Method for controlling a heating system
AT509723B1 (en) FROST PROTECTION DEVICE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F24D 19/00 20060101AFI20150427BHEP

Ipc: F24D 19/10 20060101ALI20150427BHEP

Ipc: F24D 3/10 20060101ALI20150427BHEP

17P Request for examination filed

Effective date: 20151112

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160405

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RIEDERER HASLER AND PARTNER PATENTANWAELTE AG, LI

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 823462

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012008022

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2589252

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161111

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161125

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161226

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012008022

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161124

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221117

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230123

Year of fee payment: 12

Ref country code: FR

Payment date: 20230123

Year of fee payment: 12

Ref country code: ES

Payment date: 20230216

Year of fee payment: 12

Ref country code: CH

Payment date: 20230130

Year of fee payment: 12

Ref country code: AT

Payment date: 20230118

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230131

Year of fee payment: 12

Ref country code: GB

Payment date: 20230124

Year of fee payment: 12

Ref country code: DE

Payment date: 20230126

Year of fee payment: 12

Ref country code: BE

Payment date: 20230123

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230124

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231106

Year of fee payment: 13

Ref country code: NL

Payment date: 20240123

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240122

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240216

Year of fee payment: 13