EP2468903A1 - Herstellungsverfahren von kugelförmigen Gussstücken - Google Patents
Herstellungsverfahren von kugelförmigen Gussstücken Download PDFInfo
- Publication number
- EP2468903A1 EP2468903A1 EP11195727A EP11195727A EP2468903A1 EP 2468903 A1 EP2468903 A1 EP 2468903A1 EP 11195727 A EP11195727 A EP 11195727A EP 11195727 A EP11195727 A EP 11195727A EP 2468903 A1 EP2468903 A1 EP 2468903A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- metal
- less
- loads
- molds
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005266 casting Methods 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 229910052751 metal Inorganic materials 0.000 claims abstract description 103
- 239000002184 metal Substances 0.000 claims abstract description 103
- 238000000034 method Methods 0.000 claims abstract description 32
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims description 31
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 18
- 229910000831 Steel Inorganic materials 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- 239000010959 steel Substances 0.000 claims description 16
- 238000011282 treatment Methods 0.000 claims description 15
- 239000002054 inoculum Substances 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- -1 scrap Inorganic materials 0.000 claims description 8
- 229910001018 Cast iron Inorganic materials 0.000 claims description 7
- 230000004927 fusion Effects 0.000 claims description 5
- 230000006698 induction Effects 0.000 claims description 5
- 238000005058 metal casting Methods 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 210000003462 vein Anatomy 0.000 claims description 4
- 238000005422 blasting Methods 0.000 claims description 3
- 229910000805 Pig iron Inorganic materials 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- 239000010439 graphite Substances 0.000 abstract description 11
- 229910002804 graphite Inorganic materials 0.000 abstract description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 49
- 239000000463 material Substances 0.000 description 25
- 239000004576 sand Substances 0.000 description 22
- 238000001816 cooling Methods 0.000 description 14
- 239000000377 silicon dioxide Substances 0.000 description 13
- 229910000859 α-Fe Inorganic materials 0.000 description 12
- 239000011777 magnesium Substances 0.000 description 8
- 238000007711 solidification Methods 0.000 description 8
- 230000008023 solidification Effects 0.000 description 8
- 238000007792 addition Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- 150000001247 metal acetylides Chemical class 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 230000008602 contraction Effects 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 239000011572 manganese Substances 0.000 description 6
- 239000010451 perlite Substances 0.000 description 6
- 235000019362 perlite Nutrition 0.000 description 6
- 239000010953 base metal Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 238000001033 granulometry Methods 0.000 description 3
- 238000011081 inoculation Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000003556 assay Methods 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000012809 post-inoculation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- 229910001141 Ductile iron Inorganic materials 0.000 description 1
- 229910005347 FeSi Inorganic materials 0.000 description 1
- 229910000677 High-carbon steel Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000002817 coal dust Substances 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- ONCZQWJXONKSMM-UHFFFAOYSA-N dialuminum;disodium;oxygen(2-);silicon(4+);hydrate Chemical class O.[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Na+].[Na+].[Al+3].[Al+3].[Si+4].[Si+4].[Si+4].[Si+4] ONCZQWJXONKSMM-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007531 graphite casting Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000003923 scrap metal Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/10—Making spheroidal graphite cast-iron
- C21C1/105—Nodularising additive agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/10—Making spheroidal graphite cast-iron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D5/00—Heat treatments of cast-iron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/08—Making cast-iron alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/04—Cast-iron alloys containing spheroidal graphite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/06—Cast-iron alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/10—Cast-iron alloys containing aluminium or silicon
Definitions
- the present invention relates to a process for the manufacturing of spheroidal castings by using metal or permanent molds.
- the resulting mechanical properties of the new parts are considered of great interest due to, among other things, the large number of graphite spheroids obtained in the parts.
- spheroidal casting constitutes one of the materials that have been most widely used since its discovery in the 1950s. Compared to laminar or grey casting, the formation and subsequent growth of graphites in spheroidal form leads to significant increases in the break loads, the elastic limits, and, especially, in the elongations of the material. An adequate combination of these three mechanical properties entails the obtaining of materials with a wide range of technological applications.
- This refractory material is characterized by a comparatively low thermal conductivity, which greatly limits the cooling rate of the cast alloy inside this type of molds.
- the present invention relates to a new process for the manufacturing of spheroidal cast iron parts, which solves all the disadvantages mentioned above, when molds made up of mixtures containing silica sand (SiO 2 ) as the primary constituent are used. This is done by using metal or "permanent" molds.
- This new type of mold has the following advantages:
- This new technique can be used for the manufacturing of castings for the automotive industry, hydraulic components, metal molds for the glass industry, centrifuged tubes, etc.
- the use of metal molds greatly accelerates the solidification rate and subsequent cooling of the material, causing major changes in the structures obtained in the as-cast state.
- a first aspect of the present invention is a process for manufacturing spheroidal castings, which comprises the following steps:
- the metal loads are selected from the group formed by high carbon ingots, foundry chip briquettes, pig iron, scrap metal, steel from the automotive sector, returns or any combination thereof.
- the metal loads are selected from high-carbon ingots, returns, foundry chip briquettes, steel from the automotive industry or any combination thereof.
- composition of the metal loads is:
- the composition of the metal loads is:
- composition of the loads is:
- the process of fusion of the metal loads is performed in rotary kilns.
- the melting and stay times of said metal load is 60 to 80 minutes (hours), preferably 70 minutes.
- the step of adjusting the carbon and silicon contents are added depending on the content in the molten metal (metal loads) obtained in step a) in order to optimize the next step c) of spheroidization, such that the molten metal loads are transferred to at least 1 induction furnace (1000 Hz), preferably 3 induction furnaces.
- the temperature of the base metal is maintained within a range between 1400 and 1500°C, preferably between 1400 and 1450°C.
- the spheroidization treatment comprises the following steps:
- the FeSiMg alloy comprises the following composition:
- the FeSiMg alloy comprises the following composition:
- the inoculant comprises the following composition:
- the inoculant comprises the following composition:
- stamped steel clippings are added until they cover the FeSiMg.
- a casting step is performed in metal or "permanent" molds. Said step comprises the following sub-steps:
- spheroidization is understood to mean a method for relieving the residual stresses in a high-carbon steel, consisting of heating for a long time at the lowest transformation temperature thereof, followed by slow cooling until it reaches room temperature.
- the fusion process of the materials was carried out in rotary kilns with a capacity of 5500 kg.
- the discharge of metal from the electric furnace is performed such that the metal falls on the
- the slag was conveniently removed from the metal and the latter was quickly transferred to a ladle with a capacity of about 80 kg and equipped with an outlet siphon.
- the purpose of this device is to prevent the introduction of the slag formed inside the molds during the casting.
- the metal contained in the casting ladle was occasionally slagged off with this same aim.
- the casting of the molds was performed manually through the siphon, ensuring that the casting cup was kept full throughout the entire process of filling the molds.
- Table 2 Chemical compositions of the metal treated with Mg Element (%) C Si Mn P S Cu Cr 3.95-4.05 2.40-2.50 0.60-0.70 0.035-0.07 0.010-0.017 0.01-0.02 0.01-0.03
- the silica sand molds were manufactured using a high-pressure vertical molding line (12 kp/cm 2 ) and mixtures composed of: 80.8% of re-used silica sand, 9.3% of activated sodium bentonite, 4.5% of carbonaceous material, 3.6% of water and 1.8% of new silica sand.
- the mixtures were sent to the molding machine with a compactibility of 38-41 %.
- the permanent molds were manufactured by machining a crude foundry product, cast into a mold previously prepared for this purpose.
- the material used to prepare this crude product is flake graphite cast iron of the EN-GJL-200 grade.
- the molds were coated internally with a layer of refractory paint and mounted on a carousel with a capacity for 12 molds, all equipped with an internal water refrigeration system.
- a system of acetylene-fed burners was used to provide a layer of coal dust on the refractory paint that covers the internal face of the metal molds.
- the addition of this carbonaceous layer may be regulated in each case.
- the temperature of the molds was controlled manually.
- the parts used to conduct this study are: a component of the brakes used in wind furnaces and a clamping jaw for railway tracks.
- the weight of the brake caliper is 7.2 kg, showing sections between 5 and 43 mm. In the case of the jaw, the weight is 0.35 kg and sections vary between 5 and 12 mm. Thus, it is possible to evaluate the effect of different cooling rates in the same component.
- Figure 1 shows the configuration of the half-molds designed to manufacture jaws for use in the railway sector.
- the parts manufactured in both the permanent molds and in those manufactured with the silica sand mixtures correspond to the brake caliper.
- the jaw was manufactured using only metal molds. After the manufacturing thereof, the parts were unmolded and, subsequently, shot blasted.
- the materials of these parts were subjected to metallographic study in order to determine the spheroidization index (SI), the nodular density (N) and the composition of the metal matrix in different sections.
- SI spheroidization index
- N nodular density
- the values of these parameters were obtained by analyzing 5 different observation fields in each sample and comparing them to standard patterns [15, 16].
- the mechanical properties were determined on test-tubes machined directly on the parts. The dimensions of these test-tubes were dependent on the area of the part wherefrom they were obtained.
- iron carbides Another structural phase detected, which reveals the behavior described above, is iron carbides. This type of compounds are formed only in the clamping jaws, i.e. in the narrower sections with more critical cooling kinetics. It is logical to verify that the highest concentration of carbides was observed in the peripheral areas pertaining to the narrower sections in this part. The more rapid cooling that occurred in these areas in contact with the metal mold favors the appearance of carbide phases. In these cases, effective control of the temperature of the molds and ensuring effective inoculation in the metal casting becomes even more relevant.
- the surface defects that may be observed in certain parts and most often are: slag and wrinkles or folds.
- surface wrinkles in spheroidal cast iron pieces it was observed that they are favored when using longer casting times and/or, primarily, the temperatures of the metal molds are higher.
- Table 4 shows the values of the maximum load at breakage (B), the elastic limit (EL) and the elongation (E) obtained from the traction assays performed to determine the mechanical properties of the selected parts.
- the mechanical assays were conducted only on the three parts subjected to the ferritization heat treatment described in Figure 2 .
- the traction test-tubes were machined from two areas in each part. In the brake calipers, these areas correspond to the space designed for the hydraulic system (pot) and the central body (center).
- the test-tubes were obtained from the support wedge and the support area of the part. Table 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201031959A ES2362241B1 (es) | 2010-12-27 | 2010-12-27 | Procedimiento de fabricación de piezas de fundición esferoidal. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2468903A1 true EP2468903A1 (de) | 2012-06-27 |
EP2468903B1 EP2468903B1 (de) | 2014-10-15 |
Family
ID=44146569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11195727.0A Not-in-force EP2468903B1 (de) | 2010-12-27 | 2011-12-26 | Herstellungsverfahren von Gußstücken mit Kugelgraphit |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2468903B1 (de) |
ES (1) | ES2362241B1 (de) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103668333A (zh) * | 2012-08-31 | 2014-03-26 | 沈阳铝镁设计研究院有限公司 | 铝用阳极组装用低磷低硫灰铸铁配方及生产方法 |
US20140271330A1 (en) * | 2011-10-07 | 2014-09-18 | Akebono Brake Industry Co., Ltd. | Method for producing spheroidal graphite cast iron and vehicle component using said spheroidal graphite cast iron |
CN105018668A (zh) * | 2015-08-06 | 2015-11-04 | 潘桂枝 | 一种球墨铸铁球化剂 |
US9512498B2 (en) | 2011-12-22 | 2016-12-06 | Akebono Brake Industry Co., Ltd. | Process for producing spheroidal-graphite cast iron, and spheroidal-graphite cast iron member obtained from said spheroidal-graphite cast iron |
EP3239307A1 (de) * | 2016-04-29 | 2017-11-01 | General Electric Company | Duktiles eisen und verfahren zur herstellung einer duktilen eisenkomponente |
CN108950370A (zh) * | 2018-07-26 | 2018-12-07 | 含山县兴达球墨铸铁厂 | 一种耐磨耐低温的球墨铸铁 |
CN110983171A (zh) * | 2019-12-20 | 2020-04-10 | 十堰市泰祥实业股份有限公司 | 铁型覆砂生产铸态高强度全铁素体球墨铸铁差速器壳的方法 |
CN113930660A (zh) * | 2021-08-30 | 2022-01-14 | 格力(武安)精密装备制造有限公司 | 食品级炊具的铸件及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT344765B (de) * | 1975-08-07 | 1978-08-10 | Waagner Biro Ag | Verfahren zur gezielten herstellung von gusseisen mit kugelgrafit, insbesondere fuer dickwandige gussstuecke |
EP0538251A1 (de) * | 1989-06-08 | 1993-04-28 | Ea Technology Limited | Verfahren zur herstellung von duktilem ferritischem kugelgraphitgusseisen im gusszustand |
US20080296098A1 (en) * | 2007-06-04 | 2008-12-04 | Hitachi, Ltd. | Brake Shoe for Elevator Emergency Stop |
US20090191085A1 (en) * | 2008-01-29 | 2009-07-30 | Cesar Augusto Rezende Braga | Ferritic Ductile Cast Iron Alloys |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2837422A (en) * | 1955-08-27 | 1958-06-03 | Metallgesellschaft Ag | Addition agents for the treatment of molten cast iron |
NL6401801A (de) * | 1964-02-25 | 1965-08-26 | ||
CN101643814A (zh) * | 2008-08-07 | 2010-02-10 | 遵义金业机械铸造有限公司 | 利用废旧金属经特种球化处理生产球墨铸铁的方法 |
-
2010
- 2010-12-27 ES ES201031959A patent/ES2362241B1/es not_active Expired - Fee Related
-
2011
- 2011-12-26 EP EP11195727.0A patent/EP2468903B1/de not_active Not-in-force
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT344765B (de) * | 1975-08-07 | 1978-08-10 | Waagner Biro Ag | Verfahren zur gezielten herstellung von gusseisen mit kugelgrafit, insbesondere fuer dickwandige gussstuecke |
EP0538251A1 (de) * | 1989-06-08 | 1993-04-28 | Ea Technology Limited | Verfahren zur herstellung von duktilem ferritischem kugelgraphitgusseisen im gusszustand |
US20080296098A1 (en) * | 2007-06-04 | 2008-12-04 | Hitachi, Ltd. | Brake Shoe for Elevator Emergency Stop |
US20090191085A1 (en) * | 2008-01-29 | 2009-07-30 | Cesar Augusto Rezende Braga | Ferritic Ductile Cast Iron Alloys |
Non-Patent Citations (6)
Title |
---|
B. V. KOVACS, AFS TRANS., vol. 89, 1981, pages 79 - 96 |
G. M. GOODRICH; R. W. LOBENHOFER, AFS TRANS., 2007, pages 115 |
I. RIPOSAN; M. CHISAMERA; S. STAN, INT J. CAST MET. RES, vol. 20, 2007, pages 64 - 67 |
J. SERTUCHA; R. SUÁREZ; J. IZAYA; L. A. HURTADO; J. LAGAZPI, INT. J. CAST MET. RES., vol. 19, 2006, pages 315 - 322 |
L. E. BJÖRKEGREN; K. HAMBERG, PROC. KEITH MILLIS SYMPOSIUM ON DUCTILE CAST IRON, 2003 |
M. LESSEN; I. SVENSSON, METALL. MAT. TRANS. A, vol. A27, 1996, pages 2209 - 2220 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9556498B2 (en) * | 2011-10-07 | 2017-01-31 | Akebono Brake Industry Co., Ltd. | Method for producing spheroidal graphite cast iron and vehicle component using said spheroidal graphite cast iron |
US20140271330A1 (en) * | 2011-10-07 | 2014-09-18 | Akebono Brake Industry Co., Ltd. | Method for producing spheroidal graphite cast iron and vehicle component using said spheroidal graphite cast iron |
EP2765207A4 (de) * | 2011-10-07 | 2015-12-23 | Akebono Brake Ind | Verfahren zur herstellung von kugelgraphit-gusseisen und fahrzeugkomponente mit diesem kugelgraphit-gusseisen |
US9512498B2 (en) | 2011-12-22 | 2016-12-06 | Akebono Brake Industry Co., Ltd. | Process for producing spheroidal-graphite cast iron, and spheroidal-graphite cast iron member obtained from said spheroidal-graphite cast iron |
CN103668333B (zh) * | 2012-08-31 | 2016-04-13 | 沈阳铝镁设计研究院有限公司 | 铝用阳极组装用低磷低硫灰铸铁配方及生产方法 |
CN103668333A (zh) * | 2012-08-31 | 2014-03-26 | 沈阳铝镁设计研究院有限公司 | 铝用阳极组装用低磷低硫灰铸铁配方及生产方法 |
CN105018668A (zh) * | 2015-08-06 | 2015-11-04 | 潘桂枝 | 一种球墨铸铁球化剂 |
EP3239307A1 (de) * | 2016-04-29 | 2017-11-01 | General Electric Company | Duktiles eisen und verfahren zur herstellung einer duktilen eisenkomponente |
US10787726B2 (en) | 2016-04-29 | 2020-09-29 | General Electric Company | Ductile iron composition and process of forming a ductile iron component |
CN108950370A (zh) * | 2018-07-26 | 2018-12-07 | 含山县兴达球墨铸铁厂 | 一种耐磨耐低温的球墨铸铁 |
CN110983171A (zh) * | 2019-12-20 | 2020-04-10 | 十堰市泰祥实业股份有限公司 | 铁型覆砂生产铸态高强度全铁素体球墨铸铁差速器壳的方法 |
CN110983171B (zh) * | 2019-12-20 | 2022-04-22 | 十堰市泰祥实业股份有限公司 | 铁型覆砂生产铸态高强度全铁素体球墨铸铁差速器壳的方法 |
CN113930660A (zh) * | 2021-08-30 | 2022-01-14 | 格力(武安)精密装备制造有限公司 | 食品级炊具的铸件及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2468903B1 (de) | 2014-10-15 |
ES2362241B1 (es) | 2012-07-02 |
ES2362241A1 (es) | 2011-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2468903B1 (de) | Herstellungsverfahren von Gußstücken mit Kugelgraphit | |
CN105483508B (zh) | 铁道车辆制动盘用合金蠕墨铸铁及其熔炼方法 | |
CN102851574B (zh) | 一种耐热合金蠕墨铸铁及其制备方法 | |
CN104532118B (zh) | 活塞镶圈专用高性能高镍奥氏体蠕墨铸铁及其制备方法 | |
CN107365936B (zh) | 一种高铬合金铸铁的制备工艺 | |
CN102127673A (zh) | 一种用于厚壁件模具的高强度球墨铸铁 | |
CN102851575A (zh) | 抗氧化性合金化灰口铸铁及其制备方法 | |
CN101798660A (zh) | 冷轧辊钢以铸代锻的精炼、变质及铸造方法 | |
CN110438390A (zh) | 一种Φ280mm大规格圆棒材的石油管道阀体用钢及其生产方法 | |
CN113046641B (zh) | 一种低钒含氮热作模具钢及其制备方法 | |
CN109280743B (zh) | 一种轧辊用高强度耐磨钢及其生产方法 | |
EP2749658A1 (de) | Verfahren zur Herstellung von ausferritischem Gusseisen mit Kugelgraphit | |
CN111961954A (zh) | 一种铸态混合基体qt500-14球墨铸铁的制备方法 | |
CN111663017B (zh) | 一种牵引座用高强韧低合金铸钢的制造方法 | |
CN112553521A (zh) | 一种球铁材质轴承座及其制备方法 | |
CN110964973B (zh) | 一种高锰cadi及其热处理方法 | |
Bhardwaj | Steel and Iron Handbook | |
CN112695242A (zh) | 一种开坯辊及其制备方法 | |
CN112159922A (zh) | 一种灰铸铁的孕育剂及其制备方法 | |
CN102168224A (zh) | 一种定宽机模块 | |
Ihm et al. | Introduction to gray cast iron brake rotor metallurgy | |
CN106521323A (zh) | 一种中铬合金衬板及其制作方法 | |
Sujith et al. | Effect on the Mechanical Properties of Grey Cast Iron with Variation of Molybdenum and AS–Cast Alloying Elements | |
US2867555A (en) | Nodular cast iron and process of manufacture thereof | |
Mukhametzyanova et al. | Development of high-strength cast iron for back-up layer of bimetallic products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20121218 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 37/04 20060101ALI20131028BHEP Ipc: C21C 1/10 20060101AFI20131028BHEP Ipc: C22C 37/10 20060101ALI20131028BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140115 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
INTG | Intention to grant announced |
Effective date: 20140519 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 691730 Country of ref document: AT Kind code of ref document: T Effective date: 20141115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011010589 Country of ref document: DE Effective date: 20141127 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20141015 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 691730 Country of ref document: AT Kind code of ref document: T Effective date: 20141015 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150215 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150115 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150116 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011010589 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141226 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 |
|
26N | No opposition filed |
Effective date: 20150716 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141226 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111226 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20151226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151226 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20171227 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20171229 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602011010589 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190702 |