EP2462426A1 - Measuring device for determining a vegetation index value of plants - Google Patents

Measuring device for determining a vegetation index value of plants

Info

Publication number
EP2462426A1
EP2462426A1 EP10740220A EP10740220A EP2462426A1 EP 2462426 A1 EP2462426 A1 EP 2462426A1 EP 10740220 A EP10740220 A EP 10740220A EP 10740220 A EP10740220 A EP 10740220A EP 2462426 A1 EP2462426 A1 EP 2462426A1
Authority
EP
European Patent Office
Prior art keywords
light
measuring device
reip
control device
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10740220A
Other languages
German (de)
French (fr)
Inventor
Tobias Haas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Georg Fritzmeier GmbH and Co KG
Original Assignee
Georg Fritzmeier GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georg Fritzmeier GmbH and Co KG filed Critical Georg Fritzmeier GmbH and Co KG
Publication of EP2462426A1 publication Critical patent/EP2462426A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C21/00Methods of fertilising, sowing or planting
    • A01C21/007Determining fertilization requirements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8466Investigation of vegetal material, e.g. leaves, plants, fruits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/021Special mounting in general
    • G01N2201/0216Vehicle borne
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0627Use of several LED's for spectral resolution

Definitions

  • the present invention relates to a measuring device for determining a vegetation index value (REIP) of plants according to the preamble of claim 1.
  • REIP vegetation index value
  • a measuring device of this type is known for example from US 2006/0208171 A1.
  • This known measuring device serves to determine a vegetation index value of plants;
  • the so-called "REIP” vegetation index should be determined with this known measuring device ("Red Edge Inflection Point").
  • Plant measurements of this type serve to be able to use the measured quantities obtained to determine the most important parameters of the plant, namely in the case of the REIP vegetation index, above all for determining the instantaneous nitrogen content of the measured plants; From the determined nitrogen content it is then possible to set up a suitable fertilization plan for the relevant field; in practice, e.g. already using appropriate GPS-based fertilizer systems, which use the determined nitrogen values for an optimal, area-accurate fertilizer supply.
  • the known vegetation index measurements are based on the light absorption or reflection behavior of plants shown in FIG. 3. Accordingly, the plants have the general property of absorbing light of specific wavelengths (namely ⁇ 700 nm) while absorbing the longer-wavelength light (ie> 800 nm) nm) reflect. As can be seen from FIG. 3, the blue, green and red portions of light are absorbed by the leaves of the plant, the cell structure and the water content of the plant causing absorption in the incipient infrared range to occur on a steep flank ("red edge ”) turns into a reflection.
  • the invention has the object of developing a measuring device for determining a Vegetationsindex- or REIP value of plants according to the preamble of claim 1 so that despite an improved accuracy of the hardware cost can be reduced.
  • the invention therefore proposes to provide a light-frequency converter as the light-receiving element.
  • a light frequency converter has a very low inherent noise, so that the measurement accuracy is correspondingly high.
  • it is sufficient to determine the light intensity, the time between the edges determine the output frequency of the converter, which is possible without any additional components with each microcontroller.
  • the hardware expense is thus limited to the comparatively inexpensive light frequency converter, so that the circuit complexity is very low according to the invention.
  • a current control device is further provided (LED-C), which controls the each light transmitting element supplied current and the (factory) is adjusted so that each light-emitting element at a defined distance to a defined white area in the light frequency converter generates the same output signal.
  • Fig. 1 is a block diagram of an embodiment of the invention
  • Fig. 2 is a schematic representation of a typical application of the invention
  • Figure 5 shows the spectrum of a light bulb, which is used at night to illuminate the plants.
  • the measuring device schematically designated 1 consists of a central control device MC, which is, for example, a hand-held can act conventional microcontroller, an oscillator or resonant circuit OSZ, which provides the time base required for the frequency measurement (in the embodiment, 40 MHz), a current control module LED-C LED for LEDs LED1 to LED4 and a light / frequency converter L. / F, which may be, for example, the TSL 230 R type.
  • a further interface 101 is provided, which is designed as a serial interface and generates a Bluetooth signal.
  • the four light-emitting diodes LED1 to LED2 generate light of different wavelengths, namely the light-emitting diode LED1 light with 670 nm, the LED2 light with 700 nm, LED3 light with 740 nm and the LED4 light with 780 nm; each of these light-emitting diodes has a half-width of the emitted light between 20 and 30 nm.
  • the current supplied to them is regulated via transistors of the current control module LED-C.
  • the current regulations of the individual light-emitting diodes are adjusted so that they produce the same output frequency at a defined distance from a defined white area in the light after the conversion in the light / frequency converter L / F.
  • This white balance ensures that both the series spread of the LEDs and the spectral sensitivity of the light / frequency converter are compensated.
  • the white balance also makes it possible to dispense with a measurement of the ambient light. Namely, the ambient light is compensated by the vegetation index REIP and does not need to be measured and charged.
  • a fifth light-emitting diode LEDG which emits green light (preferably with a wavelength of 585 nm).
  • this fifth LEDG LED it is possible to obtain information about the biomass in the early supply stages, in which the soil is still visible.
  • the determined brightness value of the light emitting diode LEDG is subtracted from that of the LED1 (670 nm). The smaller the difference, the more plants are in relation to the ground under the sensor.
  • a light bulb GL which is controlled by the control device MC via a pulse width modulation circuit PWM. With the help of this bulb, it is possible to get correct readings even at dusk or at night.
  • This incandescent lamp GL is aligned so that it illuminates at least the area to which the light-emitting diodes are directed.
  • the measuring device operates as follows:
  • the central control device MC sequentially controls the light-emitting diodes LED1 to LED4 for a predetermined period of time or period via the current regulation module LED-C for carrying out a measuring cycle.
  • the duration of this period is dimensioned such that the light / frequency converter L / F generates an output pulse.
  • the light-emitting diode LED1 is turned on for the predetermined period of time, so that the plants shown schematically in FIG. 1 are illuminated with a wavelength of 670 nm; the light reflected from the plants is then received by the light / frequency converter L / F and the central control device MC then determines from the time between the edges of the output signal of the light / frequency converter L / F the light intensity P1 associated with the wavelength 670 nm, which is a measure for the reflectance at this wavelength. This determined light intensity P1 is then stored.
  • the light emitting diodes LED2 to LED4 are also turned on for the predetermined period of time to determine from the edges of the associated output signal of the light / frequency converter L / F, the respective intensity values P2 to P4 for the wavelengths 700 nm, 740 nm and 780 nm save.
  • REIP ⁇ 2 + (A 3 - A 2 ) ((Pi + P 4 ) / 2 - P 2 ) / (P 3 - P 2 ) in which the values Pi to P 4 , as explained, respectively the measured intensity of the Reflection light of the relevant LED LED1 to LED4 and ⁇ -i, A 2 , ⁇ 3 and A 4 each because their specific wavelength (ie the values 670, 700, 740 and 780 nm).
  • the calculated value REIP of this formula is a direct measure of the nitrogen content of the plant (s) irradiated by the light-emitting diodes in the relevant measuring cycle.
  • a signal is sent via the interface 101, which signal indicates the calculated value for the vegetation index REIP or the corresponding nitrogen content.
  • This signal is received by a computer PC containing a software-mapped fertilizer system;
  • This fertilizer system is able to determine the amount of nitrogen required per hectare, in order to be able to control a fertilizer spreader, for example.
  • the amount of nitrogen measured at the position in question can be determined by means of a GPS sensor in order to perform a corresponding map generation or documentation.
  • the measuring cycle described above is continuously repeated after passing through all four light-emitting diodes and after calculating the value REIP, so that, depending on the speed of movement of the measuring device, an almost complete detection of the nitrogen content of all sampled plants is possible.
  • the controller MC controls the incandescent lamp GL via the pulse width modulation circuit PWM so as to increase its brightness proportionally with increasing darkness.
  • the use of such a controlled incandescent lamp has the following reason: Plants usually have two independently operating photosystems; one of these two photosystems works in particular at 680 nm, while the other works at 700 nm. If one were to irradiate the plants sequentially only with monochromatic light, these two photosystems would not work optimally because of the so-called Emerson effect. The absorption values would therefore change accordingly, so that the calculated REIP value does not coincide with darkness would correspond to the respective daily values.
  • the incandescent lamp provided according to the invention emits light which has the spectral profile shown in FIG. 5, that is to say comprises a larger wavelength range.
  • the incandescent GL irradiated both photosystems of the plants even in the dark, so that they work optimally again.
  • the measured values of the day can be reached again even in the dark.
  • the control device MC controls the incandescent lamp GL via the pulse width modulation circuit PWM in such a way that it does not fall below a minimum ambient light level.
  • the GL bulb is therefore off during the day, starts to glow in the dusk easily and has its maximum luminosity in the dark.
  • the measuring device according to the invention may be attached, for example in duplicate to a tractor.
  • the acquired or calculated data are transmitted via the Bluetooth connection of the interface 101 to the tractor. So there is no cable connection in the cabin of the tractor necessary.
  • a PC in the tractor can carry out the evaluation of the data calculated in the sensor according to the invention.
  • the data is provided with GPS positions and, for example, displayed online.
  • the PC are stored plant knowledge and yield maps.
  • a fertilizer spreader can therefore be suitably controlled by the PC.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Soil Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Environmental Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The invention relates to a measuring device for determining a vegetation index value (REIP) of plants. The measuring device comprises a plurality of light emitting elements, of which each emits substantially monochrome light at a predetermined wavelength, a light receiving element, which receives light from the light emitting elements reflected by the plants and generates a signal indicating each intensity of the received light, and a control device consecutively actuating the light emitting elements in a cyclical sequence, determining each intensity of the reflected light from the output signal of the light receiving element, and calculating the vegetation index value from the determined intensities of the overall measurement cycle. According to the invention, a light frequency converter is provided as the light receiving element.

Description

Beschreibung  description
MESSEINRICHTUNG ZUR BESTIMMUNG EINES VEGETATIONSINDEX-WERTS MEASURING DEVICE FOR DETERMINING A VEGETATION INDEX VALUE
VON PFLANZEN  OF PLANTS
Die vorliegende Erfindung bezieht sich auf eine Messeinrichtung zur Bestimmung eines Vegetationsindex-Werts (REIP) von Pflanzen gemäß dem Oberbegriff des Anspruchs 1. The present invention relates to a measuring device for determining a vegetation index value (REIP) of plants according to the preamble of claim 1.
Eine Messeinrichtung dieser Art ist beispielsweise aus der US 2006/0208171 A1 bekannt. Diese bekannte Messeinrichtung dient dazu, einen Vegetationsindex-Wert von Pflanzen zu bestimmen; insbesondere soll mit dieser bekannten Messeinrichtung der sogenannte "REIP"-Vegetationsindex ermittelt werden ("Red Edge Inflection Point "). Pflanzenmessungen dieser Art dienen dazu, die erhaltenen Meßgrößen zur Ermittlung der wichtigsten Kenngrößen der Pflanze heranziehen zu können, nämlich beim REIP- Vegetationsindex vor allem zur Ermittlung des momentanen Stickstoffgehalts der vermessenen Pflanzen; aus dem ermittelten Stickstoffgehalt ist es dann möglich, einen geeigneten Düngeplan für das betreffende Feld aufzustellen; in der Praxis sind z.B. bereits entsprechende GPS-gestützte Düngesysteme im Einsatz, die die ermittelten Stickstoffwerte für eine optimale, flächengenaue Düngerzufuhr verwenden. A measuring device of this type is known for example from US 2006/0208171 A1. This known measuring device serves to determine a vegetation index value of plants; In particular, the so-called "REIP" vegetation index should be determined with this known measuring device ("Red Edge Inflection Point"). Plant measurements of this type serve to be able to use the measured quantities obtained to determine the most important parameters of the plant, namely in the case of the REIP vegetation index, above all for determining the instantaneous nitrogen content of the measured plants; From the determined nitrogen content it is then possible to set up a suitable fertilization plan for the relevant field; in practice, e.g. already using appropriate GPS-based fertilizer systems, which use the determined nitrogen values for an optimal, area-accurate fertilizer supply.
Die bekannten Vegetationsindex Messungen basieren auf dem in der Fig.3 gezeigten Lichtabsorptions- bzw. Reflexionsverhalten von Pflanzen: Demnach haben die Pflanzen die allgemeine Eigenschaft, Licht bestimmter Wellenlängen (nämlich < 700 nm) zu absorbieren, während sie das längerwellige Licht (also > 800 nm) reflektieren. Wie aus Fig.3 ersichtlich ist, werden von den Blättern der Pflanze die blauen, grünen und roten Lichtanteile absorbiert, wobei die Zellstruktur und der Wassergehalt der Pflanze dazu führen, dass die Absorption im beginnenden Infrarot-Bereich in einer steilen Flanke ("Rote Kante") in eine Reflexion übergeht. The known vegetation index measurements are based on the light absorption or reflection behavior of plants shown in FIG. 3. Accordingly, the plants have the general property of absorbing light of specific wavelengths (namely <700 nm) while absorbing the longer-wavelength light (ie> 800 nm) nm) reflect. As can be seen from FIG. 3, the blue, green and red portions of light are absorbed by the leaves of the plant, the cell structure and the water content of the plant causing absorption in the incipient infrared range to occur on a steep flank ("red edge ") turns into a reflection.
Untersuchungen haben erwiesen, dass dieser Übergangsbereich der Roten Kante ("Red Edge Inflection Point" - REIP) zur Bestimmung des Chlorophyll-Gehalts sowie des Stickstoff-Gehalts von Pflanzen herangezogen werden kann. Es besteht nämlich der in der Fig.4 gezeigte Zusammenhang zwischen dem REIP der Pflanze und ihrem Stickstoffgehalt, wobei von Guyot und Baret (1988) gezeigt werden konnte, dass zur Bestimmung des Stickstoffgehalts jeweils vier Messungen mit unterschiedlichen Wellenlängen ausreichen. Investigations have shown that this Red Edge Inflection Point (REIP) transition zone can be used to determine the chlorophyll content as well as the nitrogen content of plants. In fact, there is the relationship between the REIP of the plant and its nitrogen content as shown in Figure 4, and it has been shown by Guyot and Baret (1988) that the Determining the nitrogen content in each case four measurements with different wavelengths are sufficient.
In der eingangs genannten US 2006/0208171 A1 wird daher vorgeschlagen, für die Messung des REIP-Werts und damit des Stickstoffgehalts vier Licht-Sendeelemente in Form von Leuchtdioden (LEDs) vorzusehen, von denen jede im wesentlichen monochromes Licht einer vorbestimmten Wellenlänge innerhalb des REIP-Bereichs aussendet (d.h. im Bereich zwischen 660 und 780 nm); eine Steuereinrichtung steuert diese vier Leuchtdioden in einer zyklischen Folge hintereinander an, wobei die jeweilige Intensität des reflektierten Lichts aus dem Ausgangssignal eines Lichtsensorelements ermittelt und aus den ermittelten Intensitäten des gesamten Messzyklus schließlich der momentan vorliegende Vegetationsindex- bzw. REIP-Wert errechnet wird. In the aforementioned US 2006/0208171 A1 it is therefore proposed to provide for the measurement of the REIP value and thus the nitrogen content four light-emitting elements in the form of light-emitting diodes (LEDs), each of which is substantially monochromatic light of a predetermined wavelength within the REIP Range (ie in the range between 660 and 780 nm); a control device controls these four light emitting diodes in a cyclical sequence one behind the other, the respective intensity of the reflected light being determined from the output signal of a light sensor element and finally the presently present vegetation index or REIP value being calculated from the determined intensities of the entire measuring cycle.
Bei dieser bekannten Meßeinrichtung wird als Lichtsensorelement eine Fotodiode verwendet, deren analoges und zudem stark verrauschtes Ausgangssignal aufwendig aufbereitet (Phasendetektion) und dann für die weitere Berechnung noch einer A/D- Wandlung unterzogen werden muss. Untersuchungen haben gezeigt, dass die erzielbare Meßgenauigkeit hierunter stark leidet; zudem ist der Hardware-Aufwand aufgrund des zusätzlich erforderlichen Phasendetektors sowie des A/D-Wandlers vergleichsweise hoch. In this known measuring device, a photodiode is used as the light sensor element, the analog and also very noisy output signal elaborately processed (phase detection) and then for the further calculation still has to undergo an A / D conversion. Investigations have shown that the achievable measurement accuracy suffers greatly from this; In addition, the hardware complexity is comparatively high due to the additionally required phase detector and the A / D converter.
Der Erfindung liegt die Aufgabe zugrunde, eine Messeinrichtung zur Bestimmung eines Vegetationsindex- bzw. REIP-Werts von Pflanzen gemäß dem Oberbegriff des Anspruchs 1 so weiterzubilden, dass trotz einer verbesserten Meßgenauigkeit der Hardware-Aufwand verringert werden kann. The invention has the object of developing a measuring device for determining a Vegetationsindex- or REIP value of plants according to the preamble of claim 1 so that despite an improved accuracy of the hardware cost can be reduced.
Diese Aufgabe wird erfindungsgemäß mit der im kennzeichnenden Teil des Anspruchs 1 angegebenen Maßnahme gelöst. This object is achieved with the measure specified in the characterizing part of claim 1.
Die Erfindung schlägt demnach vor, als Licht-Empfangselement einen Licht-Frequenzwandler vorzusehen. Ein derartiger Licht-Frequenzwandler weist ein sehr geringes Eigenrauschen auf, so dass die Meßgenauigkeit entsprechend hoch ist. Darüber hinaus genügt es, zur Ermittlung der Lichtintensität die Zeitdauer zwischen den Flanken der Ausgangsfrequenz des Wandlers zu ermitteln, was ohne zusätzliche Bauelemente mit jedem Mikrocontroller möglich ist. Der hardwaremäßige Aufwand beschränkt sich damit auf den vergleichsweise preisgünstigen Licht-Frequenzwandler, so dass der schaltungstechnische Aufwand erfindungsgemäß sehr gering ist. The invention therefore proposes to provide a light-frequency converter as the light-receiving element. Such a light frequency converter has a very low inherent noise, so that the measurement accuracy is correspondingly high. In addition, it is sufficient to determine the light intensity, the time between the edges determine the output frequency of the converter, which is possible without any additional components with each microcontroller. The hardware expense is thus limited to the comparatively inexpensive light frequency converter, so that the circuit complexity is very low according to the invention.
Gemäß der im Anspruch 2 angegebenen vorteilhaften Weiterbildung der Erfindung ist ferner eine Stromregelungseinrichtung vorgesehen(LED-C), die den jedem Licht- Sendeelement zugeführten Strom regelt und die (werksseitig) derart abgeglichen ist, dass jedes Licht-Sendeelement in einem definierten Abstand zu einer definierten weißen Fläche im Licht-Frequenzwandler das gleiche Ausgangssignal erzeugt. Untersuchungen haben belegt, dass jegliche Schwankungen des Umgebungslichts dadurch vollständig ausgeglichen werden können. Eine aufwendige Kompensation des Umgebungslichts, wie sie beispielsweise in der US 7 408 145 B2 vorgeschlagen wird, kann somit vollständig entfallen. Hierdurch werden die Herstellungskosten der erfindungsgemäßen Messeinrichtung weiter verringert. According to the specified in claim 2 advantageous embodiment of the invention, a current control device is further provided (LED-C), which controls the each light transmitting element supplied current and the (factory) is adjusted so that each light-emitting element at a defined distance to a defined white area in the light frequency converter generates the same output signal. Research has shown that any variations in ambient light can be fully compensated. A complex compensation of the ambient light, as proposed for example in US Pat. No. 7,408,145 B2, can thus be completely eliminated. As a result, the manufacturing cost of the measuring device according to the invention are further reduced.
Weitere vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der weiteren Unteransprüche. Further advantageous developments of the invention are the subject of the other dependent claims.
Die Erfindung wird nachstehend anhand der Beschreibung eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung näher erläutert. Es zeigen: The invention will be explained in more detail below with reference to the description of an embodiment with reference to the drawing. Show it:
Fig.1 ein Blockschaltbild einer Ausführungsform der Erfindung; Fig. 1 is a block diagram of an embodiment of the invention;
Fig.2 eine schematische Darstellung einer typischen Anwendung der Erfindung; Fig. 2 is a schematic representation of a typical application of the invention;
Fig.3 eine schematische Darstellung zur Erläuterung des Absorptions/Reflexions- Verhaltens von Pflanzen; 3 shows a schematic representation for explaining the absorption / reflection behavior of plants;
Fig.4 den Zusammenhang zwischen dem REIP und dem Stickstoffgehalt von Pflanzen; und  4 shows the relationship between the REIP and the nitrogen content of plants; and
Fig.5 das Spektrum einer Glühbirne, die nachts zur Beleuchtung der Pflanzen verwendet wird.  Figure 5 shows the spectrum of a light bulb, which is used at night to illuminate the plants.
Gemäß Fig.1 besteht die schematisch mit 1 bezeichnete Messeinrichtung aus einer zentralen Steuereinrichtung MC, bei der es sich beispielsweise um einen handeis- üblichen Mikrocontroller handeln kann, einem Oszillator bzw. Schwingkreis OSZ, der die für die Frequenzmessung erforderliche Zeitbasis (von im Ausführungsbeispiel 40 MHZ) zur Verfügung stellt, einem Strom-Regelungsmodul LED-C für Leuchtdioden LED1 bis LED4 sowie einem Licht/Frequenz-Wandler L/F, bei dem es sich beispielsweise um den Typ TSL 230 R handeln kann. Neben einer Schnittstelle IO2 für allgemeine, hier nicht näher erläuterte Zwecke ist eine weitere Schnittstelle 101 vorgesehen, die als serielle Schnittstelle ausgeführt ist und ein Bluetooth-Signal erzeugt. 1, the measuring device schematically designated 1 consists of a central control device MC, which is, for example, a hand-held can act conventional microcontroller, an oscillator or resonant circuit OSZ, which provides the time base required for the frequency measurement (in the embodiment, 40 MHz), a current control module LED-C LED for LEDs LED1 to LED4 and a light / frequency converter L. / F, which may be, for example, the TSL 230 R type. In addition to an interface IO2 for general, not explained in more detail purposes, a further interface 101 is provided, which is designed as a serial interface and generates a Bluetooth signal.
Die vier Leuchtdioden LED1 bis LED2 erzeugen Licht von jeweils unterschiedlicher Wellenlänge, nämlich die Leuchtdiode LED1 Licht mit 670 nm, die LED2 Licht mit 700 nm, LED3 Licht mit 740 nm und die LED4 Licht mit 780 nm; jede dieser Leuchtdioden hat eine Halbwertsbreite des ausgesendeten Lichts zwischen 20 und 30 nm. Um Helligkeitsschwankungen durch die Versorgungsspannung dieser Leuchtdioden auszuschließen, wird der ihnen zugeführte Strom über Transistoren des Strom-Regelungsmoduls LED-C geregelt. Die Stromregelungen der einzelnen Leuchtdioden werden so abgeglichen, dass sie in einem definierten Abstand zu einer definierten weißen Fläche im Licht nach der Wandlung im Licht/Frequenzwandler L/F jeweils die gleiche Ausgangsfrequenz erzeugen. Über diesen Weißabgleich ist sichergestellt, dass sowohl die Serienstreuung der Leuchtdioden als auch die spektrale Empfindlichkeit des Licht/Frequenzwandlers ausgeglichen wird. Der Weißabgleich macht es außerdem möglich, auf eine Messung des Umgebungslichts zu verzichten. Das Umgebungslicht wird nämlich durch den Vegetationsindex REIP ausgeglichen und muss nicht gemessen und verrechnet werden. The four light-emitting diodes LED1 to LED2 generate light of different wavelengths, namely the light-emitting diode LED1 light with 670 nm, the LED2 light with 700 nm, LED3 light with 740 nm and the LED4 light with 780 nm; each of these light-emitting diodes has a half-width of the emitted light between 20 and 30 nm. To exclude fluctuations in brightness caused by the supply voltage of these light-emitting diodes, the current supplied to them is regulated via transistors of the current control module LED-C. The current regulations of the individual light-emitting diodes are adjusted so that they produce the same output frequency at a defined distance from a defined white area in the light after the conversion in the light / frequency converter L / F. This white balance ensures that both the series spread of the LEDs and the spectral sensitivity of the light / frequency converter are compensated. The white balance also makes it possible to dispense with a measurement of the ambient light. Namely, the ambient light is compensated by the vegetation index REIP and does not need to be measured and charged.
Gemäß Fig.1 ist ferner eine fünfte Leuchtdiode LEDG vorgesehen, die grünes Licht aussendet (vorzugsweise mit einer Wellenlänge von 585 nm). Mit dieser fünften Leuchtdiode LEDG ist es möglich, Aufschluß über die Biomasse in den frühen Versorgungsstadien zu erhalten, in denen der Boden noch sichtbar ist. Hierzu wird der ermittelte Helligkeitswert der Leuchtdiode LEDG von dem der LED1 (670 nm) subtrahiert. Je kleiner die ermittelte Differenz ist, desto mehr Pflanzen befinden sich im Verhältnis zum Boden unter dem Sensor. Schließlich ist auch noch eine Glühlampe GL vorhanden, die über eine Pulsbrei- tenmodulationsschaltung PWM von der Steuereinrichtung MC angesteuert wird. Mit Hilfe dieser Glühlampe ist es möglich, auch bei Dämmerung oder in der Nacht korrekte Meßwerte zu erhalten. Diese Glühlampe GL ist so ausgerichtet, dass sie mindestens denjenigen Bereich ausleuchtet, auf den die Leuchtdioden gerichtet sind. According to FIG. 1, a fifth light-emitting diode LEDG is also provided which emits green light (preferably with a wavelength of 585 nm). With this fifth LEDG LED, it is possible to obtain information about the biomass in the early supply stages, in which the soil is still visible. For this purpose, the determined brightness value of the light emitting diode LEDG is subtracted from that of the LED1 (670 nm). The smaller the difference, the more plants are in relation to the ground under the sensor. Finally, there is also a light bulb GL, which is controlled by the control device MC via a pulse width modulation circuit PWM. With the help of this bulb, it is possible to get correct readings even at dusk or at night. This incandescent lamp GL is aligned so that it illuminates at least the area to which the light-emitting diodes are directed.
Die erfindungsgemäße Messeinrichtung arbeitet wie folgt: Die zentrale Steuereinrichtung MC steuert zur Durchführung eines Meßzyklus nacheinander die Leuchtdioden LED1 bis LED4 jeweils für eine vorbestimmte Zeitdauer bzw. Periode über das Strom- Regelungsmodul LED-C an. Die Dauer dieser Periode wird dabei so bemessen, dass der Licht/Frequenzwandler L/F einen Ausgangsimpuls erzeugt. The measuring device according to the invention operates as follows: The central control device MC sequentially controls the light-emitting diodes LED1 to LED4 for a predetermined period of time or period via the current regulation module LED-C for carrying out a measuring cycle. The duration of this period is dimensioned such that the light / frequency converter L / F generates an output pulse.
Zunächst wird die Leuchtdiode LED1 für die vorbestimmte Zeitdauer eingeschaltet, so dass die in der Fig.1 schematisch gezeigten Pflanzen mit einer Wellenlänge von 670 nm beleuchtet werden; das von den Pflanzen reflektierte Licht wird dann vom Licht/Frequenzwandler L/F empfangen und die zentrale Steuereinrichtung MC ermittelt dann aus der Zeitdauer zwischen den Flanken des Ausgangssignals des Licht/Frequenzwandlers L/F die der Wellenlänge 670 nm zugeordnete Lichtintensität P1, die ein Maß für den Reflexionsgrad bei dieser Wellenlänge ist. Diese ermittelte Lichtintensität P1 wird sodann gespeichert. Nachfolgend werden die Leuchtdioden LED2 bis LED4 ebenfalls jeweils für die vorbestimmte Zeitdauer eingeschaltet, um daraus aus den Flanken des zugeordneten Ausgangssignals des Licht/Frequenzwandlers L/F die jeweiligen Intensitätswerte P2 bis P4 für die Wellenlängen 700 nm, 740 nm und 780 nm zu ermitteln und zu speichern. First, the light-emitting diode LED1 is turned on for the predetermined period of time, so that the plants shown schematically in FIG. 1 are illuminated with a wavelength of 670 nm; the light reflected from the plants is then received by the light / frequency converter L / F and the central control device MC then determines from the time between the edges of the output signal of the light / frequency converter L / F the light intensity P1 associated with the wavelength 670 nm, which is a measure for the reflectance at this wavelength. This determined light intensity P1 is then stored. Subsequently, the light emitting diodes LED2 to LED4 are also turned on for the predetermined period of time to determine from the edges of the associated output signal of the light / frequency converter L / F, the respective intensity values P2 to P4 for the wavelengths 700 nm, 740 nm and 780 nm save.
Nach Beendigung eines solchen Meßzyklus sind in der zentralen Steuereinrichtung MC dann alle vier Meßwerte für die Lichtintensitäten P1 bis P4 gespeichert; diese Werte werden in folgende Formel eingesetzt: After completion of such a measuring cycle, all four measured values for the light intensities P1 to P4 are then stored in the central control device MC; these values are used in the following formula:
REIP = λ2 + (A3 - A2) ((Pi + P4) / 2 - P2) / (P3 - P2) in der die Werte Pi bis P4, wie erläutert, jeweils die gemessene Intensität des Reflexionslichts der betreffenden Leuchtdiode LED1 bis LED4 und λ-i, A2, λ 3 bzw. A4 je- weils deren spezifische Wellenlänge bezeichnen (also die Werte 670, 700, 740 und 780 nm). REIP = λ 2 + (A 3 - A 2 ) ((Pi + P 4 ) / 2 - P 2 ) / (P 3 - P 2 ) in which the values Pi to P 4 , as explained, respectively the measured intensity of the Reflection light of the relevant LED LED1 to LED4 and λ-i, A 2 , λ 3 and A 4 each because their specific wavelength (ie the values 670, 700, 740 and 780 nm).
Der errechnete Wert REIP dieser Formel ist ein direktes Maß für den Stickstoffgehalt derjenigen Pflanze(n), die in dem betreffenden Meßzyklus von den Leuchtdioden bestrahlt wurden. The calculated value REIP of this formula is a direct measure of the nitrogen content of the plant (s) irradiated by the light-emitting diodes in the relevant measuring cycle.
Gemäß Fig.1 wird über die Schnittstelle 101 ein Signal gesendet, das den errechneten Wert für den Vegetationsindex REIP bzw. den entsprechenden Stickstoffgehalt angibt. Dieses Signal wird von einem Rechner PC empfangen, der ein durch Software abgebildetes Düngesystem enthält; dieses Düngesystem ist in der Lage, die pro Hektar Fläche erforderliche Menge an Stickstoff zu ermitteln, um beispielsweise einen Düngestreuer geeignet ansteuern zu können. Darüber hinaus kann die an der betreffenden Position gemessene Stickstoffmenge mittels eines GPS-Sensors ermittelt werden, um eine entsprechende Kartenerstellung oder eine Dokumentation durchzuführen. According to FIG. 1, a signal is sent via the interface 101, which signal indicates the calculated value for the vegetation index REIP or the corresponding nitrogen content. This signal is received by a computer PC containing a software-mapped fertilizer system; This fertilizer system is able to determine the amount of nitrogen required per hectare, in order to be able to control a fertilizer spreader, for example. In addition, the amount of nitrogen measured at the position in question can be determined by means of a GPS sensor in order to perform a corresponding map generation or documentation.
Der vorstehend beschriebene Meßzyklus wird nach Durchlauf aller vier Leuchtdioden und nach Berechnung des Werts REIP kontinuierlich wiederholt, so dass in Abhängigkeit von der Bewegungsgeschwindigkeit der Messeinrichtung eine nahezu vollständige Erfassung des Stickstoffgehalts aller abgetasteten Pflanzen möglich ist. The measuring cycle described above is continuously repeated after passing through all four light-emitting diodes and after calculating the value REIP, so that, depending on the speed of movement of the measuring device, an almost complete detection of the nitrogen content of all sampled plants is possible.
Wenn die Umgebungshelligkeit infolge von Dämmerung oder wegen nächtlicher Arbeiten nicht ausreicht, steuert die Steuereinrichtung MC die Glühlampe GL über die Pulsbreitenmodulationsschaltung PWM so an, dass deren Helligkeit mit zunehmender Dunkelheit proportional erhöht wird. If the ambient brightness is insufficient due to dusk or nocturnal work, the controller MC controls the incandescent lamp GL via the pulse width modulation circuit PWM so as to increase its brightness proportionally with increasing darkness.
Die Verwendung einer derart geregelten Glühlampe hat folgenden Grund: Pflanzen haben in der Regel zwei unabhängig voneinander arbeitende Photosysteme; eines dieser beiden Photosysteme arbeitet insbesondere bei 680 nm, während das andere bei 700 nm arbeitet. Würde man nun die Pflanzen sequentiell nur mit monochromatischem Licht bestrahlen, würden diese beiden Photosysteme wegen des sogenannten Emerson- Effekts nicht optimal arbeiten. Die Absorptionswerte würden sich daher entsprechend ändern, so dass auch der berechnete REIP-Wert bei Dunkelheit nicht mit den jeweiligen Tageswerten übereinstimmen würde. Die erfindungsgemäß vorgesehene Glühlampe strahlt demgegenüber Licht ab, das den in der Fig.5 gezeigten spektralen Verlauf hat, also einen größeren Wellenlängenbereich umfaßt. D.h., die Glühlampe GL bestrahlt auch bei Dunkelheit beide Photosysteme der Pflanzen so, dass sie wieder optimal arbeiten. Somit können auch bei Dunkelheit die Messwerte des Tages wieder erreicht werden. Wird der Licht-Frequenzwandler vom Umgebungslicht nicht mehr ausreichend beleuchtet, regelt die Steuereinrichtung MC die Glühlampe GL über die PuIs- breitenmodulationsschaltung PWM so, dass ein minimales Umgebungslichtniveau nicht unterschritten wird. Die Glühlampe GL ist also am Tag aus, beginnt in der Dämmerung leicht zu leuchten und hat bei Dunkelheit ihre maximale Leuchtkraft. The use of such a controlled incandescent lamp has the following reason: Plants usually have two independently operating photosystems; one of these two photosystems works in particular at 680 nm, while the other works at 700 nm. If one were to irradiate the plants sequentially only with monochromatic light, these two photosystems would not work optimally because of the so-called Emerson effect. The absorption values would therefore change accordingly, so that the calculated REIP value does not coincide with darkness would correspond to the respective daily values. In contrast, the incandescent lamp provided according to the invention emits light which has the spectral profile shown in FIG. 5, that is to say comprises a larger wavelength range. That is, the incandescent GL irradiated both photosystems of the plants even in the dark, so that they work optimally again. Thus, the measured values of the day can be reached again even in the dark. If the light frequency converter is no longer adequately illuminated by the ambient light, the control device MC controls the incandescent lamp GL via the pulse width modulation circuit PWM in such a way that it does not fall below a minimum ambient light level. The GL bulb is therefore off during the day, starts to glow in the dusk easily and has its maximum luminosity in the dark.
Gemäß Fig.2 kann die erfindungsgemäß Messeinrichtung beispielsweise in zweifacher Ausführung an einem Traktor befestigt sein. Die erfassten bzw. errechneten Daten werden über die Bluetooth-Verbindung der Schnittstelle 101 zum Traktor übertragen. Es ist also keine Kabelverbindung in die Kabine des Traktors notwendig. Ein PC im Traktor kann die Auswertung der im erfindungsgemäßen Sensor berechneten Daten vornehmen. Hierfür werden die Daten mit GPS-Positionen versehen und beispielsweise Online angezeigt. Im PC sind pflanzenbauliches Wissen und Ertragskarten hinterlegt. Ein Düngestreuer kann vom PC daher geeignet angesteuert werden. According to Figure 2, the measuring device according to the invention may be attached, for example in duplicate to a tractor. The acquired or calculated data are transmitted via the Bluetooth connection of the interface 101 to the tractor. So there is no cable connection in the cabin of the tractor necessary. A PC in the tractor can carry out the evaluation of the data calculated in the sensor according to the invention. For this purpose, the data is provided with GPS positions and, for example, displayed online. In the PC are stored plant knowledge and yield maps. A fertilizer spreader can therefore be suitably controlled by the PC.

Claims

Ansprüche claims
1. Messeinrichtung zur Bestimmung eines Vegetationsindex-Werts (REIP) von Pflanzen, mit einer Mehrzahl von Licht-Sendeelementen (LED1 - LED4), von denen jedes im wesentlichen monochromes Licht einer vorbestimmten Wellenlänge A vegetation level (REIP) measuring device for plants, comprising a plurality of light emitting elements (LED1 - LED4), each of which is substantially monochromatic light of a predetermined wavelength
aussendet, einem Licht-Empfangselement (L/F), das das von den Pflanzen reflektierte Licht der Licht-Sendeelemente empfängt und ein die jeweilige Intensität des emits a light-receiving element (L / F), which receives the reflected light from the plants of the light-emitting elements and a respective intensity of the
empfangenen Lichts anzeigendes Signal erzeugt, und mit einer Steuereinrichtung (MC), die die Licht-Sendeelemente in einer zyklischen Folge hintereinander ansteuert, die jeweilige Intensität des reflektierten Lichts aus dem Ausgangssignal des Licht- Empfangselements (L/F) ermittelt und aus den ermittelten Intensitäten des gesamten Messzyklus den Vegetationsindex-Wert (REIP) errechnet, generated light received indicating signal, and with a control device (MC), which controls the light-emitting elements in a cyclic sequence in succession, the respective intensity of the reflected light from the output signal of the light-receiving element (L / F) and determined from the determined intensities calculated the vegetation index value (REIP) of the entire measuring cycle,
dadurch gekennzeichnet, dass  characterized in that
das Licht-Empfangselement ein Licht-Frequenzwandler (L/F) ist.  the light-receiving element is a light frequency converter (L / F).
2. Messeinrichtung nach Anspruch 1 , gekennzeichnet durch eine 2. Measuring device according to claim 1, characterized by a
Stromregelungseinrichtung (LED-C), die den jedem Licht-Sendeelement zugeführten Strom regelt und die derart abgeglichen ist, dass jedes Licht-Sendeelement in einem definierten Abstand zu einer definierten weißen Fläche im Licht-Frequenzwandler (L/R) das gleiche Ausgangssignal erzeugt. Current control device (LED-C), which controls the current supplied to each light-emitting element and which is adjusted so that each light-emitting element at a defined distance to a defined white area in the light-frequency converter (L / R) generates the same output signal.
3. Messeinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Licht-Sendeelemente vier Leuchtdioden (LED1 - LED4) vorgesehen sind, die jeweils Licht der Wellenlänge 670 nm (λi), 700 nm (A2), 740 nm (A3) bzw. 780 nm (A4) aussenden, wobei die Halbwertsbreite des ausgesendeten Lichts vorzugsweise zwischen 20 und 30 nm beträgt. 3. Measuring device according to claim 1 or 2, characterized in that as light-emitting elements four light-emitting diodes (LED1 - LED4) are provided, each having a wavelength of 670 nm (λi), 700 nm (A 2 ), 740 nm (A 3 ) or 780 nm (A 4 ), wherein the half-width of the emitted light is preferably between 20 and 30 nm.
4. Messeinrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die 4. Measuring device according to claim 3, characterized in that the
Steuereinrichtung (MC) als Vegetationsindex-Wert den REIP-Wert ("Red Edge Control device (MC) as vegetation index value the REIP value ("Red Edge
Inflection Point") gemäß folgender Formel errechnet: Inflection Point ") according to the following formula:
REIP = A2 + (A3 - A2) ((Pi + P4) / 2 - P2) / (P3 - P2) in der die Werte Pi bis P4 jeweils die gemessene Intensität des Reflexionslichts der betreffenden Leuchtdiode (LED1 - LED4) bezeichnen. REIP = A 2 + (A 3 -A 2 ) ((Pi + P 4 ) / 2 -P 2 ) / (P 3 -P 2 ) in which the values Pi to P 4 each denote the measured intensity of the reflection light of the relevant light-emitting diode (LED1 - LED4).
5. Messeinrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die 5. Measuring device according to claim 4, characterized in that the
Steuereinrichtung (MC) den REIP-Wert als Maß für den Stickstoffgehalt (N) der gemessenen Pflanze heranzieht. Control device (MC) uses the REIP value as a measure of the nitrogen content (N) of the measured plant.
6. Messeinrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die 6. Measuring device according to claim 5, characterized in that the
Steuereinrichtung (MC) den jeweils ermittelten Stickstoffgehalt einem mobilen, vorzugsweise GPS-gestützten Düngesystem (DS) vorzugsweise über eine Bluetooth- Schnittstelle (101) zuführt. Control device (MC) the respectively determined nitrogen content preferably a mobile, preferably GPS-based fertilizer system (DS) via a Bluetooth interface (101) supplies.
7. Messeinrichtung nach einem der Ansprüche 1 bis 6, gekennzeichnet durch eine Beleuchtungsvorrichtung (GL1 PWM), die Licht mehrer Wellenlängen aussendet und deren Lichtstärke von der Steuereinrichtung (MC) umgekehrt proportional zur 7. Measuring device according to one of claims 1 to 6, characterized by a lighting device (GL 1 PWM), the light emits several wavelengths and the light intensity of the control device (MC) inversely proportional to
Umgebungshelligkeit gesteuert wird. Ambient brightness is controlled.
8. Messeinrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die 8. Measuring device according to claim 7, characterized in that the
Beleuchtungsvorrichtung eine Glühlampe (GL) ist. Lighting device is a light bulb (GL).
9. Messeinrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Beleuchtungsvorrichtung (GL) so ausgerichtet ist, dass sie mindestens denjenigen Bereich ausleuchtet, auf den die Leuchtdioden gerichtet sind. 9. Measuring device according to claim 7 or 8, characterized in that the lighting device (GL) is aligned so that it illuminates at least that area to which the light emitting diodes are directed.
10. Messeinrichtung nach einem der Ansprüche 3 bis 9, gekennzeichnet durch eine weitere Leuchtdiode (LEDG)1 die grünes Licht aussendet, wobei die 10. Measuring device according to one of claims 3 to 9, characterized by a further light-emitting diode (LEDG) 1 emits the green light, wherein the
Steuereinrichtung (MC) durch Subtraktion ihres Meßwertes von dem der Leuchtdiode mit der Wellenlänge 670 nm das Verhältnis von Pflanzenbewuchs zur Bodenfläche ermittelt. Control device (MC) determined by subtracting their measured value of the light emitting diode with the wavelength 670 nm, the ratio of plant growth to the ground surface.
EP10740220A 2009-08-05 2010-08-04 Measuring device for determining a vegetation index value of plants Withdrawn EP2462426A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009036148 2009-08-05
DE102009052159A DE102009052159A1 (en) 2009-08-05 2009-11-06 Measuring device for determining a vegetation index value (REIP) of plants
PCT/EP2010/061337 WO2011015598A1 (en) 2009-08-05 2010-08-04 Measuring device for determining a vegetation index value of plants

Publications (1)

Publication Number Publication Date
EP2462426A1 true EP2462426A1 (en) 2012-06-13

Family

ID=43430243

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10740220A Withdrawn EP2462426A1 (en) 2009-08-05 2010-08-04 Measuring device for determining a vegetation index value of plants

Country Status (12)

Country Link
US (1) US8823945B2 (en)
EP (1) EP2462426A1 (en)
JP (1) JP2013501230A (en)
CN (1) CN102498383A (en)
AU (1) AU2010280747B2 (en)
BR (1) BR112012002638A2 (en)
CA (1) CA2770146C (en)
CL (1) CL2012000292A1 (en)
DE (1) DE102009052159A1 (en)
RU (1) RU2012108088A (en)
WO (1) WO2011015598A1 (en)
ZA (1) ZA201200875B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011003647A1 (en) 2011-02-04 2012-08-09 Georg Fritzmeier Gmbh & Co. Kg Measuring device for determining a vegetation index value
DE102011050877B4 (en) * 2011-03-04 2014-05-22 Technische Universität München Method for determining the fertilizer requirement, in particular the nitrogen fertilizer requirement and apparatus for carrying out the method
JP5718153B2 (en) * 2011-05-26 2015-05-13 株式会社トプコン Plant sensor device
US8902413B2 (en) * 2012-02-21 2014-12-02 Trimble Navigation Limited Cell phone NDVI sensor
FR3027187B1 (en) * 2014-10-16 2016-11-11 Centre Technique Interprofessionnel Des Oleagineux Et Du Chanvre (Cetiom) METHOD FOR DETERMINING THE QUANTITY OF NITROGEN FOR CULTURE
JP6526474B2 (en) * 2015-04-30 2019-06-05 株式会社トプコン Plant sensor device
WO2017130249A1 (en) * 2016-01-29 2017-08-03 パナソニックIpマネジメント株式会社 Device for observing water content, method for observing water content, and cultivation device
DE102019201984A1 (en) * 2019-02-14 2020-08-20 Zf Friedrichshafen Ag Control unit for use in agriculture
KR102197321B1 (en) * 2019-06-05 2020-12-31 주식회사 마하테크 apparatus for monitoring growth state of farm product
EP3902387A1 (en) 2019-06-17 2021-11-03 Phytoprove Pflanzenanalytik UG (Haftungsbeschränkt) Device and method for detecting a fertilisation status
CN110927118B (en) * 2019-10-28 2022-07-15 航天新气象科技有限公司 Vegetation index measuring instrument, control method and measuring method
EP4163621A1 (en) 2021-10-11 2023-04-12 Siemens Aktiengesellschaft Optical vegetation index monitoring

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008523A1 (en) * 1994-11-01 1997-03-06 Vivorx Pharmaceuticals, Inc. Method and apparatus for determining characteristics of a sample in the presence of ambient light
WO1999003683A1 (en) * 1997-07-16 1999-01-28 Topaz Technologies, Inc. Carriage mounted densitometer
US5963333A (en) * 1996-09-12 1999-10-05 Color Savvy Systems Limited Color sensor
US20030155484A1 (en) * 2002-02-19 2003-08-21 Texas Advanced Optoelectronic Solutions, Inc. Method and apparatus for light to frequency conversion
US6683970B1 (en) * 1999-08-10 2004-01-27 Satake Corporation Method of diagnosing nutritious condition of crop in plant field
US20060158652A1 (en) * 2004-06-24 2006-07-20 Rooney Daniel J Measuring soil light response
US20060208171A1 (en) * 2003-11-07 2006-09-21 Kyle Holland Light sensor with modulated radiant polychromatic source

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3910701A (en) 1973-07-30 1975-10-07 George R Henderson Method and apparatus for measuring light reflectance absorption and or transmission
JP2657445B2 (en) * 1992-06-23 1997-09-24 株式会社ジャパンエナジー Light intensity measurement device
JP3628425B2 (en) * 1996-03-18 2005-03-09 株式会社タカキタ Identification method of broad-leaved weeds in pasture using spectral solid angle reflectance
US6246471B1 (en) 1998-06-08 2001-06-12 Lj Laboratories, Llc Apparatus and method for measuring optical characteristics of an object
CN1308670C (en) 2000-11-10 2007-04-04 爱科来株式会社 Measuring method and instrument comprising image sensor
US7315377B2 (en) 2003-02-10 2008-01-01 University Of Virginia Patent Foundation System and method for remote sensing and/or analyzing spectral properties of targets and/or chemical species for detection and identification thereof
JP2005095132A (en) * 2003-08-25 2005-04-14 Koki Kanehama Culture method for long-day plant and facility therefor
US20080291455A1 (en) 2003-11-07 2008-11-27 Kyle Harold Holland Active Light Sensor
DE602004025681D1 (en) * 2004-06-15 2010-04-08 St Microelectronics Res & Dev image sensor
DE102007017482A1 (en) 2006-04-13 2007-11-22 Wilhelm LÜDEKER Spectral area analysis method for determining chlorophyll concentration, involves providing two spectral value functions for analyzing spectral areas by filters, where spectral ranges overlap each other
US8358420B1 (en) * 2010-02-26 2013-01-22 System Planning Corporation Spectrometer for identifying analyte materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008523A1 (en) * 1994-11-01 1997-03-06 Vivorx Pharmaceuticals, Inc. Method and apparatus for determining characteristics of a sample in the presence of ambient light
US5963333A (en) * 1996-09-12 1999-10-05 Color Savvy Systems Limited Color sensor
WO1999003683A1 (en) * 1997-07-16 1999-01-28 Topaz Technologies, Inc. Carriage mounted densitometer
US6683970B1 (en) * 1999-08-10 2004-01-27 Satake Corporation Method of diagnosing nutritious condition of crop in plant field
US20030155484A1 (en) * 2002-02-19 2003-08-21 Texas Advanced Optoelectronic Solutions, Inc. Method and apparatus for light to frequency conversion
US20060208171A1 (en) * 2003-11-07 2006-09-21 Kyle Holland Light sensor with modulated radiant polychromatic source
US20060158652A1 (en) * 2004-06-24 2006-07-20 Rooney Daniel J Measuring soil light response

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2011015598A1 *

Also Published As

Publication number Publication date
AU2010280747A1 (en) 2012-03-01
BR112012002638A2 (en) 2016-03-22
CL2012000292A1 (en) 2012-11-30
US20130120753A1 (en) 2013-05-16
AU2010280747B2 (en) 2014-05-15
DE102009052159A1 (en) 2011-02-10
CN102498383A (en) 2012-06-13
CA2770146A1 (en) 2011-02-10
US8823945B2 (en) 2014-09-02
WO2011015598A1 (en) 2011-02-10
CA2770146C (en) 2016-06-28
RU2012108088A (en) 2013-09-10
ZA201200875B (en) 2012-10-31
JP2013501230A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
EP2462426A1 (en) Measuring device for determining a vegetation index value of plants
DE4434168B4 (en) Device and method for measuring and evaluating spectral radiation and in particular for measuring and evaluating color properties
DE102006037292A1 (en) Calibrated LED light module
DE102007018224A1 (en) LED luminaire with stabilized luminous flux and stabilized light color
DE102010034603A1 (en) Sensor system and method for determining an optical property of a plant
DE102004047669A1 (en) Lighting device and method of control
EP2513875B1 (en) Spectral sensor for inspecting value documents
DE19940280A1 (en) Gas sensor with an open optical measuring section
DE19950396A1 (en) Device to determine plant states; has laser or light emitting diodes of two wavelengths fitted on measuring head to illuminate plants and has detector to register reflected light
DE10148746C2 (en) Method and device for the contactless determination and influencing of the plant state
DE112011103545B4 (en) Method and device for diagnosing plant growth conditions
DE10148747A1 (en) Non-contact monitoring crop and other vegetation condition, for determining fertilizer requirements, uses flash lights for the reflected light to be received by a single photo-diode giving digitized signals for processing
CN103293113A (en) Initiative light source type crop canopy reflection spectral measurement device and method
DE102012208172A1 (en) LED driver with color monitoring
DE112017005214T5 (en) endoscopy system
DE10148748A1 (en) Assembly to measure the condition of vegetation growth, by establishing bio-physical parameters without contact, comprises flash lamps directed to illuminate the growth and a detector to receive the reflections
EP2975370B1 (en) Colour measuring device
DE102011003647A1 (en) Measuring device for determining a vegetation index value
DE102005024271B4 (en) Grating spectrometer system and method for measured value acquisition
DE10148737B4 (en) Method and device for the contactless determination of biophysical parameters of plant stands
EP1483951A1 (en) Method and apparatus for determining fertilizer requirements in gardens
DE112020001271T5 (en) Method and device for determining or classifying the surface color of at least partially transparent materials
DE102006042412B4 (en) A method for the non-contact determination of biophysical parameters of dew-wetted plant populations
DE4327300C2 (en) Method and device for measuring the radiation of a spectral range
EP1394530A1 (en) Arrangement for the contactless determination of vegetation in a field

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150409

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151020