EP2460582A1 - Super-micro bubble generation device - Google Patents

Super-micro bubble generation device Download PDF

Info

Publication number
EP2460582A1
EP2460582A1 EP10804452A EP10804452A EP2460582A1 EP 2460582 A1 EP2460582 A1 EP 2460582A1 EP 10804452 A EP10804452 A EP 10804452A EP 10804452 A EP10804452 A EP 10804452A EP 2460582 A1 EP2460582 A1 EP 2460582A1
Authority
EP
European Patent Office
Prior art keywords
super
liquid
bubble generation
micro
micro bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10804452A
Other languages
German (de)
French (fr)
Other versions
EP2460582B1 (en
EP2460582A4 (en
Inventor
Satoshi Anzai
Susumu Nishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANZAI, SATOSHI
Original Assignee
NISHIKEN DEVISE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009177693A external-priority patent/JP5885376B2/en
Application filed by NISHIKEN DEVISE CO Ltd filed Critical NISHIKEN DEVISE CO Ltd
Priority to PL10804452T priority Critical patent/PL2460582T3/en
Publication of EP2460582A1 publication Critical patent/EP2460582A1/en
Publication of EP2460582A4 publication Critical patent/EP2460582A4/en
Application granted granted Critical
Publication of EP2460582B1 publication Critical patent/EP2460582B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23123Diffusers consisting of rigid porous or perforated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23124Diffusers consisting of flexible porous or perforated material, e.g. fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23126Diffusers characterised by the shape of the diffuser element
    • B01F23/231265Diffusers characterised by the shape of the diffuser element being tubes, tubular elements, cylindrical elements or set of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/21Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers

Definitions

  • the present invention relates to an art of a super-micro bubble generation device which can generate super-micro bubbles in liquid.
  • the super-micro bubbles are used in liquid such as tap water, the water of lakes and marshes or rivers, or marine water or the like.
  • the said super-micro bubbles have the property that the surface areas thereof are very large.
  • the said super-micro bubbles also have physiochemical property such as self-pressure effect.
  • Technology of utilizing the characteristics of such micro bubbles in effluent purification, purification, physical care in the bathtub, and the like has been developing.
  • One method for generating the super-micro bubbles having the said properties has become public knowledge. That method has steps of, spinning around motor in liquid; raising the flow rate by pump pressure; inhaling the air; and stirring. As such, bubbles are generated. The generated bubbles are then torn into super-micro bubbles by a rotating wing or a cutting tool.
  • another method for generating the super-micro bubbles has also become public knowledge. In that method, a liquid jetting nozzle is disposed around an air jetting nozzle, and bubbles jetted from the air jetting nozzle are torn into super-micro bubbles by the force of jet flow of the liquid jetting nozzle.
  • another method for generating the super-micro bubbles has also become public knowledge. In that method, bubbles are generated by stirring, and the generated bubbles go through the eyes of a mesh membrane so as to fine down to super-micro bubbles (for example, see Patent Literature 1).
  • the mesh membrane when the method of which the generated bubbles go through the eyes of the mesh membrane so as to fine down to super-micro bubbles is applied, the mesh membrane will become depleted in the long run since the mesh membrane is made of organic substance. Moreover, when the mesh membrane is provided at right angle with liquid surface, the generated super-micro bubbles will overlap with other super-micro bubbles and will coalesce in a mass bubble. To avoid this, the mesh membrane should be provided parallel to the liquid surface, that is, installation method is limited.
  • the object of the present invention is to provide a super-micro bubble generation device which can generate super-micro bubbles using a simple method and can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements.
  • a super-micro bubble generation device of the present invention comprises: a compressor for delivering gas under pressure, and a bubble generation medium for discharging the gas, which has been delivered under pressure, as super-micro bubbles into liquid, wherein the said bubble generation medium consists of a high-density compound which is an electrically conductive substance.
  • the said super-micro bubble generation device further comprises a liquid jetting device for jetting liquid in the direction substantially perpendicular to the direction in which the bubble generation medium discharges the super-micro bubbles, said liquid being the same kind of liquid as the liquid into which the super-micro bubbles are discharged.
  • the said bubble generation medium is formed into a conical shape.
  • the gas from the said compressor passes through the said bubble generation medium from a bottom face of the cone toward a vertex, wherein the said liquid being the same kind of liquid as the liquid into which the super-micro bubbles are discharged is jetted toward the vertex of the cone of the said bubble generation medium by the said liquid jetting device.
  • an outer periphery of the said bubble generation medium is covered with a covering material, wherein the said covering material has the property of lowering the contact angle at which the liquid meets the surface of the said covering material.
  • the present invention constructed as the above brings the following effects.
  • the bubble generation medium consisting of the high-density compound would not deteriorate due to expansion and contraction since the high-density compound is a solid substance which does not have flexibility. Also, the high-density compound would not become eroded due to temporal change since it is made of inorganic material. Thus, the super-micro bubble generation device is prevented from damage and degradation. Also, because the generated super-micro bubbles separates from the bubble generation medium as soon as they are generated, they would not coalesce in a mass bubble. Thus, the super-micro bubbles can be generated by using a simple method.
  • the super-micro bubble generation device can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements.
  • the said high-density compound is an electrically conductive substance, negatively charged ions tend to range on the surface of the high-density compound.
  • the bubbles generated from the said bubble generation medium become negatively charged by receiving the negatively charged ions from the surface of the high-density compound. The bubbles would not coalesce in a mass bubble since each bubble act repulsively due to this negative electric charge.
  • the liquid is jetted toward the vertex of the cone. Then, the liquid will flow along the curved surface of the cone. In this way, it is able to make the size of the injection hole smaller, and thus, lower pressure is needed for jetting the liquid.
  • the generated super-micro bubbles separate from the bubble generation medium as soon as they are generated, and thus, the super-micro bubbles would not coalesce in a mass bubble.
  • the super-micro bubbles can be generated by using a simple method.
  • the super-micro bubble generation device can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements.
  • the said high-density compound is an electrically conductive substance, bubbles generated from the bubble generation medium are negatively charged. The bubbles would not coalesce in a mass bubble since each bubble act repulsively due to this negative electric charge.
  • the covering material has the property that contact angle at which the liquid meets the surface of the covering material is low. Accordingly, the surrounding liquid is attracted to the covering material. Thus, a thin liquid film is formed between the super-micro bubbles and the covering material. This makes it easy to separate the super-micro bubbles from the bubble generation medium. Thus, the super-micro bubbles would not coalesce in a mass bubble. Moreover, there is an effect of separating the super-micro bubbles by liquid flow by jetting liquid toward the bubble generation medium coated with the covering material from the liquid jetting device. There is also an effect of separating the super-micro bubbles by making the contact angle, at which the liquid interface meets the surface of the covering material, smaller. Combination of these effects makes it easy to separate super-micro bubbles.
  • a super-micro bubble generation device 1 is provided with a compressor 2 as a compression machine for delivering gas under pressure, and also with a bubble generation medium 3 for discharging the gas, which has been delivered under pressure, as super-micro bubbles into liquid.
  • the super-micro bubble generation device 1 is also provided with a liquid jetting device 4 for jetting liquid being the same kind of liquid as the liquid into which the super-micro bubbles are discharged.
  • the compressor 2 is a device for delivering gas under pressure into an internal space 3 a of the bubble generation medium 3 through the intermediary of a gas supply line 11.
  • the gas delivered under pressure by the compressor 2 is not limited to air.
  • the gas may be ozone gas or nitrogen gas.
  • the said liquid may be such as fresh water or sea water of rivers or lakes, water, or industrial wastewater.
  • the said liquid also may be solvent such as pharmaceutical products. In that case, the pharmaceutical products are stirred or mixed by using the said super-micro bubbles.
  • the bubble generation medium 3 consists of a high-density compound whose solid texture is made of molecular structure consisting of ionic bonds. Moreover, the said high-density compound is an electrically conductive substance, and thus, bubbles generated from the bubble generation medium 3 are negatively charged. In other words, the super-micro bubbles are negatively charged by addition of free electrons on passing through the bubble generation medium 3, which is the electrically conductive substance. The bubbles would not coalesce in a mass bubble since each bubble act repulsively due to this negative electric charge.
  • the said electrically conductive substance is made of carbon-based material.
  • the bubble generation medium 3 is porous having a lot of tiny pores 3b of several ⁇ m to several dozen ⁇ m in diameter. Because of this constitution, the gas delivered under pressure by the compressor 2 passes through the said pores 3b. In other words, the super-micro bubbles are discharged from the pores 3b into liquid by gas tension of the gas delivered under pressure from compressor 2. Because of this constitution, the bubble generation medium 3 consisting of the high-density compound would not deteriorate due to expansion and contraction since the high-density compound is a solid substance which does not have flexibility. Also, the high-density compound would not become eroded due to temporal change since it is made of inorganic material. Thus, the super-micro bubble generation device 1 is prevented from damage and degradation.
  • the bubble generation medium 3 consisting of the high-density compound would not become worn even though liquid flow injected from the liquid jetting device 4 hits the high-density compound because it is activated. Thus, durability of the bubble generation medium 3 has been improved.
  • the liquid jetting device 4 is a device for separating super-micro bubbles generated from a surface site 3c of the bubble generation medium 3 by the liquid flow.
  • the liquid jetting device 4 jets liquid being the same kind of liquid as the liquid into which the super-micro bubbles are discharged. Because of this constitution, the super-micro bubbles can be separated by the liquid flow without influencing fluid composition. Moreover, it is able to prevent different kind of liquid being mixed into the liquid.
  • the said super-micro bubbles are discharged from the tiny pores 3b.
  • the liquid delivered under pressure by the liquid jetting device 4 rapidly passes through the surface site 3c, from where the super-micro bubbles are discharged, so as to separate the super-micro bubbles from the surface site 3c.
  • the super-micro bubbles discharged from the surface site 3c separately move around in the liquid without coalescing with subsequently generated super-micro bubbles or other super-micro bubbles discharged from surrounding pores 3b. Because of this constitution, super-micro bubbles can be generated by using a simple method. Moreover, the super-micro bubble generation device 1 can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements.
  • the bubble generation medium 3 may be coated with a coating material 5 which is a covering material.
  • the coating material 5 is an inorganic material which has the property that contact angle at which the liquid interface meets the surface of the coating material 5 is low (for example, if the liquid is water, the coating material 5 may be made of superhydrophilic material).
  • the coating material 5 is made of silica glass.
  • the contact angle signifies wetting force of materials. The value of wetting force will rise as contact angle becomes lower.
  • the coating material 5 is not limited to material which is made of silica glass.
  • the coating material 5 is applied to the surface site 3c of the bubble generation medium 3 so as to cover its surface.
  • the silica glass that makes up the coating material 5 has the property of lowering the contact angle at which the liquid interface meets the surface of the coating material 5, and thus the coating material 5 attracts surrounding liquid instead of shedding. In other words, the liquid spreads on the surface of the coating material 5 as thin film rather than forming droplets.
  • the coating material 5 is porous having a lot of tiny pores 5a of several ⁇ m to several dozen ⁇ m in diameter. The pores 5a are communicated with the pores 3b of the bubble generation medium 3.
  • the said super-micro bubbles are discharged from the pores 5a of the coating material 5 into liquid after passing through the pores 3b of the bubble generation medium 3.
  • the coating material 5 has the property that contact angle at which the liquid interface meets the surface of the coating material 5 is low. Because of this, the wetting force of the coating material 5 is high. The surrounding liquid is attracted to the coating material 5. Thus, a thin liquid film is formed between the super-micro bubbles and the coating material 5. This makes it easy to separate the super-micro bubbles from the bubble generation medium 3. Thus, the super-micro bubbles would not coalesce in a mass bubble.
  • the super-micro bubbles are generated from the pores 5a after passing through the pores 3b.
  • the super-micro bubbles are easily separated from the surface of the coating material 5 because the thin liquid film is formed on the surface of the coating material 5 whereby the super-micro bubbles are generated. In other words, the super-micro bubbles can be easily separated because the liquid film lies between the super-micro bubbles and the coating material 5.
  • the super-micro bubbles are generated from the pores 5a.
  • the liquid delivered under pressure by the liquid jetting device 4 rapidly passes through the surface of the coating material 5.
  • the super-micro bubbles are separated from the surface site 3c of the bubble generation medium 3.
  • the super-micro bubbles which dwell on the surface of the coating material 5 will separately move around in the liquid without coalescing with subsequently generated super-micro bubbles or other super-micro bubbles discharged from surrounding pores 5a. Because of this constitution, the super-micro bubbles can be generated by using a simple method. Also, the super-micro bubble generation device 1 can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements.
  • the bubble generation medium 3 is formed into a tabular shape.
  • the super-micro bubbles are generated from the surface site 3c, whose plate area is wider than any other plate face of the bubble generation medium 3. Because the bubble generation medium 3 is formed into a tabular shape with wide surface area, the super-micro bubbles can be generated effectively. Also, because the super-micro bubbles separates from the bubble generation medium 3 as soon as they are generated, they would not coalesce in a mass bubble.
  • the liquid jetting device 4 is a device for jetting liquid in the direction substantially perpendicular to the direction in which the bubble generation medium 3 discharges the super-micro bubbles, that is, jetting liquid in the direction parallel to the surface site 3c, which is the widest of all of plate faces of the generation medium 3.
  • the direction of jetting liquid is sufficient if the said direction is substantially perpendicular to the direction in which the super-micro bubbles are discharged, that is, the said direction may be any direction shown in Fig. 5(a) as arrow a, arrow b, arrow c, or arrow d.
  • the liquid jetting device 4 has an injection hole 4a for jetting liquid flow toward the surface site 3c of the plate face of the bubble generation medium 3.
  • the said liquid flow whose width is as same as that of the surface site 3c of the plate face of the bubble generation medium 3, is jetted in the direction parallel to the plate face.
  • the generated super-micro bubbles separate from the bubble generation medium 3 as soon as they are generated, and thus, the super-micro bubbles would not coalesce in a mass bubble.
  • the super-micro bubbles can be generated by using a simple method.
  • the super-micro bubble generation device 1 can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements.
  • the super-micro bubble generation device 1 in accordance with another embodiment is formed into a hollow polygonal shape.
  • the bubble generation medium 3 is formed into a hollow square pillar shape. Because of this constitution, gas is discharged from each surface site 3c of the square pillar equivalently.
  • the surface sites 3c corresponds to longitudinally side walls of the square pillar shape. Thus, the super-micro bubbles can be generated effectively.
  • the liquid is jetted in the same direction parallel to two side walls, which comprise opposing side walls of the square pillar shaped bubble generation medium 3, that is, along the surface of the two side walls in the same direction (direction of arrow A and arrow B).
  • the liquid is also jetted in the same direction parallel to the other two side walls, that is, in the direction opposite to arrow A and arrow B (direction of arrow C and arrow D).
  • the liquid jetting direction is not limited to such directions shown in this embodiment.
  • the liquid may be jetted in the same direction parallel to all of the side walls.
  • the liquid may be jetted in the same direction parallel to three of the side walls and in the opposite direction parallel to the other side wall.
  • the super-micro bubble generation device 1 in accordance with another embodiment includes the bubble generation medium 3 which is formed into a hollow columnar shape.
  • the gas which has been delivered under pressure passes through the gas supply line 11, and then the gas will be delivered in the columnar shaped internal space 3a which is provided in the central part of the bubble generation medium 3. Because of this constitution, the gas is discharged from the surface site 3c, which is the side wall of the column, equivalently in every direction. Thus, the super-micro bubbles can be generated effectively.
  • the liquid jetting device 4 is provided on the periphery of the gas supply line 11.
  • An injection hole 4a of the liquid jetting device 4 is formed into a circular shape having a diameter slightly larger than that of the periphery of the bubble generation medium 3.
  • the liquid jetting device 4 jets zonal liquid flow along the surface site 3c in the direction same as gas supplying direction.
  • the surface site 3c corresponds to longitudinally side wall of the bubble generation medium 3. In this way, the generated super-micro bubbles separate from the bubble generation medium 3 as soon as they are generated, and thus, the super-micro bubbles would not coalesce in a mass bubble.
  • the super-micro bubble generation device 1 can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements.
  • the liquid jetting direction is not limited to such directions shown in this embodiment.
  • the liquid may be jetted in a direction opposite to the gas supplying direction.
  • the super-micro bubble generation device 1 in accordance with another embodiment includes the bubble generation medium 3 which is formed into a conical shape.
  • the internal space 3a is provided on the principal axis part of section of the said conical shape.
  • the gas delivered under pressure by compressor 2 passes through the gas supply line 11, and then the gas will be delivered under pressure into the internal space 3a of the bubble generation medium 3. Because of this constitution, the gas is discharged from the surface site 3c, which is the side wall of the cone, equivalently in every direction. Thus, the super-micro bubbles can be generated effectively.
  • the liquid jetting device 4 is facing the bubble generation medium 3.
  • the injection hole 4a of the liquid jetting device 4 is disposed on the extension line that extends from a vertex 3d of the cone of the bubble generation medium 3.
  • the liquid jetting device 4 is a device for jetting liquid toward the vertex 3d of the cone.
  • the liquid since the liquid is jetted toward the vertex 3d of the cone, the liquid will flow radially along the surface site 3c, which is the side wall of the bubble generation medium 3. In other words, the liquid is jetted in the direction substantially perpendicular to the direction in which the bubble generation medium 3 discharges the super-micro bubbles.
  • the super-micro bubble generation device 1 can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements.
  • a gas supplying inlet port of the gas supply line 11 may be provided in the direction perpendicular to the height direction of the cone of the bubble generation medium 3. Because of this constitution, it is able to make an effective use of space downstream of the liquid flow.
  • the gas supplying inlet port of the gas supply line 11 in this embodiment is provided upside of the bubble generation medium 3, the position of the gas supplying inlet port is not limited to this.
  • the gas supplying inlet port may be provided in the horizontal direction.
  • a bubble guide groove 55 which is formed around the bubble generation medium 3, is provided downstream of the liquid flow jetted from the liquid jetting device 4.
  • the bubble guide groove 55 is formed into an arc-like shape in the cross section view, located downstream of the liquid flow.
  • the bubble guide grove 55 guides the direction of super-micro bubbles movement.
  • the micro bubbles move from the surface site 3c of the bubble generation medium 3 by the liquid flow jetted from the liquid jetting device 4.
  • the super-micro bubbles which are separated from the bubble generation medium 3 will impinge on the bubble guide groove 55. After impingement, the super-micro bubbles will move along the bubble guide groove 55. Thus, it is able to preserve a distance between each super-micro bubble. Accordingly, the super-micro bubbles would not coalesce in a mass bubble.
  • the bubble generation medium 3 and the liquid jetting device 4, which comprise the super-micro bubble generation device 1 may be configured in a unified manner. If constituted in this manner, positional relationship between the generation medium 3 and the injection hole 4a of the liquid jetting device 4 is maintained constant consistently. Accordingly, it is able to save many steps for adjusting position thereof.
  • a wall surface facing the liquid jetting device 4 may be inclined in an arc-like shape when seen from a side. Because of this constitution, the direction of super-micro bubbles movement can be guided. The super-micro bubbles move along the surface site 3c of the plate face of the bubble generation medium 3 by the jetted liquid flow from the liquid jetting device 4. In this way, it is able to preserve a distance between each super-micro bubble. As such, the super-micro bubbles would not coalesce in a mass bubble.
  • the bubble generation medium 3 may be formed into a tabular shape, wherein several gas supply lines 11 are provided in parallel inside the bubble generation medium 3.
  • the gas passes through the gas supply lines 11, and is delivered under pressure into the internal space 3 a of the bubble generation medium 3.
  • the gas supply lines 11 are branched inside the bubble generation medium 3.
  • the said branched gas supply lines 11 are arranged in parallel.
  • the super-micro bubbles are generated from the surface site 3c of the bubble generation medium 3 by gas pressure from the gas supply lines 11. Keeping wide interval between each gas supply line 11 which is arranged in parallel respectively makes it harder for super-micro bubbles to coalesce in a mass bubble.
  • the numbers or shape of the liquid jetting device is not limited to the state described in this embodiment.
  • more than three liquid jetting devices may be provided.
  • the shape or material of the gas supply line 11 is not limited to the state described in this embodiment.
  • the gas supply line 11 may be a metallic pipe or a plastic pipe.
  • the super-micro bubble generation device of the present invention is industrially useful because it can generate super-micro bubbles using a simple method and can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements. In this way, the generated super-micro bubbles separate from the bubble generation medium 3 as soon as they are generated, and thus, the super-micro bubbles would not coalesce in a mass bubble. As just described, the super-micro bubbles can be generated by using a simple method. Also, the super-micro bubble generation device 1 can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Nozzles (AREA)

Abstract

Provided is a super-micro bubble generation device providing super-micro bubbles using a simple method and having a higher degree of freedom of installation so as to be suitable for a place where the device is to meet functional requirements. A super-micro bubble generation device is provided with a compressor (2) for delivering gas under pressure, and also with a bubble generation medium (3) for discharging the gas, which has been delivered under pressure, as super-micro bubbles into liquid. The bubble generation medium (3) consists of a high-density compound which is an electrically conductive substance. The super-micro bubble generation device is also provided with a liquid jetting device (4) for jetting liquid in the direction substantially perpendicular to the direction in which the bubble generation medium (3) discharges the super-micro bubbles, said liquid being the same kind of liquid as the liquid into which the super-micro bubbles are discharged.

Description

    Technical Field
  • The present invention relates to an art of a super-micro bubble generation device which can generate super-micro bubbles in liquid.
  • Background Art
  • In recent years, the art of utilizing super-micro bubbles of several hundred nm to several dozen µm in size (diameter) has been attracting attention. The super-micro bubbles are used in liquid such as tap water, the water of lakes and marshes or rivers, or marine water or the like. The said super-micro bubbles have the property that the surface areas thereof are very large. The said super-micro bubbles also have physiochemical property such as self-pressure effect. Technology of utilizing the characteristics of such micro bubbles in effluent purification, purification, physical care in the bathtub, and the like has been developing.
  • One method for generating the super-micro bubbles having the said properties has become public knowledge. That method has steps of, spinning around motor in liquid; raising the flow rate by pump pressure; inhaling the air; and stirring. As such, bubbles are generated. The generated bubbles are then torn into super-micro bubbles by a rotating wing or a cutting tool. Moreover, another method for generating the super-micro bubbles has also become public knowledge. In that method, a liquid jetting nozzle is disposed around an air jetting nozzle, and bubbles jetted from the air jetting nozzle are torn into super-micro bubbles by the force of jet flow of the liquid jetting nozzle. Furthermore, another method for generating the super-micro bubbles has also become public knowledge. In that method, bubbles are generated by stirring, and the generated bubbles go through the eyes of a mesh membrane so as to fine down to super-micro bubbles (for example, see Patent Literature 1).
  • Prior art documents Patent Literature
    • Patent Literature 1: the Japanese Patent Laid Open Gazette 2009-101250
    Disclosure of Invention Problems to Be Solved by the Invention
  • By using the conventional method of spinning around motor in liquid; raising the flow rate by pump pressure; inhaling the air; stirring; and tearing into super-micro bubbles by the rotating wing or the cutting tool, it is able to generate large amount of super-micro bubbles. However, fast rotation of the rotating wing or the cutting tool will cause corrosion due to cavitation or abrasion of devices. These will lead to significant damage, and thus, durability will become a problem. When the process liquid, discharged water, or the lakes and marshes or rivers, or marine water or the like with very poor quality is used, deterioration will proceed because the liquid directly contact to the device.
    Meanwhile, when the method of which the generated bubbles go through the eyes of the mesh membrane so as to fine down to super-micro bubbles is applied, the mesh membrane will become depleted in the long run since the mesh membrane is made of organic substance. Moreover, when the mesh membrane is provided at right angle with liquid surface, the generated super-micro bubbles will overlap with other super-micro bubbles and will coalesce in a mass bubble. To avoid this, the mesh membrane should be provided parallel to the liquid surface, that is, installation method is limited.
    Moreover, when the method of which the liquid jetting nozzle is disposed around the air jetting nozzle and bubbles jetted from the air jetting nozzle are torn into super-micro bubbles by the force of jet flow of the liquid jetting nozzle is applied, it is difficult to stabilize the particle size because there is limitation in pore size of the nozzle.
  • Therefore, considering the above-mentioned problems, the object of the present invention is to provide a super-micro bubble generation device which can generate super-micro bubbles using a simple method and can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements.
  • Means for Solving the Problems
  • The above-mentioned problems are solved by the following means.
  • Briefly stated, a super-micro bubble generation device of the present invention comprises: a compressor for delivering gas under pressure, and a bubble generation medium for discharging the gas, which has been delivered under pressure, as super-micro bubbles into liquid, wherein the said bubble generation medium consists of a high-density compound which is an electrically conductive substance. The said super-micro bubble generation device further comprises a liquid jetting device for jetting liquid in the direction substantially perpendicular to the direction in which the bubble generation medium discharges the super-micro bubbles, said liquid being the same kind of liquid as the liquid into which the super-micro bubbles are discharged.
  • With regard to the super-micro bubble generation device of the present invention, the said bubble generation medium is formed into a conical shape. The gas from the said compressor passes through the said bubble generation medium from a bottom face of the cone toward a vertex, wherein the said liquid being the same kind of liquid as the liquid into which the super-micro bubbles are discharged is jetted toward the vertex of the cone of the said bubble generation medium by the said liquid jetting device.
  • With regard to the super-micro bubble generation device of the present invention, an outer periphery of the said bubble generation medium is covered with a covering material, wherein the said covering material has the property of lowering the contact angle at which the liquid meets the surface of the said covering material.
  • Effect of the Invention
  • The present invention constructed as the above brings the following effects.
  • According to the super-micro bubble generation device of the present invention, the bubble generation medium consisting of the high-density compound would not deteriorate due to expansion and contraction since the high-density compound is a solid substance which does not have flexibility. Also, the high-density compound would not become eroded due to temporal change since it is made of inorganic material. Thus, the super-micro bubble generation device is prevented from damage and degradation. Also, because the generated super-micro bubbles separates from the bubble generation medium as soon as they are generated, they would not coalesce in a mass bubble. Thus, the super-micro bubbles can be generated by using a simple method. Also, the super-micro bubble generation device can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements. Moreover, since the said high-density compound is an electrically conductive substance, negatively charged ions tend to range on the surface of the high-density compound. The bubbles generated from the said bubble generation medium become negatively charged by receiving the negatively charged ions from the surface of the high-density compound. The bubbles would not coalesce in a mass bubble since each bubble act repulsively due to this negative electric charge.
  • According to the super-micro bubble generation device of the present invention, the liquid is jetted toward the vertex of the cone. Then, the liquid will flow along the curved surface of the cone. In this way, it is able to make the size of the injection hole smaller, and thus, lower pressure is needed for jetting the liquid. The generated super-micro bubbles separate from the bubble generation medium as soon as they are generated, and thus, the super-micro bubbles would not coalesce in a mass bubble. As just described, the super-micro bubbles can be generated by using a simple method. Also, the super-micro bubble generation device can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements. Also, since the said high-density compound is an electrically conductive substance, bubbles generated from the bubble generation medium are negatively charged. The bubbles would not coalesce in a mass bubble since each bubble act repulsively due to this negative electric charge.
  • According to the super-micro bubble generation device of the present invention, the covering material has the property that contact angle at which the liquid meets the surface of the covering material is low. Accordingly, the surrounding liquid is attracted to the covering material. Thus, a thin liquid film is formed between the super-micro bubbles and the covering material. This makes it easy to separate the super-micro bubbles from the bubble generation medium. Thus, the super-micro bubbles would not coalesce in a mass bubble. Moreover, there is an effect of separating the super-micro bubbles by liquid flow by jetting liquid toward the bubble generation medium coated with the covering material from the liquid jetting device. There is also an effect of separating the super-micro bubbles by making the contact angle, at which the liquid interface meets the surface of the covering material, smaller. Combination of these effects makes it easy to separate super-micro bubbles.
  • Brief Description of Drawings
    • [Fig. 1] Fig. 1(a) is a schematic drawing showing the overall configuration of a super-micro bubble generation device which is one embodiment of the present invention. Fig. 1(b) is an enlarged cross-section view of a bubble generation medium.
    • [Fig. 2] It is an enlarged cross-section view of the bubble generation medium: Fig 2(a) shows the point when a super-micro bubble is generated, Fig. 2(b) shows the point when the super-micro bubble separates from the bubble generation medium, and Fig. 2(c) shows the point when a next super-micro bubble is generated.
    • [Fig. 3] It is an enlarged cross-section view of the bubble generation medium coated with a coating material.
    • [Fig. 4] It is an enlarged cross-section view of the bubble generation medium: Fig 4(a) shows the point when a super-micro bubble is generated, Fig. 4(b) shows the point when the super-micro bubble separates from the bubble generation medium, and Fig. 4(c) shows the point when a next super-micro bubble is generated.
    • [Fig. 5] Fig. 5(a) is a schematic drawing showing the overall configuration of a super-micro bubble generation device which is another embodiment of the present invention. Fig. 5(b) is an enlarged cross-section view of a bubble generation medium in accordance with another embodiment.
    • [Fig. 6] Fig. 6(a) is an oblique drawing showing the overall configuration of a super-micro bubble generation device which is another embodiment of the present invention. Fig. 6(b) is an oblique drawing showing the overall configuration of a super-micro bubble generation device which is another embodiment of the present invention. Fig. 6(c) is an oblique drawing showing the overall configuration of a super-micro bubble generation device which is another embodiment of the present invention.
    • [Fig. 7] It is a cross-section view of the super-micro bubble generation device in accordance with another embodiment of the present invention.
    The Mode for Carrying out the Invention
  • Next, explanation will be given on the mode for carrying out the invention.
  • As shown in Fig. 1(a) and (b), a super-micro bubble generation device 1 is provided with a compressor 2 as a compression machine for delivering gas under pressure, and also with a bubble generation medium 3 for discharging the gas, which has been delivered under pressure, as super-micro bubbles into liquid. The super-micro bubble generation device 1 is also provided with a liquid jetting device 4 for jetting liquid being the same kind of liquid as the liquid into which the super-micro bubbles are discharged.
    The compressor 2 is a device for delivering gas under pressure into an internal space 3 a of the bubble generation medium 3 through the intermediary of a gas supply line 11. The gas delivered under pressure by the compressor 2 is not limited to air. For example, the gas may be ozone gas or nitrogen gas. And the said liquid may be such as fresh water or sea water of rivers or lakes, water, or industrial wastewater. Furthermore, the said liquid also may be solvent such as pharmaceutical products. In that case, the pharmaceutical products are stirred or mixed by using the said super-micro bubbles.
  • The gas delivered under pressure by the compressor 2 passes through the gas supply line 11, and then the gas will be delivered under pressure into the internal space 3a of the bubble generation medium 3. The bubble generation medium 3 consists of a high-density compound whose solid texture is made of molecular structure consisting of ionic bonds. Moreover, the said high-density compound is an electrically conductive substance, and thus, bubbles generated from the bubble generation medium 3 are negatively charged. In other words, the super-micro bubbles are negatively charged by addition of free electrons on passing through the bubble generation medium 3, which is the electrically conductive substance. The bubbles would not coalesce in a mass bubble since each bubble act repulsively due to this negative electric charge. For instance, the said electrically conductive substance is made of carbon-based material.
  • Moreover, as shown in Fig. 1(b), the bubble generation medium 3 is porous having a lot of tiny pores 3b of several µm to several dozen µm in diameter. Because of this constitution, the gas delivered under pressure by the compressor 2 passes through the said pores 3b. In other words, the super-micro bubbles are discharged from the pores 3b into liquid by gas tension of the gas delivered under pressure from compressor 2. Because of this constitution, the bubble generation medium 3 consisting of the high-density compound would not deteriorate due to expansion and contraction since the high-density compound is a solid substance which does not have flexibility. Also, the high-density compound would not become eroded due to temporal change since it is made of inorganic material. Thus, the super-micro bubble generation device 1 is prevented from damage and degradation.
  • Moreover, the bubble generation medium 3 consisting of the high-density compound would not become worn even though liquid flow injected from the liquid jetting device 4 hits the high-density compound because it is activated. Thus, durability of the bubble generation medium 3 has been improved.
  • The liquid jetting device 4 is a device for separating super-micro bubbles generated from a surface site 3c of the bubble generation medium 3 by the liquid flow. The liquid jetting device 4 jets liquid being the same kind of liquid as the liquid into which the super-micro bubbles are discharged. Because of this constitution, the super-micro bubbles can be separated by the liquid flow without influencing fluid composition. Moreover, it is able to prevent different kind of liquid being mixed into the liquid.
  • As shown in Fig. 2(a), the said super-micro bubbles are discharged from the tiny pores 3b. In that split second, as shown in Fig. 2(b), the liquid delivered under pressure by the liquid jetting device 4 rapidly passes through the surface site 3c, from where the super-micro bubbles are discharged, so as to separate the super-micro bubbles from the surface site 3c.
  • Thus, as shown in Fig. 2(c), the super-micro bubbles discharged from the surface site 3c separately move around in the liquid without coalescing with subsequently generated super-micro bubbles or other super-micro bubbles discharged from surrounding pores 3b. Because of this constitution, super-micro bubbles can be generated by using a simple method. Moreover, the super-micro bubble generation device 1 can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements.
  • Also, the bubble generation medium 3 may be coated with a coating material 5 which is a covering material. The coating material 5 is an inorganic material which has the property that contact angle at which the liquid interface meets the surface of the coating material 5 is low (for example, if the liquid is water, the coating material 5 may be made of superhydrophilic material). In this embodiment, the coating material 5 is made of silica glass. The contact angle signifies wetting force of materials. The value of wetting force will rise as contact angle becomes lower. However, the coating material 5 is not limited to material which is made of silica glass.
  • The coating material 5 is applied to the surface site 3c of the bubble generation medium 3 so as to cover its surface. The silica glass that makes up the coating material 5 has the property of lowering the contact angle at which the liquid interface meets the surface of the coating material 5, and thus the coating material 5 attracts surrounding liquid instead of shedding. In other words, the liquid spreads on the surface of the coating material 5 as thin film rather than forming droplets. Also, the coating material 5 is porous having a lot of tiny pores 5a of several µm to several dozen µm in diameter. The pores 5a are communicated with the pores 3b of the bubble generation medium 3.
  • As a result, as shown in Fig. 3, the said super-micro bubbles are discharged from the pores 5a of the coating material 5 into liquid after passing through the pores 3b of the bubble generation medium 3. Here, the coating material 5 has the property that contact angle at which the liquid interface meets the surface of the coating material 5 is low. Because of this, the wetting force of the coating material 5 is high. The surrounding liquid is attracted to the coating material 5. Thus, a thin liquid film is formed between the super-micro bubbles and the coating material 5. This makes it easy to separate the super-micro bubbles from the bubble generation medium 3. Thus, the super-micro bubbles would not coalesce in a mass bubble.
  • Moreover, there is an effect of separating the super-micro bubbles by liquid flow by jetting liquid toward the bubble generation medium 3 coated with the coating material 5 from the liquid jetting device 4. There is also an effect of separating the super-micro bubbles by making the contact angle, at which the liquid interface meets the surface of the coating material 5, smaller. Combination of these effects makes it easy to separate super-micro bubbles.
  • As shown in Fig. 4(a), the super-micro bubbles are generated from the pores 5a after passing through the pores 3b. The super-micro bubbles are easily separated from the surface of the coating material 5 because the thin liquid film is formed on the surface of the coating material 5 whereby the super-micro bubbles are generated. In other words, the super-micro bubbles can be easily separated because the liquid film lies between the super-micro bubbles and the coating material 5.
  • Also, as shown in Fig. 4(b), the super-micro bubbles are generated from the pores 5a. In that split second, the liquid delivered under pressure by the liquid jetting device 4 rapidly passes through the surface of the coating material 5. Thus, the super-micro bubbles are separated from the surface site 3c of the bubble generation medium 3.
  • For this reason, as shown in Fig. 4(c), the super-micro bubbles which dwell on the surface of the coating material 5 will separately move around in the liquid without coalescing with subsequently generated super-micro bubbles or other super-micro bubbles discharged from surrounding pores 5a. Because of this constitution, the super-micro bubbles can be generated by using a simple method. Also, the super-micro bubble generation device 1 can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements.
  • Next, explanation will be given on the configuration of the bubble generation medium 3.
    As shown in Fig. 5(a), the bubble generation medium 3 is formed into a tabular shape. The super-micro bubbles are generated from the surface site 3c, whose plate area is wider than any other plate face of the bubble generation medium 3. Because the bubble generation medium 3 is formed into a tabular shape with wide surface area, the super-micro bubbles can be generated effectively. Also, because the super-micro bubbles separates from the bubble generation medium 3 as soon as they are generated, they would not coalesce in a mass bubble.
  • Also, the liquid jetting device 4 is a device for jetting liquid in the direction substantially perpendicular to the direction in which the bubble generation medium 3 discharges the super-micro bubbles, that is, jetting liquid in the direction parallel to the surface site 3c, which is the widest of all of plate faces of the generation medium 3. The direction of jetting liquid is sufficient if the said direction is substantially perpendicular to the direction in which the super-micro bubbles are discharged, that is, the said direction may be any direction shown in Fig. 5(a) as arrow a, arrow b, arrow c, or arrow d. For example, the liquid jetting device 4 has an injection hole 4a for jetting liquid flow toward the surface site 3c of the plate face of the bubble generation medium 3. The said liquid flow, whose width is as same as that of the surface site 3c of the plate face of the bubble generation medium 3, is jetted in the direction parallel to the plate face.
  • Because of this constitution, as shown in Fig. 2, the generated super-micro bubbles separate from the bubble generation medium 3 as soon as they are generated, and thus, the super-micro bubbles would not coalesce in a mass bubble. As just described, the super-micro bubbles can be generated by using a simple method. Also, the super-micro bubble generation device 1 can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements.
  • Moreover, as shown in Fig. 5(b), the super-micro bubble generation device 1 in accordance with another embodiment is formed into a hollow polygonal shape. In this embodiment, the bubble generation medium 3 is formed into a hollow square pillar shape. Because of this constitution, gas is discharged from each surface site 3c of the square pillar equivalently. The surface sites 3c corresponds to longitudinally side walls of the square pillar shape. Thus, the super-micro bubbles can be generated effectively.
  • Moreover, as shown in Fig. 5(b), the liquid is jetted in the same direction parallel to two side walls, which comprise opposing side walls of the square pillar shaped bubble generation medium 3, that is, along the surface of the two side walls in the same direction (direction of arrow A and arrow B). The liquid is also jetted in the same direction parallel to the other two side walls, that is, in the direction opposite to arrow A and arrow B (direction of arrow C and arrow D).
    Furthermore, the liquid jetting direction is not limited to such directions shown in this embodiment. For example, the liquid may be jetted in the same direction parallel to all of the side walls. Alternatively, the liquid may be jetted in the same direction parallel to three of the side walls and in the opposite direction parallel to the other side wall.
  • Moreover, as shown in Fig. 6(a), the super-micro bubble generation device 1 in accordance with another embodiment includes the bubble generation medium 3 which is formed into a hollow columnar shape. The gas which has been delivered under pressure passes through the gas supply line 11, and then the gas will be delivered in the columnar shaped internal space 3a which is provided in the central part of the bubble generation medium 3. Because of this constitution, the gas is discharged from the surface site 3c, which is the side wall of the column, equivalently in every direction. Thus, the super-micro bubbles can be generated effectively.
  • Moreover, as shown in Fig. 6(a), the liquid jetting device 4 is provided on the periphery of the gas supply line 11. An injection hole 4a of the liquid jetting device 4 is formed into a circular shape having a diameter slightly larger than that of the periphery of the bubble generation medium 3. The liquid jetting device 4 jets zonal liquid flow along the surface site 3c in the direction same as gas supplying direction. The surface site 3c corresponds to longitudinally side wall of the bubble generation medium 3. In this way, the generated super-micro bubbles separate from the bubble generation medium 3 as soon as they are generated, and thus, the super-micro bubbles would not coalesce in a mass bubble. As just described, the super-micro bubble generation device 1 can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements.
    Furthermore, the liquid jetting direction is not limited to such directions shown in this embodiment. For example, the liquid may be jetted in a direction opposite to the gas supplying direction.
  • Moreover, as shown in Fig. 6(b), the super-micro bubble generation device 1 in accordance with another embodiment includes the bubble generation medium 3 which is formed into a conical shape. The internal space 3a is provided on the principal axis part of section of the said conical shape. The gas delivered under pressure by compressor 2 passes through the gas supply line 11, and then the gas will be delivered under pressure into the internal space 3a of the bubble generation medium 3. Because of this constitution, the gas is discharged from the surface site 3c, which is the side wall of the cone, equivalently in every direction. Thus, the super-micro bubbles can be generated effectively.
  • Moreover, the liquid jetting device 4 is facing the bubble generation medium 3. In other words, as shown in Fig. 6(b), the injection hole 4a of the liquid jetting device 4 is disposed on the extension line that extends from a vertex 3d of the cone of the bubble generation medium 3. The liquid jetting device 4 is a device for jetting liquid toward the vertex 3d of the cone. As just described, since the liquid is jetted toward the vertex 3d of the cone, the liquid will flow radially along the surface site 3c, which is the side wall of the bubble generation medium 3. In other words, the liquid is jetted in the direction substantially perpendicular to the direction in which the bubble generation medium 3 discharges the super-micro bubbles.
  • In this way, it is able to make the size of the injection hole 4a smaller, and thus, lower pressure is needed for jetting the liquid. The generated super-micro bubbles separate from the bubble generation medium 3 as soon as they are generated, and thus, the super-micro bubbles would not coalesce in a mass bubble. As just described, the super-micro bubbles can be generated by using a simple method. Also, the super-micro bubble generation device 1 can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements.
  • Also, as shown in Fig. 6(c), a gas supplying inlet port of the gas supply line 11 may be provided in the direction perpendicular to the height direction of the cone of the bubble generation medium 3. Because of this constitution, it is able to make an effective use of space downstream of the liquid flow. Although the gas supplying inlet port of the gas supply line 11 in this embodiment is provided upside of the bubble generation medium 3, the position of the gas supplying inlet port is not limited to this. For example, the gas supplying inlet port may be provided in the horizontal direction.
  • Moreover, a bubble guide groove 55, which is formed around the bubble generation medium 3, is provided downstream of the liquid flow jetted from the liquid jetting device 4. As shown in Fig. 7, the bubble guide groove 55 is formed into an arc-like shape in the cross section view, located downstream of the liquid flow. The bubble guide grove 55 guides the direction of super-micro bubbles movement. The micro bubbles move from the surface site 3c of the bubble generation medium 3 by the liquid flow jetted from the liquid jetting device 4. Because of existence the bubble guide groove 55, the super-micro bubbles which are separated from the bubble generation medium 3 will impinge on the bubble guide groove 55. After impingement, the super-micro bubbles will move along the bubble guide groove 55. Thus, it is able to preserve a distance between each super-micro bubble. Accordingly, the super-micro bubbles would not coalesce in a mass bubble.
  • Moreover, the bubble generation medium 3 and the liquid jetting device 4, which comprise the super-micro bubble generation device 1, may be configured in a unified manner. If constituted in this manner, positional relationship between the generation medium 3 and the injection hole 4a of the liquid jetting device 4 is maintained constant consistently. Accordingly, it is able to save many steps for adjusting position thereof. Moreover, a wall surface facing the liquid jetting device 4 may be inclined in an arc-like shape when seen from a side. Because of this constitution, the direction of super-micro bubbles movement can be guided. The super-micro bubbles move along the surface site 3c of the plate face of the bubble generation medium 3 by the jetted liquid flow from the liquid jetting device 4. In this way, it is able to preserve a distance between each super-micro bubble. As such, the super-micro bubbles would not coalesce in a mass bubble.
  • Moreover, the bubble generation medium 3 may be formed into a tabular shape, wherein several gas supply lines 11 are provided in parallel inside the bubble generation medium 3. In this case, the gas passes through the gas supply lines 11, and is delivered under pressure into the internal space 3 a of the bubble generation medium 3. The gas supply lines 11 are branched inside the bubble generation medium 3. The said branched gas supply lines 11 are arranged in parallel. The super-micro bubbles are generated from the surface site 3c of the bubble generation medium 3 by gas pressure from the gas supply lines 11. Keeping wide interval between each gas supply line 11 which is arranged in parallel respectively makes it harder for super-micro bubbles to coalesce in a mass bubble.
  • However, the numbers or shape of the liquid jetting device is not limited to the state described in this embodiment. For example, more than three liquid jetting devices may be provided. Furthermore, the shape or material of the gas supply line 11 is not limited to the state described in this embodiment. For example, the gas supply line 11 may be a metallic pipe or a plastic pipe.
  • Industrial Applicability
  • The super-micro bubble generation device of the present invention is industrially useful because it can generate super-micro bubbles using a simple method and can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements. In this way, the generated super-micro bubbles separate from the bubble generation medium 3 as soon as they are generated, and thus, the super-micro bubbles would not coalesce in a mass bubble. As just described, the super-micro bubbles can be generated by using a simple method. Also, the super-micro bubble generation device 1 can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements.
  • Description of Notations
  • 1
    super-micro bubble generation device
    2
    compressor
    3
    bubble generation medium
    4
    liquid jetting device
    5
    coating material

Claims (3)

  1. A super-micro bubble generation device comprising:
    a compressor for delivering gas under pressure, and
    a bubble generation medium for discharging the gas, which has been delivered under pressure, as super-micro bubbles into liquid,
    wherein the said bubble generation medium consists of a high-density compound which is an electrically conductive substance, and
    further comprising a liquid jetting device for jetting liquid in the direction substantially perpendicular to the direction in which the bubble generation medium discharges the super-micro bubbles, said liquid being the same kind of liquid as the liquid into which the super-micro bubbles are discharged.
  2. The super-micro bubble generation device as claimed in claim 1, characterized in that the said bubble generation medium is formed into a conical shape, and in that the gas from the said compressor passes through the said bubble generation medium from a bottom face of the cone toward a vertex, wherein the said liquid being the same kind of liquid as the liquid into which the super-micro bubbles are discharged is jetted toward the vertex of the cone of the said bubble generation medium by the said liquid jetting device.
  3. The super-micro bubble generation device as claimed in claim 1 or claim 2, characterized in that an outer periphery of the said bubble generation medium is covered with a covering material, wherein the said covering material has the property of lowering the contact angle at which the liquid meets the surface of it.
EP10804452.0A 2009-07-30 2010-07-28 Super-micro bubble generation device Active EP2460582B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10804452T PL2460582T3 (en) 2009-07-30 2010-07-28 Super-micro bubble generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009177693A JP5885376B2 (en) 2008-07-30 2009-07-30 Ultra-fine bubble generator
PCT/JP2010/062705 WO2011013706A1 (en) 2009-07-30 2010-07-28 Super-micro bubble generation device

Publications (3)

Publication Number Publication Date
EP2460582A1 true EP2460582A1 (en) 2012-06-06
EP2460582A4 EP2460582A4 (en) 2015-10-28
EP2460582B1 EP2460582B1 (en) 2020-06-24

Family

ID=43530013

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10804452.0A Active EP2460582B1 (en) 2009-07-30 2010-07-28 Super-micro bubble generation device

Country Status (5)

Country Link
EP (1) EP2460582B1 (en)
DK (1) DK2460582T3 (en)
ES (1) ES2807880T3 (en)
PL (1) PL2460582T3 (en)
WO (1) WO2011013706A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022117598A1 (en) 2020-12-01 2022-06-09 Epigenetica Limited Processes, systems and media for delivering a substance to a plant
WO2022200391A1 (en) 2021-03-22 2022-09-29 Epigenetica Limited Plant propagation
WO2023214041A1 (en) 2022-05-05 2023-11-09 Epigenetica Limited Processes, systems and media for delivering a substance to a plant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110575764A (en) * 2018-06-07 2019-12-17 埃尔微尘科技(北京)有限公司 Heat and mass transfer device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1362789A (en) * 1970-09-24 1974-08-07 British Oxygen Co Ltd Treatment of liquids
JPS5647726U (en) * 1979-09-19 1981-04-28
US4522151A (en) * 1983-03-14 1985-06-11 Arbisi Dominic S Aerator
ZA919256B (en) * 1990-11-23 1992-11-25 Atomaer Pty Ltd Gas particle formation
JP2003245533A (en) * 2002-02-22 2003-09-02 Mori Kikai Seisakusho:Kk Ultrafine air bubble generator
JP4884693B2 (en) * 2004-04-28 2012-02-29 独立行政法人科学技術振興機構 Micro bubble generator
JP4140584B2 (en) * 2004-08-26 2008-08-27 Jfeエンジニアリング株式会社 Air diffuser
JP2007260529A (en) * 2006-03-28 2007-10-11 Kenji Ijuin Air diffusion nozzle and air diffusion tank
JP3958346B1 (en) 2006-07-11 2007-08-15 南舘 誠 Microbubble generator
JP2008132437A (en) * 2006-11-29 2008-06-12 Kubota Corp Microbubble generation apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011013706A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022117598A1 (en) 2020-12-01 2022-06-09 Epigenetica Limited Processes, systems and media for delivering a substance to a plant
WO2022200391A1 (en) 2021-03-22 2022-09-29 Epigenetica Limited Plant propagation
WO2023214041A1 (en) 2022-05-05 2023-11-09 Epigenetica Limited Processes, systems and media for delivering a substance to a plant

Also Published As

Publication number Publication date
WO2011013706A1 (en) 2011-02-03
EP2460582B1 (en) 2020-06-24
PL2460582T3 (en) 2020-11-16
EP2460582A4 (en) 2015-10-28
ES2807880T3 (en) 2021-02-24
DK2460582T3 (en) 2020-08-17

Similar Documents

Publication Publication Date Title
US8919747B2 (en) Super-micro bubble generation device
KR101523187B1 (en) Bubbles generation device and method
EP2460582A1 (en) Super-micro bubble generation device
KR101483412B1 (en) Micro bubble nozzle
JP4802154B2 (en) Ultrafine bubble generator
JPWO2006075452A1 (en) Microbubble generator, vortex breaking nozzle for microbubble generator, wing body for swirl flow generation for microbubble generator, microbubble generating method and microbubble application apparatus
RU2324531C2 (en) Reducing nozzle for water under pressure for generating micro bubbles in flotation plant
EP3492162B1 (en) Microbubble generation device
JP4338139B2 (en) Droplet injection nozzle
KR101654775B1 (en) Gas/liquid mixing circulatory flow generating device
CN112337327B (en) Nanometer bubble generating device
KR101863769B1 (en) apparatus of generating macro or nano bubble
EP2889079B1 (en) Nozzle for dissolved air flotation system
KR101688638B1 (en) Apparatus for cleaning organic matter using fine ozone bubble
KR100582267B1 (en) A way and a device to manufacture micro bubble using by micro-filter
JP2007117853A (en) Fine bubble generator
JP2003010662A (en) Bubble generator
KR101213829B1 (en) Micro-bubble generating system for purifying wastewater
JP5774848B2 (en) Water quality improvement device and water quality improvement method
GB2484070A (en) Fine bubble generation device
KR200359766Y1 (en) A device to manufacture micro bubble using by micro-filter
WO2002053505A1 (en) Device and method for of water purification
JP2012120988A (en) Fine air bubble generator
CN209024231U (en) A kind of molten gas release device
CN113060788A (en) Novel micro-nano air supporting machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120229

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20150925

RIC1 Information provided on ipc code assigned before grant

Ipc: B01F 3/04 20060101ALI20150921BHEP

Ipc: B01F 5/02 20060101AFI20150921BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180221

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191108

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ANZAI SATOSHI

Inventor name: NISHI SUSUMU

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANZAI, SATOSHI

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20200513

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1283340

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010064740

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200812

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200624

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200925

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1283340

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201026

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2807880

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010064740

Country of ref document: DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E051647

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200728

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

26N No opposition filed

Effective date: 20210325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602010064740

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0005020000

Ipc: B01F0025200000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230719

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230726

Year of fee payment: 14

Ref country code: NO

Payment date: 20230721

Year of fee payment: 14

Ref country code: IE

Payment date: 20230719

Year of fee payment: 14

Ref country code: GB

Payment date: 20230720

Year of fee payment: 14

Ref country code: ES

Payment date: 20230926

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230719

Year of fee payment: 14

Ref country code: PL

Payment date: 20230720

Year of fee payment: 14

Ref country code: HU

Payment date: 20230721

Year of fee payment: 14

Ref country code: FR

Payment date: 20230725

Year of fee payment: 14

Ref country code: DK

Payment date: 20230721

Year of fee payment: 14

Ref country code: DE

Payment date: 20230731

Year of fee payment: 14