EP2453109B1 - Gas turbine arrangement and method for operating a gas turbine arrangement - Google Patents

Gas turbine arrangement and method for operating a gas turbine arrangement Download PDF

Info

Publication number
EP2453109B1
EP2453109B1 EP11186258.7A EP11186258A EP2453109B1 EP 2453109 B1 EP2453109 B1 EP 2453109B1 EP 11186258 A EP11186258 A EP 11186258A EP 2453109 B1 EP2453109 B1 EP 2453109B1
Authority
EP
European Patent Office
Prior art keywords
flow
annulus
rotor unit
stationary component
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11186258.7A
Other languages
German (de)
French (fr)
Other versions
EP2453109A1 (en
Inventor
Ulrich Robert Steiger
Sascha Justl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP2453109A1 publication Critical patent/EP2453109A1/en
Application granted granted Critical
Publication of EP2453109B1 publication Critical patent/EP2453109B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/082Cooling fluid being directed on the side of the rotor disc or at the roots of the blades on the side of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/129Cascades, i.e. assemblies of similar profiles acting in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/601Fluid transfer using an ejector or a jet pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/97Reducing windage losses

Definitions

  • the invention relates to a gas turbine arrangement having an annular space which is bounded axially between a rotor unit rotatable about a rotor axis and at least one stationary component and in which a plurality of coolant outlet openings open from the side of the at least one stationary component, from which in each case a coolant flow, usually in the form of cooling air, can be discharged into the annulus.
  • coolant flow are within the rotor unit coolant inlet openings into which passes at least a portion of the coolant flow, which is followed by at thedeffeneinströmötechnischen within the rotor unit adjacent coolant lines to thermally stressed areas of the rotor unit or with the Rotor unit connected components is passed.
  • a generic gas turbine arrangement is the DE 1221497 and the US 4,348,157 can be seen in which used for cooling the mounted on the rotor unit rotor blades cooling air is used, which is supplied via extending within stationary components of the gas turbine engine cooling channels and impinges on correspondingly arranged cooling channel openings on the rotor unit. Corresponding cooling air inlet openings are likewise provided on the rotor side, into which at least part of the supplied cooling air flows. The transfer of the cooling air from the stationary component side into the rotating rotor unit takes place within an annular space which is bounded on the one hand axially to the rotor axis of the rotor unit and the stationary component.
  • the high swirl content of the purge gas flow also contributes to reducing the static pressure within the annulus, which in turn reduces the cooling effect of the cooling air flow in the rotor unit and the associated blades is weakened.
  • a stator assembly of a turbomachine that includes sealing disks that cooperate with sealing elements on an adjacent rotor assembly.
  • a sealing arrangement for a seal between a rotating and stationary part in which a rotating sealing arm has bores through which a leakage due to the back pressure on the rotating arm is fed back against the pressure gradient.
  • the invention is based on the object of a gas turbine arrangement and a method for operating a gas turbine arrangement with a rotatable about a rotor axis rotor unit and at least one stationary component axially limited annular space in which open from the at least one stationary component a plurality of coolant outlet openings, from which in each case a coolant flow, preferably in the form of a cooling air flow, can be brought into the annular space, which at least partially passes into coolant inlet openings, which are provided in the flow direction of the coolant flow propagating through the annular space in the rotor unit, and at least one radially to the annular space, of the rotor unit and at least one stationary component limited cavity, which is pressurized with a purge gas and fluidly connected to the annulus, so educate, that in the annulus system inherent purge gas flow has a negligible disturbance low on the annulus largely axially passing coolant flow.
  • a gas turbine arrangement having the features of the preamble of claim 1 is formed in that the at least one stationary component and the rotor unit include a gap space through which the at least one cavity is separated from the radially outer annular space and via which the at least one cavity with the radially outer annular space is fluidly connected, and that protrude into the gap space on one side of the at least one stationary component fixed flow guide.
  • the formation and arrangement of the flow-guiding along the at least one stationary component are made such that the pressurized purge gas passes through the gap in the direction of the annular space due to a pressure gradient existing between the at least one cavity and the annulus in the form of a purge gas flow, so that the purge gas upon passage through the gap, a largely vortex-free flow characteristic is impressed, ie, that of the purge gas flow Passage through the gap in the annulus inherent Strömungsdrallanteil is considerably smaller than the initial flow swirl of the purge gas before passing through the gap, ie within the at least one cavity.
  • the aim is to reduce the swirl, which is imparted to the purge gas stream in the cavity by rotation of the rotor unit in the direction of rotation of the rotor unit.
  • purge gas flow will flow without swirl about the rotor axis from the gap space into the annulus. It is desirable to smooth out as far as possible the purging gas flow strongly swirling on the cavity side as it passes through the gap, ie, ideally, the purging gas flow should pass the annulus free of eddies, ie in the form of a laminar flow.
  • a vortex-free or vortex-free purge gas flow passing through the annulus has, on the one hand, a low disruption potential for the largely axially directed cooling air flow, and on the other hand, the static pressure inside the annulus is not adversely affected.
  • the at least one cavity adjoins the annular space directly or indirectly radially to the rotor axis via a gap-shaped constriction.
  • stationary components of the gas turbine assembly includes the gap-shaped constriction between the rotor unit and the at least one stationary component an annular gap-shaped gap through which a purge gas flow due to a between the at least one cavity and the annular space existing radial pressure gradient forms.
  • a plurality of individual flow directing means is provided, which extend into the gap space without coming into contact with the rotor unit.
  • the in the ring circumferential direction, preferably with equidistant distance attached flow guide each limit in pairs a flow area, the flow path for the out of the at least one Cavity leaking purge gas determined in the direction of the radially outer annular space.
  • the flow guide means are formed in the form and shape of vanes having a blade profile curved in the axial direction.
  • An axially curved blade profile forms at its upstream end (inflow edge) an entry angle between the profile and rotor axis, which in the direction of rotation of the rotor and at its downstream end (discharge edge) an exit angle between the profile and rotor axis, which is smaller than the entry angle.
  • the exit angle is zero.
  • the angle may even point against the circumferential direction of the rotor rotation to produce a slight counter-rotation. This can be advantageous, for example, to obtain a total swirl-free flow after mixing with the part of the scavenging air, which does not flow through between the blade profiles, but flows through in the gap between the profile end and the rotor unit.
  • the flow-guiding means are variably adjustable around at least one spatial axis.
  • Fig. 1a shows a longitudinal section through a portion of a gas turbine plant, which schematically shows a portion of the rotor unit 2, which is rotatably arranged about the rotor axis A. It is assumed that the in 1a illustrated rotor unit 2 corresponds to one of the first turbine blade row assignable rotor disk, at the peripheral edge of the turbine blades T are arranged.
  • the rotor unit 2 axially opposite a stationary component 1 is provided, on whose surface facing the rotor unit 2 a plurality of individual coolant outlet openings 4 is provided, from the cooling air K, usually in the form of a suitably predetermined Draliströmung, in between the rotor unit 2 and the stationary component 1 on both sides limited annular space 5 is discharged.
  • a cooling air reservoir is introduced, which is supplied via a cooling air system with cooling air.
  • a corresponding nozzle arrangement within the respective cooling air outlet openings 4 provides a flow twist along the inflowing into the annulus 5 cooling air flow K.
  • the respective cooling air outlet openings 4 are arranged so that the cooling air is swirl-free, i. is introduced axially into the annular space 5.
  • the swirl of the cooling air K and scavenging air K is the same when they are mixed in order to minimize the mixing losses.
  • the illustrated annular space 5 is at least partially closed off by platform ends of a series of guide vanes L.
  • cooling air flow K passes through rotor provided on the coolant inlet openings 3 in the interior of the rotor unit 2, in the corresponding cooling lines (not shown) are provided, which forward the absorbed cooling air K preferably in the areas of the turbine blades T.
  • purge gas For a replacement of the introduced in the cavity 7 purge gas usually enters a part of the purge gas in the form of a purge gas flow S through a between the rotor unit 2 and the stationary component 1 on both sides limited gap space 6 in the annular space 5, the purge gas flow S substantially transversely to the cooling air flow K passes radially outward and ultimately the hot gases H is mixed in the working channel of the gas turbine arrangement.
  • the purge gas flow S substantially transversely to the cooling air flow K passes radially outward and ultimately the hot gases H is mixed in the working channel of the gas turbine arrangement.
  • it may also come to a slight end-ring of hot gas in the annulus.
  • transient operation of the gas turbine may cause the flow-guiding means 8 to rub against the rotor unit 2.
  • an abrasive edge a cutting edge or equivalent means may be provided at the free end of the flow directing means 8.
  • honeycombs or an abrasion layer on the corresponding rubbing surface of the rotor unit 2 is possible.
  • FIG. 1b is an illustration with an axial view of the gap space 6 (section AA of FIG. 1 a) shown limited between the stationary component 1 and the rotor unit 2.
  • flow-guiding means 8 Fixed to the stationary component 1, respectively, flow-guiding means 8 are connected on one side, which project into the gap 6 and thus the gap space 6 in a plurality of between the flow-guiding limited flow areas D divided.
  • the individual flow guiding means 8, which are preferably designed in the form of small guide vanes, have at their free end, which faces the rotor unit 2, in each case a shroud 8 ', which encloses a narrow gap 6' with the rotor unit 2.
  • the gap width of the narrow gap 6 ' should be less than half the gap width d of the gap space 6.
  • the narrow gap 6 ' should be set so low, so that as possible no flow components of the purge gas flow S can pass through the between the shrouds 8' of the flow guide 8 and the rotor unit 2.
  • the flow areas D between each adjacently arranged Strömungsleitsch 8 serve as forced flow paths, along which the purge gas flow S smoothed, homogenized or is made uniform, so that flows downstream of the flow guide 8 a largely vortex-free and in a uniform flow direction propagating purge gas flow into the annulus 5.
  • Fig. 1c shows a radially outwardly oriented view of the profile of the respective flow guide 8 (section BB).
  • the individual flow-guiding means 8 likewise include curved flow-through regions D, which are curved in the axial direction so that they flow through the purge gas flow.
  • the shape and design of the Strömungsleitsch can be adjusted individually depending on the aerodynamic Spülgas characterizing within the cavity 7 and is not limited to the formation as a vane-like profile shapes.
  • Fig. 1d is a representation of a second embodiment with axial viewing direction of the gap space 6 (section AA) shown. This differs from the one in Fig. 1b in order to minimize the leakage through the narrow gap 6 ', a seal 9 is mounted on the shroud 8 ". This may be at least one sealing strip of a labyrinth seal or, for example, a brush seal. Similarly, the seal may also be attached to the rotor unit 2.
  • the flow directors 8 are assembled as segments with the closed shroud 8 ", for example, a plurality of flow directors 8 are provided as a circular section with the shroud 8" closed.

Description

Technisches GebietTechnical area

Die Erfindung bezieht sich auf eine Gasturbinenanordnung mit einem Ringraum, der zwischen einer um eine Rotorachse drehbaren Rotoreinheit und wenigstens einer stationären Komponente axialwärts begrenzt ist und in den von Seiten der wenigstens einen stationären Komponente eine Vielzahl von Kühlmittelaustrittsöffnungen münden, aus denen jeweils eine Kühlmittelströmung, zumeist in Form von Kühlluft, in den Ringraum ausbringbar ist. In Strömungsrichtung der sich durch den Ringraum von Seiten der Kühlmittelaustrittsöffnungen ausbreitenden Kühlmittelströmung befinden sich innerhalb der Rotoreinheit Kühlmitteleintrittsöffnungen, in die wenigstens ein Teil der Kühlmittelströmung gelangt, die durch sich an den Kühlmitteleinströmöffnungen innerhalb der Rotoreinheit anschließenden Kühlmittelleitungen an thermisch belastete Bereiche der Rotoreinheit oder an mit der Rotoreinheit verbundene Komponenten geleitet wird.The invention relates to a gas turbine arrangement having an annular space which is bounded axially between a rotor unit rotatable about a rotor axis and at least one stationary component and in which a plurality of coolant outlet openings open from the side of the at least one stationary component, from which in each case a coolant flow, usually in the form of cooling air, can be discharged into the annulus. In the flow direction of the flowing through the annulus from the side of the coolant outlet openings coolant flow are within the rotor unit coolant inlet openings into which passes at least a portion of the coolant flow, which is followed by at the Kühlmitteleinströmöffnungen within the rotor unit adjacent coolant lines to thermally stressed areas of the rotor unit or with the Rotor unit connected components is passed.

Stand der TechnikState of the art

Eine gattungsgemäße Gasturbinenanordnung ist der DE 1221497 und der US 4,348,157 zu entnehmen, bei der zur Kühlung der an der Rotoreinheit angebrachten Rotorschaufeln Kühlluft benutzt wird, die über innerhalb stationärer Komponenten der Gasturbinenanordnung verlaufenden Kühlkanälen zugeführt wird und über entsprechend angeordnete Kühlkanalöffnungen auf die Rotoreinheit auftrifft. Rotorseitig sind ebenfalls entsprechende Kühllufteintrittsöffnungen vorgesehen, in die zumindest ein Teil der zugeführten Kühlluft einströmt. Die Übertragung der Kühlluft von Seiten der stationären Komponente in die sich drehende Rotoreinheit erfolgt innerhalb eines Ringraumes, der einerseits axial zur Rotorachse von der Rotoreinheit und der stationären Komponente begrenzt ist Radial nach innen schliesst sich ein weiterer, innen liegender Ringraum an, in den Spülgas eingebracht ist, um Rotorwellen nahe Komponenten der Rotoreinheit vor reibungsbedingten Überhitzungen zu bewahren. Betriebsbedingt ist das die Rotorwelle unmittelbar umgebende Spülgas sehr stark verwirbelt und bildet innerhalb des Hohlraumes eine stark ausgeprägte Drallströmung aus. Die Druckverhältnisse in den jeweiligen Bereichen der Gasturbine nehmen mit zunehmendem radialen Wellenabstand ab, d.h. das rotorwellenseitig vorhandene Spülgas steht unter einem höheren Druck verglichen zu den Druckverhältnissen innerhalb des Ringraumes, die wiederum über den Arbeitsdruckverhältnissen innerhalb des Heißgaskanals liegen.A generic gas turbine arrangement is the DE 1221497 and the US 4,348,157 can be seen in which used for cooling the mounted on the rotor unit rotor blades cooling air is used, which is supplied via extending within stationary components of the gas turbine engine cooling channels and impinges on correspondingly arranged cooling channel openings on the rotor unit. Corresponding cooling air inlet openings are likewise provided on the rotor side, into which at least part of the supplied cooling air flows. The transfer of the cooling air from the stationary component side into the rotating rotor unit takes place within an annular space which is bounded on the one hand axially to the rotor axis of the rotor unit and the stationary component. Radially inward closes another, inner annular space, is introduced into the purge gas to protect rotor shafts near components of the rotor unit from friction-related overheating. For operational reasons, the purge gas immediately surrounding the rotor shaft is very strongly swirled and forms a pronounced swirl flow within the cavity. The pressure ratios in the respective regions of the gas turbine decrease with increasing radial shaft spacing, ie the purge gas present on the rotor shaft side is under a higher pressure compared to the pressure conditions within the annular space, which in turn are above the working pressure ratios within the hot gas channel.

Es tritt eine radial gerichtete Leckageströmung auf, die von der Innenseite, d.h. von Seiten des rotorwellennahen Hohlraumes durch die radial innere Ringdichtungsanordnung in den Ringraum und von diesem durch die radial äußere Ringdichtungsanordnung in den Hauptgaskanal gerichtet ist. Es zeigt sich dabei, dass die den Ringraum radial durchsetzende Leckageströmung die dort zu Kühlzwecken der Rotoreinheit vorhandene Kühlluftströmung, deren Strömungsrichtung vorwiegend axial orientiert ist, erheblich zu irritieren vermag, wodurch sich der in die Kühlmitteleintrittsöffnungen gelangende Anteil der Kühlluftströmung reduziert und sich die Kühlwirkung sowie die damit verbundene Effizienz der gesamten Turbinenanordnung deutlich verschlechtert.
Die Kühlluft tritt nur mit den erforderlichen Druck in die Turbinenschaufel ein, wenn sie auf mit der vorgesehen Strömungsrichtung auftrifft. Je gleichförmiger die Anströmung zum Eintritt in den Schaufelfuss ist, desto günstiger und effizienter ist die Anordnung.
It enters a radially directed leakage flow, which is directed from the inside, ie from the side of the rotor shaft near cavity through the radially inner ring seal assembly in the annulus and from there through the radially outer ring seal assembly in the main gas channel. It can be seen that the leakage flow radially passing through the leakage flow there for cooling purposes of the rotor unit existing cooling air flow whose flow direction is mainly oriented axially, can significantly irritate, thereby reducing the reaching into the coolant inlet portion of the cooling air flow and the cooling effect and the associated efficiency of the entire turbine arrangement significantly deteriorated.
The cooling air enters the turbine blade only with the required pressure when impinging on the intended flow direction. The more uniform the flow for entry into the blade root, the cheaper and more efficient the arrangement.

In der vorstehend zitierten Druckschrift wird hierzu vorgeschlagen, rotorseitig eine Ablenkvorrichtung zwischen den radial sich gegenüberliegenden Ringdichtungsanordnungen vorzusehen, die die Leckageströmung in radial verlaufende Kanäle zwingt, so dass ein Strömungsweg für die Leckageströmung zwischen der radial inneren und äußeren Ringdichtungsanordnung an den jeweiligen Kühlkanalöffnungen vorbei geschaffen wird.In the document cited above, it is proposed for this purpose to provide a deflecting device on the rotor side between the radially opposite annular sealing arrangements, which forces the leakage flow into radially extending channels, so that a flow path for the leakage flow is provided between the radially inner and outer ring seal assembly past the respective cooling channel openings.

Abgesehen von der vorstehend geschilderten Eigenschaft von nicht vollständig gasdichten Ringdichtungsanordnungen, durch die sich eine Leckageströmung ausbildet, gilt es für einen kontrollierten Austausch des zwischen den rotierenden und stationären Anlagenkomponenten eingebrachten Spülgases zu sorgen. Zur Aufrechterhaltung eines bestimmten Austausches an Spülgas gilt es dieses zumindest anteilsmäßig über entsprechende Verbindungskanäle bzw. leckagebedingte Ringdichtungsanordnungen radial nach außen, zumeist in den Arbeitskanal der jeweiligen Strömungsrotationsmaschine auszutragen. Im Falle einer Turbinenstufe gelangt somit das Spülgas durch entsprechenden Zwischenspalte in den Heißgaskanal, in dem sich das Spülgas mit den Heißgasen vermischt.Apart from the above-described property of not completely gas-tight ring seal assemblies through which forms a leakage flow, it is necessary to ensure a controlled exchange of introduced between the rotating and stationary system components purge gas. To maintain a certain exchange of purge gas, it applies this at least proportionally via corresponding connection channels or leakage-related ring seal assemblies radially outwards, usually discharge into the working channel of the respective flow rotary machine. In the case of a turbine stage thus the purge gas passes through corresponding intermediate gaps in the hot gas channel, in which the purge gas mixed with the hot gases.

Neben der bereits erläuterten Strömungsirritation, die die Leckagebedingte Spülgasströmung auf die weitgehend axial den Ringraum passierenden Kühlluftströmung ausübt, trägt überdies der hohe Wirbelanteil der Spülgasströmung dazu bei, dass der statische Druck innerhalb des Ringraumes reduziert wird, wodurch wiederum die Kühlwirkung der Kühlluftströmung im Bereich der Rotoreinheit und den damit verbundenen Laufschaufeln geschwächt wird.In addition to the already explained flow irritation, which exerts the purge gas flow due to leakage to the cooling air flow passing substantially axially through the annulus, the high swirl content of the purge gas flow also contributes to reducing the static pressure within the annulus, which in turn reduces the cooling effect of the cooling air flow in the rotor unit and the associated blades is weakened.

Aus der GB2081392 ist eine Statoranordnung einer Turbomaschine bekannt, die Dichtscheiben umfasst, die mit Dichtelementen auf einer benachbarten Rotoranordnung zusammenwirkt.From the GB2081392 For example, a stator assembly of a turbomachine is known that includes sealing disks that cooperate with sealing elements on an adjacent rotor assembly.

Aus der GB2251040 ist weiter eine Dichtungsanordnung für eine Dichtung zwischen einem rotierenden und stationären Teil bekannt, in dem ein rotierenden Dichtarm Bohrungen aufweist, durch die eine Leckage infolge des Staudruckes am rotierenden Arm gegen das Druckgefälle zurückgefördert wird.From the GB2251040 Furthermore, a sealing arrangement for a seal between a rotating and stationary part is known, in which a rotating sealing arm has bores through which a leakage due to the back pressure on the rotating arm is fed back against the pressure gradient.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde eine Gasturbinenanordnung sowie ein Verfahren zum Betrieb einer Gasturbinenanordnung mit einem zwischen einer um eine Rotorachse drehbaren Rotoreinheit und wenigstens einer stationären Komponente axial begrenzten Ringraum, in den von Seiten der wenigstens einen stationären Komponente eine Vielzahl von Kühlmittelaustrittsöffnungen münden, aus denen jeweils eine Kühlmittelströmung, vorzugsweise in Form einer Kühlluftströmung, in den Ringraum ausbringbar ist, die zumindest anteilig in Kühlmitteleintrittsöffnungen gelangt, die in Strömungsrichtung der sich durch den Ringraum ausbreitenden Kühlmittelströmung in der Rotoreinheit vorgesehen sind, sowie wenigstens einem radial zum Ringraum inneren, von der Rotoreinheit und wenigstens einer stationären Komponente begrenzten Hohlraum, der mit einem Spülgas druckbeaufschlagt und mit dem Ringraum fluidisch verbunden ist, derart weiterzubilden, dass eine in den Ringraum systembedingt gelangende Spülgasströmung einen möglichst vernachlässigbar geringen Störeinfluss auf die den Ringraum weitgehend axial passierende Kühlmittelströmung besitzt. Insbesondere gilt es Massnahmen zu treffen, durch die die Druckverhältnisse innerhalb des Ringraumes möglichst unbeeinflusst bleiben, trotz einer in den Ringraum eintretenden Spülgasströmung.The invention is based on the object of a gas turbine arrangement and a method for operating a gas turbine arrangement with a rotatable about a rotor axis rotor unit and at least one stationary component axially limited annular space in which open from the at least one stationary component a plurality of coolant outlet openings, from which in each case a coolant flow, preferably in the form of a cooling air flow, can be brought into the annular space, which at least partially passes into coolant inlet openings, which are provided in the flow direction of the coolant flow propagating through the annular space in the rotor unit, and at least one radially to the annular space, of the rotor unit and at least one stationary component limited cavity, which is pressurized with a purge gas and fluidly connected to the annulus, so educate, that in the annulus system inherent purge gas flow has a negligible disturbance low on the annulus largely axially passing coolant flow. In particular, it is necessary to take measures by which the pressure conditions within the annular space remain as uninfluenced, despite a purge gas flow entering the annulus.

Die Lösung der der Erfindung zugrunde liegenden Aufgabe ist im Anspruch 1 angegeben. Ein lösungsgemäßes Verfahren zum Betreiben einer Gasturbinenanordnung ist im Anspruch 10 angegeben. Den Erfindungsgedanken vorteilhaft weiterbildende Merkmale sind Gegenstand der Unteransprüche sowie der weiteren Beschreibung unter Bezugnahme auf die Ausführungsbeispiele zu entnehmen.The solution of the problem underlying the invention is specified in claim 1. A solution-based method for operating a gas turbine arrangement is specified in claim 10. The concept of the invention advantageously further features are the subject of the dependent claims and the further description with reference to the exemplary embodiments.

Lösungsgemäß ist eine Gasturbinenanordnung mit den Merkmalen des Oberbegriffes des Anspruches 1 dadurch ausgebildet, dass die wenigstens eine stationäre Komponente und die Rotoreinheit einen Spaltraum einschließen, durch den der wenigstens eine Hohlraum gegenüber dem radial äusseren Ringraum getrennt und über den der wenigstens eine Hohlraum mit dem radial äusseren Ringraum fluidisch verbunden ist, und dass in den Spaltraum einseitig an der wenigstens einen stationären Komponente befestigte Strömungsleitmittel hineinragen.According to the solution, a gas turbine arrangement having the features of the preamble of claim 1 is formed in that the at least one stationary component and the rotor unit include a gap space through which the at least one cavity is separated from the radially outer annular space and via which the at least one cavity with the radially outer annular space is fluidly connected, and that protrude into the gap space on one side of the at least one stationary component fixed flow guide.

Die Ausbildung und Anordnung der Strömungsleitmittel längs der wenigstens einen stationären Komponente werden dabei derart vorgenommen, dass das druckbeaufschlagte Spülgas aufgrund eines zwischen dem wenigstens einen Hohlraum und dem Ringraum bestehenden Druckgefälles in Form eines Spülgasstromes durch den Spaltraum in Richtung des Ringraumes tritt, so dass dem Spülgasstrom bei Durchtritt durch den Spaltraum eine weitgehend wirbelfreie Strömungscharakteristik eingeprägt wird, d.h. der der Spülgasströmung nach Durchtritt durch den Spaltraum in den Ringraum innewohnende Strömungsdrallanteil ist erheblich kleiner als der Initiale Strömungsdrall des Spülgases vor Durchtritt durch den Spaltraum, d.h. innerhalb des wenigstens einen Hohlraumes. Ziel ist es den Drall, der dem Spülgasstrom in dem Hohlraum durch Drehung der Rotoreinheit in Drehrichtung der Rotoreinheit aufgeprägt wird, zu reduzieren. In einer Ausführungsform wird Spülgasstrom ohne Drall um die Rotorachse aus dem Spaltraum in den Ringraum einströmen. Anzustreben ist eine möglichst vollständige Glättung der Hohlraumseitig stark verwirbelten Spülgasströmung bei Durchtritt durch den Spaltraum, d.h. idealerweise sollte die Spülgasströmung wirbelfrei, d.h. in Form einer Laminarströmung, den Ringraum passieren. Eine den Ringraum durchsetzende wirbelarme bzw. wirbelfreie Spülgasströmung besitzt zum einen ein geringes Störungspotential für die weitgehend axial gerichtete Kühlluftströmung, zum anderen wird hierdurch der statische Druck innerhalb des Ringraumes nicht nachhaltig beeinträchtigt.The formation and arrangement of the flow-guiding along the at least one stationary component are made such that the pressurized purge gas passes through the gap in the direction of the annular space due to a pressure gradient existing between the at least one cavity and the annulus in the form of a purge gas flow, so that the purge gas upon passage through the gap, a largely vortex-free flow characteristic is impressed, ie, that of the purge gas flow Passage through the gap in the annulus inherent Strömungsdrallanteil is considerably smaller than the initial flow swirl of the purge gas before passing through the gap, ie within the at least one cavity. The aim is to reduce the swirl, which is imparted to the purge gas stream in the cavity by rotation of the rotor unit in the direction of rotation of the rotor unit. In one embodiment, purge gas flow will flow without swirl about the rotor axis from the gap space into the annulus. It is desirable to smooth out as far as possible the purging gas flow strongly swirling on the cavity side as it passes through the gap, ie, ideally, the purging gas flow should pass the annulus free of eddies, ie in the form of a laminar flow. A vortex-free or vortex-free purge gas flow passing through the annulus has, on the one hand, a low disruption potential for the largely axially directed cooling air flow, and on the other hand, the static pressure inside the annulus is not adversely affected.

Um für einen kontrollierten Abfluss des in dem wenigstens einen Rotorachsennahen Hohlraum befindliche Spülgases zu sorgen, grenzt der wenigstens eine Hohlraum mittel- oder unmittelbar radial zur Rotorachse nach aussen über eine spaltförmige Verengung an den Ringraum an. Aufgrund der weitgehend achssymmetrischen Ausbildung der Rotoreinheit sowie der zur Rotoreinheit unmittelbar benachbart angeordneten, stationären Komponenten der Gasturbinenanordnung schließt die spaltförmige Verengung zwischen der Rotoreinheit und der wenigstens einen stationären Komponente einen ringspaltförmig ausgebildeten Spaltraum ein, durch den sich eine Spülgasströmung aufgrund eines zwischen dem wenigstens einen Hohlraum und dem Ringraum bestehenden radialen Druckgefälles ausbildet.In order to ensure a controlled outflow of the flushing gas located in the at least one rotor axis, the at least one cavity adjoins the annular space directly or indirectly radially to the rotor axis via a gap-shaped constriction. Due to the largely axisymmetric design of the rotor unit and the rotor unit immediately adjacent arranged, stationary components of the gas turbine assembly includes the gap-shaped constriction between the rotor unit and the at least one stationary component an annular gap-shaped gap through which a purge gas flow due to a between the at least one cavity and the annular space existing radial pressure gradient forms.

In Ringumfangsrichtung ist zu Seiten der stationären Komponente, die einseitig den Spaltraum begrenzt, eine Vielzahl einzelner Strömungsleitmittel angebracht, die sich in den Spaltraum hinein erstrecken, ohne dabei in Berührung mit der Rotoreinheit zu treten. Die in Ringumfangsrichtung vorzugsweise mit jeweils äquidistantem Abstand angebrachten Strömungsleitmittel begrenzen jeweils paarweise einen Durchströmungsbereich, der den Strömungsweg für das aus dem wenigstens einen Hohlraum austretende Spülgas in Richtung des radial außen liegenden Ringraumes bestimmt. Zur Anordnung und Ausbildung der einzelnen Strömungsleitmittel gilt es, die Maxime zu berücksichtigen, dass das innerhalb des Hohlraumes stark verwirbelte Spülgas nach Durchtritt durch die von den Strömungsleitmitteln begrenzten Durchströmungsbereiche möglichst in Form einer wirbelreduzierten, vorzugsweise wirbelfreien Spülgasströmung den Ringraum im Weiteren radial nach außen passiert. In einer bevorzugten Ausführungsform sind die Strömungsleitmittel in Art und Form von Leitschaufeln ausgebildet, die ein in Axialrichtung gekrümmtes Schaufelprofil aufweisen. Ein in Axialrichtung gekrümmtes Schaufelprofil bildet an seinem stromauf gelegenen Ende (Einströmkante) einen Eintrittswinkel zwischen Profil und Rotorachse, der in Drehrichtung des Rotors weißt und an seinem stromab gelegenen Ende (Ausströmkante) einen Austrittswinkel zwischen Profil und Rotorachse, der kleiner als der Eintrittswinkel ist. Typischerweise ist der Austrittswinkel Null. Der Winkel kann sogar gegen die Umfangsrichtung der Rotordrehung weisen, um einen leichten Gegendrall zu erzeugen. Dies kann beispielsweise vorteilhaft sein, um nach der Mischung mit dem Teil der Spülluft, die nicht zwischen den Schaufelprofielen durchströmt, sondern in dem Spalt zwischen Profilende und Rotoreinheit durchströmt, eine insgesamt drallfreie Strömung zu erhalten.In the circumferential direction of the ring, on the side of the stationary component, which delimits the gap space on one side, a plurality of individual flow directing means is provided, which extend into the gap space without coming into contact with the rotor unit. The in the ring circumferential direction, preferably with equidistant distance attached flow guide each limit in pairs a flow area, the flow path for the out of the at least one Cavity leaking purge gas determined in the direction of the radially outer annular space. For the arrangement and design of the individual flow guide, it is important to take into account the fact that the purge gas strongly swirling within the cavity passes the annular space in the further radially outward direction, if possible in the form of a vortex-reduced, preferably vortex-free purge gas flow. In a preferred embodiment, the flow guide means are formed in the form and shape of vanes having a blade profile curved in the axial direction. An axially curved blade profile forms at its upstream end (inflow edge) an entry angle between the profile and rotor axis, which in the direction of rotation of the rotor and at its downstream end (discharge edge) an exit angle between the profile and rotor axis, which is smaller than the entry angle. Typically, the exit angle is zero. The angle may even point against the circumferential direction of the rotor rotation to produce a slight counter-rotation. This can be advantageous, for example, to obtain a total swirl-free flow after mixing with the part of the scavenging air, which does not flow through between the blade profiles, but flows through in the gap between the profile end and the rotor unit.

Gemäss einer Ausführungsform sind die Strömungsleitmittel um wenigstens eine Raumachse variabel justierbar.According to one embodiment, the flow-guiding means are variably adjustable around at least one spatial axis.

Selbstverständlich sind auch hiervon abweichende Strömungsleitmittel denkbar, beispielsweise in Form geradlinig ausgebildeter strömungsstabiler Rippen, die gleichsam zu den vorstehenden Erläuterungen jeweils mit äquidistantem Abstand zueinander in Umfangsrichtung verteilt mit der wenigstens einen stationären Komponente fest verbunden sind und einseitig frei endend in den Spaltraum hinein ragen.Of course, deviating Strömungsleitmittel are also conceivable here, for example in the form of rectilinearly formed flow stable ribs, which are distributed to the above explanations each with equidistant spacing to each other in the circumferential direction fixed to the at least one stationary component and projecting unilaterally freely ending in the gap.

Kurze Beschreibung der ErfindungBrief description of the invention

Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung exemplarisch beschrieben. Es zeigen:

Fig. 1a
Längsschnitt durch eine schematisierte Darstellung des zwischen Rotoreinheit und stationärer Komponente begrenzten Spaltraums,
Fig. 1b
schematisierte Anordnung von Strömungsleitmitteln an der stationären Komponente in axialer Sichtweise,
Fig. 1c
mit der stationären Komponente verbundene Strömungsleitmittel in radialer, nach außen orientierter Sichtweise, sowie
Fig. 1 d
schematisierte Anordnung von Strömungsleitmitteln an der stationären Komponente in axialer Sichtweise.
The invention will now be described by way of example without limitation of the general inventive idea by means of embodiments with reference to the drawing. Show it:
Fig. 1a
Longitudinal section through a schematic representation of the space defined between rotor unit and stationary component gap space,
Fig. 1b
schematized arrangement of flow guiding means on the stationary component in axial view,
Fig. 1c
connected to the stationary component flow guide in a radial, outwardly oriented view, as well
Fig. 1 d
schematic arrangement of Strömungsleitmitteln on the stationary component in the axial view.

Wege zur Ausführung der Erfindung, gewerbliche VerwendbarkeitWays to carry out the invention, industrial usability

Fig. 1a zeigt einen Längsschnitt durch einen Teilbereich einer Gasturbinenanlage, der schematisiert einen Teilbereich der Rotoreinheit 2 zeigt, die drehbar um die Rotorachse A angeordnet ist. Es sei angenommen, dass die in Fig.1a illustrierte Rotoreinheit 2 einer der ersten Turbinenlaufschaufelreihe zuordenbare Rotorscheibe entspricht, an deren Umfangsrand die Turbinenlaufschaufeln T angeordnet sind. Fig. 1a shows a longitudinal section through a portion of a gas turbine plant, which schematically shows a portion of the rotor unit 2, which is rotatably arranged about the rotor axis A. It is assumed that the in 1a illustrated rotor unit 2 corresponds to one of the first turbine blade row assignable rotor disk, at the peripheral edge of the turbine blades T are arranged.

Der Rotoreinheit 2 axial gegenüberliegend ist eine stationäre Komponente 1 vorgesehen, an deren der Rotoreinheit 2 zugewandten Oberfläche eine Vielzahl einzelner Kühlmittelaustrittsöffnungen 4 vorgesehen ist, aus der Kühlluft K, zumeist in Form einer geeignet vorgegebenen Draliströmung, in den zwischen der Rotoreinheit 2 und der stationären Komponente 1 beidseitig begrenzten Ringraum 5 ausgetragen wird. Innerhalb der stationären Komponente 1 ist ein Kühlluftreservoir eingebracht, das über ein Kühlluftsystem mit Kühlluft versorgt wird. Eine entsprechende Düsenanordnung innerhalb der jeweiligen Kühlluftaustrittsöffnungen 4 sorgt für einen Strömungsdrall längs der in den Ringraum 5 einströmenden Kühlluftströmung K.The rotor unit 2 axially opposite a stationary component 1 is provided, on whose surface facing the rotor unit 2 a plurality of individual coolant outlet openings 4 is provided, from the cooling air K, usually in the form of a suitably predetermined Draliströmung, in between the rotor unit 2 and the stationary component 1 on both sides limited annular space 5 is discharged. Within the stationary component 1, a cooling air reservoir is introduced, which is supplied via a cooling air system with cooling air. A corresponding nozzle arrangement within the respective cooling air outlet openings 4 provides a flow twist along the inflowing into the annulus 5 cooling air flow K.

Je nach Ausführung der Kühlmitteleintrittsöffnung kann es vorteilhaft sein die Kühlluft K drallfrei in den Ringraum 5 einzuleiten. In diesem Fall sind die jeweiligen Kühlluftaustrittsöffnungen 4 so angeordnet, dass die Kühlluft drallfrei, d.h. axial in den Ringraum 5 eingeleitet wird.Depending on the design of the coolant inlet opening, it may be advantageous to introduce the cooling air K into the annulus 5 without twisting. In this case, the respective cooling air outlet openings 4 are arranged so that the cooling air is swirl-free, i. is introduced axially into the annular space 5.

Bevorzugt ist der Drall der Kühlluft K und Spülluft K bei deren Vermischung gleich, um die Mischungsverluste zu minimieren.Preferably, the swirl of the cooling air K and scavenging air K is the same when they are mixed in order to minimize the mixing losses.

Radial nach aussen, dass heisst zum dem die Heissgase H führenden Heissgaskanal, wird der dargestellte Ringraum 5 durch Plattformenenden einer Reihe von Leitschaufeln L zumindest teilweise abgeschlossen.Radially outwards, that is to say for the hot gas duct leading the hot gases H, the illustrated annular space 5 is at least partially closed off by platform ends of a series of guide vanes L.

Ein Teil des in den Ringraum 5 eingebrachten Kühlluftstromes K gelangt über rotorseitig vorgesehene Kühlmitteleintrittsöffnungen 3 in das Innere der Rotoreinheit 2, in der entsprechende Kühlleitungen (nicht dargestellt) vorgesehen sind, die die aufgenommene Kühlluft K bevorzugt in die Bereiche der Turbinenlaufschaufeln T weiterleiten. Für eine effektive Kühlung der Rotoreinheit 2 und insbesondere der Turbinenlaufschaufeln T gilt es, die Druck- und Strömungsverhältnisse innerhalb des Ringraumes 5 möglichst nicht zu beeinträchtigen, so dass gewährleistet ist, dass genügend viel Kühlluft K von der stationären Komponente 1 über den Ringraum 5 in die Rotoreinheit 2 gelangen kann.A portion of the introduced into the annulus 5 cooling air flow K passes through rotor provided on the coolant inlet openings 3 in the interior of the rotor unit 2, in the corresponding cooling lines (not shown) are provided, which forward the absorbed cooling air K preferably in the areas of the turbine blades T. For an effective cooling of the rotor unit 2 and in particular of the turbine blades T, it is important not to impair the pressure and flow conditions within the annular space 5, so that it is ensured that sufficient amount of cooling air K from the stationary component 1 via the annulus 5 in the Rotor unit 2 can get.

Demgegenüber schließen Rotoreinheit 2 und die stationäre Komponente 1 sowie gegebenenfalls weitere stationäre Komponenten 1* einen rotorachsennahen Hohlraum 7 ein, der mit Spülgas gefüllt ist, um radial innen liegende Rotorbereiche sowie angrenzende stationäre Komponenten vor Überhitzungen zu schützen.In contrast, include rotor unit 2 and the stationary component 1 and optionally other stationary components 1 * a near-rotor cavity 7, which is filled with purge gas to protect radially inner rotor areas and adjacent stationary components from overheating.

Für einen Austausch des im Hohlraum 7 eingebrachten Spülgases tritt für gewöhnlich ein Teil des Spülgases in Form eines Spülgasstromes S durch einen zwischen der Rotoreinheit 2 und der stationären Komponente 1 beidseitig begrenzten Spaltraum 6 in den Ringraum 5, den der Spülgasstrom S im Wesentlichen quer zum Kühlluftstrom K radial nach außen durchsetzt und letztlich den Heißgasen H im Arbeitskanal der Gasturbinenanordnung beigemischt wird. Je nach Wahl der Druckverhältnisse zwischen Ringraum und Heissgaskanal kann es auch zu einem leichten Endringen von Heissgas in den Ringraum kommen.For a replacement of the introduced in the cavity 7 purge gas usually enters a part of the purge gas in the form of a purge gas flow S through a between the rotor unit 2 and the stationary component 1 on both sides limited gap space 6 in the annular space 5, the purge gas flow S substantially transversely to the cooling air flow K passes radially outward and ultimately the hot gases H is mixed in the working channel of the gas turbine arrangement. Depending on the choice of pressure conditions between annulus and hot gas channel, it may also come to a slight end-ring of hot gas in the annulus.

Um zu verhindern, dass der den Ringraum 5 radial nach außen durchsetzende Spülgasstrom S, der aufgrund der Rotationsbewegungen der Rotoreinheit 2 im Bereich des Hohlraumes 7 stark verwirbelt ist und somit sowohl die Druckverhältnisse im Ringraum 5 reduzieren sowie auch den Kühlluftstrom K erheblich stören würde, sind an der stationären Komponente 1 im Bereich des Spaltraumes 6 Strömungsleitmittel 8 angebracht, die jeweils einseitig frei endend in den Spaltraum 6 hinein ragen. Die einzelnen Strömungsleitmittel 8 sind in Form kleiner Leitschaufeln ausgebildet und ragen von Seiten der stationären Komponente 1 einseitig in den Spaltraum 6 hinein, ohne dabei die Rotoreinheit 2 zu berühren.In order to prevent the annular space 5 radially outwardly passing purge gas flow S, which is strongly swirled due to the rotational movements of the rotor unit 2 in the region of the cavity 7 and thus reduce both the pressure conditions in the annulus 5 and would significantly disturb the cooling air flow K are attached to the stationary component 1 in the region of the gap space 6 6 Strömungsleitmittel, each unilaterally free-end into the gap 6 protrude. The individual flow guiding means 8 are designed in the form of small guide vanes and protrude from the sides of the stationary component 1 on one side into the gap space 6, without touching the rotor unit 2.

Je nach Wahl des Engspaltes 6', der dessen Höhe idealerweise gegen Null gehen sollte, kann es bei transientem Betrieb der Gasturbine zu einem Anstreifen der Strömungsleitmittel 8 an die Rotoreinheit 2 kommen. Um ein derartiges Anstreifen zu erlauben kann an das freie Ende der Strömungsleitmittel 8 eine Abriebkante, eine Schneidkante oder äquivalente Mittel vorgesehen werden. Weiter ist die Benutzung von Honeycombs oder einer Abriebschicht auf der entsprechenden Anstreiffläche der Rotoreinheit 2 möglich.Depending on the choice of the narrow gap 6 ', the height of which should ideally approach zero, transient operation of the gas turbine may cause the flow-guiding means 8 to rub against the rotor unit 2. In order to permit such rubbing, an abrasive edge, a cutting edge or equivalent means may be provided at the free end of the flow directing means 8. Furthermore, the use of honeycombs or an abrasion layer on the corresponding rubbing surface of the rotor unit 2 is possible.

In Fig. 1b ist eine Darstellung mit axialer Blickrichtung auf den Spaltraum 6 (Schnitt A-A der Figur 1 a) gezeigt, der zwischen der stationären Komponente 1 und der Rotoreinheit 2 begrenzt ist. Zu sehen sind die Kühlmittelaustrittsöffnungen 4, aus denen Kühlluft von Seiten der stationären Komponente 1 in den Ringraum ausgebracht wird. Fest mit der stationären Komponente 1 sind jeweils Strömungsleitmittel 8 einseitig verbunden, die in den Spaltraum 6 hinein ragen und somit den Spaltraum 6 in eine Vielzahl von zwischen den Strömungsleitmitteln begrenzten Durchströmungsbereiche D unterteilt. Die einzelnen Strömungsleitmittel 8, die vorzugsweise in Form kleiner Leitschaufeln ausgebildet sind, weisen an ihrem freien Ende, das der Rotoreinheit 2 zugewandt ist, jeweils einen Deckband 8' auf, das mit der Rotoreinheit 2 einen Engspalt 6' einschließt. Die Spaltweite des Engspaltes 6' sollte kleiner als die Hälfte der Spaltbreite d des Spaltraumes 6 betragen. Vorzugsweise sollte jedoch der Engspalt 6' derart gering eingestellt sein, so dass möglichst keine Strömungsanteile der Spülgasströmung S durch den zwischen den Deckbändern 8' der Strömungsleitmittel 8 und der Rotoreinheit 2 gelangen können.In Fig. 1b is an illustration with an axial view of the gap space 6 (section AA of FIG. 1 a) shown limited between the stationary component 1 and the rotor unit 2. You can see the coolant outlet openings 4, from which cooling air is discharged from the side of the stationary component 1 in the annulus. Fixed to the stationary component 1, respectively, flow-guiding means 8 are connected on one side, which project into the gap 6 and thus the gap space 6 in a plurality of between the flow-guiding limited flow areas D divided. The individual flow guiding means 8, which are preferably designed in the form of small guide vanes, have at their free end, which faces the rotor unit 2, in each case a shroud 8 ', which encloses a narrow gap 6' with the rotor unit 2. The gap width of the narrow gap 6 'should be less than half the gap width d of the gap space 6. Preferably, however, the narrow gap 6 'should be set so low, so that as possible no flow components of the purge gas flow S can pass through the between the shrouds 8' of the flow guide 8 and the rotor unit 2.

Um die stark verwirbelte Spülgasströmung S, wie sie unmittelbar aus dem Hohlraum 7 in Richtung des Ringraumes 5 austritt, bezüglich ihres Wirbelanteils zu glätten, dienen die Durchströmungsbereiche D zwischen jeweils benachbart angeordneten Strömungsleitmittel 8 als Zwangsströmungswege, längs denen die Spülgasströmung S geglättet, homogenisiert bzw. vergleichmässigt wird, so dass stromab zu den Strömungsleitmitteln 8 eine weitgehend wirbelfreie und in eine einheitliche Strömungsrichtung ausbreitende Spülgasströmung in den Ringraum 5 einströmt.In order to smooth the strongly swirling purge gas flow S, as it exits directly from the cavity 7 in the direction of the annulus 5, with respect to their vortex, the flow areas D between each adjacently arranged Strömungsleitmittel 8 serve as forced flow paths, along which the purge gas flow S smoothed, homogenized or is made uniform, so that flows downstream of the flow guide 8 a largely vortex-free and in a uniform flow direction propagating purge gas flow into the annulus 5.

Fig. 1c zeigt eine radial nach außen orientierte Sicht auf das Profil der jeweiligen Strömungsleitmittel 8 (Schnitt B-B). Die einzelnen Strömungsleitmittel 8 schließen aufgrund Ihres in Axialrichtung gekrümmt verlaufend ausgebildeten Profils gleichfalls gekrümmt verlaufende Durchströmungsbereiche D ein, die von der Spülgasströmung durchströmt werden.
Die Form und Ausbildung der Strömungsleitmittel können je nach der aerodynamischen Spülgascharakteristik innerhalb des Hohlraumes 7 individuell angepasst werden und ist nicht auf die Ausbildung als Leitschaufelartig ausgebildete Profilformen beschränkt.
Fig. 1c shows a radially outwardly oriented view of the profile of the respective flow guide 8 (section BB). The individual flow-guiding means 8 likewise include curved flow-through regions D, which are curved in the axial direction so that they flow through the purge gas flow.
The shape and design of the Strömungsleitmittel can be adjusted individually depending on the aerodynamic Spülgascharakteristik within the cavity 7 and is not limited to the formation as a vane-like profile shapes.

Auch könnte erwogen werden die Anordnung bzw. die Anstellung der einzelnen Strömungsleitmittel relativ zu der durch die Durchströmungsbereiche D hindurchströmenden Spülgasströmung S zu variieren, um Anpassungen gegebenenfalls in Abhängigkeit von unterschiedlichen Laststufen der Gasturbinenanlage, bei denen sich unterschiedlich stark ausgeprägte Verwirbelungen innerhalb des Spülgases in dem Hohlraum 7 bilden können, vornehmen zu können.It would also be possible to vary the arrangement or the position of the individual flow-guiding means relative to the purge-gas flow S flowing through the flow-through regions D in order to adjust, if necessary, as a function of different load stages Gas turbine plant, where different degrees of turbulence within the purge gas can form in the cavity 7 to make.

In Fig. 1d ist eine Darstellung einer zweiten Ausführung mit axialer Blickrichtung auf den Spaltraum 6 (Schnitt A-A) gezeigt. Diese unterscheidet sich gegenüber der in Fig. 1b gezeigten Ausführung durch ein durchgehendes geschlossenes Deckband 8". Um die Leckage durch den Engspalt 6' zu minimieren ist auf dem Deckband 8" eine Dichtung 9 angebracht. Dies kann mindestens ein Dichtstreifen einer Labyrinthdichtung sein oder beispielsweise eine Bürstendichtung. Analog kann die Dichtung auch an der Rotoreinheit 2 angebracht sein.In Fig. 1d is a representation of a second embodiment with axial viewing direction of the gap space 6 (section AA) shown. This differs from the one in Fig. 1b in order to minimize the leakage through the narrow gap 6 ', a seal 9 is mounted on the shroud 8 ". This may be at least one sealing strip of a labyrinth seal or, for example, a brush seal. Similarly, the seal may also be attached to the rotor unit 2.

In einer Ausführung werden die Strömungsleitmittel 8 mit dem geschlossenen Deckband 8"als Segmente zusammengestellt. Beispielsweise wird eine Vielzahl von Strömungsleitmitteln 8 als Kreisabschnitt mit geschlossenem Deckband 8" bereitgestellt.In one embodiment, the flow directors 8 are assembled as segments with the closed shroud 8 ", for example, a plurality of flow directors 8 are provided as a circular section with the shroud 8" closed.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Stationäre KomponenteStationary component
1*1*
Stationäre KomponenteStationary component
22
Rotoreinheitrotor unit
33
KühlmitteleintrittsöffnungenCoolant inlet openings
44
KühlmittelaustrittsöffnungenCoolant outlet openings
55
Ringraumannulus
66
Spaltraumgap
6'6 '
Engspaltnarrow gap
77
Hohlraumcavity
88th
Strömungsleitmittelflow guide
8'8th'
Deckbandshroud
8"8th"
Geschlossenes DeckbandClosed shroud
99
Dichtungpoetry
AA
Rotorachserotor axis
DD
DurchströmungskanalFlow channel
HH
Heissgasehot gases
KK
KühlmittelströmungCoolant flow
LL
Leitschaufelvane
SS
Spülgasströmungpurge gas
dd
Spaltbreite des SpaltraumesGap width of the gap

Claims (10)

  1. Gas turbine arrangement having an annulus (5), which is axially delimited between a rotor unit (2), which is rotatable around a rotor axis (A), and at least one stationary component (1), into which annulus, from the at least one stationary component (1), lead a multiplicity of cooling medium outlet openings (4) from which a cooling medium flow (K) can be discharged in each case into the annulus (5), which cooling medium flow finds its way at least proportionately into cooling medium inlet openings (3) which are provided in the rotor unit (2) in the flow direction of the cooling medium flow (K) which propagates through the annulus (5), and also having, radially to the annulus (5), at least one inner cavity (7) which is delimited by the rotor unit (2) and by the at least one stationary component (1*), is pressurized with a purging gas (S), and is fluidically connected to the annulus (5), wherein the at least one stationary component (1) and the rotor unit (2) include a constriction (6) by means of which the at least one cavity (7) is separated from the radially outer annulus (5) and via which the at least one cavity (7) is fluidically connected to the radially outer annulus (5), characterized in that flow guiding means (8), which are fastened on the at least one stationary component (1) on one side, project into the constriction (6).
  2. Gas turbine arrangement according to Claim 1,
    characterized in that the constriction (6) is formed at least in sections in an annular manner between the at least one stationary component (1) and the rotor unit (2), and
    in that a multiplicity of flow guiding means (8), distributed in the circumferential direction, are provided along the annular constriction (6) so that two adjacent flow guiding means (8) delimit a throughflow section (D) in each case.
  3. Gas turbine arrangement according to Claim 1 or 2,
    characterized in that the flow guiding means (8) are formed in such a way that a purging gas flow (S), which through the constriction (6) from the at least one cavity (7) enters the annulus (5), obtains a flow characteristic which is applied by means of the flow guiding means (8).
  4. Gas turbine arrangement according to one of Claims 1 to 3,
    characterized in that the flow guiding means (8) are formed in the style of guide vanes.
  5. Gas turbine arrangement according to Claim 4,
    characterized in that the guide vanes have in each case a blade profile which is curved in the axial direction.
  6. Gas turbine arrangement according to one of Claims 1 to 5,
    characterized in that the flow guiding means (8) have in each case a free end which faces the rotor unit (2) and together with the rotor unit (2) include a narrow gap (6'), the gap width of which is less than or equal to half the gap width d of the constriction (6), i.e. less than or equal to half the largest distance between the at least one stationary component (1) and the rotor unit (2) in the region of the constriction (6).
  7. Gas turbine arrangement according to one of Claims 4 to 6,
    characterized in that the flow guiding means (8) in the form of guide vanes have in each case a shroud (8') attached on the free end.
  8. Gas turbine arrangement according to one of Claims 1 to 7,
    characterized in that the rotor unit (2) is a rotor disk with turbine rotor blades attached on its circumferential edge, and in that the at least one stationary component (1) is a stationary component (1) which is attached directly axially opposite the rotor unit, with a cooling air reservoir which can be supplied with cooling air (K) by means of a cooling air system and from which cooling air (K) finds its way into the annulus (5) via the cooling medium outlet openings (4).
  9. Gas turbine arrangement according to one of Claims 1 to 8,
    characterized in that the flow guiding means are variably adjustable around at least one spatial axis.
  10. Method for operating a gas turbine arrangement having an annulus (5), which is axially delimited between a rotor unit (2), which is rotatable around a rotor axis (A), and at least one stationary component (1), into which annulus, from the at least one stationary component (1), lead a multiplicity of cooling medium outlet openings (4) from which a cooling medium flow (K) can be discharged in each case into the annulus (5), which cooling medium flow finds its way at least proportionately into cooling medium inlet openings (3) which are provided in the rotor unit (2) in the flow direction of the cooling medium flow (K) which propagates through the annulus (5), and also having, radially to the annulus (5), at least one inner cavity (7) which is delimited by the rotor unit (2) and by the at least one stationary component (1*), is pressurized with a purging gas (S), and is fluidically connected to the annulus (5),
    wherein the pressurized purging gas (S), on account of a pressure drop which exists between the at least one cavity (7) and the annulus (5), passes in the form of a purging gas flow (S) through a constriction (6) by means of which the at least one cavity (7) is separated from the radially outer annulus (5) and via which the at least one cavity (7) is fluidically connected to the radially outer annulus (5), characterized in that a swirl of the purging gas flow (S) is reduced when passing through the constriction (6) by means of flow guiding means (8) which are provided inside the constriction (6).
EP11186258.7A 2010-11-15 2011-10-21 Gas turbine arrangement and method for operating a gas turbine arrangement Active EP2453109B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH19142010 2010-11-15

Publications (2)

Publication Number Publication Date
EP2453109A1 EP2453109A1 (en) 2012-05-16
EP2453109B1 true EP2453109B1 (en) 2016-03-30

Family

ID=43754678

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11186258.7A Active EP2453109B1 (en) 2010-11-15 2011-10-21 Gas turbine arrangement and method for operating a gas turbine arrangement

Country Status (2)

Country Link
US (1) US9163515B2 (en)
EP (1) EP2453109B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3001492B1 (en) * 2013-01-25 2017-09-01 Snecma TURBOMACHINE STATOR WITH PASSIVE CONTROL OF PURGE
US20170089210A1 (en) * 2015-09-29 2017-03-30 Pratt & Whitney Canada Corp. Seal arrangement for compressor or turbine section of gas turbine engine
US10641174B2 (en) 2017-01-18 2020-05-05 General Electric Company Rotor shaft cooling
CN113374545A (en) * 2021-06-27 2021-09-10 西北工业大学 Impingement cooling structure based on array annular raised target plate

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1221497B (en) 1962-05-09 1966-07-21 Rolls Royce Compressor or turbine assembly in a gas turbine unit, in particular a gas turbine jet engine
US3251601A (en) 1963-03-20 1966-05-17 Gen Motors Corp Labyrinth seal
GB1149326A (en) 1968-01-18 1969-04-23 Rolls Royce Sealing device
GB1476237A (en) * 1975-08-15 1977-06-10 Rolls Royce Support structure in gas turbine engines
US4265590A (en) * 1978-05-20 1981-05-05 Rolls-Royce Limited Cooling air supply arrangement for a gas turbine engine
US4348157A (en) 1978-10-26 1982-09-07 Rolls-Royce Limited Air cooled turbine for a gas turbine engine
GB2081392B (en) * 1980-08-06 1983-09-21 Rolls Royce Turbomachine seal
GB2251040B (en) * 1990-12-22 1994-06-22 Rolls Royce Plc Seal arrangement
US5211533A (en) 1991-10-30 1993-05-18 General Electric Company Flow diverter for turbomachinery seals
US6722138B2 (en) * 2000-12-13 2004-04-20 United Technologies Corporation Vane platform trailing edge cooling
DE10295864D2 (en) 2001-12-14 2004-11-04 Alstom Technology Ltd Baden Gas turbine arrangement
US7114339B2 (en) * 2004-03-30 2006-10-03 United Technologies Corporation Cavity on-board injection for leakage flows
US7244104B2 (en) * 2005-05-31 2007-07-17 Pratt & Whitney Canada Corp. Deflectors for controlling entry of fluid leakage into the working fluid flowpath of a gas turbine engine
US7189055B2 (en) * 2005-05-31 2007-03-13 Pratt & Whitney Canada Corp. Coverplate deflectors for redirecting a fluid flow
GB0620430D0 (en) * 2006-10-14 2006-11-22 Rolls Royce Plc A flow cavity arrangement

Also Published As

Publication number Publication date
US9163515B2 (en) 2015-10-20
EP2453109A1 (en) 2012-05-16
US20120121377A1 (en) 2012-05-17

Similar Documents

Publication Publication Date Title
EP1740797B1 (en) Gas turbine
DE3028137C2 (en)
DE60319606T2 (en) Blow-off system for the stator stage of a compressor
EP1260678B1 (en) Segment arrangement for platforms
DE2718661C2 (en) Guide vane grille for a gas turbine with an axial flow
DE102009043866B4 (en) Turbine blade for a turbomachine and method for reducing bow wave effects
EP2179143B1 (en) Gap cooling between combustion chamber wall and turbine wall of a gas turbine installation
EP3121372A1 (en) Cooled turbine wheel for an aircraft engine
EP2250347B1 (en) Axial compressor with a device for redirecting a leakage flow
EP3093447B1 (en) Rotor of a turbine of a gas turbine with improved cooling air conduction
EP1111189B1 (en) Cooling air path for the rotor of a gas turbine engine
DE3534905A1 (en) HOLLOW TURBINE BLADE COOLED BY A FLUID
CH708795A2 (en) Segment for an annular rotary machine Leitradbauteil.
EP3290644B1 (en) Gas turbine
EP3121371B1 (en) Turbine with cooled turbine guide vanes
DE69909585T2 (en) Cooling air system of a gas turbine
DE102009040758A1 (en) Deflection device for a leakage current in a gas turbine and gas turbine
EP2126321A1 (en) Gas turbine comprising a guide ring and a mixer
EP2453109B1 (en) Gas turbine arrangement and method for operating a gas turbine arrangement
EP2092164B1 (en) Turbomachine, particularly a gas turbine
EP0992656B1 (en) Turbomachine to compress or expand a compressible medium
EP3561228A1 (en) Turbomachine and blade, blade segment and assembly for a turbomachine
EP3159487B1 (en) Stator of a turbine of a gas turbine with improved cooling air conduction
EP1456507B1 (en) Sealing assembly for components of a turbo-engine
EP1715224A1 (en) Sealing for a turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20121105

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151029

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 785633

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011009236

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160701

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160630

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160330

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160730

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011009236

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

26N No opposition filed

Effective date: 20170103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011009236

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011009236

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011009236

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011009236

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011009236

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161021

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 785633

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161021

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171019

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111021

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181021

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221026

Year of fee payment: 12

Ref country code: DE

Payment date: 20221019

Year of fee payment: 12