EP2448063B1 - Satellite-dish positioner - Google Patents
Satellite-dish positioner Download PDFInfo
- Publication number
- EP2448063B1 EP2448063B1 EP11306378.8A EP11306378A EP2448063B1 EP 2448063 B1 EP2448063 B1 EP 2448063B1 EP 11306378 A EP11306378 A EP 11306378A EP 2448063 B1 EP2448063 B1 EP 2448063B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- axis
- rotation
- positioner
- guide
- crown
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 claims description 8
- 230000005484 gravity Effects 0.000 claims description 7
- 238000005259 measurement Methods 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 4
- 241001080024 Telles Species 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/125—Means for positioning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/18—Means for stabilising antennas on an unstable platform
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/18—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
- H01Q19/19—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/02—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
- H01Q3/08—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
Definitions
- the invention relates to the field of satellite communications, more generally known under the name SATCOM or "Satellite Communications" in English. It relates more particularly to a satellite dish positioner to allow communication with a satellite, this positioner being particularly intended to be placed on a moving carrier.
- satellite dish positioners for establishing communication with a satellite, these positioners being either fixed to the ground or mobile when placed on moving carriers.
- positioners of the type Elevation on Azimuth comprise two axes of rotation, one of which makes it possible to vary the azimuth of the parabolic antenna, that is to say the horizontal angle between the direction of the satellite dish and a corresponding reference direction generally. to the geographic north, and the other to vary the elevation of the satellite dish, that is to say the vertical angle between the direction of the satellite dish and the reference direction (geographic north).
- Such positioners have the disadvantage of presenting a singular point (better known under the name "keyhole” in English) vertically, that is to say at the zenith.
- weight of the load is generally more distributed on one axis than the other and counterweights must therefore be added to compensate for the imbalance.
- weight overload and unbalance are not acceptable for a parabolic antenna positioner to be placed on a moving carrier, as they penalize the dynamic performance of the positioner, and oppose the lightness requirements required in some applications such as aeronautics.
- the demand CA 1 236 211 discloses another type of parabolic antenna positioner having three axes of rotation to allow to orient the satellite dish in all possible directions to the satellite.
- Such a positioner has no singular point but is very complex to achieve, very cumbersome and very expensive.
- the invention aims to provide a parabolic antenna positioner which is devoid of singular point vertically and which is balanced, without requiring the addition of counterweight on the positioner, in particular to be able to be placed on a carrier in motion.
- the figure 1 represents in perspective an example of a positioner 1 according to the invention, equipped with a mobile assembly 10 with two degrees of freedom comprising a parabolic antenna 12 associated with a radio frequency amplifier 14 mounted on the back of the parabolic antenna 12.
- the positioner 1 is intended to allow the satellite dish 12 to be pointed towards a given satellite, in particular a satellite located in the vicinity of the vertical positioner 1.
- the positioner 1 is intended to be placed on a carrier in position. movement, which can be of any type.
- the positioner 1 is used for civil and / or military applications, and the carrier is a carrier of the maritime, air and / or land type.
- the carrier is for example an aircraft, a land vehicle and / or a ship.
- the positioner 1 comprises a base 16, which itself comprises a plate 18 and two pads 20, the pads 20 being fixed on the plate 18.
- a support cradle 22 comprising a guide ring 23 is mounted so as to obtain its rotation about the center O of the guide ring 23 and according to a first axis of horizontal rotation X, based on the pads 20, as it is sees on the figure 2 .
- the concept of "horizontal axis" is well known to those skilled in the art, and refers in particular to an axis parallel to the supposed horizontal plane on which the base is placed.
- the parabolic antenna 12 and the radio frequency amplifier 14 constitute a mass that is mobile in rotation with respect to the cradle 22.
- the cradle 22 comprises a Y-axis rotation shaft 24 for the parabolic antenna 12 possibly associated with a radiofrequency amplifier 14, as well as actuating and measuring means 26, detailed later in the description, carried by the cradle 22.
- the rotation shaft 24, and the actuating and measuring means 26 are such that the parabolic antenna 12 possibly associated with the radio frequency amplifier 14 is rotated relative to the cradle 22 around the horizontal axis Y, which extends orthogonally to the first axis of horizontal rotation X, being carried by the cradle 22.
- the satellite dish 12 extends generally above the Y axis, while the radio frequency amplifier 14 extends in the semicircle delimited by the guide ring 23.
- the parabolic antenna 12 and the radio frequency amplifier 14 are arranged on either side of the Y axis. They are, advantageously, distributed so that the center of gravity of the mobile assembly 10 formed in particular of the parabolic antenna 12 and possibly the radio frequency amplifier 14 is located on the Y axis, regardless of the angular position of this assembly 10 relative to to the crown 23.
- the guide ring 23 has a first portion P 1 which has two ends e.
- the first portion P 1 extends in a semicircle centered at a point O and radius r.
- the diameter of the semicircle passing through the ends e of the first portion P 1 defines a third axis W parallel to the second axis Y and passing through O.
- the second Y and third W axes are in the plane of the semicircle and the X axis is orthogonal to the plane of the semicircle.
- the radius r of the semicircle is for example between 10 and 30 cm.
- the second Y and third W axes are separated by a non-zero distance E, also called center distance E.
- the center distance E is between 5 and 15 cm.
- the second axis Y is balanced by a judicious distribution of the masses of the antenna 13 and the radio frequency amplifier 12.
- the first axis of rotation X of the positioner 1 passes through the center O of the semicircle in which the first portion P 1 of the guide ring 23 extends, and intersects the third axis W.
- the second axis of rotation Y of the positioner 1 does not pass through the center O of the semicircle, being parallel and not coincident with the third axis W. In this way, the first X and second Y axes of rotation of the positioner 1 do not intersect and are separated by a distance equal to the center distance E.
- the center distance E is such that the center of gravity of the support cradle 22 and the moving assembly 10 is located on the axis X.
- This center distance E allows the balancing of the X axis, centering in O the center.
- the positioner 1 according to the invention has no singular point vertically and promises to be balanced on its two axes of rotation X and Y.
- the positioner 1 also comprises an electric motor 28 coupled to a pinion 30, to allow the rotation of the pinion 30.
- the electric motor 28 and the pinion 30 are fixed on the plate 18 of the base 16 between the pads 20.
- an optical reading device 32 is placed under the guide ring 23, between the pads 20.
- the optical reading device 32 is fixed relative to the guide ring 23.
- the guide ring 23 further comprises two second portions P 2 respectively extending respectively from the two ends e of the first portion P 1 perpendicular to the third axis W.
- Each portion P 2 of the guide ring 23 has an orifice to allow the passage of the rotation shaft 24, rotatably mounted relative to the guide ring 23 along the second axis of rotation Y, and secured to the latter. ci by means of rotation guidance on each portion P 2 of the guide ring 23.
- the rotation shaft 24 forms, in cooperation with the second portions P 2 of the guide ring 23, the antenna support means parabolic 12.
- the rotation shaft 24 allows the rotation of the parabolic antenna 12 according to the second axis of rotation Y.
- the actuating means and measurement in rotation 26 about the Y axis are arranged on both sides. another of each P2 portion.
- the radiofrequency amplifier 14 and the parabolic antenna 12 are mounted on the rotation shaft 24, the radiofrequency amplifier 14 being located behind the parabolic antenna 12. In this way, the assembly formed by the radio frequency amplifier 14 and the parabolic antenna 12 can be rotated about the second axis of rotation Y.
- the radiofrequency amplifier 14 is offset from the rotation shaft 24, so that only the parabolic antenna 12 is mounted on the rotation shaft 24.
- the transmission between the radio frequency amplifier 14 and the parabolic antenna 12 is made for example using flexible coaxial cables and / or flexible waveguides.
- the motor 28 and the pinion 30 are in this embodiment fixed on the base 16 in the space defined by the guide ring 23.
- the guide ring 23 has two outer faces 23b and inner 23a opposite to each other.
- the outside face 23b at the level of the first portion P 1 , opposite the parabolic antenna 12, comprises on each of its two longitudinal edges a guide rail 34, intended to allow the sliding of the guide ring 23 in the pads 20 during the rotation of the guide ring 23 around the first axis of rotation X.
- the outer face 23b at the first portion P 1 comprises a ring gear 36 extending longitudinally on the outer face 23b from one end e of the first portion P 1 to the other end e.
- the ring gear 36 cooperates with the pinion 30 so that when the electric motor 28 makes it possible to rotate the pinion 30, it causes rotation of the ring gear 36, and therefore the rotation of the guide ring 23 around the first axis of rotation X.
- the principle of rotating such a guide ring is for example described in the application US 2002/0030631 and the patent US 4,282,529 .
- the guiding ring 23 comprises two toothed rings 36, being for example made according to the principle described in the application WO 2009/033085 .
- the outer face 23b of the guide ring 23 also comprises, at the level of the first portion P 1 , a graduated measurement strip (or tape) 38 extending longitudinally on the outer face 23b from an end e of the first portion P 1 towards the other end e.
- the graded measurement band 38 provides information on the angular position of the guide ring 23 as it rotates about the first axis of rotation X.
- the optical reading device 32 makes it possible to determine this angular position of the guide ring 23 automatically. by reading the graded measurement band 38. In this way, it is possible to avoid the presence of encoders on the axis of rotation of a guide ring to know its angular position, as taught in the prior art.
- the ring gear 36, and if necessary, the measuring tape 38 is for example located on the inner face 23a of the guide ring 23.
- the pads 20 comprise a support 40 for supporting the electric motor 28, the pinion 30 and the optical device 32, as shown in FIG. figure 3 .
- the rotation of the pinion 30 is therefore on the side of the inner face 23a of the guide ring 23 to rotate the guide ring 23 via the ring gear 36.
- the parabolic antenna 12 has for example a diameter D between 30 cm and 80 cm, being for example equal to 45 cm, 60 cm or 75 cm. Indeed, the specific design of the positioner 1 according to the invention allows a high degree of modularity in the choice of the diameter of the parabolic antenna 12.
- the positioner 1 according to the invention makes it possible to significantly increase the pointing performance towards the satellite when it is at the vertical of the antenna, and this for X, C, Ku band communications or, preferably, Ka.
- the positioner 1 according to the invention makes it possible to obtain the necessary precision guaranteeing nominal communications performance for the frequency bands mentioned above.
- the total weight of the positioner 1 is reduced, being in particular less than 15 kg without the presence of the assembly consisting of the parabolic antenna 12 and possibly the radio frequency amplifier 14.
- the assembly consisting of the parabolic antenna 12 and possibly for example, the radio frequency amplifier 14 has a weight of less than 9 kg.
- the second axis Y being balanced by a judicious distribution of the masses of the antenna 12 and possibly the radio frequency amplifier 14.
- the positioner 1 is driven in a rotational movement along the horizontal axes of rotation X and Y, in order to be able to point the satellite dish 12 towards the satellite.
- the rotation along the first axis X is performed by means of the guide ring 23 which slides between the pads 20 following the driving of the pinion 30 by the electric motor 28.
- the rotation along the second axis Y is made by rotation of the shaft 24 which carries the satellite dish 12 and possibly the radiofrequency amplifier 14.
- the parabolic antenna positioner 1 described above has multiple advantages.
- the positioner 1 according to the invention is balanced thanks to the non-zero spacing between the second Y and third W axes, and to the geometry of the guide ring 23. Maintaining the pointing direction of the parabolic antenna 12 to the satellite is thus improved in all circumstances, especially when moving the carrier.
- the positioner 1 has a low mass balance that can meet all the constraints of the environment in which it is located, including aeronautical and / or tactical constraints.
- the simplified design of the positioner 1 according to the invention also makes it possible to limit the costs and the power consumption of the positioner, while at the same time enabling the positioner to exhibit high pointing performance and considerable deflection of the parabolic antenna, making it possible, for example, to obtain a minimum elevation of the order of 10 ° to 15 °.
- Positioner 1 does not have an azimuth axis subject to an infinite number of revolutions, as is always the case for positioners of the type Elevation on Azimuth, signal transmission can be done for example using coaxial cables flexible and / or flexible waveguides, especially in the case where the radio frequency amplifier is remote without requiring the use of rotating joints as taught by the prior art, which reduces costs.
- the base 16 comprises a plate 18 rotating about an additional axis of azimuth to make it possible to obtain a positioner 1 along three axes of rotation, the rotary plate being for example made according to the principle described in the application CA 1 236 211 .
- the presence of three axes of rotation allows to have no singular point in any direction.
- the additional axis of azimuth is provided with a partial deflection (typically + -30 degrees on either side of the X axis of the figure 2 ), in which case no rotary joints are necessary.
- the additional azimuth axis is provided with a n 360 ° travel, this time requiring a rotary joint, in which case it is possible to maintain the antenna in a fixed position both in direction and in orientation, the antenna may then not have a symmetry of rotation relative to its axis, as for example, if with a linear polarization.
- a static rotation of the base (16) around X of approximately 15 to 45 ° degrees makes it possible to reach targets with a negative elevation. figures 5 and 6 .
- the positioner 1 is coupled to the use of a gear set retrofit system to improve the pointing performance towards the satellite.
- the base 16 is angularly offset relative to the guide ring 23 so that when the Y axis is horizontal, and parallel to the plate 18, the pads 20 are offset along the ring 23 relative to the projection of the center of gravity of the moving assembly 10 on the guide ring 23.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Support Of Aerials (AREA)
Description
L'invention concerne le domaine des communications par satellite, plus généralement connu sous la dénomination SATCOM ou « Satellite Communications » en anglais. Elle se rapporte plus particulièrement à un positionneur d'antenne parabolique pour permettre la communication avec un satellite, ce positionneur étant notamment destiné à être placé sur un porteur en mouvement.The invention relates to the field of satellite communications, more generally known under the name SATCOM or "Satellite Communications" in English. It relates more particularly to a satellite dish positioner to allow communication with a satellite, this positioner being particularly intended to be placed on a moving carrier.
Il existe actuellement différents types de positionneurs d'antenne parabolique pour permettre d'établir une communication avec un satellite, ces positionneurs étant soit fixes par rapport au sol, soit mobiles lorsqu'ils sont placés sur des porteurs en mouvement.There are currently different types of satellite dish positioners for establishing communication with a satellite, these positioners being either fixed to the ground or mobile when placed on moving carriers.
La demande
Les demandes
Enfin, la demande
Dans ce contexte, l'invention vise à proposer un positionneur d'antenne parabolique qui soit dépourvu de point singulier à la verticale et qui soit équilibré, sans nécessiter l'ajout de contrepoids sur le positionneur, notamment pour être apte à être placé sur un porteur en mouvement.In this context, the invention aims to provide a parabolic antenna positioner which is devoid of singular point vertically and which is balanced, without requiring the addition of counterweight on the positioner, in particular to be able to be placed on a carrier in motion.
A cette fin, l'invention a pour objet, selon un premier aspect, un positionneur d'antenne parabolique parabolique comportant :
- un socle,
- un berceau de support étant monté de manière rotative par rapport au socle selon un premier axe de rotation,
- un ensemble mobile comportant une antenne parabolique, portés par le berceau de support, et monté de manière rotative par rapport au berceau de support selon un deuxième axe de rotation, orthogonal au premier axe de rotation,
- a pedestal,
- a support cradle being rotatably mounted relative to the base according to a first axis of rotation,
- a mobile assembly comprising a satellite dish, carried by the support cradle, and rotatably mounted relative to the support cradle according to a second axis of rotation, orthogonal to the first axis of rotation,
Le positionneur peut également présenter une ou plusieurs des caractéristiques ci-dessous, considérées individuellement ou suivant toutes les combinaisons techniquement possibles :
- la distance est telle que le centre de gravité du berceau de support et de l'ensemble mobile soit situé sur le premier axe de rotation ;
- la distance séparant le deuxième axe et le premier axe de rotation du berceau de support est comprise entre 5 et 15 cm ;
- le berceau de support comporte une couronne de guidage ayant une première portion s'étendant selon un demi-cercle d'axe et deux deuxièmes partions s'étendant respectivement depuis chacune des extrémités de la première portion de la couronne de guidage, perpendiculairement au troisième axe, l'ensemble mobile étant articulé sur les deux deuxièmes portions ;
- la couronne de guidage, notamment la première portion de la couronne de guidage, comporte un rail de guidage, notamment deux rails de guidage disposés respectivement sur chacun des deux bords longitudinaux d'une face de la couronne de guidage ;
- le socle comporte un patin dans lequel coulisse le rail de guidage, notamment deux patins dans lesquels coulissent respectivement les deux rails de guidage de la couronne de guidage ;
- la couronne de guidage, notamment la première portion de la couronne de guidage, comporte une couronne dentée s'étendant longitudinalement sur une face de la couronne de guidage, notamment depuis une extrémité de la première portion vers l'autre extrémité et le socle comporte un moteur électrique et un pignon, le moteur électrique entraînant en rotation le pignon, et le pignon étant apte à entraîner en rotation la couronne de guidage en agissant sur la couronne dentée ;
- le berceau de support comporte une bande de mesure graduée s'étendant longitudinalement sur une face du berceau, il comporte un dispositif de lecture optique, placé notamment sur le socle, afin de déterminer la position angulaire du berceau de guidage par lecture optique de la bande de mesure graduée.
- l'ensemble mobile comporte, outre l'antenne parabolique, un amplificateur radiofréquence, l'antenne parabolique et l'amplificateur radiofréquence étant disposés de part et d'autre du deuxième axe de rotation ;
- le berceau de support est essentiellement dépourvu de masselottes d'équilibrage.
- the distance is such that the center of gravity of the support cradle and the moving assembly is located on the first axis of rotation;
- the distance separating the second axis and the first axis of rotation of the support cradle is between 5 and 15 cm;
- the support cradle comprises a guide ring having a first portion extending along a semicircle of axis and two second sections respectively extending from each end of the first portion of the guide ring, perpendicularly to the third axis; the moving assembly being articulated on the two second portions;
- the guide ring, in particular the first portion of the guide ring, comprises a guide rail, in particular two guide rails respectively disposed on each of the two longitudinal edges of a face of the guide ring;
- the base comprises a shoe in which slides the guide rail, in particular two pads in which slide respectively the two guide rails of the guide ring;
- the guide ring, in particular the first portion of the guide ring, comprises a ring gear extending longitudinally on one face of the guide ring, in particular from one end of the first portion towards the other end and the base comprises a an electric motor and a pinion, the electric motor driving the pinion in rotation, and the pinion being able to rotate the guide ring by acting on the ring gear;
- the support cradle comprises a graduated measurement strip extending longitudinally on one side of the cradle, it comprises an optical reading device, placed in particular on the base, in order to determine the angular position of the cradle of guidance by optical reading of the strip graduated measurement.
- the mobile assembly comprises, besides the parabolic antenna, a radio frequency amplifier, the parabolic antenna and the radiofrequency amplifier being disposed on either side of the second axis of rotation;
- the support cradle is essentially devoid of balancing weights.
D'autres caractéristiques et avantages de l'invention ressortiront de la description d'exemples de réalisation conformes à l'invention qui en sont donnés ci-dessous, à titre indicatif et nullement limitatif, en référence aux figures du dessin annexé, parmi lesquelles :
- la
figure 1 est une vue en élévation d'un positionneur conforme à l'invention équipé d'une antenne parabolique et d'un amplificateur radiofréquence ; - la
figure 2 est une autre vue en perspective du positionneur de lafigure 1 ; - la
figure 3 est une vue en élévation d'un positionneur conforme à l'invention équipé d'une antenne parabolique, l'amplificateur radiofréquence étant déporté ; - la
figure 4 est une autre vue en perspective du positionneur de lafigure 3 ; et - les
figures 5 et6 sont des vues en élévation respectivement de variantes de réalisation des modes de réalisation desfigures 1 et3 .
- the
figure 1 is an elevational view of a positioner according to the invention equipped with a parabolic antenna and a radio frequency amplifier; - the
figure 2 is another perspective view of the positioner of thefigure 1 ; - the
figure 3 is an elevational view of a positioner according to the invention equipped with a parabolic antenna, the radio frequency amplifier being deported; - the
figure 4 is another perspective view of the positioner of thefigure 3 ; and - the
figures 5 and6 are elevational views respectively of alternative embodiments of the embodiments offigures 1 and3 .
La
Le positionneur 1 est destiné à permettre à l'antenne parabolique 12 d'être pointée en direction d'un satellite donné, notamment un satellite situé aux environs de la verticale du positionneur 1. Le positionneur 1 est destiné à être placé sur un porteur en mouvement, lequel peut être de tout type. En particulier, le positionneur 1 est utilisé pour des applications civiles et/ou militaires, et le porteur est un porteur du type maritime, aérien et/ou terrestre. Le porteur est par exemple un aéronef, un véhicule terrestre et/ou un navire.The
Le positionneur 1 comporte un socle 16, qui comporte lui-même un plateau 18 et deux patins 20, les patins 20 étant fixés sur le plateau 18.The
Un berceau de support 22 comportant une couronne de guidage 23 est monté de manière à obtenir sa rotation autour du centre O de la couronne de guidage 23 et selon un premier axe de rotation horizontal X en s'appuyant sur les patins 20, comme on le voit sur la
L'antenne parabolique 12 et de l'amplificateur radiofréquence 14 constituent une masse mobile en rotation par rapport au berceau 22. A cet effet, le berceau 22 comporte un arbre de rotation 24 d'axe Y pour l'antenne parabolique 12 associée éventuellement à un amplificateur radiofréquence 14, ainsi que des moyens d'actionnement et de mesure 26, détaillés plus loin dans la description, portés par le berceau 22.The
L'arbre de rotation 24, et les moyens d'actionnement et de mesure 26 sont tels que l'antenne parabolique 12 associée éventuellement à l'amplificateur radiofréquence 14 est entraînée en rotation par rapport au berceau 22 autour de l'axe horizontal Y, lequel s'étend orthogonalement au premier axe de rotation horizontal X, en étant porté par le berceau 22.The
L'antenne parabolique 12 s'étend globalement au dessus de l'axe Y, alors que l'amplificateur radiofréquence 14 s'étend dans le demi-cercle délimité par la couronne de guidage 23. Ainsi, avantageusement, l'antenne parabolique 12 et l'amplificateur radiofréquence 14 sont disposés de part et d'autre de l'axe Y. Ils sont, avantageusement, répartis de sorte que le centre de gravité de l'ensemble mobile 10 formé notamment de l'antenne parabolique 12 et éventuellement de l'amplificateur radiofréquence 14 soit situé sur l'axe Y, quelle que soit la position angulaire de cet ensemble 10 par rapport à la couronne 23.The
La couronne de guidage 23 comporte une première portion P1 qui présente deux extrémités e. La première portion P1 s'étend selon un demi-cercle centré en un point O et de rayon r. Le diamètre du demi-cercle passant par les extrémités e de la première portion P1 définit un troisième axe W parallèle au deuxième axe Y et passant par O. De plus, les deuxième Y et troisième W axes sont dans le plan du demi-cercle et l'axe X est orthogonal au plan du demi-cercle. Le rayon r du demi-cercle est par exemple compris entre 10 et 30 cm.The
Les deuxième Y et troisième W axes sont séparés d'une distance E non nulle, appelée également entraxe E. L'entraxe E est compris entre 5 et 15 cm.The second Y and third W axes are separated by a non-zero distance E, also called center distance E. The center distance E is between 5 and 15 cm.
Le deuxième axe Y est équilibré par une répartition judicieuse des masses de l'antenne 13 et de l'amplificateur radiofréquence 12.The second axis Y is balanced by a judicious distribution of the masses of the antenna 13 and the
Le premier axe de rotation X du positionneur 1 passe par le centre O du demi-cercle selon lequel s'étend la première portion P1 de la couronne de guidage 23, et intersecte le troisième axe W. En revanche, le deuxième axe de rotation Y du positionneur 1 ne passe pas par le centre O du demi-cercle, étant parallèle et non confondu avec le troisième axe W. De la sorte, les premier X et deuxième Y axes de rotation du positionneur 1 ne s'intersectent pas et sont séparés d'une distance égale à l'entraxe E.The first axis of rotation X of the
L'entraxe E est tel que le centre de gravité du berceau de support 22 et de l'ensemble mobile 10 soit situé sur l'axe X. Cet entraxe E permet l'équilibrage de l'axe X, en centrant en O le centre de gravité des masses tournant autour de X. Ainsi, le positionneur 1 selon l'invention ne présente pas de point singulier à la verticale et promet d'être équilibré sur ses deux axes de rotation X et Y.The center distance E is such that the center of gravity of the
Le positionneur 1 comporte également un moteur électrique 28 accouplé à un pignon 30, pour permettre la rotation du pignon 30. Le moteur électrique 28 et le pignon 30 sont fixés sur le plateau 18 du socle 16 entre les patins 20.The
Par ailleurs, un dispositif de lecture optique 32 est placé sous la couronne de guidage 23, entre les patins 20. Le dispositif de lecture optique 32 est fixe relativement à la couronne de guidage 23.Furthermore, an
La couronne de guidage 23 comporte de plus deux deuxièmes portions P2 s'étendant respectivement chacune depuis les deux extrémités e de la première portion P1, perpendiculairement au troisième axe W.The
Chaque portion P2 de la couronne de guidage 23 comporte un orifice pour permettre le passage de l'arbre de rotation 24, monté de manière rotative par rapport à la couronne de guidage 23 selon le deuxième axe de rotation Y, et solidarisé à celle-ci au moyen de guidage en rotation sur chaque portion P2 de la couronne de guidage 23. L'arbre de rotation 24 forme, en coopération avec les deuxièmes portions P2 de la couronne de guidage 23, les moyens de support de l'antenne parabolique 12. L'arbre de rotation 24 permet la rotation de l'antenne parabolique 12 selon le deuxième axe de rotation Y. Les moyens d'actionnement et de mesure en rotation 26 autour de l'axe Y sont disposés de part et d'autre de chaque portion P2.Each portion P 2 of the
Dans l'exemple représenté sur les
En variante, comme représenté sur les
La couronne de guidage 23 comporte deux faces extérieure 23b et intérieure 23a, opposées l'une à l'autre. La face extérieure 23b au niveau de la première portion P1, opposée à l'antenne parabolique 12, comporte sur chacun de ses deux bords longitudinaux un rail de guidage 34, destiné à permettre le coulissement de la couronne de guidage 23 dans les patins 20 lors de la rotation de la couronne de guidage 23 autour du premier axe de rotation X.The
Par ailleurs, la face extérieure 23b au niveau de la première portion P1 comporte une couronne dentée 36 s'étendant longitudinalement sur la face extérieure 23b depuis une extrémité e de la première portion P1vers l'autre extrémité e.Furthermore, the
La couronne dentée 36 coopère avec le pignon 30 de sorte que lorsque le moteur électrique 28 permet de mettre en rotation le pignon 30, celui-ci entraîne la rotation de la couronne dentée 36, et donc la rotation de la couronne de guidage 23 autour du premier axe de rotation X.The
Le principe de mise en rotation d'une telle couronne de guidage est par exemple décrit dans la demande
La face extérieure 23b de la couronne de guidage 23 comporte encore, au niveau de la première portion P1, une bande (ou ruban) de mesure graduée 38 s'étendant longitudinalement sur la face extérieure 23b depuis une extrémité e de la première portion P1vers l'autre extrémité e.The
La bande de mesure graduée 38 renseigne sur la position angulaire de la couronne de guidage 23 lors de sa rotation autour du premier axe de rotation X. Le dispositif de lecture optique 32 permet de déterminer cette position angulaire de la couronne de guidage 23 de façon automatique par lecture de la bande de mesure graduée 38. De la sorte, il est possible d'éviter la présence de codeurs sur l'axe de rotation d'une couronne de guidage pour connaître sa position angulaire, comme enseigné dans l'art antérieur.The graded
Dans le cas où l'amplificateur radiofréquence 14 est déporté, la couronne dentée 36, et le cas échéant, la bande de mesure graduée 38, est par exemple située sur la face intérieure 23a de la couronne de guidage 23. Les patins 20 comportent un support 40 permettant de supporter le moteur électrique 28, le pignon 30 et le dispositif optique 32, comme représenté sur la
L'antenne parabolique 12 présente par exemple un diamètre D compris entre 30 cm et 80 cm, étant par exemple égal à 45 cm, 60 cm ou 75 cm. En effet, la conception spécifique du positionneur 1 selon l'invention permet une forte modularité dans le choix du diamètre de l'antenne parabolique 12.The
Le positionneur 1 selon l'invention permet d'accroître significativement les performances de pointage en direction du satellite lorsque celui-ci est à la vertical de l'antenne, et ce pour des communications en bandes X, C, Ku ou, de préférence, Ka. Le positionneur 1 selon l'invention permet d'obtenir la précision nécessaire garantissant des performances de communications nominales pour les bandes de fréquence citées précédemment.The
Le poids total du positionneur 1 est réduit, étant notamment inférieur à 15 kg sans la présence de l'ensemble constitué de l'antenne parabolique 12 et éventuellement de l'amplificateur radiofréquence 14. L'ensemble constitué de l'antenne parabolique 12 et éventuellement de l'amplificateur radiofréquence 14 a par exemple, quant à lui, un poids inférieur à 9 kg.The total weight of the
La géométrie particulière à l'invention de la couronne de guidage 23, le choix du ou des matériaux constitutifs de la couronne de guidage 23 et le choix de la valeur de l'entraxe E, associées ou non au positionnement de l'amplificateur radiofréquence 14 sur l'arbre de rotation 24 derrière l'antenne parabolique 12, permet de résoudre les problèmes d'équilibrage des positionneurs d'antenne parabolique du type XY connus. Le deuxième axe Y étant équilibré par une répartition judicieuse des masses de l'antenne 12 et éventuellement de l'amplificateur radiofréquence 14.The geometry particular to the invention of the
En fonctionnement, le positionneur 1 est animé d'un mouvement en rotation selon les axes de rotation horizontaux X et Y, afin de pouvoir pointer l'antenne parabolique 12 en direction du satellite. La rotation selon le premier axe X est réalisée par l'intermédiaire de la couronne de guidage 23 qui coulisse entre les patins 20 suite à l'entraînement du pignon 30 par le moteur électrique 28. La rotation selon le deuxième axe Y est réalisée par rotation de l'arbre 24 qui porte l'antenne parabolique 12 et éventuellement l'amplificateur radiofréquence 14.In operation, the
Le positionneur 1 d'antenne parabolique décrit ci-dessus présente de multiples avantages.The
Le positionneur 1 selon l'invention est équilibré grâce à l'entraxe non nul entre les deuxième Y et troisième W axes, et à la géométrie de la couronne de guidage 23. Le maintien de la direction de pointage de l'antenne parabolique 12 vers le satellite s'en trouve ainsi amélioré en toute circonstance, notamment lors du déplacement du porteur. Le positionneur 1 présente un bilan de masse faible qui permet de répondre à toutes les contraintes de l'environnement dans lequel il se situe, notamment aux contraintes aéronautiques et/ou tactiques.The
La conception simplifiée du positionneur 1 selon l'invention permet également de limiter les coûts, et la consommation électrique du positionneur, tout en permettant au positionneur de présenter des performances de pointage importantes et un débattement important de l'antenne parabolique, permettant par exemple d'obtenir une élévation minimale de l'ordre de 10°à 15°.The simplified design of the
Le positionneur 1 ne comportant pas d'axe azimut assujetti à un nombre infini de tours, comme c'est toujours le cas pour les positionneurs du type Elévation sur Azimut, la transmission des signaux peut se faire par exemple à l'aide de câbles coaxiaux souples et/ou de guides d'ondes souples, notamment dans le cas où l'amplificateur radiofréquence est déporté, sans nécessiter l'utilisation de joints tournants comme enseigné par l'art antérieur, ce qui réduit les coûts.
Bien entendu, l'invention n'est pas limitée au mode de réalisation qui vient d'être décrit.Of course, the invention is not limited to the embodiment just described.
En variante, le socle 16 comporte un plateau 18 tournant autour d'un axe supplémentaire d'azimut pour permettre d'obtenir un positionneur 1 selon trois axes de rotation, le plateau tournant étant par exemple réalisé selon le principe décrit dans la demande
En variante également, le positionneur 1 est couplé à l'utilisation d'un système à rattrapage de jeu d'engrenage pour améliorer les performances de pointage en direction du satellite.Also as a variant, the
Sur les
Claims (10)
- A parabolic antenna positioner (1) comprising:- a base (16),- a support cradle (22) being mounted so it can rotate relative to the base (16) along a first axis of rotation (X),- a mobile assembly (10) including a parabolic antenna (12), supported by the support cradle (22), and mounted so that it can rotate relative to the support cradle (22) along a second axis of rotation (Y), orthogonal to the first axis of rotation (X), the second axis of rotation (Y) being separated from the axis of rotation (X) of the support cradle (22) by a non-null distance (E) measured in the plane of rotation of the cradle (22),characterized in that said distance (E) is such that the center of gravity of the support cradle (22) and the mobile assembly (10) is situated on the first axis of rotation (X).
- Positioner (1) according to claim 1, characterized in that the distance separating the second axis (Y) and the first axis (X) of rotation of the support cradle (22) is comprised between 5 and 15 cm.
- Positioner (1) according to claim 1 or claim 2, characterized in that the support cradle (22) includes a guide crown (23) having a first portion (P1) extending along a half-circle of axis (X) and two second portions (P2) respectively extending from each of the ends (e) of the first portion (P1) of the guide crown (23), perpendicular to a third axis (W), the mobile assembly (10) being articulated on the two second portions (P2).
- Positioner (1) according to claim 3, characterized in that the guide crown (23), in particular the first portion (P1) of the guide crown (23), includes a guide rail (34), in particular two guide rails (34) respectively arranged on each of the two longitudinal edges of one face (23a, 23b) of the guide crown (23).
- Positioner (1) according to the preceding claim, characterized in that the base (16) includes a skate (20) in which the guide rail (34) slides, in particular two skates (20) in which the two guide rails (34) of the guide crown (23) slide, respectively.
- Positioner (1) according to any one of claims 3 or 4, characterized in that the guide crown (23), in particular the first portion (P1) of the guide crown (23), includes a toothed crown (36) extending longitudinally on one face (23a, 23b) of the guide crown (23), in particular from one end (e) of the first portion (P1) toward the other end (e) and in that the base (16) includes an electric motor (28) and a pinion (30), the electric motor (28) rotating the pinion (30), and the pinion (30) being able to rotate the guide crown (23) by acting on the toothed crown (36).
- Positioner (1) according to any one of the preceding claims, characterized in that the support cradle (22) includes a graduated measuring strip (38) extending longitudinally on one face (23a, 23b) of the cradle (22), and in that it includes an optical reading device (32), placed in particular on the base (16), in order to determine the angular position of the guide cradle (22) by optical reading of the graduated measuring strip (38).
- Positioner (1) according to any one of the preceding claims, characterized in that the mobile assembly (10) includes, aside from the parabolic antenna (12), a radiofrequency amplifier (14), the parabolic antenna (12) and the radiofrequency amplifier (14) being arranged on either side of the second axis of rotation (Y).
- Positioner (1) according to any one of the preceding claims, characterized in that the support cradle (22) is essentially without balance weights.
- Positioner (1) according to any one of the preceding claims, characterized in that the center of gravity of the mobile assembly (10) is situated on the second axis of rotation (Y).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1004199A FR2966646B1 (en) | 2010-10-26 | 2010-10-26 | PARABOLIC ANTENNA POSITIONER |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2448063A1 EP2448063A1 (en) | 2012-05-02 |
EP2448063B1 true EP2448063B1 (en) | 2016-01-13 |
Family
ID=44147617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11306378.8A Active EP2448063B1 (en) | 2010-10-26 | 2011-10-25 | Satellite-dish positioner |
Country Status (5)
Country | Link |
---|---|
US (1) | US8681065B2 (en) |
EP (1) | EP2448063B1 (en) |
ES (1) | ES2568226T3 (en) |
FR (1) | FR2966646B1 (en) |
IL (1) | IL215916A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102820537A (en) * | 2012-08-27 | 2012-12-12 | 中国电子科技集团公司第五十四研究所 | X-Y axis antenna mount |
US9847584B2 (en) * | 2014-12-02 | 2017-12-19 | Ubiquiti Networks, Inc. | Multi-panel antenna system |
FR3042917B1 (en) * | 2015-10-22 | 2018-12-07 | Zodiac Data Systems | ACQUISITION ASSIST ANTENNA DEVICE AND ANTENNA SYSTEM FOR TRACKING A MOVING TARGET ASSOCIATED WITH |
FR3054933A1 (en) * | 2016-08-04 | 2018-02-09 | Thales | POSITIONER FOR ANTENNA |
US11522266B2 (en) * | 2018-03-08 | 2022-12-06 | Viasat, Inc. | Antenna positioner with eccentric tilt position mechanism |
CN111175711B (en) * | 2020-01-08 | 2024-01-05 | 中国船舶集团有限公司第七二四研究所 | Combined radar feed source adjusting device |
CN113067154B (en) * | 2021-03-31 | 2022-08-02 | 大连海事大学 | Compact ultra-wideband tri-notch fractal antenna |
CN113922088A (en) * | 2021-10-18 | 2022-01-11 | 北京微纳星空科技有限公司 | Low-orbit satellite antenna turntable and low-orbit satellite antenna |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB735359A (en) | 1953-01-09 | 1955-08-17 | English Electric Co Ltd | Improvements relating to gimbal mechanisms |
US4282529A (en) | 1978-12-18 | 1981-08-04 | General Dynamics, Pomona Division | Differential drive rolling arc gimbal |
CA1236211A (en) | 1985-03-19 | 1988-05-03 | Michael R. Davenport | Stabilization system for satellite tracking antenna |
FR2589633A1 (en) * | 1985-10-31 | 1987-05-07 | Grip Rolf | Active type aiming antenna |
US5227806A (en) * | 1991-03-20 | 1993-07-13 | Japan Radio Co., Ltd. | Stabilized ship antenna system for satellite communication |
SE507288C2 (en) * | 1997-06-13 | 1998-05-11 | Trulstech Innovation Kb | Device comprising antenna reflector and transmitter / receiver horn combined into a compact antenna unit |
US6333718B1 (en) * | 1997-10-29 | 2001-12-25 | Dassault Electronique | Continuous multi-satellite tracking |
GB9919396D0 (en) | 1999-08-18 | 1999-10-20 | Knight Richard | A moving yoke |
US6285338B1 (en) | 2000-01-28 | 2001-09-04 | Motorola, Inc. | Method and apparatus for eliminating keyhole problem of an azimuth-elevation gimbal antenna |
US6531990B2 (en) | 2000-06-12 | 2003-03-11 | Datron Advanced Technologies, Inc. | Gimbal system for satellite antenna |
CA2453902A1 (en) * | 2003-01-30 | 2004-07-30 | Brian A. Harron | Gimballed reflector mounting platform |
KR20070060630A (en) * | 2005-12-09 | 2007-06-13 | 한국전자통신연구원 | Antenna system for tracking satellite |
US20070241244A1 (en) * | 2006-04-18 | 2007-10-18 | X-Ether, Inc. | Method and apparatus for eliminating keyhole problems in an X-Y gimbal assembly |
US7463206B1 (en) * | 2007-06-11 | 2008-12-09 | Naval Electronics Ab | Antenna |
EP2186158A1 (en) | 2007-09-05 | 2010-05-19 | ViaSat, Inc. | Roller based antenna positioner |
-
2010
- 2010-10-26 FR FR1004199A patent/FR2966646B1/en not_active Expired - Fee Related
-
2011
- 2011-10-25 US US13/280,559 patent/US8681065B2/en not_active Expired - Fee Related
- 2011-10-25 IL IL215916A patent/IL215916A/en active IP Right Grant
- 2011-10-25 ES ES11306378.8T patent/ES2568226T3/en active Active
- 2011-10-25 EP EP11306378.8A patent/EP2448063B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20120098727A1 (en) | 2012-04-26 |
ES2568226T3 (en) | 2016-04-28 |
IL215916A0 (en) | 2012-02-29 |
EP2448063A1 (en) | 2012-05-02 |
FR2966646A1 (en) | 2012-04-27 |
FR2966646B1 (en) | 2013-10-04 |
US8681065B2 (en) | 2014-03-25 |
IL215916A (en) | 2015-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2448063B1 (en) | Satellite-dish positioner | |
EP0142397B1 (en) | Antenna stabilisation and aiming device, especially on a ship | |
EP2798314B1 (en) | Stabilised platform | |
CA2729190C (en) | Improvements in the determination of at least one value associated with the electromagnetic radiation of an object being tested | |
WO2000039885A1 (en) | Method and device for pointing and positioning a multisatellite antenna | |
FR2966645A1 (en) | TRI-AXIS POSITIONER FOR ANTENNA | |
EP2256039A1 (en) | Through-pivot with flexible elements and spacecraft comprising such a pivot | |
FR2545619A1 (en) | ROTARY MIRROR SYSTEM FOR PRODUCING EARTH GLOBE IMAGES FROM AN AIRCRAFT | |
EP3144228A1 (en) | Gyroscopic actuator with dual gimbal guidance, suspension member and abutment element | |
EP3291367B1 (en) | System for assembling two parts in a motion transmitting device | |
FR2761286A1 (en) | Multi-axis positioning mechanism | |
EP1964778A1 (en) | Pivot with blades | |
EP3280003B1 (en) | Antenna positioner | |
FR2502404A1 (en) | Articulated mounting for satellite sub-assembly - uses output from inertial detector to control step or torque motor to move support arm for stabilisation | |
FR2646023A1 (en) | Antenna pointing device, satellite equipped with such a device and antenna pointing process using such a device | |
FR2472853A1 (en) | ANTENNA WITH AN ADJUSTABLE BEAM AND SATELLITE COMPRISING SUCH ANTENNA | |
EP1635485B1 (en) | Optical transmission method between an on-board spacecraft terminal and a distant terminal, and spacecraft adapted for said method | |
EP0498699B1 (en) | Pointing mechanism for a payload, especially for a satellite antenna | |
CA3165023C (en) | Radiator with reduced irradiance and guidance system for geostationary satellite | |
FR2690532A1 (en) | Pointing, or aiming, device for optical equipment e.g. for satellite communication using modulated laser beam - has system of two mirrors rotating about axes perpendicular to each other with fine tuning of first mirror | |
EP0455543B1 (en) | Device for pointing a reflector antenna | |
FR3071816A1 (en) | MULTIROTOR TYPE DRONE COMPRISING A ROTATION SPEED MANAGEMENT UNIT OF EACH ROTOR AND METHOD OF CONTROLLING SUCH A DRONE | |
WO2021170723A1 (en) | Movable antenna support | |
EP3839604A1 (en) | Improved off-centre scanning device | |
WO2022069682A1 (en) | Device for positioning an antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20121003 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01Q 1/18 20060101ALI20150622BHEP Ipc: H01Q 19/19 20060101ALN20150622BHEP Ipc: H01Q 1/12 20060101ALN20150622BHEP Ipc: H01Q 3/08 20060101AFI20150622BHEP |
|
INTG | Intention to grant announced |
Effective date: 20150717 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 771054 Country of ref document: AT Kind code of ref document: T Effective date: 20160215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011022599 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2568226 Country of ref document: ES Kind code of ref document: T3 Effective date: 20160428 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 771054 Country of ref document: AT Kind code of ref document: T Effective date: 20160113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160414 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160513 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160513 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011022599 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
26N | No opposition filed |
Effective date: 20161014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161025 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161025 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111025 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230522 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231019 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231114 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231009 Year of fee payment: 13 Ref country code: FR Payment date: 20231023 Year of fee payment: 13 Ref country code: DE Payment date: 20231011 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240925 Year of fee payment: 14 |