EP2447734B1 - Method for generating data and aligning an environment sensor of a motor vehicle - Google Patents

Method for generating data and aligning an environment sensor of a motor vehicle Download PDF

Info

Publication number
EP2447734B1
EP2447734B1 EP11008681.6A EP11008681A EP2447734B1 EP 2447734 B1 EP2447734 B1 EP 2447734B1 EP 11008681 A EP11008681 A EP 11008681A EP 2447734 B1 EP2447734 B1 EP 2447734B1
Authority
EP
European Patent Office
Prior art keywords
drive axis
deviation value
environment sensor
detecting direction
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11008681.6A
Other languages
German (de)
French (fr)
Other versions
EP2447734A1 (en
Inventor
Umberto Puder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG filed Critical Audi AG
Publication of EP2447734A1 publication Critical patent/EP2447734A1/en
Application granted granted Critical
Publication of EP2447734B1 publication Critical patent/EP2447734B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0088Adaptive recalibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Definitions

  • the invention relates to a method for obtaining data concerning the assessment of the need for a realignment of an environment sensor of a motor vehicle and a method for aligning an environment sensor of a motor vehicle.
  • the sensor adjustment carried out in this case is not required by the majority. Due to changes in the position of the geometric travel axis, the tolerance limits for the predefined permissible nominal range of the sensor adjustment are not exceeded in the majority of cases. In some cases, even a reduction in the misalignment angle of the sensor is achieved by changing the geometric travel axis.
  • a device for adjusting a distance radar sensor on a motor vehicle is known.
  • the geometric travel axis is also taken into account. This is determined by angle sensors on the rear wheels. As a result, the position of the radar sensor can be matched to the position of the geometric driving axis.
  • step f) an alignment deviation value for the deviation of the main detection direction of the environmental sensor from the second position of the geometric travel axis is obtained from the detection direction deviation value and the vehicle axial deviation value.
  • an alignment deviation value for the deviation of the main detection direction of the environmental sensor from the second position of the geometric travel axis is obtained from the detection direction deviation value and the vehicle axial deviation value.
  • the alignment deviation value is preferably compared with a predefinable threshold value.
  • the threshold indicates an upper limit to the alignment deviation value that should not be exceeded. The threshold criterion allows a simple and reliable assessment of whether changing the position of the geometric travel axis requires a change in the orientation of the environmental sensor.
  • the detection direction deviation value and / or the vehicle axis deviation value and / or the orientation deviation value are an angle value.
  • the angle between two axes is a reliable and easily determinable measurand.
  • the detection direction deviation value is determined with the aid of statistical methods.
  • the environment sensor can z. B. statistically evaluate the measured values of detected objects and thus calculate the detection direction deviation value exactly. Errors in the direction determination of objects can be reliably compensated.
  • step c) the movement of the geometric travel axis of the motor vehicle into the second position takes place by setting a toe angle of at least one rear wheel of the motor vehicle.
  • the geometric travel axis can be adjusted or readjusted in a particularly easy way.
  • step b) and / or in step d) the determination of the first position and / or the second position of the geometric travel axis is carried out automatically by means of an axis position measuring device.
  • the automatic determination allows a fast and efficient execution of the procedure and provides exact and easily reproducible results. With the axle position measuring device z. B. even very low angle values can be determined with high accuracy.
  • the steps a) and / or b) and / or d) and / or e) and / or f) take place in a computing unit, which is located in particular in the motor vehicle.
  • a computing unit which is located in particular in the motor vehicle.
  • individual or several of the steps different computing units are available, which may be part of the motor vehicle or provided as external devices. In this way, the procedure can be performed almost fully automatically, very precisely and quickly and leads to very meaningful assessments.
  • the data are provided to an operator in such a way that they can derive from them a handling instruction as to whether a reorientation of the environment sensor should take place.
  • the operator can either be instructed to carry out a realignment of the environmental sensor or to refrain from doing so. Error-prone subjective decisions by operators are avoided by objective judgmental standards.
  • the environment sensor is designed as a radar sensor and / or ultrasound sensor and / or camera system.
  • the main detection direction of a radar or ultrasound sensor then coincides in particular with the respective main emission direction for radar radiation or ultrasound.
  • the geometric travel axis is to be understood in particular as meaning the angle bisector of the total pretensioning angle of the wheels of the rear axle of the motor vehicle.
  • the geometric travel axis then includes the so-called driving angle with the vehicle-specific vehicle longitudinal center plane.
  • the inventive method for aligning an environment sensor of a motor vehicle comprises the method steps of the method for obtaining data according to claim 1.
  • a realignment of the environmental sensor is carried out or omitted depending on the result of the assessment in step f).
  • the main detection direction of the environmental sensor is directed toward the geometric traveling axis.
  • step f In the case where judgment is made in step f) that there is no need to change the orientation of the main detection direction of the environmental sensor, the orientation of the environmental sensor is kept unchanged. In cases where a readjustment of the environment sensor would be superfluous, this is omitted. The maintenance of a motor vehicle can be done faster and cheaper.
  • Fig. 1 shows a motor vehicle 10 having a front axle 12 (with left and right front wheels 16a and 16b, respectively) and a rear axle 14 (with left and right rear wheels 18a and 18b, respectively), which includes a front-mounted sensor 20. This is connected to a computing unit 24.
  • the arithmetic unit 24 and the sensor 20 are part of a driver assistance device in the exemplary embodiment.
  • the individual tracks of the rear wheels 18a and 18b are substantially parallel to the longitudinal extension of the motor vehicle 10. Then, the toe angles w1 and w2 of the rear wheels 18a and 18b are both equal to zero.
  • the geometric travel axis F1 extends in the vehicle longitudinal center plane substantially parallel to the individual tracks of the front (16a and 16b) and rear wheels (18a and 18b).
  • the track values of the rear wheels 18a and 18b are changed so that their toe angles w1 and w2 assume a value other than zero.
  • the geometric driving axis is moved to a second position F2 different from the first position F1.
  • the toe angles w1 and w2 can be measured with angle sensors 22a and 22b, which are connected to the computing unit 24.
  • the main detection direction S of the sensor 20 includes the angle ⁇ with the drive axis F1 and the angle ⁇ with the drive axis F2.
  • the driving axes F1 and F2 enclose with each other an angle ⁇ , which represents a vehicle axle deviation value.
  • is a sensor adjustment angle before the axle adjustment
  • is a sensor adjustment angle after the axle adjustment.
  • the change of the geometric driving axis (F1 to F2) results in a reduction of the misalignment angle ( ⁇ to ⁇ ).
  • the deviation of the main detection direction S by the angle ⁇ from the target main detection direction given by the traveling axis F1 can be compensated by the arithmetic unit 24 by a statistical method.
  • the changes in the track values of the wheels 18a and 18b of the rear axle 14 made in practice and the resulting changes in the driving axis (F1 to F2) are generally much smaller than the allowable tolerance limits of the sensor adjustment. If, as a realistic estimate, a real existing average sensor adjustment angle ⁇ or ⁇ , which is in the range of half the specified tolerance range, no sensor adjustments are necessary in most cases of a successful suspension adjustment.
  • the method described thus reduces the required working time in the maintenance of a motor vehicle and thus also contributes significantly to a reduction in costs (eg for the customer or for the manufacturer in case of warranty).
  • ⁇ or ⁇ deposited corresponding measured values of the calculated Sensordejustagewinkel ⁇ or ⁇ deposited and can be read by the workshop personnel using the diagnostic equipment.
  • an axle measuring computer allows to determine the existing driving angle at the beginning of the chassis measurement. Once the axle has been adjusted, the driving angle is recalculated, so that the determination of the difference in the driving angle before and after the respective drive setting can be made on the basis of the present values without additional technical effort. Through a communication link between the Achsmesscomputer and the diagnostic device, it is possible to transmit this difference to the diagnostic device. If necessary, the service personnel can be instructed to perform the sensor adjustment by the above-described calculation process and subsequent comparison with the predetermined allowable tolerance values.

Description

Die Erfindung betrifft ein Verfahren zum Gewinnen von Daten betreffend die Beurteilung der Notwendigkeit einer Neuausrichtung eines Umfeldsensors eines Kraftwagens sowie ein Verfahren zum Ausrichten eines Umfeldsensors eines Kraftwagens.The invention relates to a method for obtaining data concerning the assessment of the need for a realignment of an environment sensor of a motor vehicle and a method for aligning an environment sensor of a motor vehicle.

In Kraftwägen finden zunehmend Fahrerassistenzsysteme Einsatz, welche Regelvorgänge ausführen, für die z. B. Informationen über die Position und Bewegung vorausfahrender Fahrzeuge, Fahrspurverläufe etc. herangezogen werden. Diese Informationen werden durch geeignete Umfeldsensoren bereitgestellt, welche dann optimal eingestellt sind, wenn ihre Erfassungs- bzw. Wirkungsrichtung mit der geometrischen Fahrachse des Fahrzeugs zusammenfällt. Aufgrund toleranzbedingter Montagen und Lageänderungen im Fahrbetrieb wird die tatsächliche Einstellung in der Regel von der optimalen Einstellung abweichen.In vehicles increasingly driver assistance systems are used, which perform control operations for the z. B. Information about the position and movement of vehicles in front, lane courses, etc. are used. This information is provided by suitable environmental sensors, which are optimally adjusted when their detection or action direction coincides with the geometric travel axis of the vehicle. Due to tolerance-related assembly and changes in position during driving, the actual setting will generally deviate from the optimum setting.

Im Rahmen von Wartungs- und Reparaturarbeiten am Fahrzeug kann es zu Änderungen an der Achsgeometrie kommen. Beispielsweise wird bei Änderung der Spurwerte der Räder der Hinterachse auch die geometrische Fahrachse verändert. In diesen Fällen wird das Servicepersonal generell angewiesen, die Umfeldsensoren neu zu justieren.Maintenance and repair work on the vehicle may result in changes to the axle geometry. For example, changing the track values of the wheels of the rear axle and the geometric driving axle is changed. In these cases, the service personnel are generally instructed to readjust the environmental sensors.

Die hierbei durchgeführte Sensorjustage ist jedoch mehrheitlich nicht erforderlich. Durch Änderungen der Lage der geometrischen Fahrachse werden in der Mehrzahl der Fälle die Toleranzgrenzen für den vorgegebenen zulässigen Sollbereich der Sensorjustage nicht überschritten. In einigen Fällen wird durch die Änderung der geometrischen Fahrachse sogar eine Reduzierung des Dejustagewinkels des Sensors erreicht.However, the sensor adjustment carried out in this case is not required by the majority. Due to changes in the position of the geometric travel axis, the tolerance limits for the predefined permissible nominal range of the sensor adjustment are not exceeded in the majority of cases. In some cases, even a reduction in the misalignment angle of the sensor is achieved by changing the geometric travel axis.

Aus der DE 198 57 871 C1 ist eine Vorrichtung zum Justieren eines Abstandsradarsensors an einem Kraftfahrzeug bekannt. Bei der Justage, welche unter Zuhilfenahme eines Laserstrahls erfolgt, wird auch die geometrische Fahrachse berücksichtigt. Diese wird durch Winkelsensoren an den Hinterrädern ermittelt. Hierdurch kann die Position des Radarsensors auf die Lage der geometrischen Fahrachse abgestimmt werden.From the DE 198 57 871 C1 a device for adjusting a distance radar sensor on a motor vehicle is known. During the adjustment, which takes place with the aid of a laser beam, the geometric travel axis is also taken into account. This is determined by angle sensors on the rear wheels. As a result, the position of the radar sensor can be matched to the position of the geometric driving axis.

Weitere Vorrichtungen zum Justieren eines Abstandsradarsensors an einem Kraftfahrzeug sind aus der WO2005/071434 A1 und DE 103 54 985 A1 bekannt.Other devices for adjusting a distance radar sensor on a motor vehicle are from the WO2005 / 071434 A1 and DE 103 54 985 A1 known.

Es ist Aufgabe der Erfindung, die Ausrichtung eines Umfeldsensors zu vereinfachen und überflüssige Justagearbeiten zu vermeiden.It is an object of the invention to simplify the orientation of an environmental sensor and to avoid unnecessary adjustment work.

Diese Aufgabe wird durch ein Verfahren, welches die Merkmale des Patentanspruchs 1 aufweist, sowie ein Verfahren mit den Merkmalen des Patentanspruchs 11 gelöst.This object is achieved by a method having the features of claim 1, and a method having the features of claim 11.

Das erfindungsgemäße Verfahren dient zum Gewinnen von Daten, auf Basis derer eine Beurteilung erfolgen kann, ob eine Notwendigkeit dazu besteht, einen Umfeldsensor eines Kraftwagens neu auszurichten. Es umfasst folgende Schritte:

  1. a) Ermitteln eines Erfassungsrichtungsabweichungswertes für die Abweichung einer Haupterfassungsrichtung des Umfeldssensors von einer Soll-Haupterfassungsrichtung des Umfeldsensors in einem Zustand des Kraftwagens, in dem sich die geometrische Fahrachse des Kraftwagens in einer ersten Lage befindet. Insbesondere kann die Soll-Haupterfassungsrichtung mit der ersten Lage der geometrischen Fahrachse zusammenfallen.
  2. b) Bestimmen der ersten Lage der geometrischen Fahrachse.
  3. c) Verbringen der geometrischen Fahrachse in eine zweite Lage.
  4. d) Bestimmen der zweiten Lage der geometrischen Fahrachse.
  5. e) Ermitteln eines Fahrachsenabweichungswertes für die Abweichung der zweiten Lage der geometrischen Fahrachse von der ersten Lage der geometrischen Fahrachse.
  6. f) auf Grundlage des Erfassungsrichtungsabweichungswertes und des Fahrachsenabweichungswertes Beurteilen, ob eine Notwendigkeit besteht, die Ausrichtung der Haupterfassungsrichtung des Umfeldsensors zu ändern.
  7. g) Bereitstellen von Daten betreffend die Beurteilung aus Schritt f).
Die Reihenfolge der einzelnen Schritte ist nicht zwingend festgelegt.The method according to the invention serves to obtain data on the basis of which an assessment can be made as to whether there is a need to realign an environment sensor of a motor vehicle. It includes the following steps:
  1. a) determining a detection direction deviation value for the deviation of a main detection direction of the environment sensor from a target main detection direction of the environment sensor in a state of the motor vehicle in which the geometric driving axis of the motor vehicle is in a first position. In particular, the desired main detection direction may coincide with the first position of the geometric travel axis.
  2. b) determining the first position of the geometric travel axis.
  3. c) Spend the geometric driving axis in a second position.
  4. d) determining the second position of the geometric travel axis.
  5. e) determining a Fahrachsenabweichungswertes for the deviation of the second position of the geometric travel axis of the first position of the geometric travel axis.
  6. f) judging whether there is a need to change the orientation of the main detection direction of the environmental sensor based on the detection direction deviation value and the vehicular axis deviation value.
  7. g) providing data concerning the assessment from step f).
The order of the individual steps is not mandatory.

Um die Funktionsfähigkeit des Umfeldsensors zu garantieren, muss dessen Neuausrichtung nicht generell dann stattfinden, wenn sich die Lage der geometrischen Fahrachse ändert. Durch das Verfahren wird ein Entscheidungskriterium dafür bereitgestellt, wann eine Neuausrichtung des Umfeldsensors tatsächlich erforderlich ist. Nicht notwendige Neujustagen des Umfeldsensors können zuverlässig vermieden werden.In order to guarantee the functionality of the environmental sensor, its realignment need not generally take place when the position of the geometric travel axis changes. The procedure becomes a decision criterion provided when realignment of the environmental sensor is actually required. Not necessary readjustments of the environment sensor can be reliably avoided.

Vorzugsweise wird in Schritt f) aus dem Erfassungsrichtungsabweichungswert und dem Fahrachsenabweichungswert ein Ausrichtungsabweichungswert für die Abweichung der Haupterfassungsrichtung des Umfeldsensors von der zweiten Lage der geometrischen Fahrachse ermittelt. Auf diese Art lässt sich bedarfsgerecht beurteilen, ob eine Neujustage des Umfeldsensors erforderlich ist. Abweichungen zwischen der Haupterfassungsrichtung und der momentanen geometrischen Fahrachse müssen nicht direkt gemessen werden. Es werden zeit- und kostenintensive Verfahrensschritte vermieden, ohne Einbußen bei der Beurteilungsqualität hinnehmen zu müssen.Preferably, in step f), an alignment deviation value for the deviation of the main detection direction of the environmental sensor from the second position of the geometric travel axis is obtained from the detection direction deviation value and the vehicle axial deviation value. In this way, it is possible to assess as needed whether a readjustment of the environment sensor is required. Deviations between the main detection direction and the current geometric travel axis need not be measured directly. Time-consuming and cost-intensive process steps are avoided without having to accept sacrifices in the quality of the assessment.

Vorzugsweise wird hierbei der Ausrichtungsabweichungswert mit einem vorgebbaren Schwellwert verglichen. Für den Fall, dass der Ausrichtungsabweichungswert kleiner oder gleich dem Schwellwert ist, erfolgt die Beurteilung, dass keine Notwenigkeit zum Ändern der Ausrichtung der Haupterfassungsrichtung des Umfeldsensors besteht. Für den Fall, dass der Ausrichtungsabweichungswert größer als der Schwellwert ist, erfolgt die Beurteilung, dass eine Notwendigkeit zum Ändern der Ausrichtung der Haupterfassungsrichtung des Umfeldsensors besteht. Der Schwellwert gibt insbesondere eine obere Grenze für den Ausrichtungsabweichungswert an, die nicht überschritten werden sollte. Das Schwellwertkriterium erlaubt eine einfache und zuverlässige Beurteilung, ob eine Änderung der Lage der geometrischen Fahrachse eine Änderung der Ausrichtung des Umfeldsensors erforderlich macht.In this case, the alignment deviation value is preferably compared with a predefinable threshold value. In the case where the alignment deviation value is smaller than or equal to the threshold value, judgment is made that there is no need to change the orientation of the main detection direction of the environmental sensor. In the case where the alignment deviation value is larger than the threshold value, judgment is made that there is a need to change the orientation of the main detection direction of the environmental sensor. Specifically, the threshold indicates an upper limit to the alignment deviation value that should not be exceeded. The threshold criterion allows a simple and reliable assessment of whether changing the position of the geometric travel axis requires a change in the orientation of the environmental sensor.

Vorzugsweise handelt es sich bei dem Erfassungsrichtungsabweichungswert und/oder dem Fahrachsenabweichungswert und/oder dem Ausrichtungsabweichungswert um einen Winkelwert. Der Winkel zwischen zwei Achsen ist eine zuverlässige und einfach zu bestimmende Messgröße.Preferably, the detection direction deviation value and / or the vehicle axis deviation value and / or the orientation deviation value are an angle value. The angle between two axes is a reliable and easily determinable measurand.

Vorzugsweise erfolgt in Schritt a) das Ermitteln des Erfassungsrichtungsabweichungswertes unter Zuhilfenahme von statistischen Methoden. Der Umfeldsensor kann z. B. die Messwerte zu detektierten Objekten statistisch bewerten und so den Erfassungsrichtungsabweichungswert exakt berechnen. Fehler in der Richtungsbestimmung von Objekten können zuverlässig kompensiert werden.Preferably, in step a), the detection direction deviation value is determined with the aid of statistical methods. The environment sensor can z. B. statistically evaluate the measured values of detected objects and thus calculate the detection direction deviation value exactly. Errors in the direction determination of objects can be reliably compensated.

Vorzugsweise erfolgt in Schritt c) das Verbringen der geometrischen Fahrachse des Kraftwagens in die zweite Lage durch ein Einstellen eines Spurwinkels zumindest eines Hinterrades des Kraftwagens. Die geometrische Fahrachse kann so besonders einfach eingestellt bzw. nachjustiert werden.Preferably, in step c), the movement of the geometric travel axis of the motor vehicle into the second position takes place by setting a toe angle of at least one rear wheel of the motor vehicle. The geometric travel axis can be adjusted or readjusted in a particularly easy way.

Vorzugsweise erfolgt in Schritt b) und/oder in Schritt d) das Bestimmen der ersten Lage und/oder der zweiten Lage der geometrischen Fahrachse automatisch mittels einer Achsenlagemesseinrichtung. Die automatische Bestimmung erlaubt eine schnelle und effiziente Ausführung des Verfahrens und liefert exakte sowie leicht reproduzierbare Ergebnisse. Mit der Achsenlagemesseinrichtung können z. B. auch sehr geringe Winkelwerte mit hoher Genauigkeit ermittelt werden.Preferably, in step b) and / or in step d), the determination of the first position and / or the second position of the geometric travel axis is carried out automatically by means of an axis position measuring device. The automatic determination allows a fast and efficient execution of the procedure and provides exact and easily reproducible results. With the axle position measuring device z. B. even very low angle values can be determined with high accuracy.

Vorzugsweise laufen die Schritte a) und/oder b) und/oder d) und/oder e) und/oder f) in einer Recheneinheit ab, welche sich insbesondere im Kraftwagen befindet. Es können jedoch auch für einzelne oder mehrere der Schritte unterschiedliche Recheneinheiten zur Verfügung stehen, die Teil des Kraftwagens oder als externe Geräte bereitgestellt sein können. Auf diese Art lässt sich das Verfahren nahezu vollautomatisch, besonders präzise sowie schnell durchführen und führt zu sehr aussagekräftigen Beurteilungen.Preferably, the steps a) and / or b) and / or d) and / or e) and / or f) take place in a computing unit, which is located in particular in the motor vehicle. However, it is also possible for individual or several of the steps different computing units are available, which may be part of the motor vehicle or provided as external devices. In this way, the procedure can be performed almost fully automatically, very precisely and quickly and leads to very meaningful assessments.

Vorzugsweise werden in Schritt g) die Daten so für eine Bedienperson bereitgestellt, dass sie aus ihnen eine Handlungsanweisung dafür ableiten kann, ob eine Neuausrichtung des Umfeldsensors erfolgen soll. Je nach erfolgter Beurteilung in Schritt f) kann also die Bedienperson entweder angewiesen werden, eine Neuausrichtung des Umfeldsensors vorzunehmen oder diese zu unterlassen. Fehlerträchtige subjektive Entscheidungen durch Bedienpersonen werden durch objektive Beurteilungsmaßstäbe vermieden.Preferably, in step g), the data are provided to an operator in such a way that they can derive from them a handling instruction as to whether a reorientation of the environment sensor should take place. Depending on the evaluation in step f), the operator can either be instructed to carry out a realignment of the environmental sensor or to refrain from doing so. Error-prone subjective decisions by operators are avoided by objective judgmental standards.

Vorzugsweise ist der Umfeldsensor als Radarsensor und/oder Ultraschallsensor und/oder Kamerasystem ausgebildet. Die Haupterfassungsrichtung eines Radar- bzw. Ultraschallsensors fällt dann insbesondere mit der jeweiligen Hauptabstrahlrichtung für Radarstrahlung bzw. Ultraschall zusammen.Preferably, the environment sensor is designed as a radar sensor and / or ultrasound sensor and / or camera system. The main detection direction of a radar or ultrasound sensor then coincides in particular with the respective main emission direction for radar radiation or ultrasound.

Unter der geometrischen Fahrachse ist insbesondere die Winkelhalbierende des Gesamtvorspurwinkels der Räder der Hinterachse des Kraftwagens zu verstehen. Die geometrische Fahrachse schließt dann mit der fahrzeugspezifischen Fahrzeuglängsmittelebene den sogenannten Fahrachswinkel ein. Das erfindungsgemäße Verfahren zum Ausrichten eines Umfeldsensors eines Kraftwagens umfasst die Verfahrensschritte des Verfahrens zum Gewinnen von Daten gemäß Patentanspruch 1. Darüber hinaus erfolgt oder unterbleibt eine Neuausrichtung des Umfeldsensors in Abhängigkeit von dem Ergebnis der Beurteilung in Schritt f). Im Falle, dass in Schritt f) eine Beurteilung dahingehend erfolgt, dass eine Notwendigkeit zum Ändern der Ausrichtung der Haupterfassungsrichtung des Umfeldsensors besteht, wird die Haupterfassungsrichtung des Umfeldsensors in Richtung zur geometrischen Fahrachse hin ausgerichtet. Im Falle, dass in Schritt f) eine Beurteilung dahingehend erfolgt, dass keine Notwendigkeit zum Ändern der Ausrichtung der Haupterfassungsrichtung des Umfeldsensors besteht, wird die Ausrichtung des Umfeldsensors unverändert beibehalten. In den Fällen, in denen eine Neujustage des Umfeldsensors überflüssig wäre, unterbleibt diese. Die Wartung eines Kraftwagens kann so schneller und kostengünstiger erfolgen.The geometric travel axis is to be understood in particular as meaning the angle bisector of the total pretensioning angle of the wheels of the rear axle of the motor vehicle. The geometric travel axis then includes the so-called driving angle with the vehicle-specific vehicle longitudinal center plane. The inventive method for aligning an environment sensor of a motor vehicle comprises the method steps of the method for obtaining data according to claim 1. In addition, a realignment of the environmental sensor is carried out or omitted depending on the result of the assessment in step f). In the case where judgment is made in step f) that there is a need to change the orientation of the main detection direction of the environmental sensor, the main detection direction of the environmental sensor is directed toward the geometric traveling axis. In the case where judgment is made in step f) that there is no need to change the orientation of the main detection direction of the environmental sensor, the orientation of the environmental sensor is kept unchanged. In cases where a readjustment of the environment sensor would be superfluous, this is omitted. The maintenance of a motor vehicle can be done faster and cheaper.

Anhand von Ausführungsbeispielen wird die Erfindung im Folgenden näher erläutert. Es zeigen:

Fig. 1
eine schematische Draufsicht auf einen Kraftwagen mit einem Umfeldsensor; und
Fig. 2
die relativen Lagen einer Haupterfassungsrichtung eines Umfeldsensors und einer geometrischen Fahrachse zueinander.
Reference to exemplary embodiments, the invention is explained in more detail below. Show it:
Fig. 1
a schematic plan view of a motor vehicle with an environmental sensor; and
Fig. 2
the relative positions of a main detection direction of an environmental sensor and a geometric driving axis to each other.

Fig. 1 zeigt einen Kraftwagen 10 mit einer Vorderachse 12 (mit linkem und rechtem Vorderrad 16a bzw. 16b) und einer Hinterachse 14 (mit linkem und rechtem Hinterrad 18a bzw. 18b), welcher einen im Frontbereich angebrachten Sensor 20 umfasst. Dieser ist mit einer Recheneinheit 24 verbunden. Die Recheneinheit 24 sowie der Sensor 20 sind im Ausführungsbeispiel Teil einer Fahrerassistenzeinrichtung. Fig. 1 shows a motor vehicle 10 having a front axle 12 (with left and right front wheels 16a and 16b, respectively) and a rear axle 14 (with left and right rear wheels 18a and 18b, respectively), which includes a front-mounted sensor 20. This is connected to a computing unit 24. The arithmetic unit 24 and the sensor 20 are part of a driver assistance device in the exemplary embodiment.

In einem Ausgangszustand verlaufen die Einzelspuren der Hinterräder 18a und 18b im Wesentlichen parallel zur Längserstreckung des Kraftwagens 10. Dann sind die Spurwinkel w1 und w2 der Hinterräder 18a bzw. 18b beide gleich Null. In einer ersten Lage verläuft die geometrische Fahrachse F1 in der Fahrzeuglängsmittelebene im Wesentlichen parallel zu den Einzelspuren der Vorder- (16a und 16b) und Hinterräder (18a und 18b).In an initial state, the individual tracks of the rear wheels 18a and 18b are substantially parallel to the longitudinal extension of the motor vehicle 10. Then, the toe angles w1 and w2 of the rear wheels 18a and 18b are both equal to zero. In a first position, the geometric travel axis F1 extends in the vehicle longitudinal center plane substantially parallel to the individual tracks of the front (16a and 16b) and rear wheels (18a and 18b).

In einer Kfz-Werkstatt erfolgt eine Änderung der Spurwerte der Hinterräder 18a und 18b, so dass deren Spurwinkel w1 bzw. w2 einen von Null verschiedenen Wert einnehmen. Hierdurch wird die geometrische Fahrachse in eine von der ersten Lage F1 verschiedene zweite Lage F2 verbracht. Die Spurwinkel w1 und w2 können mit Winkelsensoren 22a bzw. 22b gemessen werden, welche mit der Recheneinheit 24 verbunden sind.In a motor vehicle workshop, the track values of the rear wheels 18a and 18b are changed so that their toe angles w1 and w2 assume a value other than zero. As a result, the geometric driving axis is moved to a second position F2 different from the first position F1. The toe angles w1 and w2 can be measured with angle sensors 22a and 22b, which are connected to the computing unit 24.

Die Haupterfassungsrichtung S des Sensors 20 schließt mit der Fahrachse F1 den Winkel α und mit der Fahrachse F2 den Winkel β ein. Die Fahrachsen F1 und F2 schließen miteinander einen Winkel γ ein, welcher einen Fahrachsenabweichungswert darstellt. α ist ein Sensordejustagewinkel vor der Achseinstellung, β ein Sensordejustagewinkel nach der Achseinstellung. Im Ausführungsbeispiel der Fig. 1 hat die Änderung der geometrischen Fahrachse (F1 nach F2) eine Reduzierung des Dejustagewinkels (α nach β) zur Folge. Die Abweichung der Haupterfassungsrichtung S um den Winkel α von der Soll-Haupterfassungsrichtung, welche durch die Fahrachse F1 gegeben ist, kann von der Recheneinheit 24 mit Hilfe eines statistischen Verfahrens kompensiert werden. Trotz der nicht optimalen Ausrichtung des Sensors 20 ist diese Einstellung ausreichend, damit der Sensor 20 seine Funktion erfüllen kann. Der Winkel α befindet sich also innerhalb eines zulässigen Soll-Bereichs der Sensordejustage Durch Verlagerung der Fahrachse wird der Dejustagewinkel reduziert (β<α), so dass keine Nachjustage des Sensors 20 erforderlich ist.The main detection direction S of the sensor 20 includes the angle α with the drive axis F1 and the angle β with the drive axis F2. The driving axes F1 and F2 enclose with each other an angle γ, which represents a vehicle axle deviation value. α is a sensor adjustment angle before the axle adjustment, β is a sensor adjustment angle after the axle adjustment. In the embodiment of Fig. 1 the change of the geometric driving axis (F1 to F2) results in a reduction of the misalignment angle (α to β). The deviation of the main detection direction S by the angle α from the target main detection direction given by the traveling axis F1 can be compensated by the arithmetic unit 24 by a statistical method. Despite the non-optimal orientation of the sensor 20, this setting is sufficient for the sensor 20 to perform its function. The angle α is thus within an allowable setpoint range of the sensor adjustment. By shifting the travel axis, the misalignment angle is reduced (β <α), so that no readjustment of the sensor 20 is required.

Im Ausführungsbeispiel der Fig. 2 wird der Sensordejustagewinkel beim Verbringen der geometrischen Fahrachse von F1 nach F2 nicht reduziert sondern vergrößert. δ bezeichnet den Differenzwinkel der geometrischen Fahrachsen F1 und F2. ε ist der Dejustagewinkel vor, σ der Dejustagewinkel nach der Achseinstellung. σ ist größer als ε. Es seien zwei Beispiele mit Zahlwerten diskutiert:

  • Beispiel 1: Der Sensordejustagewinkel vor der Achseinstellung beträgt ε = 0,5°. Der vorgegebene zulässige Toleranzbereich für die Sensordejustage beträgt -0,8° bis 0,8°. Durch die Spureinstellung der Hinterräder 18a und 18b ergibt sich eine Änderung der Fahrachse von ö = -0,1 °. Folglich beträgt der sich nun ergebende Sensordejustagewinkel σ = 0,5°-(-0,1)° = 0,6°. Dieser Wert liegt noch im vorgegebenen Toleranzbereich der Sensordejustage. Eine Justage des Sensors 20 ist somit nicht erforderlich.
  • Beispiel 2: Der ursprüngliche Sensordejustagewinkel liegt bereits an der Toleranzgrenze und beträgt ε = 0,75°. Der vorgegebene zulässige Toleranzbereich für die Sensordejustage beträgt wiederum -0,8° bis 0,8°. Durch die Spureinstellung der Hinterräder 18a und 18b ergibt sich eine Änderung der Fahrachse von δ = -0,1°. Folglich beträgt der sich nun ergebende Sensordejustagewinkel σ = 0,75°-(-0,1)° = 0,85°. Dieser Wert liegt nicht mehr im vorgegebenen zulässigen Toleranzbereich der Sensordejustage. Eine Justage des Sensors 20 ist somit erforderlich.
In the embodiment of Fig. 2 If the geometric travel axis is moved from F1 to F2, the sensor adjustment angle is not reduced but increased. δ denotes the difference angle of the geometric driving axes F1 and F2. ε is the misalignment angle, σ is the misalignment angle after the axis adjustment. σ is greater than ε. Let us discuss two examples with numerical values:
  • Example 1: The sensor adjustment angle before the axis adjustment is ε = 0.5 °. The specified permissible tolerance range for the sensor adjustment is -0.8 ° to 0.8 °. Due to the tracking of the rear wheels 18a and 18b results in a change of the driving axle of ö = -0,1 °. Consequently, the resulting sensor adjustment angle σ = 0.5 ° - (- 0.1) ° = 0.6 °. This value is still within the specified tolerance range of the sensor adjustment. An adjustment of the sensor 20 is thus not required.
  • Example 2: The original sensor adjustment angle is already at the tolerance limit and is ε = 0.75 °. The specified permissible tolerance range for the sensor adjustment is again -0.8 ° to 0.8 °. The tracking of the rear wheels 18a and 18b results in a change of the driving axis of δ = -0.1 °. Consequently, the resulting sensor adjustment angle σ = 0.75 ° - (- 0.1) ° = 0.85 °. This value is no longer within the specified permissible tolerance range of the sensor adjustment. An adjustment of the sensor 20 is thus required.

Die in der Praxis vorgenommenen Änderungen der Spurwerte der Räder 18a und 18b der Hinterachse 14 und die sich dadurch ergebenden Änderungen der Fahrachse (F1 nach F2) sind in der Regel wesentlich geringer als die zulässigen Toleranzgrenzen der Sensordejustage. Betrachtet man als realistische Abschätzung einen real vorhandenen durchschnittlichen Sensordejustagewinkel σ bzw. ε, der sich im Bereich des halben vorgegebenen Toleranzbereichs befindet, sind in den meisten Fällen einer erfolgten Fahrwerkseinstellung keine Sensorjustagen notwendig. Das beschriebene Verfahren reduziert somit die erforderliche Arbeitszeit bei der Wartung eines Kraftwagens und trägt damit auch wesentlich zu einer Kostenreduzierung bei (z. B. für den Kunden oder für den Hersteller im Gewährleistungsfall).The changes in the track values of the wheels 18a and 18b of the rear axle 14 made in practice and the resulting changes in the driving axis (F1 to F2) are generally much smaller than the allowable tolerance limits of the sensor adjustment. If, as a realistic estimate, a real existing average sensor adjustment angle σ or ε, which is in the range of half the specified tolerance range, no sensor adjustments are necessary in most cases of a successful suspension adjustment. The method described thus reduces the required working time in the maintenance of a motor vehicle and thus also contributes significantly to a reduction in costs (eg for the customer or for the manufacturer in case of warranty).

Für die Durchführung der Sensorjustage kommen bei der Wartung des Kraftwagens entsprechende Diagnosegeräte zum Einsatz. Diese nutzen eine Fahrzeugdiagnoseschnittstelle um Kontakt zu den Geräten 20, 22a, 22b und 24 aufzunehmen. In der Recheneinheit 24 sind z. B. entsprechende Messwerte der berechneten Sensordejustagewinkel σ bzw. ε hinterlegt und können durch das Werkstattpersonal mit Hilfe der Diagnosegeräte ausgelesen werden. Ebenso erlaubt ein Achsmesscomputer, den bestehenden Fahrachswinkel zu Beginn der Fahrwerksvermessung zu ermitteln. Nach erfolgter Achseinstellung wird der Fahrachswinkel neu berechnet, so dass die Ermittlung der Differenz des Fahrachswinkels vor und nach der jeweiligen Fahrachseinstellung auf Basis der vorliegenden Werte ohne technischen Mehraufwand vorgenommen werden kann. Durch eine Kommunikationsverbindung zwischen dem Achsmesscomputer und dem Diagnosegerät ist es möglich, diesen Differenzbetrag dem Diagnosegerät zu übermitteln. Durch den oben beschriebenen Berechnungsvorgang und einem anschließenden Vergleich mit den vorgegebenen zulässigen Toleranzwerten kann das Servicepersonal bei Bedarf angewiesen werden, die Sensorjustage durchzuführen.To carry out the sensor adjustment, appropriate diagnostic devices are used during the maintenance of the motor vehicle. These use a vehicle diagnostic interface to contact devices 20, 22a, 22b and 24. In the arithmetic unit 24 z. B. corresponding measured values of the calculated Sensordejustagewinkel σ or ε deposited and can be read by the workshop personnel using the diagnostic equipment. Likewise, an axle measuring computer allows to determine the existing driving angle at the beginning of the chassis measurement. Once the axle has been adjusted, the driving angle is recalculated, so that the determination of the difference in the driving angle before and after the respective drive setting can be made on the basis of the present values without additional technical effort. Through a communication link between the Achsmesscomputer and the diagnostic device, it is possible to transmit this difference to the diagnostic device. If necessary, the service personnel can be instructed to perform the sensor adjustment by the above-described calculation process and subsequent comparison with the predetermined allowable tolerance values.

Claims (11)

  1. Method for generating data relating to the evaluation of the need to realign an environment sensor (20) of a motor vehicle (10), comprising the steps of:
    a) determining a detecting direction deviation value (α, ε) for the deviation of a main detecting direction (S) of the environment sensor (20) from a target main detecting direction (F1) of the environment sensor (20) in a state of the vehicle (10) in which the geometric drive axis of the vehicle (10) is in a first position (F1);
    b) ascertaining the first position (F1) of the geometric drive axis;
    characterised by
    c) moving the geometric drive axis of the vehicle (10) into a second position (F2);
    d) ascertaining the second position (F2) of the geometric drive axis;
    e) determining a drive axis deviation value (γ, δ) for the deviation of the second position (F2) of the geometric drive axis from the first position (F1) of the geometric drive axis;
    f) evaluating whether there is a need to alter the alignment of the main detecting direction (S) of the environment sensor (20), on the basis of the detecting direction deviation value (α, ε) and the drive axis deviation value (γ, δ); and
    g) generating data relating to the evaluation from step f).
  2. Method according to claim 1, characterised in that in step f) an alignment deviation value (β, σ) for the deviation of the main detecting direction (S) of the environment sensor (20) from the second position (F2) of the geometric drive axis is determined from the detecting direction deviation value (α, ε) and the drive axis deviation value (γ, δ).
  3. Method according to claim 2, characterised in that the alignment deviation value (β, σ) is compared with a pre-selectable threshold value and in the event that the alignment deviation value (β, σ) is less than or equal to the threshold value, an evaluation is made that there is no need to change the alignment of the main detecting direction (S) of the environment sensor (20), and in the event that the alignment deviation value (β, σ) is greater than the threshold value, an evaluation is made that it is necessary to change the alignment of the main detecting direction (S) of the environment sensor (20).
  4. Method according to one of the preceding claims, characterised in that, for the detecting direction deviation value (α, ε) and/or the drive axis deviation value (γ, σ) and/or the alignment deviation value (β, σ), an angular value (α, β, γ, δ, ε, σ) is determined.
  5. Method according to one of the preceding claims, characterised in that in step a) the determining of the detecting direction deviation value (α, ε) is carried out using statistical methods.
  6. Method according to one of the preceding claims, characterised in that in step c) the geometric drive axis of the motor vehicle (10) is moved into the second position (F2) by adjusting a toe angle (w1, w2) of at least one rear wheel (18a, 18b) of the motor vehicle (10).
  7. Method according to one of the preceding claims, characterised in that in step b) and/or in step d) the position (F1, F2) of the geometric drive axis is ascertained automatically by means of a device for measuring axis position (22a, 22b).
  8. Method according to one of the preceding claims, characterised in that the determining of the detecting direction deviation value (α, ε) in step a) and/or the ascertaining of the first position (F1) of the geometric drive axis in step b) and/or the ascertaining of the second position (F2) of the geometric drive axis in step d) and/or the determining of the drive axis deviation value (γ, σ) in step e) and/or the evaluation in step f) and/or the generating of data in step g) are carried out by a computing unit (24), particularly a computing unit (24) of the vehicle (10).
  9. Method according to one of the preceding claims, characterised in that in step g) the data are generated for an operator in such a way that the operator can derive from said data instructions as to whether realignment of the environment sensor (20) should be carried out.
  10. Method according to one of the preceding claims, characterised in that the environment sensor (20) is embodied as a radar sensor and/or ultrasound sensor and/or camera system.
  11. Method for aligning an environment sensor (20) of a motor vehicle (10), characterised in that the method for generating data is carried out according to claim 1 and in the event that an evaluation is made in step f) that there is a need to change the alignment of the main detecting direction (S) of the environment sensor (20), the main detecting direction (S) of the environment sensor (20) is aligned towards the geometric drive axis (F2), and in the event that an evaluation is made in step f) that there is no need to change the alignment of the main detecting direction (S) of the environment sensor (20), the alignment (S) of the environment sensor (20) is maintained unchanged.
EP11008681.6A 2010-11-02 2011-10-29 Method for generating data and aligning an environment sensor of a motor vehicle Not-in-force EP2447734B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010050279.0A DE102010050279B4 (en) 2010-11-02 2010-11-02 A method of obtaining data and aligning an environment sensor of a motor vehicle

Publications (2)

Publication Number Publication Date
EP2447734A1 EP2447734A1 (en) 2012-05-02
EP2447734B1 true EP2447734B1 (en) 2014-07-16

Family

ID=45062762

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11008681.6A Not-in-force EP2447734B1 (en) 2010-11-02 2011-10-29 Method for generating data and aligning an environment sensor of a motor vehicle

Country Status (2)

Country Link
EP (1) EP2447734B1 (en)
DE (1) DE102010050279B4 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9182477B2 (en) 2013-03-15 2015-11-10 Honda Motor Co., Ltd. Vehicle radar alignment method and system
DE102014017912B3 (en) * 2014-12-04 2016-02-18 Audi Ag Method for self-diagnosis of an environmental sensor of a motor vehicle and motor vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19857871C1 (en) * 1998-12-15 2000-10-26 Beissbarth Gmbh Automobile distance regulation radar sensor adjustment device uses angle sources for alignment of frame supporting laser source with automobile longitudinal axis and evaluation of reflected laser beam for sensor adjustment
DE10246066B4 (en) * 2002-10-02 2007-11-22 Robert Bosch Gmbh Method and device for calibrating an image sensor system in a motor vehicle
US6714156B1 (en) * 2002-11-22 2004-03-30 Visteon Global Technologies, Inc. Method for correcting radar misalignment
DE102004004193A1 (en) * 2004-01-27 2005-08-18 Robert Bosch Gmbh Method and device for angular adjustment of a sensor in a motor vehicle
DE102007005086A1 (en) * 2007-02-01 2008-08-07 Robert Bosch Gmbh Method and device for aligning a vehicle environment sensor or headlight

Also Published As

Publication number Publication date
DE102010050279B4 (en) 2015-02-12
EP2447734A1 (en) 2012-05-02
DE102010050279A1 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
DE19650863C1 (en) Method of detecting distance sensor vertical adjustment error
DE69919819T2 (en) Welding tongs and methods for their use
EP2795345B1 (en) Method and device for determining the installation position of a sensor module in a vehicle, and vehicle having such a device
DE102017117837A1 (en) Laser processing robot system and laser processing method
WO2007121905A1 (en) Method for applying and monitoring an application structure comprising a repairing function and device therefor
EP1766431B1 (en) Method and device for compensating mounting tolerances of a proximity sensor
EP3750842A1 (en) Loading a load with a crane system
EP2447734B1 (en) Method for generating data and aligning an environment sensor of a motor vehicle
EP3667359A1 (en) Method for determining the misalignment of at least one sensor within a set of sensors
EP1744231A2 (en) Device and method for quality control of markings
DE102007008624A1 (en) Motor vehicle i.e. train, steering method, involves forming control input signal for controller i.e. proportional integral controller, from feedback vector, and determining desired speed from plan speed, web guiding vector and variable
EP3791704B1 (en) Method for controlling the operation of an attachment
EP2353970B1 (en) Forced steering
DE102019113441A1 (en) Method for assigning the intrinsic coordinate system of a first unit of a vehicle for recording the space to the side of the vehicle relative to a vehicle-related coordinate system and device for carrying out the method
DE102014113070B4 (en) Alignment device and method for aligning a component on a vehicle
EP3030474B1 (en) Device and method for measuring and determining relevant parameters for the adjustment of the directions of travel of two steerable axles of a vehicle in relation to each other
WO2023012243A1 (en) System, method and software for operating a driver assistance system
EP3470247A1 (en) Method for assisting a coupling procedure
DE102021117714A1 (en) Automatic seam detection for a welding process
DE102020203392A1 (en) Determining an installation configuration of a sensor for motor vehicles
BE1027090B1 (en) Method for assigning the intrinsic coordinate system of a first unit of a vehicle for recording the space to the side of the vehicle relative to a vehicle-related coordinate system and device for carrying out the method
DE102004047505B4 (en) Method for detecting the misalignment of a distance sensor in the horizontal plane during driving and a corresponding distance sensor
DE102014001140B4 (en) Method and device for joining an assembly
DE102019214345B4 (en) Method for detecting misalignment of at least one sensor of a motor vehicle
DE102011013701A1 (en) Method and device for angle-accurate bending or bending of sheets

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20121102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011003717

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G01S0013930000

Ipc: B60W0050000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G01S 13/93 20060101ALI20140311BHEP

Ipc: G01S 17/93 20060101ALI20140311BHEP

Ipc: G01S 15/93 20060101ALI20140311BHEP

Ipc: B60W 50/00 20060101AFI20140311BHEP

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTG Intention to grant announced

Effective date: 20140407

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140414

INTG Intention to grant announced

Effective date: 20140506

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 677418

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011003717

Country of ref document: DE

Effective date: 20140828

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140716

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141017

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141016

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141016

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141117

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141116

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011003717

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20150417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111029

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 677418

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181031

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181024

Year of fee payment: 8

Ref country code: FR

Payment date: 20181026

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011003717

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191029