EP2447482A1 - Verfahren zum Abfahren eines Turbosatzes - Google Patents

Verfahren zum Abfahren eines Turbosatzes Download PDF

Info

Publication number
EP2447482A1
EP2447482A1 EP10189412A EP10189412A EP2447482A1 EP 2447482 A1 EP2447482 A1 EP 2447482A1 EP 10189412 A EP10189412 A EP 10189412A EP 10189412 A EP10189412 A EP 10189412A EP 2447482 A1 EP2447482 A1 EP 2447482A1
Authority
EP
European Patent Office
Prior art keywords
generator
turbine
power
exciter
excitation current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10189412A
Other languages
English (en)
French (fr)
Inventor
Arne Grassmann
Christian Musch
Heinrich STÜER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP10189412A priority Critical patent/EP2447482A1/de
Priority to EP11771087.1A priority patent/EP2611994B1/de
Priority to CN201180052328.2A priority patent/CN103201463B/zh
Priority to PCT/EP2011/067807 priority patent/WO2012055702A1/de
Publication of EP2447482A1 publication Critical patent/EP2447482A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting

Definitions

  • the shutdown of the turbo set is usually done by disconnecting the generator from a coupled power grid and reducing a live steam supply of the steam turbine. The decoupled from the mains generator then runs at idle with the steam turbine. After disconnecting the generator from the mains and reducing the live steam supply, a kinetic energy stored in the turbine set is substantially reduced via a friction loss at a bearing associated with the steam turbine plant and via a ventilation loss in the steam turbine. Since the friction and ventilation losses are typically small compared to the kinetic energy stored in the turbine set, the turbo set has long flow times of up to one hour.
  • turbo set passes through so-called blade resonances, which can lead to strong vibrations on a blade belonging to the turbine. This can lead to a lifetime consumption of the blading, wherein a slower passage through the turbine set by the blade resonances can be equal to a greater lifetime consumption. Therefore, a quick shutdown of the turbo set is desirable.
  • a known measure to accelerate the shutdown process is to break a vacuum of a capacitor belonging to the steam turbine plant, whereby the ventilation losses are increased.
  • used in emergency shutdowns measure However, additional loads on the blading, resulting in an even higher loss of life occurs.
  • the invention has for its object to provide a method for running a turbo set for a steam turbine plant, in which the above problems are largely avoided and in particular the flow time of the turbo set is shortened.
  • the inventive method for running a turbine set for a steam turbine plant comprises the steps of: providing the turbo set comprising a steam turbine and a generator, the generator having an exciter and an excitation winding; Driving the steam turbine with live steam and dissipating the generator power to a power receiver; Disconnecting the generator from the power receiver; Reducing the live steam supply to the turbine; Switching of the generator in a partial short-circuit operation, wherein means of the exciter winding, the exciter winding is supplied with an electrical excitation current such that the generator acts as a load on the steam turbine, wherein the excitation current is dimensioned such that caused by the excitation current heat loss of the generator leaves it intact ,
  • the generator serves as an energy sink for a kinetic energy of the turbo set.
  • the generator is switched to a partial short-circuit operation and the exciter winding supplied with the electrical exciter current such that there is a braking power of the generator results.
  • kinetic energy is withdrawn from the turbo set, whereby the turbo set is decelerated and has a significantly shorter flow time.
  • the turbine passes through so-called blade resonances, which can cause strong blade vibrations when driving off.
  • blade vibrations lead to an increased load on the turbine and can thus lead to an increased lifetime consumption. Due to the shortened when using the method according to the invention for running the turbo set flow time, the blade resonances are passed through quickly and consequently in a shorter period of time. As a result, a load on the turbine is reduced due to strong blade vibrations and associated lifetime consumption is advantageously minimized.
  • the generator preferably has a generator cooler and the method comprises the steps of: determining the generator cooling capacity of the generator cooler during operation of the turbo set; Dimensioning the exciting current so that the heat loss does not exceed the generator cooling capacity.
  • the exciter winding is preferably supplied with the electrical excitation current by means of the excitation machine in such a way that the heat loss occurring at the generator always corresponds to the generator cooling power.
  • the turbine set is continuously withdrawn precisely the amount of energy that can be derived as maximum heat loss through the generator cooler.
  • the generator is thus protected by means of the already existing generator cooler from thermal damage, such as overheating of its field winding.
  • the speed gradient during the shutdown of the turbo set by means of the generator is made as large as possible, whereby the blade resonances are traversed as quickly as possible.
  • the excitation winding is preferably supplied with the electrical exciter current by means of the exciter machine in such a way that a mechanical loading of the turbo set during retraction is minimized.
  • the degree of mechanical loading of the turbine set with regard to the passage through blade resonances is preferably defined.
  • the generator is operated as a function of mechanical loads occurring on components of the turbo set, which result in particular when passing through blade resonances.
  • the turbo set is driven off with a speed gradient adapted to the blade resonances.
  • the exciter winding is supplied with the electrical exciter current by means of the exciter machine such that the turbine outlet runs gently, whereby the mechanical load is minimized.
  • the generator cooling power is preferably determined as a function of the mechanical power supplied to the generator and the electrical terminal power output by the generator.
  • the generator cooling power is preferably determined by means of the generator efficiency.
  • the method relates to a shutdown of a turbine set comprising a turbine and a generator.
  • the turbine is supplied with a live steam, which relaxes in the turbine and thus drives the turbine.
  • the turbine has a rotor coupled to a rotor of the generator.
  • the generator is further coupled to a power collector, for example a power grid.
  • a power collector for example a power grid.
  • To shut down the turbo set the live steam supply to the turbine is reduced and the generator is disconnected from the mains. Conventionally, the generator then idles with the turbine.
  • a curve 1 shows a curve of the rotational speed of a turbo set when driving off.
  • the steam supply to the turbine is reduced and also decoupled the generator from the mains, whereby the generator idles with the shaft line runs.
  • a reduction in the kinetic energy of the turbo set takes place, inter alia, by means of bearing friction losses on the bearings belonging to the steam turbine plant and by means of ventilation losses in the turbine. With the thus expiring turbo set according to the curve 1, flow times of up to one hour result.
  • the turbo set also passes through a critical speed range 2, in which so-called blade resonances can occur at an associated turbine blading. This leads to strong vibrations at the turbine blading and thus to an increased lifetime consumption.
  • a curve 3 shows the speed of the turbo set in a braked downhill according to the inventive method. In this case, an exciter winding attached to the rotor is acted on by an electrical excitation current, whereby a magnetic field is generated on the rotor. At the stator winding of the generator an electrical current is induced, which is converted into a heat loss in a partial short-circuit operation of the generator.
  • the generator is thus provided according to the invention as an additional load on the turbo set, which is operated to the sub-short circuit and thus serves as an energy sink.
  • the generator generates the heat loss, which is always to be dimensioned by means of an excitation current of the generator so that the generator takes no damage due to overheating.
  • a generator cooling performance plotted over time as curve 4, determined and the generator so acted upon by an excitation current, that the resulting heat loss of the generator always corresponds to the generator cooling capacity.
  • the heat loss of the generator is related to the braking power of the generator 5, which in turn is proportional to the excitation current.
  • Fig. 2 is an embodiment of the method according to the invention by means of power curves, plotted against time, shown, in which the generator braking power 5 the Generator cooler power 4 briefly exceeds, in order to decelerate the turbo set when passing through the critical speed range 2.
  • the resulting heat loss on the generator does not damage this, since by means of the excitation current, the heat loss is dimensioned accordingly.
  • a time period 9 which is required for a braked ride through the critical speed range 2, significantly shorter than a period 10 for an unrestrained departure.
  • the exciter current of the generator is turned off, causing the generator to idle with the turbo set.
  • the turbo set can be braked to drive through the critical speed range as quickly as possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Turbines (AREA)

Abstract

Ein Verfahren zum Abfahren eines Turbosatzes für eine Dampfturbinenanlage weist die Schritte auf: Bereitstellen des Turbosatzes, der eine Dampfturbine und einen Generator umfasst, wobei der Generator eine Erregermaschine und eine Erregerwicklung aufweist; Antreiben der Dampfturbine mit Frischdampf und Abführen der Generatorleistung an einen Leistungsempfänger; Abkoppeln des Generators vom Leistungsempfänger; Verringern der Frischdampfzufuhr zur Turbine; Schalten des Generators in einen Teilkurzschlussbetrieb, wobei mittels der Erregermaschine die Erregerwicklung derart mit einem elektrischen Erregerstrom versorgt wird, dass der Generator als eine Last an der Dampfturbine wirkt, wobei der Erregerstrom derart dimensioniert ist, dass die vom Erregerstrom verursachte Verlustwärme des Generators diesen unversehrt lässt.

Description

  • Beim Betrieb eines Turbosatzes mit einer Dampfturbine und einem Generator für eine Dampfturbinenanlage kann es zu Störfällen kommen, die ein Abfahren des Turbosatzes notwendig machen. Das Abfahren des Turbosatzes erfolgt in der Regel durch ein Trennen des Generators von einem angekoppelten Stromnetz sowie einem Verringern einer Frischdampfzufuhr der Dampfturbine. Der vom Stromnetz abgekoppelte Generator läuft dann im Leerlauf mit der Dampfturbine. Nach dem Trennen des Generators vom Stromnetz sowie dem Verringern der Frischdampfzufuhr wird eine im Turbosatz gespeicherte kinetische Energie im Wesentlichen via einem Reibungsverlust an einem zur Dampfturbinenanlage gehörigen Lager sowie via einem Ventilationsverlust in der Dampfturbine abgebaut. Da die Reibungs- und die Ventilationsverluste typischerweise klein gegenüber der im Turbosatz gespeicherten kinetischen Energie sind, weist der Turbosatz lange Auslaufzeiten von bis zu einer Stunde auf.
  • Zudem durchfährt der Turbosatz sogenannte Schaufelresonanzen, wobei es zu starken Schwingungen an einer zur Turbine gehörigen Beschaufelung kommen kann. Dies kann zu einem Lebensdauerverbrauch der Beschaufelung führen, wobei ein langsameres Durchfahren des Turbosatzes durch die Schaufelresonanzen einem größeren Lebensdauerverbrauch gleich stehen kann. Daher ist ein zügiges Abfahren des Turbosatzes wünschenswert.
  • Eine bekannte Maßnahme den Abfahrvorgang zu beschleunigen ist ein Vakuum eines zur Dampfturbinenanlage gehörigen Kondensators zu brechen, wodurch die Ventilationsverluste erhöht werden. Bei dieser, bei Notfallabschaltungen eingesetzten Maßnahme entstehen jedoch zusätzliche Belastungen an der Beschaufelung, wodurch ein noch höherer Lebensdauerverlust auftritt.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Abfahren eines Turbosatzes für eine Dampfturbinenanlage zu schaffen, bei dem die oben genannten Probleme weitestgehend vermieden sind und insbesondere die Auslaufzeit des Turbosatzes verkürzt ist.
  • Die Aufgabe ist erfindungsgemäß mit einem Verfahren zum Abfahren eines Turbosatzes für eine Dampfturbinenanlage gemäß Anspruch 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen beschrieben.
  • Das erfindungsgemäße Verfahren zum Abfahren eines Turbosatzes für eine Dampfturbinenanlage weist die Schritte auf: Bereitstellen des Turbosatzes, der eine Dampfturbine und einen Generator umfasst, wobei der Generator eine Erregermaschine und eine Erregerwicklung aufweist; Antreiben der Dampfturbine mit Frischdampf und Abführen der Generatorleistung an einen Leistungsempfänger; Abkoppeln des Generators vom Leistungsempfänger; Verringern der Frischdampfzufuhr zur Turbine; Schalten des Generators in einen Teilkurzschlussbetrieb, wobei mittels der Erregermaschine die Erregerwicklung derart mit einem elektrischen Erregerstrom versorgt wird, dass der Generator als eine Last an der Dampfturbine wirkt, wobei der Erregerstrom derart dimensioniert ist, dass die vom Erregerstrom verursachte Verlustwärme des Generators diesen unversehrt lässt.
  • Zum Verkürzen der von herkömmlichen Turbosätzen bekannten langen Auslaufzeit von bis zu einer Stunde wird erfindungsgemäß ein Verfahren vorgeschlagen, bei dem der Generator als eine Energiesenke für eine kinetische Energie des Turbosatzes dient. Dazu wird der Generator in einen Teilkurzschlussbetrieb geschaltet und die Erregerwicklung mit dem elektrischen Erregerstrom derart versorgt, dass sich eine Bremsleistung des Generators ergibt. Dadurch wird dem Turbosatz zusätzlich zu den sonst auftretenden Energieverlusten, wie etwa durch einen Reibungsverlust an einem zur Dampfturbinenanlage gehörigen Lager oder einem Ventilationsverlust in der Turbine, kinetische Energie entzogen, wodurch der Turbosatz abgebremst wird und eine deutlich kürzere Auslaufzeit hat.
  • Zudem durchfährt die Turbine beim Abfahren sogenannte Schaufelresonanzen, die starke Schaufelschwingungen nach sich ziehen können. Diese Schaufelschwingungen führen zu einer erhöhten Belastung der Turbine und können somit zu einem erhöhten Lebensdauerverbrauch führen. Aufgrund der bei einer Verwendung des erfindungsgemäßen Verfahrens zum Abfahren des Turbosatzes verkürzten Auslaufzeit werden die Schaufelresonanzen schnell und folglich in einer kürzeren Zeitspanne durchfahren. Dadurch ist eine Belastung der Turbine aufgrund von starken Schaufelschwingungen verringert und ein damit einhergehender Lebensdauerverbrauch wird vorteilhaft minimiert.
  • Bei dem erfindungsgemäßen Verfahren weist bevorzugt der Generator einen Generatorkühler auf und das Verfahren umfasst die Schritte: Ermitteln der Generatorkühlerleistung des Generatorkühlers im Betrieb des Turbosatzes; Dimensionieren des Erregerstroms derart, dass die Verlustwärme die Generatorkühlerleistung nicht übersteigt. Ferner wird bevorzugt mittels der Erregermaschine die Erregerwicklung derart mit dem elektrischen Erregerstrom versorgt, dass die am Generator sich einstellende Verlustwärme stets der Generatorkühlerleistung entspricht. Dadurch wird dem Turbosatz kontinuierlich genau die Energiemenge entzogen, die als Verlustwärme durch den Generatorkühler maximal abgeleitet werden kann. Der Generator ist somit mittels dem bereits vorhandenen Generatorkühler vor einem thermischen Schaden geschützt, etwa durch ein Überhitzen seiner Erregerwicklung. Es wird also der Drehzahlgradient beim Abfahren des Turbosatzes mittels des Generators so groß wie möglich gestaltet, wodurch die Schaufelresonanzen schnellstmöglich durchfahren werden.
  • Bei dem erfindungsgemäßen Verfahren wird alternativ bevorzugt mittels der Erregermaschine die Erregerwicklung derart mit dem elektrischen Erregerstrom versorgt, dass eine mechanische Belastung des Turbosatzes beim Abfahren minimiert wird. Dabei ist bevorzugt der Grad der mechanischen Belastung des Turbosatzes hinsichtlich des Durchfahrens von Schaufelresonanzen definiert. Zum Minimieren der mechanischen Belastung des Turbosatzes wird der Generator in Abhängigkeit von an Bauteilen des Turbosatzes auftretenden mechanischen Belastungen betrieben, die insbesondere beim Durchfahren von Schaufelresonanzen resultieren. Um die mechanischen Belastungen gering zu halten, wird der Turbosatz mit einem an die Schaufelresonanzen angepassten Drehzahlgradienten abgefahren. Dazu wird mittels der Erregermaschine die Erregerwicklung derart mit dem elektrischen Erregerstrom versorgt, dass der Turbinenauslauf schonend verläuft, wodurch die mechanische Belastung minimiert wird.
  • Bei dem erfindungsgemäßen Verfahren wird die Generatorkühlerleistung bevorzugt in Abhängigkeit der dem Generator zugeführten mechanischen Leistung und der vom Generator abgegebenen elektrischen Klemmenleistung ermittelt. Dabei wird die Generatorkühlerleistung bevorzugt mit Hilfe des Generatorwirkungsgrads bestimmt.
  • Nachfolgend wird das erfindungsgemäße Verfahren um Abfahren eines Turbosatzes anhand der beigefügten schematischen Zeichnungen näher erläutert. Es zeigen:
    • Fig. 1 die Verläufe von diversen Leistungskurven aufgetragen über der Zeit, wenn eine am Generator sich einstellende Verlustwärme stets einer Generatorkühlerleistung entspricht, und
    • Fig. 2 die Verläufe von diversen Leistungskurven aufgetragen über der Zeit, wenn ein Erregerstrom des Generators derart dimensioniert ist, dass die mechanische Belastung des Turbosatzes minimiert ist.
  • In den Fig. 1 und 2 sind die Verläufe unterschiedlicher Leistungskurven zweier unterschiedlicher Ausführungsformen des erfindungsgemäßen Verfahrens dargestellt. Das Verfahren betrifft ein Abfahren eines Turbosatzes, der eine Turbine und einen Generator umfasst. Zum Erzeugen einer kinetischen Energie mittels des Turbosatzes wird der Turbine ein Frischdampf zugeführt, der in der Turbine sich entspannt und somit die Turbine antreibt. Die Turbine weist einen Rotor auf, der mit einem Rotor des Generators gekoppelt ist.
  • Der Generator ist ferner mit einem Leistungsabnehmer gekoppelt, beispielsweise einem Stromnetz. Zum Abfahren des Turbosatzes wird die Frischdampfzufuhr zur Turbine verringert und der Generator vom Stromnetz getrennt. Herkömmlich läuft der Generator dann im Leerlauf mit der Turbine.
  • Eine Kurve 1 zeigt einen Verlauf der Drehzahl eines Turbosatzes beim Abfahren. Zum Abfahren des Turbosatzes wird die Frischdampfzufuhr zur Turbine verringert und zudem der Generator vom Stromnetz abgekoppelt, wodurch der Generator im Leerlauf mit dem Wellenstrang läuft. Ein Abbau der kinetischen Energie des Turbosatzes erfolgt unter anderem mittels Lagerreibungsverlusten an den zur Dampfturbinenanlage gehörigen Lagern sowie mittels Ventilationsverlusten in der Turbine. Bei dem derart auslaufenden Turbosatz gemäß der Kurve 1 ergeben sich Auslaufzeiten von bis zu einer Stunde.
  • Der Turbosatz durchfährt ferner einen kritischen Drehzahlbereich 2, in dem sogenannte Schaufelresonanzen an einer zugehörigen Turbinenbeschaufelung auftreten können. Dabei kommt es zu starken Schwingungen an der Turbinenbeschaufelung und somit zu einem erhöhten Lebensdauerverbrauch. Eine Kurve 3 zeigt die Drehzahl des Turbosatzes bei einer gebremsten Abfahrt gemäß dem erfindungsgemäßen Verfahren. Dabei wird eine, an dem Rotor angebrachte Erregerwicklung mit einem elektrischen Erregerstrom beaufschlagt, wodurch ein Magnetfeld an dem Rotor erzeugt wird. An der Statorwicklung des Generators wird ein elektrischer Strom induziert, der in einem Teilkurzschlussbetrieb des Generators in eine Verlustwärme gewandelt wird.
  • Der Generator wird also erfindungsgemäß als eine zusätzliche Last an dem Turbosatz vorgesehen, der dazu im Teilkurzschluss betrieben wird und dadurch als eine Energiesenke dient. Der Generator erzeugt dabei die Verlustwärme, die mittels eines Erregerstroms des Generators stets so zu dimensionieren ist, dass der Generator keinen Schaden aufgrund von Überhitzung nimmt.
  • Bei der in Fig. 1 angewandten Ausführungsform des erfindungsgemäßen Verfahrens wird eine Generatorkühlerleistung, aufgetragen über der Zeit als Kurve 4 dargestellt, ermittelt und der Generator derart mit einem Erregerstrom beaufschlagt, dass die entstehende Verlustwärme des Generators stets der Generatorkühlerleistung entspricht. Die Verlustwärme des Generators steht dabei in Zusammenhang mit der Bremsleistung 5 des Generators, die ihrerseits proportional zu dem Erregerstrom ist. Mittels des Erregerstroms wird also die Bremsleistung 5 bzw. die Verlustwärme des Generators bestimmt.
  • Somit ist über die gesamte Dauer des Abfahrens eine zusätzliche Last am Turbosatz vorgesehen, der dadurch eine verkürzte Abfahrzeit 6 hat. Von besonderer Bedeutung sind die in der Fig. 1 zu erkennende Zeitspanne 7 für das gebremstes Abfahren, und die Zeitspanne 8 für das ungebremste Abfahren. Es ist deutlich zu erkennen, dass der mit dem erfindungsgemäßen Verfahren abgefahrene Turbosatz den kritischen Drehzahlbereich 2 sehr viel zügiger durchfährt, nämlich in der Zeitspanne 7, wodurch mit dem erfindungsgemäßen Verfahren eine Lebensdauerverkürzung der Turbinenbeschaufelung reduziert wird.
  • In Fig. 2 ist eine Ausführungsform des erfindungsgemäßen Verfahrens anhand von Leistungskurven, aufgetragen über der Zeit, dargestellt, bei der die Generatorbremsleistung 5 die Generatorkühlerleistung 4 kurzzeitig überschreitet, um den Turbosatz beim Durchfahren des kritischen Drehzahlbereichs 2 abzubremsen. Die dabei am Generator entstehende Verlustwärme schädigt diesen dabei nicht, da mittels des Erregerstroms die Verlustwärme entsprechend dimensioniert ist. Auch bei dieser Ausführungsform des erfindungsgemäßen Verfahrens ist eine Zeitspanne 9, die für ein gebremstes Abfahren durch den kritischen Drehzahlbereich 2 benötigt wird, deutlich kürzer als eine Zeitspanne 10 für ein ungebremstes Abfahren. Nach dem Durchfahren des kritischen Drehzahlbereichs 2 wird der Erregerstrom des Generators abgeschaltet, wodurch der Generator im Leerlauf mit dem Turbosatz läuft. Somit kann mittels des Generators der Turbosatz abgebremst werden, um den kritischen Drehzahlbereich so zügig wie möglich zu Durchfahren.

Claims (7)

  1. Verfahren zum Abfahren eines Turbosatzes für eine Dampfturbinenanlage, mit den Schritten:
    - Bereitstellen des Turbosatzes, der eine Dampfturbine und einen Generator umfasst, wobei der Generator eine Erregermaschine und eine Erregerwicklung aufweist;
    - Antreiben der Dampfturbine mit Frischdampf und Abführen der Generatorleistung an einen Leistungsempfänger;
    - Abkoppeln des Generators vom Leistungsempfänger;
    - Verringern der Frischdampfzufuhr zur Turbine;
    - Schalten des Generators in einen Teilkurzschlussbetrieb, wobei mittels der Erregermaschine die Erregerwicklung derart mit einem elektrischen Erregerstrom versorgt wird, dass der Generator als eine Last an der Dampfturbine wirkt, wobei der Erregerstrom derart dimensioniert ist, dass die vom Erregerstrom verursachte Verlustwärme des Generators diesen unversehrt lässt.
  2. Verfahren gemäß Anspruch 1,
    wobei der Generator einen Generatorkühler aufweist, mit den Schritten:
    - Ermitteln der Generatorkühlerleistung (4) des Generatorkühlers im Betrieb des Turbosatzes;
    - Dimensionieren des Erregerstroms derart, dass die Verlustwärme die Generatorkühlerleistung (4) nicht übersteigt.
  3. Verfahren gemäß Anspruch 2,
    wobei mittels der Erregermaschine die Erregerwicklung derart mit dem elektrischen Erregerstrom versorgt wird, dass die am Generator sich einstellende Verlustwärme stets der Generatorkühlerleistung (4) entspricht.
  4. Verfahren gemäß Anspruch 1 oder 2,
    wobei mittels der Erregermaschine die Erregerwicklung derart mit dem elektrischen Erregerstrom versorgt wird, dass die mechanische Belastung des Turbosatzes beim Abfahren minimiert wird.
  5. Verfahren gemäß Anspruch 4,
    wobei der Grad der mechanischen Belastung des Turbosatzes hinsichtlich des Durchfahrens von Schaufelresonanzen definiert ist.
  6. Verfahren gemäß einem der Ansprüche 2 bis 5,
    wobei die Generatorkühlerleistung (4) in Abhängigkeit der dem Generator zugeführten mechanischen Leistung und der vom Generator abgegebenen elektrischen Klemmenleistung ermittelt wird.
  7. Verfahren gemäß einem der Ansprüche 2 bis 6,
    wobei die Generatorkühlerleistung (4) mit Hilfe des Generatorwirkungsgrads bestimmt wird.
EP10189412A 2010-10-29 2010-10-29 Verfahren zum Abfahren eines Turbosatzes Withdrawn EP2447482A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10189412A EP2447482A1 (de) 2010-10-29 2010-10-29 Verfahren zum Abfahren eines Turbosatzes
EP11771087.1A EP2611994B1 (de) 2010-10-29 2011-10-12 Verfahren zum abfahren eines turbosatzes
CN201180052328.2A CN103201463B (zh) 2010-10-29 2011-10-12 用于使涡轮机组停机的方法
PCT/EP2011/067807 WO2012055702A1 (de) 2010-10-29 2011-10-12 Verfahren zum abfahren eines turbosatzes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10189412A EP2447482A1 (de) 2010-10-29 2010-10-29 Verfahren zum Abfahren eines Turbosatzes

Publications (1)

Publication Number Publication Date
EP2447482A1 true EP2447482A1 (de) 2012-05-02

Family

ID=43828215

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10189412A Withdrawn EP2447482A1 (de) 2010-10-29 2010-10-29 Verfahren zum Abfahren eines Turbosatzes
EP11771087.1A Not-in-force EP2611994B1 (de) 2010-10-29 2011-10-12 Verfahren zum abfahren eines turbosatzes

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11771087.1A Not-in-force EP2611994B1 (de) 2010-10-29 2011-10-12 Verfahren zum abfahren eines turbosatzes

Country Status (3)

Country Link
EP (2) EP2447482A1 (de)
CN (1) CN103201463B (de)
WO (1) WO2012055702A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2675023C2 (ru) * 2014-10-20 2018-12-14 Сименс Акциенгезелльшафт Соединение газовой турбины и паровой турбины под заданным углом с регулировкой роторного угла
EP3460206A1 (de) * 2017-09-21 2019-03-27 Siemens Aktiengesellschaft Verfahren zum betreiben einer dampfturbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104481610B (zh) * 2014-11-17 2016-02-24 北京中冶设备研究设计总院有限公司 一种钢铁厂余热电厂间汽轮机不停机的装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2285208A (en) * 1940-04-10 1942-06-02 Gen Electric Automatic turbine control system
US4227093A (en) * 1973-08-24 1980-10-07 Westinghouse Electric Corp. Systems and method for organizing computer programs for operating a steam turbine with digital computer control
DE19839636A1 (de) * 1998-08-31 2000-03-02 Asea Brown Boveri Kraftwerk mit einem von einer Turbine angetriebenen Generator sowie Verfahren zum Betrieb eines solchen Kraftwerkes
DE202004003772U1 (de) * 2004-03-09 2004-06-03 Enginion Ag Anordnung zur Drehzahlstabilisierung von Gleichstromgeneratoren
DE102004016450A1 (de) * 2004-03-31 2005-10-20 Alstom Technology Ltd Baden Generatorbeschaltung und Verfahren zur Erzeugung einer regelbaren Bremsleistung in einer Turbinenanlage
WO2009038562A2 (en) * 2007-09-19 2009-03-26 Utc Power Corporation Preventing overspeeding of a turbine driven generator
WO2011018404A1 (de) * 2009-08-12 2011-02-17 Siemens Aktiengesellschaft Kraftwerksanlage und verfahren zum betreiben einer kraftwerksanlage

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004016461A1 (de) * 2004-03-31 2005-10-20 Alstom Technology Ltd Baden Generatoranlage und Verfahren zum Betreiben einer solchen
US7290393B2 (en) * 2004-05-06 2007-11-06 Utc Power Corporation Method for synchronizing an induction generator of an ORC plant to a grid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2285208A (en) * 1940-04-10 1942-06-02 Gen Electric Automatic turbine control system
US4227093A (en) * 1973-08-24 1980-10-07 Westinghouse Electric Corp. Systems and method for organizing computer programs for operating a steam turbine with digital computer control
DE19839636A1 (de) * 1998-08-31 2000-03-02 Asea Brown Boveri Kraftwerk mit einem von einer Turbine angetriebenen Generator sowie Verfahren zum Betrieb eines solchen Kraftwerkes
DE202004003772U1 (de) * 2004-03-09 2004-06-03 Enginion Ag Anordnung zur Drehzahlstabilisierung von Gleichstromgeneratoren
DE102004016450A1 (de) * 2004-03-31 2005-10-20 Alstom Technology Ltd Baden Generatorbeschaltung und Verfahren zur Erzeugung einer regelbaren Bremsleistung in einer Turbinenanlage
WO2009038562A2 (en) * 2007-09-19 2009-03-26 Utc Power Corporation Preventing overspeeding of a turbine driven generator
WO2011018404A1 (de) * 2009-08-12 2011-02-17 Siemens Aktiengesellschaft Kraftwerksanlage und verfahren zum betreiben einer kraftwerksanlage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2675023C2 (ru) * 2014-10-20 2018-12-14 Сименс Акциенгезелльшафт Соединение газовой турбины и паровой турбины под заданным углом с регулировкой роторного угла
US10253655B2 (en) 2014-10-20 2019-04-09 Siemens Aktiengesellschaft Coupling a gas turbine and a steam turbine with a target coupling angle by adjusting the polar wheel angle
EP3460206A1 (de) * 2017-09-21 2019-03-27 Siemens Aktiengesellschaft Verfahren zum betreiben einer dampfturbine
WO2019057423A1 (de) * 2017-09-21 2019-03-28 Siemens Aktiengesellschaft Verfahren zum betreiben einer dampfturbine
US11081990B2 (en) 2017-09-21 2021-08-03 Siemens Energy Global GmbH & Co. KG Method for operating a steam turbine

Also Published As

Publication number Publication date
EP2611994A1 (de) 2013-07-10
CN103201463A (zh) 2013-07-10
WO2012055702A1 (de) 2012-05-03
EP2611994B1 (de) 2016-08-10
CN103201463B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
DE102008053732B3 (de) Verfahren und Vorrichtung für die Leistungsregelung eines Unterwasserkraftwerks
CN105226713B (zh) 一种风力发电机组控制系统及方法
EP2027368A1 (de) Gasturbine sowie verfahren zum betreiben einer gasturbine
US10006439B2 (en) Energy production plant, in particular wind turbine
DE102008037449A1 (de) Windenergieanlage
DE102011051416A1 (de) Windkraftanlage und Verfahren zum Betrieb einer Windkraftanlage
DE102006051546A1 (de) Verfahren zum Betrieb einer Windenergieanlage mit einem doppelt gespeisten Asynchrongenerator sowie Windenergieanlage mit einem doppelt gespeisten Asynchrongenerator
EP2815499A2 (de) Verfahren zum betreiben einer elektrische einheit für ein pumpspeicherkraftwerk
EP2986846B1 (de) Antrieb und verfahren zum betreiben eines solchen antriebs
WO2014195070A1 (de) Vorrichtung sowie eine solche umfassendes antriebssystem, insbesondere für schiffe
EP2288791B1 (de) Betrieb einer gas- und dampfturbinenanlage mittels frequenzumrichter
EP2611994B1 (de) Verfahren zum abfahren eines turbosatzes
WO2013020148A2 (de) Energiegewinnungsanlage, insbesondere windkraftanlage
EP1821382A2 (de) Windenergieanlage mit Zusatzschaltung für Schwachwindbetrieb
CN103036485A (zh) 永磁直流电机启动冲击电流抑制装置及其抑制方法
CN103670718B (zh) 燃气轮机的电力起动控制方法及装置
WO2009012776A2 (de) Doppelt gespeister asynchrongenerator und verfahren zu dessen betrieb
EP2589141A2 (de) Differentialgetriebe für eine windkraftanlage und verfahren zum betreiben dieses differentialgetriebes
EP2295733A1 (de) Kraftwerksanlage und Verfahren zum Betreiben einer Kraftwerksanlage
DE102012208762A1 (de) Verfahren und Vorrichtung zum Abbremsen einer Strömungsmaschine mit einer Synchronmaschine
AT514170A1 (de) Antriebsstrang einer Energiegewinnungsanlage und Verfahren zum Regeln
AT510118A1 (de) Drehzahlvariabler generator für eine windkraftanlage und verfahren zum betreiben dieses generators
EP1870565A1 (de) Vermeidung unzulässig hoher Drehzahlen an Turbosätzen
DE102005003853B4 (de) Verfahren zum Betreiben eines Flugtriebwerks
EP2955601A1 (de) Kühlung einer rotierenden elektrischen Maschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121103