EP2444356B1 - Method for operating a winch of a tracked vehicle and snow groomer - Google Patents

Method for operating a winch of a tracked vehicle and snow groomer Download PDF

Info

Publication number
EP2444356B1
EP2444356B1 EP11185066.5A EP11185066A EP2444356B1 EP 2444356 B1 EP2444356 B1 EP 2444356B1 EP 11185066 A EP11185066 A EP 11185066A EP 2444356 B1 EP2444356 B1 EP 2444356B1
Authority
EP
European Patent Office
Prior art keywords
cable
winch
sensor
speed
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11185066.5A
Other languages
German (de)
French (fr)
Other versions
EP2444356A1 (en
Inventor
Andreas Behmüller
Peter Betz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kassbohrer Gelandefahrzeug AG
Original Assignee
Kassbohrer Gelandefahrzeug AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44799814&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2444356(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kassbohrer Gelandefahrzeug AG filed Critical Kassbohrer Gelandefahrzeug AG
Publication of EP2444356A1 publication Critical patent/EP2444356A1/en
Application granted granted Critical
Publication of EP2444356B1 publication Critical patent/EP2444356B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • B66D1/48Control devices automatic
    • B66D1/50Control devices automatic for maintaining predetermined rope, cable, or chain tension, e.g. in ropes or cables for towing craft, in chains for anchors; Warping or mooring winch-cable tension control
    • B66D1/505Control devices automatic for maintaining predetermined rope, cable, or chain tension, e.g. in ropes or cables for towing craft, in chains for anchors; Warping or mooring winch-cable tension control electrical
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H4/00Working on surfaces of snow or ice in order to make them suitable for traffic or sporting purposes, e.g. by compacting snow
    • E01H4/02Working on surfaces of snow or ice in order to make them suitable for traffic or sporting purposes, e.g. by compacting snow for sporting purposes, e.g. preparation of ski trails; Construction of artificial surfacings for snow or ice sports ; Trails specially adapted for on-the-snow vehicles, e.g. devices adapted for ski-trails

Definitions

  • the invention relates to a method according to the preamble of claim 1 and a snowcat according to the preamble of claim 2.
  • Such a method for controlling a winch of a tracked vehicle and such a snowcat are from the EP 1 431 236 B1 known.
  • the rope speed of the pull rope is regulated.
  • the object of the invention is to provide a method and a snowcat of the type mentioned, which allow a small load on the winch rope in the winch operation of the snow groomer.
  • this object is solved by the features of claim 1 and for the snowcat, this object is achieved by the features of claim 2.
  • a cable traction control is achieved, which is superimposed on a slip control within a predetermined differential or slip target range.
  • the angle of the winch arm relative to the vehicle longitudinal axis can also be detected together with the selected direction of travel, whether the tracked vehicle is going downhill or uphill. Because in winching operation of the tracked vehicle, especially a snow groomer for snow grooming, the winch arm is always aligned relative to a stationary anchorage at the top of a snow field to be machined, whereas the snow groomer turns away under this winch arm.
  • a differential target range also referred to as the target slip range, instead of a predetermined desired slip value is provided, since different control criteria may be present when driving downhill or uphill.
  • the rope speed is less than or equal to the chain speed chosen-to achieve a braking effect.
  • the desired slip value can be defined so that the rope speed is greater than or equal to the chain speed. Due to the permanent monitoring of the cable traction and the corresponding control of the cable pull force, it is only possible to control the cable pull force in low load ranges, which are just sufficient to achieve the slip range for the difference between chain speed and travel speed. This makes it possible, in winching operation, to load the winch cable relatively lightly, and thereby the service life of the winch side to increase compared to conventional side winch controls.
  • the solution according to the invention results in a slip-back within the desired slip range by regulating the lateral tensile force.
  • the control of the cable tensile force can be carried out in a particularly advantageous manner by controlling a winch drive and in particular by regulating a hydraulic pressure within a drive system of the winch drive. This results in a triple cascaded control, namely the slip control, the traction control and a pressure control of the winch drive.
  • a maximum angular amount of the winch arm is predetermined relative to the vehicle longitudinal axis, in which the cable pull force control is switched off.
  • This embodiment is based on the recognition that a determination of the desired slip range can not be calculated over all angles of the winch arm relative to the vehicle longitudinal axis. Thus, especially at an angle of the winch cable and the winch arm relative to the vehicle longitudinal axis of 90 ° no rope speed more available. In angular ranges close to this right angle only a relatively low cable speed with respect to the vehicle is present. Therefore, a cable tension control does not make sense for these areas.
  • a Seilzugkraftquelung only in angular amounts ranges between 0 ° and 50 ° - based on an orientation of the winch arm in the direction of travel - and between 180 ° and 130 ° - based on an orientation of the winch arm against the direction of travel - made.
  • the object underlying the invention is achieved in that a tensile force sensor for detecting a cable traction and a data processing unit comprehensive control unit are provided, which is connected for the reception and evaluation of data to the sensor, the sensor device, the angle sensor and the tension sensor is, and which drives a winch drive to control a cable traction depending on an evaluation of the received data.
  • the snowcat is provided in a particularly advantageous manner for the processing of snow.
  • the solution according to the invention enables a particularly economical operation of the snowcat in winching operation, ie in steep terrain. In addition, a low and therefore gentle load on the winch rope is achieved by the invention.
  • the sensor device for detecting the rope speed comprises a residual rope length sensor for detecting the withdrawn from the reel or wound on the reel rope length. Since a total length of the rope is known, the respective distance of the winch arm and also the snowcat to the anchoring point at the top of the terrain can be determined taking into account the data of the residual cable length sensor. With the aid of the angle of the winch arm relative to the vehicle longitudinal axis, the instantaneous vehicle position can thereby also be calculated.
  • the sensor device for detecting the cable speed advantageously also has a time measuring device in order to convert the cable path detectable by the residual cable length sensor into the cable speed.
  • the absolute encoder is preferably arranged coaxially to a rotational axis of the reel and permanently detects the angle of rotation or the Rotation angle change of the reel.
  • the absolute value encoder can also be provided with a time module, so that the cable speed can be calculated directly above the data of the absolute value encoder.
  • the absolute encoder is designed as a rotary encoder and measures the angle of rotation.
  • the absolute encoder is designed as a multi-turn encoder to detect several revolutions of the reel.
  • a snowcat 1 according to the Fig. 1 to 3 is provided in a basically known manner with a winch 2, which supports a drive of the snowcat 1 especially in steep snowy terrain.
  • a winch cable 13 ( Fig. 3 ) of the winch anchored to an upper portion of a steep slope to be machined stationary.
  • the winch 2 has a winch arm 3, which about an unspecified, in the vehicle vertical direction extending axis of rotation relative to a vehicle longitudinal axis F ( Fig. 2 ) is rotatable by 360 °.
  • the winch 2 is provided with a winch drive 7 shown only schematically, which will be described in more detail below.
  • the snowcat 1 has a pair of drive chains 4, which are driven by a respective Turasrad.
  • the winch arm 3 is - in the present embodiment together with the winch drive 7 - rotatably mounted on a mounted on a loading platform of the snowcat 1 socket about the axis of rotation described.
  • the Turas render as part of a traction drive of the snowcat 1 are hydraulically driven by hydraulic motors.
  • electric motors are provided instead of hydraulic motors.
  • the winch 2 has a reel 10 rotatably mounted in an unspecified winch housing, on which the winch rope 2 is held up and unwound ( Fig. 3 ).
  • the reel 10 has in the illustrated embodiment on its drum surface on a usable width, which is tuned to a thickness of the winch rope that in a winding layer 50 turns each side by side can be placed on the reel. In other embodiments of the invention, a smaller or larger depending on the purpose width is provided.
  • a winding arm 12 is provided for the winding and unwinding of the winch cable 13 relative to the reel 10.
  • the wrapping arm 12 is - relative to a cable extension direction - mounted in front of the reel 10 in the winch housing by means of a pivot bearing 14 pivotally.
  • a pivoting plane of the winding arm 12 is parallel to a mantle surface of the cylindrical shape of the reel 10 and thus also parallel to the axis of rotation of the reel 10.
  • a rotational angle ⁇ of the wrapping arm 12 is matched to the usable width of the reel 10, that the winch rope through the wrapping 12th for each of the windings distributed over the reel 10 of each winding layer can be performed.
  • the winch cable 13 is withdrawn via a spill gear not shown in detail from the reel 10 or wound onto the reel 10.
  • the spool gear is part of the winch drive 7.
  • the reel 10 has a reel drive, not shown, which is part of the winch drive 7.
  • Both the reel drive and a drive for the capstan are hydraulically designed.
  • the spill gear is preferably assigned a hydraulic motor.
  • the reel drive can also be formed by an electric drive instead of a hydraulic drive.
  • the spill gear can be provided instead of a hydraulic motor with a sufficiently sized electric motor.
  • the winch drive 7 is executed exclusively hydraulically.
  • a regulation of the winch drive in the manner described in more detail below.
  • the regulation is in angular amount ranges ⁇ according to Fig. 2 effective.
  • the corresponding angular ranges extend, starting from an extension of the winch arm 3 along the vehicle longitudinal axis F in the direction of travel or counter to the direction of travel by 50 ° in both directions.
  • alignment of the winch arm 3 is the winch arm 3 in a zero position. In a correspondingly reverse orientation, it is in a 180 ° position.
  • the control is effective between an angle of the winch arm 3 relative to the vehicle longitudinal axis F of -50 ° to + 50 °.
  • the angular range of the winch arm 3, in which an effective control of the winch drive takes place extends from 130 ° through 180 ° to 230 °.
  • a corresponding axis of rotation for the angular ranges described is defined by the axis of rotation of the winch arm 3.
  • At least one Turasrad is associated with a speed sensor 5, by means of which a chain speed can be detected.
  • a speed sensor 5 by means of which a chain speed can be detected.
  • two Turaszumn the opposite chains 4 speed sensors 5 are assigned to make the determination of the chain speed via appropriate rotation direction and speed detection of the Turas.
  • an angle sensor 8 is provided, which detects the angle of rotation of the winch arm 3 relative to the vehicle longitudinal axis F.
  • a cable tensile force sensor 9 is provided in the region of a guide of the winch cable.
  • the winch 2 is associated with a sensor device 6 for detecting a rope speed during winding or unwinding of the winch cable.
  • the winch drive 7 comprises a hydraulic spill drive, not shown, with a spill gear and spill heads, over which the winch cable is deflected for withdrawal from the reel 10 or for winding onto the reel 10.
  • the winch drive 7 also includes a drive for the reel 10, which drives the reel 10 at least in the winding direction.
  • the reel drive is realized by a hydraulic constant motor.
  • the spill drive has a controllable hydraulic motor which acts on the spill gear.
  • a force measuring pin is provided in the region of a displaceable deflection roller in the winch arm 3 in the present embodiment.
  • the sensor device 6 has a residual length sensor 11, which is formed by an absolute value encoder in the form of a rotary encoder.
  • the absolute encoder detects the revolutions of the reel in the winding or unwinding direction.
  • the sensor device has a time module not shown in detail in order to achieve a supplementary time measurement to the distance measurement achieved by the residual cable length sensor.
  • a total pitch or at least one usable pitch of the winch rope 13 is known.
  • the diameter and circumference of the cylindrical drum surface of the reel 10 are known.
  • the cable length currently wound on the reel or extended and tensioned cable length can be determined via the residual cable length sensor 11.
  • By additional time measurement with a corresponding winding or unwinding the rope speed is determined.
  • the snowcat 1 has an electronic control unit S, with which the tension force sensor 9, the sensor device 6, the angle sensor 8 and the speed sensor 5 are connected in order to transmit corresponding actual data to the control unit S.
  • the control unit S controls the winch drive 7 in order to regulate the cable pull force for the winch cable 13 in such a way that there is a difference between the travel speed and chain speed calculated from cable speed and angle of the angle arm 3 relative to the vehicle longitudinal axis results, this difference between the calculated driving speed and chain speed should be in a constant range of differences.
  • the snowcat 1 is provided in a manner not shown with a tilt sensor, which is to detect a vehicle inclination relative to the horizontal and thus in particular an uphill or downhill of the snowcat 1. This additional inclination sensor is optional, since alternatively the detection of an uphill or downhill slope of the snow groomer also by the position of the winch arm according to Fig.
  • the control unit S predefines a defined difference target range, which is also referred to as the desired slip range.
  • the Compliance with this difference or slip target range is achieved by regulating the cable pull force, wherein this is controlled in such a way that the lowest possible cable pull force, which still allows driving of the snowcat 1 within the desired slip range, is set.
  • the regulation of the cable pull force is effected by means of a regulation of the hydraulic pressure of the winch drive 7.
  • the hydraulic pressure of the hydraulic motor of the capstan drive is preferably controlled accordingly.
  • the reel drive itself is not involved in this cable tension control. It is merely controlled so that a permanent tension for the winch cable between the capstan and reel 10 is given to allow a perfect winding or unwinding of the winch cable 13.
  • the central control unit S for controlling the winch 2 is assigned a control module S 1 , which monitors the winding or unwinding of the winch cable 13 relative to the reel 10 and upon detection of a winding fault, which also means a rope fault, an error message to the driver of the snowcat first outputs.
  • a winding fault which also means a rope fault, an error message to the driver of the snowcat first outputs.
  • the angle arm 12 in the region of its pivot bearing 14 is associated with a rotation angle sensor 15 which is connected to the control module S 1 .
  • the absolute encoder 11 also is connected to the control module S 1, sitting on the axis of rotation of the reel 10 degrees.
  • the control module S 1 Based on the detected actual values for the angle of rotation of the winding arm 12 and the counted revolutions for the reel 10, the control module S 1 in comparison with the stored target data for the number of turns per winding and for the pivot angle ⁇ of the winding arm 12 between Begin and end of a winding layer determine whether a proper winding or unwinding has occurred, or whether the winch cable 13 performs a wrong winding or unwinding. As soon as the control module S 1 has detected this, it activates a signal generator 16, which sends the corresponding error message to the driver's cabin of the snow groomer, preferably in a display region which can be quickly recognized by the driver. transmitted.
  • the signal generator is preferably designed optically and / or acoustically.
  • control module S 1 via the central control unit S is suitably connected to a functional unit within the traction drive and / or the winch drive.

Description

Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Anspruchs 1 und eine Pistenraupe gemäß dem Oberbegriff des Anspruchs 2.The invention relates to a method according to the preamble of claim 1 and a snowcat according to the preamble of claim 2.

Ein derartiges Verfahren zur Steuerung einer Seilwinde eines Kettenfahrzeugs und eine derartige Pistenraupe sind aus der EP 1 431 236 B1 bekannt. Durch das bekannte Verfahren wird die Seilgeschwindigkeit des Zugseils geregelt.Such a method for controlling a winch of a tracked vehicle and such a snowcat are from the EP 1 431 236 B1 known. By the known method, the rope speed of the pull rope is regulated.

Aufgabe der Erfindung ist es, ein Verfahren und eine Pistenraupe der eingangs genannten Art zu schaffen, die eine geringe Belastung des Windenseiles im Windenbetrieb der Pistenraupe ermöglichen. The object of the invention is to provide a method and a snowcat of the type mentioned, which allow a small load on the winch rope in the winch operation of the snow groomer.

Für das Verfahren wird diese Aufgabe durch die Merkmale des Patentanspruches 1 gelöst und für die Pistenraupe wird diese Aufgabe durch die Merkmale des Patentanspruches 2 gelöst.For the method, this object is solved by the features of claim 1 and for the snowcat, this object is achieved by the features of claim 2.

Durch die erfindungsgemäße Lösung wird eine Seilzugkraftregelung erzielt, die einer Schlupfregelung innerhalb eines vorgegebenen Differenz- oder Schlupfsollbereiches überlagert ist. Durch den Winkel des Windenarmes relativ zur Fahrzeuglängsachse kann zusammen mit der gewählten Fahrtrichtung auch erfasst werden, ob das Kettenfahrzeug bergab oder bergauf fahrt. Denn im Windenbetrieb des Kettenfahrzeugs, insbesondere einer Pistenraupe zur Schneepistenbearbeitung, ist der Windenarm immer relativ zu einer stationären Verankerung an der Oberseite eines zu bearbeitenden Schneegeländes ausgerichtet, wohingegen die Pistenraupe sich unter diesem Windenarm wegdreht. Ein auch als Schlupfsollbereich bezeichneter Differenzsollbereich anstelle eines vorgegebenen Schlupfsollwertes ist vorgesehen, da bei Bergabfahrt oder Bergauffahrt unterschiedliche Regelkriterien vorliegen können. So kann bei einer Fahrtrichtung hangabwärts und entsprechender Ausrichtung des Windenarmes entgegen der Fahrtrichtung die Seilgeschwindigkeit kleiner oder gleich der Kettengeschwindigkeit gewählt-werden, um eine Bremswirkung zu erreichen. Bei einer Fahrt hangaufwärts hingegen kann der Schlupfsollwert so definiert werden, dass die Seilgeschwindigkeit größer oder gleich der Kettengeschwindigkeit ist. Durch die permanente überwachung der Seilzugkraft und die entsprechende Regelung der Seilzug kraft ist es mtiglich, die Seilzug kraft in niedrigen Belastungsbereichen zu steuern, die gerade ausreichen, um den Schlupfsoflbereich für die Differenz aus Kettengeschwindigkeit und Fahrgeschwindigkeit zu erzielen. Hierdurch ist es möglich, im Windenbetrieb das Windenseil relativ gering zu belasten und dadurch die Lebensdauer des Windenseites gegenüber herkömmlichen Seitwindensteuerungen zu erhöhen. Durch die erfindungsgemäße Lösung erfolgt eine Schlupfregefung innerhalb des Schlupfsollbereiches durch eine Regelung der Seitzugkraft. Die Regelung der Seilzugkraft kann in besonders vorteilhafter Weise durch eine Regelung eines Windenantriebs und insbesondere durch eine Regelung eines Hydraulikdruckes innerhalb eines Antriebsystems des Windenantriebs vorgenommen werden. Hierdurch ergibt sich eine dreifach kaskadierte Regelung, nämlich die Schlupfregelung, die Seilzugkraftregelung und eine Druckregelung des Windenantriebs.By the solution according to the invention a cable traction control is achieved, which is superimposed on a slip control within a predetermined differential or slip target range. By the angle of the winch arm relative to the vehicle longitudinal axis can also be detected together with the selected direction of travel, whether the tracked vehicle is going downhill or uphill. Because in winching operation of the tracked vehicle, especially a snow groomer for snow grooming, the winch arm is always aligned relative to a stationary anchorage at the top of a snow field to be machined, whereas the snow groomer turns away under this winch arm. A differential target range, also referred to as the target slip range, instead of a predetermined desired slip value is provided, since different control criteria may be present when driving downhill or uphill. Thus, in a direction of travel downhill and appropriate orientation of the winch arm counter to the direction of travel, the rope speed is less than or equal to the chain speed chosen-to achieve a braking effect. On the other hand, when driving uphill, the desired slip value can be defined so that the rope speed is greater than or equal to the chain speed. Due to the permanent monitoring of the cable traction and the corresponding control of the cable pull force, it is only possible to control the cable pull force in low load ranges, which are just sufficient to achieve the slip range for the difference between chain speed and travel speed. This makes it possible, in winching operation, to load the winch cable relatively lightly, and thereby the service life of the winch side to increase compared to conventional side winch controls. The solution according to the invention results in a slip-back within the desired slip range by regulating the lateral tensile force. The control of the cable tensile force can be carried out in a particularly advantageous manner by controlling a winch drive and in particular by regulating a hydraulic pressure within a drive system of the winch drive. This results in a triple cascaded control, namely the slip control, the traction control and a pressure control of the winch drive.

Erfindungsgemäß wird ein maximaler Winkelbetrag des Windenarmes relativ zur Fahrzeuglängsachse vorgegeben, bei dem die Seilzugkraftregelung abgeschaltet wird. Diese Ausgestaltung geht von der Erkenntnis aus, dass eine Bestimmung des Schlupfsollbereichs nicht über alle Winkel des Windenarmes relativ zur Fahrzeugiängsachse berechnet werden kann. So ist insbesondere bei einem Winkel des Windenseiles und des Windenarmes relativ zur Fahrzeuglängsachse von 90° keine Seilgeschwindigkeit mehr vorhanden. In Winkelbereichen nahe dieses rechten Winkels ist nur eine relativ geringe Seilgeschwindigkeit bezogen auf das Fahrzeug vorhanden. Für diese Bereiche macht eine Seilzugkraftregelung daher keinen Sinn. In besonders vorteilhafter Weise wird eine Seilzugkraftregelung nur in Winkelbetragsbereichen zwischen 0° und 50° - bezogen auf eine Ausrichtung des Windenarmes in Fahrrichtung - und zwischen 180° und 130° - bezogen auf eine Ausrichtung des Windenarmes entgegen der Fahrtrichtung - vorgenommen.According to the invention, a maximum angular amount of the winch arm is predetermined relative to the vehicle longitudinal axis, in which the cable pull force control is switched off. This embodiment is based on the recognition that a determination of the desired slip range can not be calculated over all angles of the winch arm relative to the vehicle longitudinal axis. Thus, especially at an angle of the winch cable and the winch arm relative to the vehicle longitudinal axis of 90 ° no rope speed more available. In angular ranges close to this right angle only a relatively low cable speed with respect to the vehicle is present. Therefore, a cable tension control does not make sense for these areas. In a particularly advantageous manner, a Seilzugkraftregelung only in angular amounts ranges between 0 ° and 50 ° - based on an orientation of the winch arm in the direction of travel - and between 180 ° and 130 ° - based on an orientation of the winch arm against the direction of travel - made.

Für die Pistenraupe mit einer Seilwinde sowie mit einer Vorrichtung zur Durchführung eines zuvor beschriebenen Verfahrens mit wenigstens einem Sensor zur Erfassung der Kettengeschwindigkeit, mit einer Sensoreinrichtung zur Erfassung einer Seilgeschwindigkeit und mit einem Winkelsensor zur Erfassung eines Winkels eines Windenarmes relativ zu einer Fahrzeuglängsachse wird die der Erfindung zugrundeliegende Aufgabe dadurch gelöst, dass ein Zugkraftsensor zur Erfassung einer Seilzugkraft sowie eine eine Datenverarbeitungseinheit umfassende Steuereinheit vorgesehen sind, die für den Empfang und die Auswertung von Daten mit dem Sensor, der Sensoreinrichtung, dem Winkelsensor und dem Zugkraftsensor verbunden ist, und die einen Windenantrieb zur Regelung einer Seilzugkraft abhängig von einer Auswertung der empfangenen Daten ansteuert. Die Pistenraupe ist in besonders vorteilhafter Weise für die Bearbeitung von Schneegelände vorgesehen. Die erfindungsgemäße Lösung ermöglicht einen besonders ökonomischen Betrieb der Pistenraupe im Windenbetrieb, d.h. in steilem Gelände. Zudem wird durch die Erfindung eine geringe und daher schonende Belastung des Windenseiles erreicht.For the snowcat with a winch and with a device for carrying out a method described above with at least one sensor for detecting the chain speed, with a sensor device for detecting a rope speed and with an angle sensor for detecting an angle of a winch relative To a vehicle longitudinal axis, the object underlying the invention is achieved in that a tensile force sensor for detecting a cable traction and a data processing unit comprehensive control unit are provided, which is connected for the reception and evaluation of data to the sensor, the sensor device, the angle sensor and the tension sensor is, and which drives a winch drive to control a cable traction depending on an evaluation of the received data. The snowcat is provided in a particularly advantageous manner for the processing of snow. The solution according to the invention enables a particularly economical operation of the snowcat in winching operation, ie in steep terrain. In addition, a low and therefore gentle load on the winch rope is achieved by the invention.

In Ausgestaltung der Erfindung umfasst die Sensoreinrichtung zur Erfassung der Seilgeschwindigkeit einen Restseillängensensor zur Erfassung der von der Haspel abgezogenen oder auf die Haspel aufgewickelten Seillänge. Da eine Gesamtlänge des Seiles bekannt ist, ist unter Berücksichtigung der Daten des Restseillängensensors auch der jeweilige Abstand des Windenarmes und auch der Pistenraupe zu dem Verankerungspunkt an der Oberseite des Geländes bestimmbar. Unter Zuhilfenahme des Winkels des Windenarmes relativ zur Fahrzeuglängsachse kann hierdurch auch die momentane Fahrzeugposition berechnet werden. Die Sensoreinrichtung zur Erfassung der Seilgeschwindigkeit weist in vorteilhafter Weise noch eine Zeitmesseinrichtung auf, um den durch den Restseillängensensor erfassbaren Seilweg in die Seilgeschwindigkeit umzurechnen.In an embodiment of the invention, the sensor device for detecting the rope speed comprises a residual rope length sensor for detecting the withdrawn from the reel or wound on the reel rope length. Since a total length of the rope is known, the respective distance of the winch arm and also the snowcat to the anchoring point at the top of the terrain can be determined taking into account the data of the residual cable length sensor. With the aid of the angle of the winch arm relative to the vehicle longitudinal axis, the instantaneous vehicle position can thereby also be calculated. The sensor device for detecting the cable speed advantageously also has a time measuring device in order to convert the cable path detectable by the residual cable length sensor into the cable speed.

In weiterer Ausgestaltung der Erfindung ist als Restseillängensensor ein Umdrehungen der Haspel erfassender Absolutwertgeber vorgesehen. Der Absolutwertgeber ist vorzugsweise koaxial zu einer Drehachse der Haspel angeordnet und erfasst permanent den Drehwinkel bzw. die Drehwinkeländerung der Haspel. In vorteilhafter Weise kann auch der Absolutwertgeber mit einem Zeitmodul versehen sein, so dass die Seilgeschwindigkeit direkt Ober die Daten des Absolutwertgebers berechnet werden kann. Der Absolutwertgeber ist als rotatorischer Geber ausgeführt und misst den Drehwinkel. Der Absolutwertgeber ist als Multiturn-Drehgeber ausgeführt, um mehrere Umdrehungen der Haspel erfassen zu können.In a further embodiment of the invention is provided as residual cable length sensor revolutions of the reel detecting absolute encoder. The absolute encoder is preferably arranged coaxially to a rotational axis of the reel and permanently detects the angle of rotation or the Rotation angle change of the reel. Advantageously, the absolute value encoder can also be provided with a time module, so that the cable speed can be calculated directly above the data of the absolute value encoder. The absolute encoder is designed as a rotary encoder and measures the angle of rotation. The absolute encoder is designed as a multi-turn encoder to detect several revolutions of the reel.

Weitere Vorteile und Merkmale der Erfindung ergeben sich aus den Ansprüchen sowie aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiets der Erfindung, das anhand der Zeichnungen dargestellt ist.

Fig. 1
zeigt schematisch in einer Seitenansicht eine Ausführungsform einer erfindungsgemäßen Pistenraupe mit einem Blockschaltbild für ein erfindungsgemäßes Verfahren zur Steuerung einer Seilwinde,
Fig. 2
schematisch in einer Draufsicht die Pistenraupe nach Fig. 1 und
Fig. 3
schematisch einen Ausschnitt der Seilwinde nach Fig. 1 im Bereich einer Haspel.
Further advantages and features of the invention will become apparent from the claims and from the following description of a preferred Ausführungsbeispiets of the invention, which is illustrated with reference to the drawings.
Fig. 1
shows schematically in a side view an embodiment of a snow groomer according to the invention with a Block diagram of an inventive method for controlling a winch,
Fig. 2
schematically in a plan view of the snow groomer after Fig. 1 and
Fig. 3
schematically a section of the winch after Fig. 1 in the area of a reel.

Eine Pistenraupe 1 gemäß den Fig. 1 bis 3 ist in grundsätzlich bekannter Weise mit einer Seilwinde 2 versehen, die insbesondere in steilem Schneegelände einen Fahrantrieb der Pistenraupe 1 unterstützt. Hierzu wird ein Windenseil 13 (Fig. 3) der Seilwinde an einem oberen Abschnitt eines zu bearbeitenden Steilhanges ortsfest verankert. Die Seilwinde 2 weist einen Windenarm 3 auf, der um eine nicht näher bezeichnete, in Fahrzeughochrichtung erstreckte Drehachse relativ zu einer Fahrzeuglängsachse F (Fig. 2) um 360° verdrehbar ist. Die Seilwinde 2 ist mit einem lediglich schematisch dargestellten Windenantrieb 7 versehen, der nachfolgend näher beschrieben wird.A snowcat 1 according to the Fig. 1 to 3 is provided in a basically known manner with a winch 2, which supports a drive of the snowcat 1 especially in steep snowy terrain. For this purpose, a winch cable 13 ( Fig. 3 ) of the winch anchored to an upper portion of a steep slope to be machined stationary. The winch 2 has a winch arm 3, which about an unspecified, in the vehicle vertical direction extending axis of rotation relative to a vehicle longitudinal axis F ( Fig. 2 ) is rotatable by 360 °. The winch 2 is provided with a winch drive 7 shown only schematically, which will be described in more detail below.

Die Pistenraupe 1 weist ein Paar von Antriebsketten 4 auf, die durch jeweils ein Turasrad angetrieben werden.The snowcat 1 has a pair of drive chains 4, which are driven by a respective Turasrad.

Der Windenarm 3 ist - bei der vorliegenden Ausführungsform gemeinsam mit dem Windenantrieb 7 - auf einem auf einer Ladeplattform der Pistenraupe 1 befestigten Sockel um die beschriebene Drehachse drehbar gelagert.The winch arm 3 is - in the present embodiment together with the winch drive 7 - rotatably mounted on a mounted on a loading platform of the snowcat 1 socket about the axis of rotation described.

Die Turasräder als Teil eines Fahrantriebes der Pistenraupe 1 sind durch Hydromotoren hydraulisch angetrieben. Bei einer nicht dargestellten Ausführungsform der Erfindung sind anstelle von Hydromotoren Elektromotoren vorgesehen.The Turasräder as part of a traction drive of the snowcat 1 are hydraulically driven by hydraulic motors. In an embodiment of the invention, not shown, electric motors are provided instead of hydraulic motors.

Die Seilwinde 2 weist eine in einem nicht näher bezeichneten Windengehäuse drehbar gelagerte Haspel 10 auf, auf der das Windenseil 2 auf-und abwickelbar gehalten ist (Fig. 3). Die Haspel 10 weist beim dargestellten Ausführungsbeispiel auf ihrer Trommeloberfläche eine nutzbare Breite auf, die derart auf eine Dicke des Windenseiles abgestimmt ist, dass in einer Wicklungslage jeweils 50 Windungen nebeneinander auf die Haspel gelegt werden können. Bei anderen Ausführungsformen der Erfindung ist eine je nach Einsatzzweck geringere oder größere Breite vorgesehen. Um ein sorgfältiges und gleichmäßiges Aneinanderlegen der Windungen jeweils einer Wicklungslage zu gewährleisten, ist für die Auf- und Abwicklung des Windenseiles 13 relativ zur Haspel 10 ein Wickelarm 12 vorgesehen. Der Wickelarm 12 ist - auf eine Seilauszugrichtung bezogen ― vor der Haspel 10 im Windengehäuse mittels einer Drehlagerung 14 schwenkbeweglich gelagert. Eine Schwenkebene des Wickelarmes 12 liegt parallel zu einer Manteloberfläche der Zylinderform der Haspel 10 und damit auch parallel zu der Drehachse der Haspel 10. Ein Drehwinkel β des Wickelarmes 12 ist derart auf die nutzbare Breite der Haspel 10 abgestimmt, dass das Windenseil durch den Wickelarm 12 für jede der über die Haspel 10 verteilten Windungen jeder Wickellage geführt werden kann.The winch 2 has a reel 10 rotatably mounted in an unspecified winch housing, on which the winch rope 2 is held up and unwound ( Fig. 3 ). The reel 10 has in the illustrated embodiment on its drum surface on a usable width, which is tuned to a thickness of the winch rope that in a winding layer 50 turns each side by side can be placed on the reel. In other embodiments of the invention, a smaller or larger depending on the purpose width is provided. In order to ensure a careful and uniform juxtaposition of the turns of a respective winding layer, a winding arm 12 is provided for the winding and unwinding of the winch cable 13 relative to the reel 10. The wrapping arm 12 is - relative to a cable extension direction - mounted in front of the reel 10 in the winch housing by means of a pivot bearing 14 pivotally. A pivoting plane of the winding arm 12 is parallel to a mantle surface of the cylindrical shape of the reel 10 and thus also parallel to the axis of rotation of the reel 10. A rotational angle β of the wrapping arm 12 is matched to the usable width of the reel 10, that the winch rope through the wrapping 12th for each of the windings distributed over the reel 10 of each winding layer can be performed.

Das Windenseil 13 wird über ein nicht näher dargestelltes Spillgetriebe von der Haspel 10 abgezogen oder auf die Haspel 10 aufgewickelt. Das Spillgetriebe ist Teil des Windenantriebes 7. Auch die Haspel 10 weist einen nicht näher dargestellten Haspelantrieb auf, der Teil des Windenantriebes 7 ist. Sowohl der Haspelantrieb als auch ein Antrieb für das Spillgetriebe sind hydraulisch ausgeführt. Hierzu ist dem Spillgetriebe vorzugsweise ein Hydromotor zugeordnet. Der Haspelantrieb kann anstatt eines Hydraulikantriebes auch durch einen Elektroantrieb gebildet sein. Auch das Spillgetriebe kann anstatt eines Hydromotors mit einem ausreichend dimensionierten Elektromotor versehen sein. Beim vorliegenden Ausführungsbeispiel gemäß den Fig. 1 bis 3 ist der Windenantrieb 7 jedoch ausschließlich hydraulisch ausgeführt.The winch cable 13 is withdrawn via a spill gear not shown in detail from the reel 10 or wound onto the reel 10. The spool gear is part of the winch drive 7. The reel 10 has a reel drive, not shown, which is part of the winch drive 7. Both the reel drive and a drive for the capstan are hydraulically designed. For this purpose, the spill gear is preferably assigned a hydraulic motor. The reel drive can also be formed by an electric drive instead of a hydraulic drive. Also, the spill gear can be provided instead of a hydraulic motor with a sufficiently sized electric motor. At present Embodiment according to the Fig. 1 to 3 However, the winch drive 7 is executed exclusively hydraulically.

In einem Windenbetrieb der Pistenraupe 1 erfolgt in vorgegebenen Winkelbereichen des Windenarmes 3 relativ zu einer Fahrzeuglängsachse F eine Regelung des Windenantriebs in nachfolgend näher beschriebener Weise. Die Regelung ist in Winkelbetragsbereichen α gemäß Fig. 2 wirksam. Die entsprechenden Winkelbereiche erstrecken sich ausgehend von einer Erstreckung des Windenarmes 3 längs der Fahrzeuglängsachse F in Fahrtrichtung oder entgegen der Fahrtrichtung um jeweils 50° in beiden Richtungen. In der in Fig. 2 dargestellten Ausrichtung des Windenarmes 3 ist der Windenarm 3 in einer Nullstellung. In entsprechend umgekehrter Ausrichtung ist er in einer 180°-Stellung. Dadurch ergeben sich die übrigen, gestrichelt dargestellten Winkelendbereiche für die beschriebenen Winkelbetragsbereiche. In Fahrtrichtung ist die Regelung wirksam zwischen einem Winkel des Windenarmes 3 relativ zur Fahrzeuglängsachse F von -50° bis +50°. Entgegen der Fahrtrichtung reicht der Winkelbereich des Windenarmes 3, in dem eine wirksame Regelung des Windenantriebes erfolgt, von 130° über 180° bis 230°. Eine entsprechende Drehachse für die beschriebenen Winkelbereiche wird durch die Drehachse des Windenarmes 3 definiert.In a winch operation of the snowcat 1 takes place in predetermined angular ranges of the winch arm 3 relative to a vehicle longitudinal axis F, a regulation of the winch drive in the manner described in more detail below. The regulation is in angular amount ranges α according to Fig. 2 effective. The corresponding angular ranges extend, starting from an extension of the winch arm 3 along the vehicle longitudinal axis F in the direction of travel or counter to the direction of travel by 50 ° in both directions. In the in Fig. 2 shown alignment of the winch arm 3 is the winch arm 3 in a zero position. In a correspondingly reverse orientation, it is in a 180 ° position. This results in the remaining Winkelendbereiche dashed lines for the described Winkelbetragsbereiche. In the direction of travel, the control is effective between an angle of the winch arm 3 relative to the vehicle longitudinal axis F of -50 ° to + 50 °. Contrary to the direction of travel, the angular range of the winch arm 3, in which an effective control of the winch drive takes place, extends from 130 ° through 180 ° to 230 °. A corresponding axis of rotation for the angular ranges described is defined by the axis of rotation of the winch arm 3.

Wenigstens einem Turasrad ist ein Drehzahlsensor 5 zugeordnet, mittels dessen eine Kettengeschwindigkeit erfassbar ist. Vorzugsweise sind beiden Turasrädern der gegenüberliegenden Ketten 4 Drehzahlsensoren 5 zugeordnet, die über entsprechende Drehrichtungs- und Drehzahlerfassung der Turasräder die Ermittlung der Kettengeschwindigkeit vornehmen. Im Bereich der Drehachse des Windenarmes 3 ist ein Winkelsensor 8 vorgesehen, der den Drehwinkel des Windenarmes 3 relativ zur Fahrzeuglängsachse F erfasst. Im Windenarm 3 ist im Bereich einer Führung des Windenseiles ein Seilzugkraftsensor 9 vorgesehen. Zudem ist der Seilwinde 2 eine Sensoreinrichtung 6 zur Erfassung einer Seilgeschwindigkeit beim Auf- oder Abwickeln des Windenseiles zugeordnet.At least one Turasrad is associated with a speed sensor 5, by means of which a chain speed can be detected. Preferably, two Turasrädern the opposite chains 4 speed sensors 5 are assigned to make the determination of the chain speed via appropriate rotation direction and speed detection of the Turas. In the region of the axis of rotation of the winch arm 3, an angle sensor 8 is provided, which detects the angle of rotation of the winch arm 3 relative to the vehicle longitudinal axis F. In winch arm 3, a cable tensile force sensor 9 is provided in the region of a guide of the winch cable. moreover the winch 2 is associated with a sensor device 6 for detecting a rope speed during winding or unwinding of the winch cable.

Der Windenantrieb 7 umfasst einen nicht näher dargestellten hydraulischen Spillantrieb mit einem Spillgetriebe und Spillköpfen, über die das Windenseil für einen Abzug von der Haspel 10 oder für ein Aufwickeln auf die Haspel 10 umgelenkt wird. Der Windenantrieb 7 umfasst zudem einen Antrieb für die Haspel 10, der die Haspel 10 wenigstens in Aufwickelrichtung antreibt. Der Haspelantrieb wird durch einen hydraulischen Konstantmotor verwirklicht. Der Spillantrieb weist einen steuerbaren Hydromotor auf, der auf das Spillgetriebe wirkt.The winch drive 7 comprises a hydraulic spill drive, not shown, with a spill gear and spill heads, over which the winch cable is deflected for withdrawal from the reel 10 or for winding onto the reel 10. The winch drive 7 also includes a drive for the reel 10, which drives the reel 10 at least in the winding direction. The reel drive is realized by a hydraulic constant motor. The spill drive has a controllable hydraulic motor which acts on the spill gear.

Als Seilzugkraftsensor 9 ist beim vorliegenden Ausführungsbeispiel ein Kraftmessbolzen im Bereich einer verlagerbaren Umlenkrolle im Windenarm 3 vorgesehen.As a cable tension force sensor 9, a force measuring pin is provided in the region of a displaceable deflection roller in the winch arm 3 in the present embodiment.

Die Sensoreinrichtung 6 weist einen Restseillängensensor 11 auf, der durch einen Absolutwertgeber in Form eines Drehgebers gebildet ist. Der Absolutwertgeber erfasst die Umdrehungen der Haspel in Auf- oder Abwickelrichtung. Zusätzlich weist die Sensoreinrichtung ein nicht näher dargestelltes Zeitmodul auf, um eine ergänzende Zeitmessung zu der durch den Restseillängensensor erzielten Wegmessung zu erreichen. Eine Gesamtseillänge oder zumindest eine nutzbare Seillänge des Windenseils 13 ist bekannt. Auch Durchmesser und Umfang der zylindrischen Trommeloberfläche der Haspel 10 sind bekannt. Schließlich ist auch die Anzahl von Seilwindungen, die in einer Wicklungslage auf der Haspel 10 nebeneinandergereiht werden können, bekannt. Hierdurch ist über den Restseillängensensor 11 die jeweils momentan auf der Haspel aufgewickelte bzw. ausgezogene und gespannte Seillänge ermittelbar. Durch die zusätzliche Zeitmessung bei einem entsprechenden Auf- oder Abwickelvorgang wird die Seilgeschwindigkeit ermittelt.The sensor device 6 has a residual length sensor 11, which is formed by an absolute value encoder in the form of a rotary encoder. The absolute encoder detects the revolutions of the reel in the winding or unwinding direction. In addition, the sensor device has a time module not shown in detail in order to achieve a supplementary time measurement to the distance measurement achieved by the residual cable length sensor. A total pitch or at least one usable pitch of the winch rope 13 is known. The diameter and circumference of the cylindrical drum surface of the reel 10 are known. Finally, the number of cable turns that can be lined up in a winding position on the reel 10, known. As a result, the cable length currently wound on the reel or extended and tensioned cable length can be determined via the residual cable length sensor 11. By additional time measurement with a corresponding winding or unwinding the rope speed is determined.

Mit Hilfe des Winkelsensors 8, der den jeweiligen Winkel des Windenarmes 3 relativ zur Fahrzeuglängsachse erfasst, ist es möglich, über die erfasste Seilgeschwindigkeit die Fahrgeschwindigkeit der Pistenraupe 1 zu ermitteln. Die Pistenraupe 1 weist eine elektronische Steuereinheit S auf, mit der der Zugkraftsensor 9, die Sensoreinrichtung 6, der Winkelsensor 8 und der Drehzahlsensor 5 verbunden sind, um entsprechende Istdaten an die Steuereinheit S zu übermitteln. Die Steuereinheit S steuert abhängig von Vergleichen, Berechnungen und Auswertungen der erfassten Istdaten den Windenantrieb 7 an, um die Seilzugkraft für das Windenseil 13 so zu regeln, dass sich zwischen der aus Seilgeschwindigkeit und Winkel des Winkelarmes 3 relativ zur Fahrzeuglängsachse berechneten Fahrgeschwindigkeit und Kettengeschwindigkeit eine Differenz ergibt, wobei diese Differenz zwischen errechneter Fahrgeschwindigkeit und Kettengeschwindigkeit in einem konstanten Differenzbereich liegen soll. Ergänzend ist die Pistenraupe 1 in nicht näher dargestellter Weise mit einem Neigungssensor versehen, der eine Fahrzeugneigung relativ zur Horizontalen und damit insbesondere eine Bergauffahrt oder eine Bergabfahrt der Pistenraupe 1 erkennen soll. Dieser zusätzliche Neigungssensor ist optional, da alternativ die Erfassung einer Bergauf-oder Bergabfahrt der Pistenraupe auch durch die Stellung des Windenarmes gemäß Fig. 2 erfassbar ist. Je nach Stellung des Windenarmes für Bergauf- oder Bergabfahrt kann die Differenz zwischen Kettengeschwindigkeit und berechneter Fahrgeschwindigkeit positiv oder negativ ausfallen, denn bei einer Bergabfahrt kann die durch die Seilgeschwindigkeit und den Winkel des Windenarmes berechnete Fahrgeschwindigkeit geringer ausfallen als die Kettengeschwindigkeit, um eine Bremswirkung zu erzielen. Bei der Bergauffahrt hingegen kann ein erhöhter Schlupf der Ketten 4 durch eine relativ zur Kettengeschwindigkeit höhere Fahrgeschwindigkeit und demzufolge eine höhere Seilgeschwindigkeit ausgeglichen werden. Die Steuereinheit S gibt unter Berücksichtigung dieser unterschiedlichen Fahrzustände einen definierten Differenzsollbereich vor, der auch als Schlupfsollbereich bezeichnet wird. Die Einhaltung dieses Differenz- oder Schlupfsollbereiches wird durch eine Regelung der Seilzugkraft erzielt, wobei diese derart geregelt wird, dass die jeweils geringstmögliche Seilzugkraft, die noch ein Fahren der Pistenraupe 1 innerhalb des Schlupfsollbereichs ermöglicht, eingestellt wird. Die Regelung der Seilzugkraft erfolgt über eine Regelung des Hydraulikdruckes des Windenantriebes 7. Bevorzugt wird hierzu der Hydraulikdruck des Hydromotors des Spillantriebes entsprechend angesteuert. Der Haspelantrieb selbst ist in diese Seilzugkraftregelung nicht eingebunden. Er wird lediglich so gesteuert, dass eine permanente Zugspannung für das Windenseil zwischen Spillgetriebe und Haspel 10 gegeben ist, um ein einwandfreies Auf- oder Abwickeln des Windenseiles 13 zu ermöglichen.With the aid of the angle sensor 8, which detects the respective angle of the winch arm 3 relative to the vehicle longitudinal axis, it is possible to determine the traveling speed of the snowcat 1 via the detected cable speed. The snowcat 1 has an electronic control unit S, with which the tension force sensor 9, the sensor device 6, the angle sensor 8 and the speed sensor 5 are connected in order to transmit corresponding actual data to the control unit S. Depending on comparisons, calculations and evaluations of the detected actual data, the control unit S controls the winch drive 7 in order to regulate the cable pull force for the winch cable 13 in such a way that there is a difference between the travel speed and chain speed calculated from cable speed and angle of the angle arm 3 relative to the vehicle longitudinal axis results, this difference between the calculated driving speed and chain speed should be in a constant range of differences. In addition, the snowcat 1 is provided in a manner not shown with a tilt sensor, which is to detect a vehicle inclination relative to the horizontal and thus in particular an uphill or downhill of the snowcat 1. This additional inclination sensor is optional, since alternatively the detection of an uphill or downhill slope of the snow groomer also by the position of the winch arm according to Fig. 2 is detectable. Depending on the position of the winch arm for uphill or downhill, the difference between chain speed and calculated driving speed can be positive or negative, because when driving downhill calculated by the rope speed and the angle of the winch speed can be lower than the chain speed to achieve a braking effect , In contrast, when driving uphill, increased slippage of the chains 4 can be compensated by a higher travel speed relative to the chain speed and, consequently, a higher cable speed. Taking into account these different driving conditions, the control unit S predefines a defined difference target range, which is also referred to as the desired slip range. The Compliance with this difference or slip target range is achieved by regulating the cable pull force, wherein this is controlled in such a way that the lowest possible cable pull force, which still allows driving of the snowcat 1 within the desired slip range, is set. The regulation of the cable pull force is effected by means of a regulation of the hydraulic pressure of the winch drive 7. For this purpose, the hydraulic pressure of the hydraulic motor of the capstan drive is preferably controlled accordingly. The reel drive itself is not involved in this cable tension control. It is merely controlled so that a permanent tension for the winch cable between the capstan and reel 10 is given to allow a perfect winding or unwinding of the winch cable 13.

Der zentralen Steuereinheit S zur Steuerung der Seilwinde 2 ist ein Steuermodul S1 zugeordnet, das Auf- oder Abwickelvorgänge des Windenseiles 13 relativ zur Haspel 10 überwacht und bei Erfassung eines Wickelfehlers, der gleichzeitig auch einen Seilfehler bedeutet, eine Fehlermeldung an den Fahrer der Pistenraupe 1 ausgibt. Hierzu ist dem Winkelarm 12 im Bereich seiner Schwenklagerung 14 ein Drehwinkelsensor 15 zugeordnet, der mit dem Steuermodul S1 verbunden ist. An das Steuermodul S1 ist zudem auch der Absolutwertgeber 11 angeschlossen, der auf der Drehachse der Haspel 10 sitzt. Anhand der erfassten Istwerte für den Drehwinkel des Wickelarmes 12 und der gezählten Umdrehungen für die Haspel 10 kann das Steuermodul S1 im Vergleich mit den abgelegten Solldaten für die Anzahl von Seilwindungen pro Wicklung und für den Schwenkwinkel β des Wickelarmes 12 zwischen Begin und Ende einer Wicklungslage ermitteln, ob eine ordnungsgemäße Auf- oder Abwicklung erfolgt ist, oder ob das Windenseil 13 eine falsche Auf- oder Abwicklung vornimmt. Sobald das Steuermodul S1 dies erkannt hat, steuert es einen Signalgeber 16 an, der die entsprechende Fehlermeldung ins Fahrerhaus des Fahrers der Pistenraupe, vorzugsweise in einem für den Fahrer schnell erkennbaren Displaybereich, übermittelt. Der Signalgeber ist vorzugsweise optisch und/oder akustisch ausgeführt. Ergänzend oder alternativ kann es auch vorgesehen sein, dass bei Erfassung einer entsprechenden Fehlermeldung in den Fahrantrieb oder in den Windenantrieb eingegriffen werden kann. Für diesen Fall ist das Steuermodul S1 über die zentrale Steuereinheit S in geeigneter Weise mit einer Funktionseinheit innerhalb des Fahrantriebs und/oder des Windenantriebs verbunden.The central control unit S for controlling the winch 2 is assigned a control module S 1 , which monitors the winding or unwinding of the winch cable 13 relative to the reel 10 and upon detection of a winding fault, which also means a rope fault, an error message to the driver of the snowcat first outputs. For this purpose, the angle arm 12 in the region of its pivot bearing 14 is associated with a rotation angle sensor 15 which is connected to the control module S 1 . And the absolute encoder 11 also is connected to the control module S 1, sitting on the axis of rotation of the reel 10 degrees. Based on the detected actual values for the angle of rotation of the winding arm 12 and the counted revolutions for the reel 10, the control module S 1 in comparison with the stored target data for the number of turns per winding and for the pivot angle β of the winding arm 12 between Begin and end of a winding layer determine whether a proper winding or unwinding has occurred, or whether the winch cable 13 performs a wrong winding or unwinding. As soon as the control module S 1 has detected this, it activates a signal generator 16, which sends the corresponding error message to the driver's cabin of the snow groomer, preferably in a display region which can be quickly recognized by the driver. transmitted. The signal generator is preferably designed optically and / or acoustically. Additionally or alternatively, it can also be provided that it can be intervened in the traction drive or in the winch drive upon detection of a corresponding error message. For this case, the control module S 1 via the central control unit S is suitably connected to a functional unit within the traction drive and / or the winch drive.

Claims (4)

  1. Method for controlling a cable winch (2) of a tracked vehicle having the following steps:
    - Recording a track speed,
    - Recording a cable speed,
    - Recording an angle of a winch arm (3) relative to a vehicle longitudinal axis (F),
    - Determining a movement speed from the recorded cable speed and the angle of the winch arm (3) relative to the vehicle longitudinal axis (F) and
    - Comparing the recorded track speed with the determined movement speed,
    - Recording a cable tension force,
    - Determining a set range for a difference from the track speed and movement speed, and
    - Determining a set value for a cable tension force, taking into account the set difference range,
    characterized in that
    - a maximum angle of the winch arm (3) relative to the vehicle longitudinal axis (F) is specified, at which angle the cable tensile force regulator is switched off.
  2. Piste grooming vehicle (1) with a cable winch (2) and with at least one sensor (5) for recording the track speed, with a sensor device (6) for recording a cable speed, with an angle sensor (8) for recording an angle of a winch arm (3) relative to a vehicle longitudinal axis (F), where a tensile force sensor (9) is provided for recording a cable tensile force, where a control unit (S) comprising a data processing unit is provided which is, for receiving and evaluating data, connected to the sensor (5), to the sensor device (6), to the angle sensor (8) and to the tensile force sensor (9), and operates a winch drive (7) for regulating a cable tensile force depending on an evaluation of the received data, characterized in that the piste grooming vehicle has a device for performing a method according to claim 1.
  3. Piste grooming vehicle according to claim 2, characterized in that the sensor device (6) for recording the cable speed comprises a remaining cable length sensor (11) for recording the cable length unwound from the reel (10) or wound onto the reel (10).
  4. Piste grooming vehicle according to claim 3, characterized in that an absolute value encoder recording revolutions of the reel (10) is provided as the remaining cable length sensor (L).
EP11185066.5A 2010-10-19 2011-10-13 Method for operating a winch of a tracked vehicle and snow groomer Active EP2444356B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010049984A DE102010049984A1 (en) 2010-10-19 2010-10-19 Method for controlling a winch of a tracked vehicle and snowcat

Publications (2)

Publication Number Publication Date
EP2444356A1 EP2444356A1 (en) 2012-04-25
EP2444356B1 true EP2444356B1 (en) 2015-04-29

Family

ID=44799814

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11185068.1A Active EP2444355B2 (en) 2010-10-19 2011-10-13 Method for operating a winch of a tracked vehicle and snow groomer
EP11185066.5A Active EP2444356B1 (en) 2010-10-19 2011-10-13 Method for operating a winch of a tracked vehicle and snow groomer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11185068.1A Active EP2444355B2 (en) 2010-10-19 2011-10-13 Method for operating a winch of a tracked vehicle and snow groomer

Country Status (2)

Country Link
EP (2) EP2444355B2 (en)
DE (1) DE102010049984A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20120922A1 (en) 2012-05-28 2013-11-29 Snowgrolic S A R L CONTROL METHOD, PROGRAM FOR ELECTRONIC PROCESSORS AND CONTROL DEVICE FOR A TRACKED VEHICLE
IT201700064293A1 (en) * 2017-06-09 2018-12-09 Prinoth Spa ASSISTANT WINCH GROUP FOR THE MOVEMENT OF A TRACKED VEHICLE AND ITS CONTROL METHOD
DE102022202414A1 (en) 2022-03-10 2023-09-14 Kässbohrer Geländefahrzeug Aktiengesellschaft Method for controlling a winch arrangement of a snow groomer, device for carrying out the method and snow groomer
AT526150B1 (en) * 2022-10-03 2023-12-15 Konrad Forsttechnik Gmbh Device and method for transporting wood on steep terrain

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475163A (en) * 1980-11-03 1984-10-02 Continental Emsco System for calculating and displaying cable payout from a rotatable drum storage device
IT1316116B1 (en) * 2000-01-21 2003-03-28 Leitner Spa DEVICE FOR THE AUTOMATIC SETTING AND ADJUSTMENT OF THE FORZADI TRACTION OF A ROPE OF A WINCH OVERHEAD FOR A MACHINE
CA2441650C (en) * 2002-10-08 2008-12-02 Bombardier Recreational Products Level wind apparatus for use on a snow grooming vehicle
DE10261944A1 (en) 2002-12-17 2004-07-01 Kässbohrer Geländefahrzeug AG Method for controlling a winch of a piste grooming vehicle and piste grooming vehicle
US7097155B2 (en) * 2004-07-16 2006-08-29 Tulsa Winch, Inc. Winch or hoist including a device for signaling when a preset minimum number of cable windings are left on a winding drum
IT1394923B1 (en) * 2009-02-18 2012-07-27 Rolic Invest Sarl VEHICLE BATTIPISTA INCLUDING A GROUP WINDOW ASSEMBLY TO MOVE THE VEHICLE LONG DRIVER PENDIUMS SLOPES AND WINDOW GROUP DRIVING METHOD

Also Published As

Publication number Publication date
EP2444355B2 (en) 2022-08-17
EP2444355A1 (en) 2012-04-25
EP2444356A1 (en) 2012-04-25
EP2444355B1 (en) 2015-09-02
DE102010049984A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
DE3931518A1 (en) METHOD AND ARRANGEMENT FOR REVERSING A STEERING ROAD VEHICLE
EP1118580B1 (en) Device for automatic tension control of a cable for a piste grooming device
DE102012013527B4 (en) Cable drum for a capstan winch
EP2444356B1 (en) Method for operating a winch of a tracked vehicle and snow groomer
EP0088868B1 (en) Underground railless vehicle
EP1896661B1 (en) Piste grooming vehicle with cable torque compensation
EP1431236B1 (en) Method for controlling the winch of a ski track maintenance vehicle and said vehicle
DE69733546T2 (en) METHOD AND ARRANGEMENT FOR CONTROLLING THE WRAPPING AND UNWINDING OF A CABLE IN AN ELECTRICALLY DRIVEN VEHICLE
EP2554750B1 (en) Piste caterpillar with hoist and method for analysing wear of a hoist rope
DE102013005991A1 (en) Method and device for determining the steering angle of a direction-controllable machine
EP2527691A1 (en) Method and device for anticipatory detection of a suitable gear
WO2016155883A1 (en) Device and method for moving an aircraft, in particular a helicopter, on board a ship
DE102014109330B4 (en) Towing winch for air sports equipment and a method for operating such a towing winch
DE2131707A1 (en) Method and device for tensioning a tendon and for sheathing a building wall with this tendon
DE102009024644B4 (en) Snowcat with a winch arrangement
DE4139587C2 (en) Process for rewinding a cable or other winding material
AT504312B1 (en) TRACTION-CONTROLLED TOWING PROCESS
EP3766721A1 (en) Ski trail maintenance vehicle
EP2458091B1 (en) Snowgroomer with cable winch
EP4242162A1 (en) Method for controlling a winch assembly of a piste caterpillar, device for carrying out said method and piste caterpillar
DE3234163A1 (en) Arrangement for displacing the base point of a mast braced by lateral bracing ropes
DE102021006345A1 (en) AUTOMATIC STEERING VESSEL AND METHODS FOR STEERING AN ANCHORED VESSEL
WO2013160030A1 (en) Device for decanting a supernatant received in a clarifier
WO2024047113A1 (en) Rope conveying system, in particular for a recreational sports system
DE202022103952U1 (en) Self-Propelled Fence Wrapping Driver and Associated Fence Wrapping Drum

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121011

17Q First examination report despatched

Effective date: 20130307

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. LUSUARDI AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 724320

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011006708

Country of ref document: DE

Effective date: 20150611

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150831

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150730

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150829

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011006708

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151013

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151013

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111013

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231025

Year of fee payment: 13

Ref country code: FR

Payment date: 20231024

Year of fee payment: 13

Ref country code: DE

Payment date: 20231019

Year of fee payment: 13

Ref country code: CH

Payment date: 20231102

Year of fee payment: 13

Ref country code: AT

Payment date: 20231024

Year of fee payment: 13