EP2442039B1 - Dispositif de climatisation - Google Patents
Dispositif de climatisation Download PDFInfo
- Publication number
- EP2442039B1 EP2442039B1 EP11185062.4A EP11185062A EP2442039B1 EP 2442039 B1 EP2442039 B1 EP 2442039B1 EP 11185062 A EP11185062 A EP 11185062A EP 2442039 B1 EP2442039 B1 EP 2442039B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fluid
- signal
- plant
- control device
- tract
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003750 conditioning effect Effects 0.000 title claims description 14
- 239000012530 fluid Substances 0.000 claims description 91
- 230000001105 regulatory effect Effects 0.000 claims description 46
- 238000006073 displacement reaction Methods 0.000 claims description 36
- 210000000056 organ Anatomy 0.000 claims description 36
- 230000006870 function Effects 0.000 claims description 24
- 230000033001 locomotion Effects 0.000 claims description 22
- 238000011144 upstream manufacturing Methods 0.000 claims description 18
- 238000004891 communication Methods 0.000 claims description 16
- 230000003287 optical effect Effects 0.000 claims description 14
- 230000011664 signaling Effects 0.000 claims description 13
- 238000011161 development Methods 0.000 claims description 9
- 230000001747 exhibiting effect Effects 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 4
- 230000015654 memory Effects 0.000 claims description 4
- 238000007493 shaping process Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/10—Arrangement or mounting of control or safety devices
- F24D19/1006—Arrangement or mounting of control or safety devices for water heating systems
- F24D19/1009—Arrangement or mounting of control or safety devices for water heating systems for central heating
- F24D19/1015—Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
- F24D19/1036—Having differential pressure measurement facilities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
- F24F11/84—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/06—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
- F24F3/065—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/08—Arrangements for drainage, venting or aerating
- F24D19/082—Arrangements for drainage, venting or aerating for water heating systems
- F24D19/083—Venting arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/08—Arrangements for drainage, venting or aerating
- F24D19/082—Arrangements for drainage, venting or aerating for water heating systems
- F24D19/088—Draining arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/10—Arrangement or mounting of control or safety devices
- F24D19/1006—Arrangement or mounting of control or safety devices for water heating systems
- F24D19/1009—Arrangement or mounting of control or safety devices for water heating systems for central heating
- F24D19/1015—Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
- F24D19/1021—Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves a by pass valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
Definitions
- the invention relates to a conditioning system able to balance the circuit at every change of flow to the users.
- the conditioning system can be used for heating, cooling, or more generally for public environment climate control.
- conditioning plants exist that are equipped with systems for adjusting a pressure and/or flow rate internally of a circuit.
- a first example, described in application WO2008029987 concerns a conditioning system for temperature control in a determined environment.
- the system has a control unit directly connected to the users and to the delivery manifold.
- the control unit receives a signal from the sensors installed in the environment and automatically sends the signal to flow control valves to enable a selective control of the temperature in a plurality of areas into which the environment is divided.
- the described system requires a control circuit that controls the individual valves, and a corresponding sensor system. The system is therefore extremely complex and expensive.
- a second example, in application WO201074921 shows a method for balancing a hydraulic network.
- Users are connected to the hydraulic network, which users are each provided with the respective valves, positioned at each user.
- a balancing valve is located upstream of the users.
- the balancing valve is set to maintain certain setting parameters.
- the balancing valve is also able to detect the differential pressure across the valve and/or the flow rate, and to keep these values constant.
- a third example discloses a regulating system of a conditioning plant, which regulating system includes a mechanical valve.
- the valve is installed downstream of the users and is also hydraulically connected to a portion of the circuit which is located upstream of the users.
- the valve is able to balance the pressure on the upstream portion of the circuit of the users with the pressure at the point where it is installed.
- the regulating system described is able to balance the system while maintaining a predetermined pressure differential between upstream and downstream of the users of the plant. This system is extremely rigid as it is limited by the mechanical characteristics of the valve.
- WO2008/039065 discloses a device for controlling heat supplied to a heating system.
- the device has a heat meter connected to feed conduit and/or to return conduit of the system.
- a fluid flow adjusting unit is adapted to control fluid supply based on the detections of the heat meter.
- a first aim of the present invention is to obviate one or more of the limitations and drawbacks described above.
- a further aim is to create a programmable automatic balancing system such as to ensure optimum flexibility.
- An additional aim is to provide the fluid control with a fine degree of sensitivity.
- an aim of the invention is to provide a system of simple manufacture that is easily controllable and therefore easy and inexpensive to install.
- At least one of the specified aims is attained by a plant according to one or more of the appended claims.
- a first aspect includes a control valve for fluid systems, in particular conditioning systems, comprising: at least a valve body exhibiting at least an inlet, at least an outlet and at least a channel which sets the inlet in fluid communication with the outlet, at least a check element of fluid operating in the channel and forming the regulating organ together with the valve body, the fluid check element defining, in cooperation with the valve body, a passage opening for fluid between the inlet and the outlet of a variable size, according to positions assumed by the check element in relation to the valve body along a predetermined operating path, the check element being configured such as:
- the check element configured such as to rotate with respect to a rotation axis which extends transversally with respect to a prevalent axis of development of the channel.
- control device is configured such as to move the check element among a plurality of distinct operating positions which are angularly offset to one another.
- the angular positions are separate and at each distinct angular position the control device is configured such as to evaluate, on the basis of the output signal, whether an additional angular displacement is required or not.
- An angular step is defined between an operating position and a next angular operating position. In practice a step is understood to mean the angular distance between the distinct positions of the check element and is configured such as to perform the said evaluation.
- the angular step at least for a predetermined tract of the operative path, is less than 1° (one degree).
- the angular step, at least for the predetermined tract of the operative path is less than 0.5 ° (half a degree).
- the angular step at least over a predetermined tract of the operating path, is less than 1°, optionally less than 0.5%; and/or wherein the angular step is not constant over the operating path, optionally wherein the tract in which the step is not constant comprises at least 10% of the operating path.
- the size of the angular step is a function of the intensity of the physical parameter of the fluid circulating in the first section and the intensity of the physical parameter of the fluid circulating in a second section of the plant.
- the control device regulates the angular step as a function of the measurements, for example of pressure, in the two sections.
- the control device is configured such as to reduce the angular step progressively on reduction of a difference between a reference value and a real value given by a difference of intensity of the physical parameter of the fluid circulating in the first section and the intensity of the same physical parameter of the fluid circulating in a second section.
- the tract of the operating path in which the step is not constant and/or is less than 1° comprises an initial tract of the operating path, the initial tract being in turn comprised between an initial position of complete closure of the passage opening and an intermediate position in which the passage opening is open to not more than 40%.
- the tract of the operating path in which the step is not constant and/or is less than 1° comprises an initial tract of the operating path, the final tract being in turn comprised between a final position of complete opening of the passage and an intermediate position 47 in which the passage opening is open to not more than 30%.
- the tract of the operating path in which the step is not constant and/or is less than 1° comprises a final tract of the operating path, the final tract being in turn comprised between a final position of complete opening of the passage and an intermediate position in which the passage opening is open to not more than 50%.
- the tract of the operating path in which the step is not constant and/or is less than 1° comprises a final tract of the operating path, the final tract being in turn comprised between an final position of complete closure of the passage opening and an intermediate position in which the passage opening is open to not more than 40%.
- the check element has an external surface rotating about the axis which exhibits a substantially spherical or cylindrical conformation.
- the valve body 36 exhibits at least a wall located transversally of the prevalent development axis of the channel and respectively exhibiting a passage opening, the wall being arranged upstream and/or downstream of the check element such as to define the shape of that passage opening.
- the wall is a shaped diafragm and in cooperation with the opening of the check element defines the shape of the passage opening.
- the passage opening is conformed such that following a movement of the check element over an initial tract and/or a final tract of the operating path, the incremental ratio between the percentage variation of the area of the passage opening and the percentage displacement of the check element exhibits an absolute value comprised between 0 and 4, wherein the percentage variation of the area of the passage opening comprises the ratio between the variation of the passage area following a displacement of the check organ and a reference area, and wherein the percentage displacement comprises the ratio between the displacement of the check element and the operating path.
- the passage opening is shaped such that following a movement of the check element over an initial tract and/or a final tract of the operating path, the incremental ratio between the percentage variation of the area of the passage opening and the percentage displacement of the check element exhibits an absolute value comprised between 0 and 4, optionally between 0 and 2.5.
- the passage opening is shaped such that following a movement of the check element over an initial tract and/or a final tract of the operating path, the incremental ratio between the percentage variation of the area of the passage opening and the percentage displacement of the check element exhibits an absolute value comprised between 0 and 4, optionally between 0 and 1.5.
- the incremental ratio between the percentage variation of the area of the passage opening and the percentage displacement of the check element over the initial tract comprising not more than 30% of the operating path, exhibits an absolute value comprised between 0 and 4.
- the incremental ratio between the percentage variation of the area of the passage opening and the percentage displacement of the check element over the initial tract comprising not more than 30% of the operating path, exhibits an absolute value comprised between 0 and 2.5.
- the incremental ratio between the percentage variation of the area of the passage opening and the percentage displacement of the check element over the final tract comprising not more than 30% of the operating path, exhibits an absolute value comprised between 0 and 4.
- the incremental ratio between the percentage variation of the area of the passage opening and the percentage displacement of the check element over the final tract, comprising not more than 40% of the operating path exhibits an absolute value comprised between 0 and 2.5.
- the incremental ratio between percentage variation of the area of the passage opening and the percentage displacement of the check element exhibits an absolute value which is substantially constant over an intermediate tract of the operating path comprised between the initial tract and the final tract, and wherein the intermediate tract comprises between 20% and 40% of the operating path.
- said first and second signal are related to the intensity of the fluid pressure in said first and second section of the plant.
- generating an output signal comprises determining a control differential signal comprising a difference or a ratio between the intensity of the first signal and the second signal.
- generating the output signal comprises determining a control differential signal comprising a difference or a ratio between the intensity of the first signal and the second signal, wherein the control differential signal comprises the difference or ratio between the intensity of the fluid pressure in the first section and the intensity of the fluid pressure in the second section, optionally wherein the control device comprises a pressure differential gauge which receives in input the first signal and the second signal and generates in output the control differential signal.
- control device is configured to:
- control device comprises an actuator, for example an electrical actuator, acting on the check element the actuator enabling displacement of the check element along the operating path.
- control device is connected with the actuator, the control device further being configured such as to command a movement of the check element as a function of the output signal and to position the check element according to the plurality of positions along the operating path.
- control device controls the size of the angular step according to which the actuator moves the check element in accordance with the value of the control differential signal and a reference value, optionally wherein the control device controls the size of the angular step according to which the actuator moves the check element in accordance with the difference between the control differential signal and the reference value.
- the regulating valve and/or the plant comprises: acoustic signalling means and/or optical signalling means, the acoustic signalling means and/or the optical signalling means being connected to the control device which is configured such as to command the acoustic signalling means and/or optical signalling means to provide:
- control device is configured to control a movement of the check element thereby enabling a reduction in the difference between the reference value and the value of the control differential signal.
- said control device includes setting means, said setting means being connected to the control device, the control device being configured such as to enable a setting of a predetermined number of control parameters that define the working conditions of the valve.
- control parameters comprising at least a parameter selected from the group having:
- the second control parameter comprises bottom scale values of the pressure differential gauge.
- the function comprises a link of a proportional or integral or derivate type, or a combination thereof.
- the fourth control parameter specifies a convergence time defined as a time transitory in which the value of the control differential signal converges to the reference value.
- the setting means enable memorisation of a predetermined number of configurations relating to values of the control parameters which are useful for managing the control device, optionally wherein the setting means comprise micro switches.
- the regulating valve further comprises a temperature sensor positioned on the valve body, the temperature sensor enabling detection of the temperature at the second section.
- control device further comprises input means, the input means enabling setting at least a reference value, optionally enabling setting a reference pressure differential between the first section and the second section.
- control device comprises a memory and is configured such as to enable memorising a plurality of predetermined reference values and for enabling selection of at least one of those values on the part of a user.
- the check element has a lateral surface of rotation of cylindrical or spherical shape.
- the passage opening comprises a frontal shaping exhibiting two substantially symmetrical parts wherein each of the parts exhibits a first portion shaped as an arc of a circle, a second portion shaped as an arc of a circle having a smaller radius than the arc of the first portion, a connecting inflection which connects the first portion with the second portion.
- the passage opening comprises a longitudinal shaping relating to a longitudinal section with respect to the prevalent development axis of the channel, exhibiting a progressively growing section from the inlet to the outlet of the valve body.
- control device is configured such as to receive the control parameters and, depending on the value thereof, adjust the rotation direction of the check element according to the axis which extends transversally to the axis of the prevalent development axis.
- the first section is defined at the valve body, the regulating valve 1 comprising a passage which places the channel in fluid communication with the differential pressure gauge.
- the check element operating in the channel of the valve body is configured such as to rotate according to a movement angle with respect to a rotation axis which extends transversally with respect to a prevalent development axis of the channel, optionally in which the check element exhibits a lateral rotation surface having a cylindrical or spherical conformation.
- the incremental ratio between the percentage variation of the area of the passage opening and the percentage displacement of the check element, for the initial tract comprised between 20 % and 30% of the operating path falls within a range of between 0 and 1.5.
- the incremental ratio between the percentage variation of the area of the passage opening and the percentage displacement of the check element, for the final tract comprised between 20 % and 30% of the operating path falls within a range of between 0 and 1.5.
- a 49th aspect relates to a fluid distribution system to a plurality of users, in which the system uses one or more of the valves according to any one of aspects 1 to 48 .
- a 50th aspect according to the claimed invention relates to a conditioning plant comprising: at least a general inlet, at least a general outlet, a circuit which sets the general inlet in fluid communication with the general outlet, a plurality of users arranged on the circuit, at least a balancing system of the flow acting on the circuit, the balancing system comprising:
- the plant comprises a first detecting line which places a first point of the circuit situated upstream of each user in fluid communication with the sensor of the balancing system and in which the plant comprises a second detection line which sets a second point of the circuit situated downstream of each user in fluid communication with the sensor of the balancing system.
- the second point is situated substantially on the regulating organ, the regulating organ being situated downstream of each user, directly connected on the circuit and in fluid communication with the sensor.
- the senor is a differential sensor, which enables detecting the intensity difference between upstream and downstream of the users of the physical parameter of the fluid, and wherein the sensor detects a difference between a first real value relative to the intensity of the physical parameter at the first point of the circuit, and a second real value relative to the intensity of the physical parameter relative to the second point of the circuit.
- the senor comprises a first sensor, which is in fluid connection with the first detecting line and enables detecting the intensity of the physical parameter at the first point of the circuit, and a second sensor which is in fluid connection with the second detecting line and enables detecting the intensity of the physical parameter at the second point of the circuit.
- each user comprises a respective delivery channel emerging from the circuit, a respective return channel in fluid connection with the delivery channel and arranged such as to return fluid into the circuit, at least a user device hydraulically interposed between the delivery channel and the return channel.
- each user comprises a respective delivery channel emerging from the circuit, a respective return channel in fluid connection with the delivery channel and arranged such as to return fluid into the circuit, at least a user device hydraulically interposed between the delivery channel and the return channel, and wherein each user exhibits at least a respective closing organ, partial or total, arranged either on the delivery channel or on the return channel .
- the plant comprises at least a delivery manifold arranged upstream of the users, at least a return manifold arranged downstream of the users, the delivery manifold and the return manifold being respectively connected to the general inlet for the distribution of the fluid to the users and to the general outlet for collecting the fluid in outlet from the users.
- the regulating organ is engaged to a line interposed between an outlet of the return manifold and the general outlet.
- the regulating organ and the control device are part of a regulating valve operating downstream of the users, wherein the regulating valve.
- the regulating valve has the characteristics of any one of the aspects from the first to the forty-eighth.
- 1 denotes in its entirety a conditioning plant comprising a general inlet 2, a general outlet 3, a circuit 4 placing the general inlet in fluid communication with the general outlet 3.
- a conditioning plant comprising a general inlet 2, a general outlet 3, a circuit 4 placing the general inlet in fluid communication with the general outlet 3.
- Both the general inlet and the general outlet avail of an inlet valve 2a and an outlet valve 3a, for example of a sphere or shutter type, which regulate the general flow internally of the circuit 4.
- the circuit supplies a fixed number of user units 5 (herein indicated as users), for example, each comprising one or more heat exchangers and related groups of ventilation (fan coil), which are arranged at or near areas to be conditioned. Heat exchange takes place inside the users, enabled by the fluid supply from the general inlet 2.
- users for example, each comprising one or more heat exchangers and related groups of ventilation (fan coil), which are arranged at or near areas to be conditioned.
- Heat exchange takes place inside the users, enabled by the fluid supply from the general inlet 2.
- the circuit exhibits at least two main channels: a delivery channel 6, for sending the fluid to the users, and a return channel 7 in connection with the delivery channel 6 and arranged such as to receive the fluid downstream of the users.
- the users 5 are hydraulically interposed between the delivery channel 6 and the return channel 7. Before being distributed to the various utilities the fluid is intercepted by a filter 8 which prevents impurities from reaching the users.
- the delivery channel 6 and the return channel 7 are respectively connected to a delivery manifold 10 upstream of the users 5 and a return manifold 11 downstream of the users 5.
- the delivery manifold 10 and the return manifold 11 are connected respectively to the general inlet 2, for the distribution of the fluid to the users 5, and the general outlet 3, for the collection of the fluid in outlet from the users 5.
- the conditioning plant also includes, for each user, at least one respective delivery line 6a exiting from the delivery manifold, and leading to the users; a respective partial or total closing organ 9 acts on each delivery line 6a.
- the closing organs 9 intercept the fluid in inlet to the users 5.
- the organs 9 are activated such as to vary the supply parameters of a determined user; in particular each closing organ can comprise an on/off valve which closes or opens supply to each user 5.
- the return manifold 7 receives from each user a respective return line 12; on each return line a balancing valve 13 is placed whose function is to regulate the flow in outlet from the users as a function of temperature requirements required for each environment in which the user 5 is installed.
- the plant of fig. 1 also has a connecting circuit 14, which sets the delivery manifold 10 in fluid communication with the return manifold 11, bypassing the users.
- a shut-off valve 15 of the manifold 10 and a shut-off valve 16 of the return manifold 11 are arranged on the connecting circuit 14.
- the connecting circuit 14 is in turn in fluid connection with a discharge 17 interposed between the respective closing valves of the delivery manifold closing valve and return valve.
- the discharge 17 exhibits a general discharge valve 18 configured for discharging excess fluid present in the connecting circuit 14 after the circuit 4 setting.
- the drain circuit 17 exhibits a breather valve 19, positioned in a higher position than the manifolds and useful for eliminating any air bubbles inside the circuit 4.
- the air conditioning system 1 comprises a flow balancing system 20, active on the circuit 4.
- the balancing system 20 comprises at least a sensor 21 for detecting a real value which is dependent on the difference of intensity that a same physical parameter, such as a pressure or flow, assumes between a first section 22 upstream of the users 5 and a second section 23 downstream of the users. More specifically, the sensor can measure for example a difference or ratio between the real pressure in the section 22 and the pressure in the section 23, providing an output signal that is proportional to said difference or ratio between the pressures in the two above-cited sections.
- the balancing system further exhibits a flow regulating device 24 and a control device 25 connected to the sensor 21 and active on the flow regulating organ 24.
- the control device comprises a control unit, for example a microprocessor, capable of receiving the input signal from the sensor/s 21 and acting on the regulating organ as a function of the signal.
- the balancing system 20 is placed in connection with two detecting lines.
- a first detecting line 26 places in fluid communication a first point 27, part of the first section 22 of the circuit 4 and located upstream of each user 5, with the sensor 21 of the balancing system 20; a second detecting line 26 places in fluid communication a second point 28, part of the second section 23 of the circuit 4 and located downstream of each user 5, with the sensor 21 of the balancing system 20.
- the sensor 21 for example a differential sensor, is configured such as to detect the difference in intensity between upstream and downstream of the users 5, the physical parameter of the fluid.
- the sensor 21 detects a difference between a first real value related to the intensity of the physical parameter at the first point 27 of the circuit 4, and a second real value of the intensity of the same physical parameter related to the second point 29 of the circuit 4.
- the second point 29 is for example located substantially on the regulating organ, which is arranged downstream of each user 5, directly connected to the circuit 4 and in fluid connection with the sensor 21.
- the sensor 21 includes a pressure differential sensor which generates an output signal proportional to the intensity or a function of the pressure difference between points 27 and 29.
- a differential sensor a different configuration of the circuit can be realised in which the sensor 21 comprises a first sensor 30, in fluid connection with the first detecting line 26, which enables detecting the intensity of the physical parameter at the first point 27 of the circuit 4, and a second sensor 31, which is in fluid connection with the second detecting line 28, which detects the intensity of the same physical parameter at the second point 29 of the circuit 4.
- the return channel 7 can comprise a line 32, interposed between a general outlet 33 of the return manifold 11 and the general outlet 3 of the plant 1, on which the regulating organ 24 is engaged.
- the first point 27 is located upstream of the users 5, in particular, the first point 27 can be located substantially on the delivery manifold 10, while the second detecting point 29 is located on the regulating organ 24.
- the control device 25 it is connected to the above-described sensor/s and with the regulating organ.
- the control device is configured such as to enable a memorising of a reference value for the physical parameter of the fluid being measured with the described sensors.
- the control device may comprise one or more microprocessor unit/s and associated memories capable of storing a code which when executed by the microprocessor unit/s makes the control device capable of performing the procedures described below.
- the control device is also configured such as to compare the reference value with the real value in relation to the same physical parameter, and such as to control the regulating organ 24 via an output signal such as to regulate the flow of fluid within the circuit 4 such as to maintain the value substantially aligned with the reference value.
- the control device is configured to determine the real value as the difference between the values of the physical parameter measured in the first and second section by the sensor/s 21 (for example the difference in pressure between the two sections) and such as to compare the difference with a reference value stored by the control device.
- the control device does not exert any action up until a subsequent control cycle that can be activated manually or determined periodically by the control device or determined by the control device on reaching a threshold of maximum deviation between the real value and the reference value.
- the plant also has available a visualization tool 34 connected to the control device 25.
- the control device 25 is configured to control a visualising on the display instrument 34 of the real value (for example, the real difference between the pressures measured in sections 22 and 23), the reference value (for example, a reference pressure difference) or both the values of said physical parameter of the fluid.
- the regulating organ 24 and the control device 25 are part of a control valve 35 operating downstream of the users 5.
- the control valve 35 includes: a valve body 36 exhibiting at least an inlet 37, an outlet 38 and a channel 39 which sets the inlet 37 in fluid communication with the outlet 38.
- the valve body 36 exhibits connecting organs 40 arranged at the inlet 37 and the outlet 38 of the valve which enabling fixing the valve on the circuit 4.
- the connecting organs can be, for example, threading or rapid attachments.
- the channel 39 exhibits a seating 41 capable of accommodating a valve element 42 which in cooperation with the valve body 36 forms the regulating body 24 and defines a passage opening 43 between the inlet 37 and outlet 38.
- the passage opening 43 has variable amplitude as a function of the positions assumed by the check element 42 with regard to the valve body 36.
- the check element 42 is configured such as to act along a predetermined travel path which includes a predetermined number of operating positions that are angularly distinct or translationally staggered to one another: in practice, the control device is configured such as to move the check element between an operating position and a next operating position in a next step controlled by the control device 25 itself, as is described in more detail below.
- the movement of the check element 42 may be rotary or translational. In the first case the movement takes place by rotation in an angle of movement around an axis of rotation 44 which extends transversally with respect to a prevalent development axis 50 of the channel 5. In the second case, the movement can take place in a straight direction.
- the check element 42 performs a rotary movement: to perform a rotary movement, the check element 42 must have an outer surface that is substantially spherical or cylindrical, as can be seen in the accompanying figures.
- the various operative positions of the element 42 are angularly offset by one or more angular steps of amplitude that are controlled by the control device: at each angular step the control device is programmed to periodically re-verify the difference between the real value and the reference value, and if this difference is not acceptable, the control device will command a new angular step.
- control device can be configured such that along at least part of the operating path (such as a tract greater than or equal to 10% of the operating path), the pitch angle has a value of less than 1° (one degree), optionally less than 0.5 ° (half a degree) in order to avoid destabilisation in the control of the valve.
- the control device can also be made to adjust the angular pitch in order to maintain this constant pitch along the operating path.
- the control device can adjust the pitch so that the amplitude thereof is variable along a tract (for example, for a distance greater than or equal to 10% of the operative path) or along the entire operating path.
- a step can be included that is a function of the deviation between the real value of the physical parameter detected by the sensors and the reference value of the physical parameter itself: for example, the step can be relatively large (for example one or more degrees) if the difference between the real value and the reference value is greater than a certain threshold and may be relatively small (e.g. less than one degree) if the difference between the real and the reference values is below a certain threshold.
- the angular pitch can be reduced progressively during the opening or closing of the valve: optionally the step may for example be reduced gradually, exponentially as the valve is opened.
- the tract of the operating path where the pitch is variable and possibly less than one degree includes an initial tract 45 between an initial position 46 of complete closure of the passage opening 43 and an intermediate position 47 in which the passage opening 43 is open no more than 50%, optionally not more than 40%.
- the tract of the path in which the pitch is variable and possibly less than a degree also includes a final section 48 between a final position of complete opening of the passage opening 43 and the intermediate position 47 in which the passage opening 43 is open no more than 40%, optionally not more than 30%.
- the passage opening 43 is shaped such that, following a movement of the check element 42 over a first and/or final tract (which may coincide with the lines 45, 48 of figure 12 ) of the operating path, the incremental relationship between the percentage change of the area of the passage opening 43 and the percentage displacement of the check element 42 exhibits an absolute value that is variable along the path but comprised between 0 and 4, optionally between 0 and 2.5.
- the incremental ratio between the percentage variation of the passage opening 32 area and the percentage displacement of the check element 42 exhibits an absolute value variable along the path but always comprised between 0 and 4, for example between 0 and 2.5. More specifically, the incremental ratio falls in a range between 0 and 1.5 in the initial tract that is between 20 and 30% of the operating path.
- the ratio between incremental percentage change of the passage opening 43 and the percentage displacement of the check element 42 exhibits an absolute value that is variable but comprised between 0 and 4, for example between 0 and 2.5.
- percentage displacement is defined as the ratio between the displacement of the check element 42 and the operating path.
- the percentage change of the passage opening 43 is defined as the ratio between the change in the passage area following a displacement of the check element 42 and a reference area, for example the area of complete opening of the passage opening 43.
- the interception element 42 is operating internally of the channel 39 of valve body 36, and is configured to vary the passage opening 43 through its movement.
- the check element 42 is configured to rotate at an angle of motion with respect to an axis of rotation 44 which extends transversally with respect to a prevalent development axis 50 of the channel 39.
- the check element 42 can be configured such as to perform a displacement that will reduce or increase the passage area 43.
- the passage opening 43 is characterized by a front profiling 51 presenting two substantially symmetrical parts in which each part has a first portion 52, shaped as an arc of a circle, a second portion 53, shaped as an arc of a circle having a smaller radius than that of the first portion 52, a connecting curve 54 which connects the first portion 52 with the second portion 53.
- the passage opening 61 has a longitudinal shape, which is characterized by a progressively increasing section from the inlet 37 to the outlet 38 of the valve body 36. In the example shown, although the section progressively grows, the outline of this section in the front view can remain constant and equal to what described above and shown in figure 4 .
- the movement of the regulating organ and therefore the check element 42 is, as mentioned, regulated by the control device 25 which is in particular configured such as to receive at least a first input signal relating to the intensity of the physical parameter of the fluid circulating in the first section of the plant and a second signal relating to the intensity of the same physical parameter of a fluid circulating in the second section of the plant, and then generate an output signal according to the first and second signal.
- the first and second signals are related to the intensity of fluid pressure respectively in the first and second section of the plant.
- the output signal is control differential signal comprising a difference or ratio between the intensity of the first and second signal; for example the control differential signal includes the difference or the ratio between the intensity of fluid pressure in the first section and the intensity of fluid pressure in the second section.
- the intensity of the output signal is used to control the position of the check element 42 with a cyclically executed control loop.
- a differential pressure gauge 55 can be used which receives in input the first and second signal and generates in output a control differential signal.
- the differential pressure gauge 55 is disposed on the body 36 of the regulating valve 35 and receives the first signal from the first point 27 and the second signal corresponding to the second point of the system 29.
- the second point is located substantially at the outlet of the control valve, and is therefore placed after the check element 42, according to the flow direction.
- the output 38 of the valve and the pressure differential gauge 55 are in fluid connection via a fluid passage 62.
- the intensity of the value measured by the differential pressure gauge 55 is either proportional to or a function of the pressure difference between the first and second points 27, 29.
- the physical parameter can also be the delivery; in this case the differential sensor may be a differential between the flow rate in the first and the second segment.
- a temperature sensor can also be present which measures the temperature of the fluid in outlet from the valve.
- the control device 25 is also configured to allow the setting of at least one reference value, compare the reference value with the value of the differential signal control and generate the output signal as a function of the comparison.
- the comparison of the signals influences the displacement of the moving element 42, which is moved directly by an actuator 56, active on the check element 42, along the operating path.
- the actuator 56 can be electric or mechanical.
- the case analyzed shows an actuator 56 of an electrical type that enables placing the check element 42 in a plurality of positions along the operating path.
- the control device 25 regulates the movement of the check element 42, thereby reducing the difference between the reference value and the value of the control differential signal.
- the control device 25 includes a memory which enables storage of a plurality of predetermined reference values and allows the selection thereof by a user.
- the controller 25 further comprises setting means 57.
- the setting means 57 are connected to the control device 25 and enable setting a fixed number of control parameters which define working conditions.
- the control device 25 further comprises inlet means 58, which enable a reference value to be set, for example by enabling the setting of a reference differential pressure between the first and second sections.
- the control parameters include: a first control parameter on the type of check element 42, a second control parameter relating to an maximum increase in the values of the first and second signal or in the value of the difference between the first and second signals, a third control parameter relating to the type of function which links the outlet signal to the first and the second signals , a fourth control parameter relative to the velocity of convergence between the real value and the reference value.
- the first parameter determines the direction of rotation of the valve 42.
- the second parameter comprises the bottom-scale values of the pressure differential switch 55 thus defining a range of predetermined values.
- the third control parameter specifies the type of control function that links the output signal to said first and second signal: for example, this function includes a link of a proportional or integral or derivative type, or a combination of these.
- the fourth control parameter regulates the speed of convergence of the real value of the reference value set to the control device 25.
- the setting means 57 also enable memorisation of a predetermined number of configurations relating to values of the control parameters useful for the management of the control device 25.
- the setting means are micro-switches which have only two values for each parameter setting control.
- the control valve 35 enables monitoring the real value and the reference value by means of an acoustic signal 59 and/or optical signal means 60.
- These signalling devices are connected to the control device 25 which is configured to control the acoustic and/or optical means 59, 60 such as to provide: an optical and/or an instantaneous value of the output signal, and/or an optical and/or an acoustic displacement of an instantaneous value of the output signal with respect to a reference value.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Fluid-Pressure Circuits (AREA)
- Flow Control (AREA)
- Central Air Conditioning (AREA)
Claims (15)
- Installation de climatisation (1) comprenant:au moins une entrée générale (2),au moins une sortie générale (3),un circuit (4) qui met l'entrée générale (2) en communication de fluide avec la sortie générale (3),une pluralité d'utilisateurs (5) agencés sur le circuit (4),au moins un système d'équilibrage (20) du flux agissant sur le circuit (4), le système d'équilibrage (20) comprenant:au moins un capteur (21) pour détecter au moins une valeur réelle en fonction d'une différence d'intensité entre une première section (22) en amont des utilisateurs (5) et une deuxième section (23) en aval des utilisateurs, d'au moins un paramètre physique du fluide,au moins un organe de réglage du flux (24),au moins un dispositif de commande (25) relié au capteur (21), agissant sur l'organe de réglage du flux (24) et configuré pour:permettre la mémorisation d'au moins une valeur de référence d'un même paramètre physique du fluide,comparer la valeur de référence avec la valeur réelle, commander l'organe de réglage (24) par l'intermédiaire d'un signal de sortie de sorte à régler le fluide à l'intérieur du circuit (4) de manière à maintenir la valeur réelle sensiblement alignée à la valeur de référence, ou de sorte à réduire une différence entre la valeur réelle et la valeur de référence, caractérisé en ce que l'organe de réglage du flux est agencé en aval des utilisateurs (5) et est relié au capteur (21).
- Installation selon la revendication 1, comprenant une première ligne de détection (26) qui met un premier point (27) du circuit (4) situé en amont de chaque utilisateur (5) en communication de fluide avec le capteur (21) du système d'équilibrage (20), et où l'installation (1) comprend une deuxième ligne de détection (28) qui met un deuxième point (29) du circuit (4) situé en aval de chaque utilisateur (5) en communication de fluide avec le capteur (21) du système d'équilibrage (6), optionnellement où le deuxième point (29) est situé sensiblement sur l'organe de réglage (24), l'organe de réglage (24) étant situé en aval de chaque utilisateur (5), directement relié au circuit (4) et en communication de fluide avec le capteur (21), et où le capteur (21) est un capteur différentiel, qui permet la détection de la différence d'intensité entre l'amont et l'aval des utilisateurs (5) du paramètre physique du fluide, et où le capteur (21) détecte une différence entre une première valeur réelle relative à l'intensité du paramètre physique au premier point (27) du circuit (4), et une deuxième valeur réelle relative à l'intensité du paramètre physique au deuxième point (29) du circuit (4),
ou où le capteur (21) comprend un premier capteur (30), qui est en liaison de fluide avec la première ligne de détection (26) et permet de détecter l'intensité du paramètre physique au premier point (27) du circuit (4), et un deuxième capteur (31) qui est en liaison de fluide avec la deuxième ligne de détection (28) et permet de détecter l'intensité du paramètre physique au deuxième point (29) du circuit (4). - Installation selon l'une quelconque des revendications précédentes, où chaque utilisateur (5) comprend un canal d'alimentation respectif (6) sortant du circuit (4), un canal de retour respectif (7) en liaison de fluide avec le canal d'alimentation (6) et agencé de manière à faire rentrer le fluide dans le circuit (4), au moins un dispositif utilisateur hydrauliquement interposé entre le canal d'alimentation (6) et le canal de retour (7),
où chaque utilisateur (5) présente au moins un organe de fermeture respectif (24), partielle ou totale, agencé sur le canal d'alimentation (6) ou sur le canal de retour (7),
où l'installation comprend au moins un collecteur d'alimentation (10) agencé en amont des utilisateurs (5), au moins un collecteur de retour (11) agencé en aval des utilisateurs (5), le collecteur d'alimentation (10) et le collecteur de retour (11) étant connectées respectivement à l'entrée générale (2) pour la distribution du fluide aux utilisateurs (5) et à la sortie générale (3) pour collecter le fluide en sortie des utilisateurs (5),
et où l'organe de réglage (24) est engagé avec une ligne (32) interposée entre une sortie du collecteur de retour (11) et la sortie générale (3). - Installation selon l'une quelconque des revendications précédentes, où l'organe de réglage (24) et le dispositif de commande (25) font partie d'une soupape de réglage (35) fonctionnant en aval des utilisateurs (5), où la soupape de réglage (35) comprend:au moins un corps de soupape (36) présentant au moins une entrée (37),au moins une sortie (38) et au moins un canal (39) qui met l'entrée (37) en communication de fluide avec la sortie (38),au moins un élément de contrôle (42) du fluide opérant dans le canal (39) et formant l'organe de réglage (24) avec le corps de soupape,où l'élément de contrôle du fluide (42) définit, en coopération avec le corps de soupape (36), une ouverture de passage (43) pour le fluide entre l'entrée (37) et la sortie (38) ayant une taille variable, en fonction des positions prises par l'élément de contrôle (42) par rapport au corps de soupape (36) le long d'un parcours en état de service prédéterminée, l'élément de contrôle (42) étant configuré de manière à tourner par rapport à un axe de rotation (44) s'étendant transversalement par rapport à un axe de développement principal (50) du canal (39).
- Installation selon la revendication 4, où l'étape de commande comprend le déplacement de l'élément de contrôle (42) parmi une pluralité de positions de fonctionnement distinctes, qui sont décalées angulairement les unes par rapport aux autres, et où un pas angulaire est défini entre une position de fonctionnement et une position de fonctionnement angulairement successive, le dispositif de commande, après chaque pas angulaire, étant configuré pour répéter cycliquement les étapes de comparaison et de commande.
- Installation selon la revendication 5, où le pas angulaire, au moins sur une portion prédéterminée du parcours en état de service, est inférieur à 1°, optionnellement inférieur à 0,5%; et/ou où le pas angulaire n'est pas constant dans le parcours en état de service, optionnellement où la portion où le pas n'est pas constant comprend au moins 10% du parcours en état de service.
- Installation selon l'une des revendications 5 ou 6, où la taille du pas angulaire est fonction de l'intensité du paramètre physique du fluide circulant dans la première section (22) et l'intensité du paramètre physique du fluide circulant dans une deuxième section (23) d'installation, en particulier où le pas angulaire diminue progressivement avec la réduction d'une différence entre une valeur de référence et une valeur réelle donnée par une différence d'intensité du paramètre physique du fluide circulant dans la première section (22) et l'intensité du paramètre physique du fluide circulant dans une deuxième section (23).
- Installation selon la revendication 6 ou 7, où la portion du parcours en état de service où le pas n'est pas constant et/ou est inférieur à 1° comprend une portion initiale (45) du parcours en état de service, la portion initiale étant à son tour comprise entre une position initiale (46) de fermeture complète de l'ouverture de passage (43) et une position intermédiaire (47) dans laquelle l'ouverture de passage (43) est ouverte à pas plus de 40%, optionnellement pas plus de 30%; et/ou où la portion du parcours en état de service dans laquelle le pas n'est pas constant et/ou est inférieur à 1° comprend une portion finale (48) du parcours en état de service, la portion finale étant à son tour comprise entre une position finale (49) d'ouverture complète du passage (43) et une position intermédiaire dans laquelle l'ouverture de passage (43) est ouverte à pas plus de 50%, optionnellement pas plus de 40%.
- Installation selon l'une quelconque des revendications 4 à 8, où l'ouverture de passage (43) a une forme telle que, suite à un mouvement de l'élément de contrôle (42) sur un portion initiale et/ou une portion finale (45, 48) du parcours en état de service, le rapport incrémental entre la variation en pourcentage de la surface de l'ouverture de passage (43) et le déplacement en pourcentage de l'élément de contrôle (42) présente une valeur absolue comprise entre 0 et 4, optionnellement entre 0 et 2,5.
- Installation selon la revendication 9, où le rapport incrémental entre la variation en pourcentage de la surface de l'ouverture de passage (43) et le déplacement en pourcentage de l'élément de contrôle (42), sur la portion initiale (45) qui ne comprend pas plus de 30% du parcours en état de service, présente une valeur absolue comprise entre 0 et 4, optionnellement entre 0 et 2,5, encore plus optionnellement le rapport incrémental se trouvant dans une plage comprise entre 0 et 1,5 dans un portion initiale qui est comprise entre 20% et 30% du parcours en état de service; et où le rapport incrémental entre la variation en pourcentage de la surface de l'ouverture de passage (43) et le déplacement en pourcentage de l'élément de contrôle (42), sur la portion finale (48) qui ne comprend pas plus de 40% du parcours en état de service, présente une valeur absolue comprise entre 0 et 4, optionnellement entre 0 et 2,5, et encore plus optionnellement, le rapport incrémental se trouvant dans une plage comprise entre 0 et 1,5 dans une portion finale qui est comprise entre 20% et 30% du parcours en état de service;
où le rapport incrémental entre la variation en pourcentage de la surface de l'ouverture de passage (43) et le déplacement en pourcentage de l'élément de contrôle (42) présente une valeur absolue qui est sensiblement constante sur une portion intermédiaire (47) du parcours en état de service comprise entre la portion initiale (45) et la portion finale (48), et où la portion intermédiaire (47) comprend entre 20% et 40% du parcours en état de service,
et où la variation en pourcentage de la surface de l'ouverture de passage (43) comprend le rapport entre la variation de la surface du passage (43) suite à un déplacement de l'organe de contrôle (42) et une surface de référence, et où le déplacement en pourcentage comprend le rapport entre le déplacement de l'élément de contrôle (42) et le parcours en état de service. - Installation selon l'une quelconque des revendications précédentes, où le dispositif de commande (25) est configuré pour:recevoir en entrée au moins un premier signal relatif à une intensité du paramètre physique du fluide circulant dans la première section (22) d'installation et un deuxième signal relatif à l'intensité du paramètre physique d'un fluide circulant dans la deuxième section (23) d'installation,générer le signal de sortie en fonction du premier signal et du deuxième signal;où le premier signal et le deuxième signal se rapportent à une intensité de la pression du fluide dans la première section (22) et dans la deuxième section (23) d'installation (1),et où la génération du signal de sortie comprend la détermination d'un signal différentiel de commande comprenant une différence ou un rapport entre l'intensité du premier signal et du deuxième signal, où le signal différentiel de commande comprend la différence ou le rapport entre l'intensité de la pression du fluide dans la première section (22) et l'intensité de la pression du fluide dans la deuxième section (23), optionnellement où le dispositif de commande (25) comprend une jauge de la pression différentielle (55) qui reçoit en entrée le premier signal et le deuxième signal et génère en sortie le signal différentiel de commande.
- Installation selon la revendication 11, où le dispositif de commande (25) est configuré pour:permettre d'établir au moins une valeur de référence,comparer la valeur de référence avec la valeur du signal différentiel de commande,générer le signal de sortie en fonction de la comparaison,le dispositif de commande (25) comprenant un actionneur (56), par exemple un actionneur électrique, agissant sur l'élément de contrôle (42), l'actionneur (56) permettant le déplacement de l'élément de contrôle (42) le long du parcours en état de service,le dispositif de commande (25) étant relié à l'actionneur (56), le dispositif de commande (25) étant en outre configuré de manière à commander un déplacement de l'élément de contrôle (42) en fonction du signal de sortie et à positionner l'élément de contrôle (42) selon la pluralité de positions le long du parcours en état de service;le dispositif de commande (25) comprenant une mémoire et étant optionnellement configuré de manière à permettre la mémorisation d'une pluralité de valeurs de référence prédéterminées et une sélection d'au moins une des valeurs par un utilisateur.
- Installation selon la revendication 12, où le dispositif de commande contrôle la taille du pas angulaire selon lequel l'actionneur déplace l'élément de contrôle en fonction de la valeur du signal différentiel de commande et une valeur de référence, optionnellement où le dispositif de commande contrôle la taille du pas angulaire selon lequel l'actionneur déplace l'élément de contrôle en fonction de la différence entre le signal différentiel de commande et la valeur de référence.
- Installation selon l'une quelconque des revendications 4 à 13, où la soupape de réglage (35) et/ou l'installation comprend:des moyens de signalisation acoustiques (59) et/ou des moyens de signalisation optiques (60), les moyens de signalisation acoustiques (59) et/ou les moyens de signalisation optiques (60) étant reliés au dispositif de commande (25) qui est configuré de manière à commander les moyens de signalisation acoustiques (59) et/ou les moyens de signalisation optiques (60) pour fournir:une représentation optique et/ou acoustique d'une valeur instantanée du signal de sortie, et/ou une représentation optique et/ou acoustique du déplacement d'une valeur instantanée du signal de sortie par rapport à une valeur de référence,des moyens de réglage (57), les moyens de réglage (57) étant reliés au dispositif de commande (25) etpermettant, par l'intermédiaire de l'unité de commande du dispositif, d'établir un nombre prédéterminé de paramètres de commande qui définissent les conditions de travail, les paramètres de commande comprenant au moins un paramètre choisi dans le groupe comprenant:un premier paramètre de commande se rapportant à un type de mouvement de l'élément de contrôle,un deuxième paramètre de commande se rapportant à une excursion maximale des valeurs du premier signal et du deuxième signal ou de la valeur de la différence entre le premier signal et le deuxième signal,un troisième paramètre de commande se rapportant au type de fonction de liaison entre le signal de sortie et le premier signal et le deuxième signal,un quatrième paramètre de commande se rapportant à une vitesse de convergence entre la valeur réelle et la valeur de référence,où le deuxième paramètre de commande comprend des valeurs d'échelle inférieure de la jauge de la pression différentielle, où par rapport au troisième paramètre la fonction comprend une liaison de type proportionnel ou intégral ou dérivé, ou une combinaison de ceux-ci,etoù le quatrième paramètre de commande indique un temps de convergence défini comme un transitoire de temps dans lequel la valeur du signal différentiel de commande converge vers la valeur de référence,où les moyens de réglage (57) permettent la mémorisation d'un nombre prédéterminé de configurations relatives aux valeurs des paramètres de commande qui sont utiles pour la gestion du dispositif de commande (25), optionnellement où les moyens de réglage (57) comprennent des micro-interrupteurs,et où le dispositif de commande (25) comprend en outre des moyens d'entrée (58), les moyens d'entrée (58) permettant de régler au moins une valeur de référence,optionnellement permettant d'établir une différence de pression de référence entre la première section et la deuxième section.
- Installation selon l'une quelconque des revendications 4 à 14, où l'ouverture de passage (43) comprend un profil frontal (51) présentant deux parties sensiblement symétriques, où chacune des parties présente une première portion (52) ayant la forme d'un arc de cercle, une deuxième partie (53) ayant la forme d'un arc de cercle ayant un rayon plus petit que l'arc de la première portion (52), une inflexion de liaison (53) reliant la première portion (52) avec la deuxième portion (53),
et/ou où l'ouverture de passage (43) comprend un profil longitudinal (61) relatif à une coupe longitudinale par rapport à l'axe de développement principal (50) du canal (39), présentant une section progressivement croissante de l'entrée (37) à la sortie (38) du corps de soupape (36).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201130739T SI2442039T1 (sl) | 2010-10-14 | 2011-10-13 | Klimatizacijska postaja |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITMI2010A001880A IT1402031B1 (it) | 2010-10-14 | 2010-10-14 | Impianto di condizionamento |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2442039A1 EP2442039A1 (fr) | 2012-04-18 |
EP2442039B1 true EP2442039B1 (fr) | 2015-12-16 |
Family
ID=43738007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11185062.4A Active EP2442039B1 (fr) | 2010-10-14 | 2011-10-13 | Dispositif de climatisation |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2442039B1 (fr) |
DK (1) | DK2442039T3 (fr) |
IT (1) | IT1402031B1 (fr) |
SI (1) | SI2442039T1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023110361A1 (fr) * | 2021-12-14 | 2023-06-22 | Danfoss A/S | Système de chauffage à réglage automatique de pression différentielle |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004017593B3 (de) * | 2004-04-07 | 2005-11-03 | Albert Bauer | Kühl- und/oder Heizvorrichtung |
WO2008029987A1 (fr) | 2006-09-06 | 2008-03-13 | Metachem Inc. | Système domotique |
NL1032598C2 (nl) * | 2006-09-29 | 2009-02-25 | Kamstrup B V | Inrichting, systeem en werkwijze voor het besturen van een verwarmingssysteem. |
DK2307938T3 (da) * | 2008-06-26 | 2013-12-16 | Belparts | Strømningsstyresystem |
US8109289B2 (en) | 2008-12-16 | 2012-02-07 | Honeywell International Inc. | System and method for decentralized balancing of hydronic networks |
-
2010
- 2010-10-14 IT ITMI2010A001880A patent/IT1402031B1/it active
-
2011
- 2011-10-13 DK DK11185062.4T patent/DK2442039T3/en active
- 2011-10-13 SI SI201130739T patent/SI2442039T1/sl unknown
- 2011-10-13 EP EP11185062.4A patent/EP2442039B1/fr active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023110361A1 (fr) * | 2021-12-14 | 2023-06-22 | Danfoss A/S | Système de chauffage à réglage automatique de pression différentielle |
Also Published As
Publication number | Publication date |
---|---|
ITMI20101880A1 (it) | 2012-04-15 |
DK2442039T3 (en) | 2016-02-29 |
SI2442039T1 (sl) | 2016-03-31 |
IT1402031B1 (it) | 2013-08-28 |
EP2442039A1 (fr) | 2012-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9506662B2 (en) | Conditioning plant | |
KR100929210B1 (ko) | 정유량 자동제어장치 | |
JPS6047497B2 (ja) | 集中式空気調和設備の風量制御装置 | |
KR20160142880A (ko) | 공기 처리 시스템에서 공급 공기 유동의 제어 장치 및 방법 | |
AU2019229387B2 (en) | Method and device for controlling the flow of fluid in an air-conditioning and/or heating system and system using such a device and/or control method | |
EP2441991A1 (fr) | Vanne de règulation, en particulier pour dispositifs de conditionnement | |
CN110513857A (zh) | 空调器及其分流系统 | |
KR101986942B1 (ko) | 수전 제어 장치 및 방법, 그리고 수전 | |
CN102971163B (zh) | 改进型空调控制器 | |
EP2441990A1 (fr) | Vanne de règulation en particulier pour un dispositif de conditionnement | |
EP2442039B1 (fr) | Dispositif de climatisation | |
CN109114803A (zh) | 一种空气源热泵热风机及其系统的冷媒流量控制方法 | |
CN106500413A (zh) | 分流装置及其控制方法、空调器 | |
US20170016632A1 (en) | Supply and exhaust air terminal device | |
CN103384608A (zh) | 用于控制机动车辆的空气调节系统的系统和方法 | |
EP1044346B1 (fr) | Procede applicable a des systemes et dispositifs de ventilation destines a distribuer l'air a des unites de salles | |
JP2009543964A (ja) | 圧縮空気装置を制御する方法ならびに該方法を使用するための制御器および圧縮空気装置 | |
CN107091498A (zh) | 一种空调控制系统及多管组空调 | |
US7614613B2 (en) | Method of operating a cooling fluid system | |
CN207881105U (zh) | 动态双温度平衡电动调节阀 | |
CN206146064U (zh) | 分流装置及空调器 | |
CN107036340B (zh) | 一种用于空调制冷的分液器及其空调 | |
CA3089987A1 (fr) | Minimisation de la puissance de ventilateur pour la distribution ou l'extraction d'air | |
CN103375622A (zh) | 用于设备、特别是调节设备的流体调节阀 | |
EP4332454A1 (fr) | Procédé de commande d'un système influençant la température et système influençant la température |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20121016 |
|
17Q | First examination report despatched |
Effective date: 20150210 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150624 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 765746 Country of ref document: AT Kind code of ref document: T Effective date: 20160115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011021993 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PGA SRL, MILANO, SUCCURSALE DI LUGANO, CH |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20160223 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20151216 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160316 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160317 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160418 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160416 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011021993 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 |
|
26N | No opposition filed |
Effective date: 20160919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230529 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231024 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SI Payment date: 20230925 Year of fee payment: 13 Ref country code: SE Payment date: 20231023 Year of fee payment: 13 Ref country code: IT Payment date: 20231018 Year of fee payment: 13 Ref country code: DK Payment date: 20231023 Year of fee payment: 13 Ref country code: DE Payment date: 20231027 Year of fee payment: 13 Ref country code: CH Payment date: 20231102 Year of fee payment: 13 Ref country code: AT Payment date: 20231018 Year of fee payment: 13 |