EP2440888B1 - Method for measuring a measurement variable - Google Patents

Method for measuring a measurement variable Download PDF

Info

Publication number
EP2440888B1
EP2440888B1 EP10722991.6A EP10722991A EP2440888B1 EP 2440888 B1 EP2440888 B1 EP 2440888B1 EP 10722991 A EP10722991 A EP 10722991A EP 2440888 B1 EP2440888 B1 EP 2440888B1
Authority
EP
European Patent Office
Prior art keywords
sensor
measuring signal
tof
measuring
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10722991.6A
Other languages
German (de)
French (fr)
Other versions
EP2440888A1 (en
Inventor
Pierre ÜBERSCHLAG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG, Flowtec AG filed Critical Endress and Hauser Flowtec AG
Publication of EP2440888A1 publication Critical patent/EP2440888A1/en
Application granted granted Critical
Publication of EP2440888B1 publication Critical patent/EP2440888B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S15/12Systems for measuring distance only using transmission of interrupted, pulse-modulated waves wherein the pulse-recurrence frequency is varied to provide a desired time relationship between the transmission of a pulse and the receipt of the echo of a preceding pulse
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2962Measuring transit time of reflected waves

Definitions

  • the present invention relates to a method for measuring at least one measured variable with measurement signals in the form of ultrasound signals, wherein a first sensor emits a first measurement signal and can be received by a second sensor, and emits at least a second measurement signal at a time interval t from the first measurement signal. wherein at least one second sensor receives the measurement signals, wherein the transit time TOF of the measurement signal between emission of the measurement signal and receiving the measurement signal is known.
  • the present invention relates to a method for determining and / or monitoring a process variable.
  • the process variable is e.g. to the volume or mass flow of a medium through a measuring tube or the level of a product in a container.
  • Ultrasonic flowmeters are widely used in process and automation technology. They allow in a simple way to determine the volume flow and / or mass flow in a pipeline.
  • the known ultrasonic flowmeters often work according to the Doppler or the transit time difference principle.
  • running time difference principle the different maturities of ultrasonic pulses are evaluated relative to the flow direction of the liquid.
  • ultrasonic pulses are sent at a certain angle to the pipe axis both with and against the flow.
  • the runtime difference can be used to determine the flow velocity and, with a known diameter of the pipe section, the volume flow rate.
  • the ultrasonic waves are generated or received with the help of so-called ultrasonic transducers.
  • ultrasonic transducers are firmly mounted in the pipe wall of the respective pipe section.
  • clamp-on ultrasonic flow measurement systems have become available. In these systems, the ultrasonic transducers are pressed against the pipe wall only with a tension lock.
  • a big advantage of clamp-on ultrasonic flow measurement systems is that they do not touch the measuring medium and are mounted on an already existing pipeline. Such systems are for. B. from the EP 686 255 B1 . US-A 44 84 478 or US-A 45 98 593 known.
  • Another ultrasonic flowmeter, which operates on the transit time difference principle is from the US-A 50 52 230 known. The transit time is determined here by means of short ultrasonic pulses, so-called bursts.
  • the WO09624027A2 describes a Pulsechounk taking into account multiple reflections to measure distances.
  • the DE19934212A1 describes a method and an apparatus for measuring a flow velocity of a fluid flow by means of transit time difference measurement of acoustic pulses.
  • the DE102008010090A1 describes a method for measuring the transit time of an ultrasonic pulse, wherein an influence of an attenuation of the ultrasonic signal on the transit time measurement is bypassed.
  • the JP58077679A describes an ultrasonic distance measuring device in which a transmitter emits a measurement signal sequence, which are reflected by an object to be measured and received by a receiver, wherein the time interval of adjacent received signals corresponds to the transit time of the signals.
  • the ultrasonic transducers normally consist of an electromechanical transducer element, e.g. a piezoelectric element, also called piezo for short, and a coupling layer, also known as a coupling wedge or a rare lead body.
  • the coupling layer is usually made of plastic
  • the piezoelectric element is in industrial process measurement usually a piezoceramic.
  • the ultrasonic waves are generated and passed over the coupling layer to the pipe wall and passed from there into the liquid. Since the speeds of sound in liquids and plastics are different, the ultrasonic waves are refracted during the transition from one medium to another.
  • the angle of refraction is determined in the first approximation according to Snell's law. The angle of refraction is thus dependent on the ratio of the propagation velocities in the media.
  • a further coupling layer may be arranged, a so-called adaptation layer.
  • the adaptation layer assumes the function of the transmission of the ultrasonic signal and at the same time the reduction of a reflection caused by different acoustic impedances at boundary layers between two materials.
  • state-of-the-art level gauges for detecting and monitoring the level of a product in a container or in an open channel by means of a transit time measurement of ultra / sound signals are known, which are frequently used in many industries, e.g. in the food industry, the water and wastewater sector and in chemistry.
  • ultra- / sound signals are emitted into the process chamber or the container interior; and the reflected on the surface of the filling material in the container echo waves are received by a transmitting / receiving element. From the time difference between the emission of the ultrasound / sound signals and the reception of the echo signals, the distance of the measuring device to the product surface can be determined.
  • the generation of the sound waves or ultrasonic waves and the determination of the reflected echo waves after a distance-dependent transit time can be effected by separate transmitting elements and receiving elements or by common transmitting / receiving elements.
  • a so-called ultrasonic transceiver which generates a transmission signal and receives a reflection signal or echo signal at a later time, is usually used.
  • the ultrasonic transceiver forms a composite vibrating system, which is known from the literature as a Langevin oscillator.
  • a Langevin oscillator In the DE 29 06 704 A1
  • the structure and operation of such a vibrator is described, which is also referred to as a clay mushroom resonator.
  • the core of a clay mushroom resonator is a piezoelectric element, which is clamped by means of a fastening screw between a radiating element and a counter element and forms together with this the composite vibration system.
  • the electromechanical transducer e.g. a piezoelectric element is operated near one of its mechanical resonance frequencies.
  • the resonance peak can be used to increase the transmission amplitude and to increase the sensitivity in the reception.
  • a general problem with transit time difference method is the demarcation of the useful signal of any interfering signals, such as reflections or tube waves.
  • the object of the invention is to provide a method with which the transit times of a measuring signal between a transmitter and a receiver can be determined.
  • the object is achieved by a method for measuring at least one measured variable with measuring signals in the form of ultrasound signals, wherein a first sensor emits a first measuring signal, which first measuring signal comprises at least one half-wave of an ultrasonic wave, in particular a burst signal, and in a temporal Distance t to the first measurement signal emits at least one second measurement signal, which is in particular equal to the first measurement signal, wherein at least one second sensor receives the measurement signals, wherein the time interval t is chosen so that an amplitude of a received measurement signal at the second sensor is a maximum.
  • the invention is based on the following principle:
  • the measurement signals emitted by the first sensor that is to say in particular the first and the second measurement signal, are reflected at the second sensor.
  • the reflections can be superimposed with the measurement signal itself so that the amplitude becomes maximum. This can be achieved by a time shift of t.
  • the time interval t is selected such that the amplitude of the measurement signal received from the second sensor is at a maximum from a superposition of the second measurement signal and of the first measurement signal reflected from the second sensor to the first sensor and back again to the second sensor.
  • a development of the invention provides that the time interval t is varied over a predetermined range. For this purpose, for example, many measurement signals are transmitted at a constant distance t from one another to the second sensor. After a settling time T, the amplitude measured by the second sensor is otherwise constant
  • System properties such as Flow and / or level, constant, i. it does not change over a period of time.
  • This amplitude is held together with the distance t in a memory. Thereafter, the distance t is changed. This is repeated, specialists speak of a sweep. This can be repeated until a termination criterion is met and the distance between the measurement signals associated with the maximum recorded amplitude is set.
  • the time of canceling the sweep is a classic optimization problem to perform with the well-known in the art optimization process.
  • the speed of sound of a sound-through measuring medium is determined by means of the time interval t, which is e.g. flows through a measuring tube, and / or by means of the time interval t, the level of a measuring medium is determined in a container.
  • t time interval
  • the level of a measuring medium is determined in a container.
  • the object is further achieved by a further development of the method according to the invention, wherein the transit time TOF 1 of the measurement signal between emission of the measurement signal and receiving the measurement signals is known, wherein the time interval t is chosen so that the time interval t is chosen such that it is an integer multiple of the time TOF 1 or that in addition the duration TOF 2 of a third measurement signal between sending the third measurement signal from the second sensor and receiving the third measurement signal from the first sensor is known and the time interval t is chosen so that it by a natural number n is the divided sum of TOF 1 and TOF 2 , eg that the time interval t is an integer multiple of the mean value of the transit times TOF 1 and TOF 2 , ie that the time interval t is chosen to be an integer multiple of ( TOF 1 + TOF 2 ) / 2.
  • First and second sensor can be used in the case of an evaluation of the third measurement signal both as a transmitter and as a receiver. With this method, a measurement signal at a transmitter can be designed such that the measurement signal arriving at the receiver can be clearly received, ie the signal amplitude is significantly improved compared to the prior art.
  • the measurement signals each have at least one half-wave of a mechanical wave or an electromagnetic wave. This applies both to the first measurement signal and to the second and possibly third measurement signal.
  • a wave carries energy, with a mechanical wave, e.g. a sound wave, through a vibration of a chain of elastically coupled masses, such as. e.g. Particles of a medium, spreading, the masses are not permanently moved.
  • Electromagnetic waves require no medium and are capable of propagation even in a vacuum.
  • Well-known examples of electromagnetic waves are radio waves or light. Properties of a wave can be e.g. describe their amplitude, their propagation velocity and frequency or wavelength via their parameters. Waves can occur as periodic waves or as shockwaves.
  • halfwaves may take various forms, e.g. a sine shape, a rectangle or a triangle shape.
  • a wave is theoretically described by its wave equation, which gives a deflection from a zero line in one place at a given time.
  • An extreme form of a half wave would be e.g. a Dirac push that spreads through a room.
  • a half-wave is generally bounded by zeros and is positive or negative. Their duration corresponds to half the period of the wave. If a negative half-wave directly adjoins a positive half-wave of the same amplitude and the same wavelength, ie if the time interval t is from the beginning of the positive half-wave to the beginning of the negative half-wave ⁇ / 2, a wave of a period ⁇ is formed.
  • a signal of several half waves may thus comprise different frequencies.
  • At a time interval t from the first measuring signal at least one further, second measuring signal, that is to say at least one further, second half-wave, is emitted by the first sensor.
  • the second measurement signal ie the beginning of the second half-wave at the earliest ⁇ / 2 after the Beginning of the first half wave.
  • t is in the interval [0, T], where T is finitely large.
  • the time interval t between transmission of the first measurement signal from the first sensor and emission of the second measurement signal from the first sensor is in one embodiment an integer multiple of the transit time TOF 1 of the first measurement signal between transmission of the first measurement signal from the first sensor and receiving the first measurement signal from the second sensor , That is, the transmission of the second measurement signal is adjusted according to the duration of the first measurement signal.
  • the measuring signals are received by at least one further, second sensor.
  • the second sensor is configured structurally the same as the first sensor.
  • it is an ultrasonic transducer of a level gauge or a flowmeter.
  • the time interval t is chosen to be an integer multiple of the average of the maturities TOF 1 and TOF 2 .
  • the transit times TOF 1 and / or TOF 2 of the measurement signals between transmission of the respective measurement signal and reception of the corresponding measurement signal are known.
  • the transit time TOF 1 and / or TOF 2 are determined by means of a measurement - they are measured.
  • the transit time TOF 2 is measurable between the emission of the third measurement signal from the second sensor and the reception of the third measurement signal from the first sensor.
  • the transit time TOF 1 of the first measurement signal between emission of the first measurement signal from the first sensor and reception of the first measurement signal from the second sensor is determined between the times of a first exceeding of a predeterminable first threshold value of the first measurement signal at the first sensor and a first exceeding of a predeterminable one second threshold value of the first measurement signal at the second sensor.
  • a threshold value as the triggering event or triggering of measurements can be used alone or in combination with the aforementioned features. The respective end time is chosen accordingly equal. This list is not exhaustive. Further possibilities for determining the transit time TOF 1 are known from the prior art.
  • the transit time TOF 2 of the third measurement signal between transmission of the third measurement signal from the second sensor and receiving the third measurement signal from the first sensor is determined between the times of a first exceeding a predetermined threshold value of the third measurement signal at the second sensor and a first exceeding the threshold value of the third measurement signal on first sensor.
  • the time interval t of the measurement signal between transmission of the first measurement signal from the first sensor and emission of the second measurement signal from the first sensor determines between the times of a first exceeding a certain first threshold of the first measurement signal at the first sensor and a first Exceeding a certain third threshold value of the second measuring signal at the first sensor.
  • the first and third thresholds and / or the second threshold mentioned above may be the same.
  • a measurement signal is thus sent to determine the maturity TOF 1 and / or TOF 2 of the measurement signal from the transmitter to the receiver according to an embodiment of the invention.
  • the distance of the other measurement signals to each other is now set according to the existing conditions to an integer multiple of this runtime TOF 1 , for example, to twice, or even to an integer multiple of (TOF 1 + TOF 2 ) / 2.
  • wave packets eg with 8, 16 or 32 bursts are sent in quick succession from a first sensor through the measuring medium to a second sensor.
  • the measurement signal can run directly between the two sensors, if both sensors face each other, or the measurement signal is reflected at the measuring tube to the sensors. This determines the running time of the measuring signal in one direction. After a short break, the functions of the sensors are reversed. Now, the second sensor sends the wave packets to the first sensor., The result is the duration of the measurement signal in the other direction.
  • the flow rate of the measuring medium in the measuring tube and thus the flow of the measuring medium in the measuring tube can now be determined. This procedure is repeated constantly.
  • a single burst signal or two burst signals in both directions, could be connected upstream of the wave packets.
  • the transit time TOF 1 of the measurement signal or the transit times TOF 1 and TOF 2 of the measurement signals is detected from one sensor to another.
  • the measurement signals and the reflections of the measurement signals at the sensors are matched to one another in such a way that they reinforce each other.
  • the time interval t of the measurement signal between transmission of the first measurement signal from the first sensor and emission of the second measurement signal from the first sensor according to the inventive method is selected so that the amplitude of a received measurement signal at the second sensor becomes maximum.
  • the flow velocity of a measuring medium in a measuring tube is determined by means of the time interval t and by means of a time interval x between transmission of the second measuring signal from the first sensor and receiving a measuring signal from the second sensor.
  • the flow of the measuring medium through the measuring tube can also be determined.
  • this can be done by means of the time interval t and the runtime TOF 1 .
  • Fig. 1 is an inline ultrasonic flowmeter with two opposing ultrasonic sensors shown schematically.
  • the first sensor 1 transmits ultrasonic signals to the second sensor 2.
  • the direct, first signal path 10, ie the direct path of a measurement signal from the first sensor 1 to the second sensor 2, and the measurement signal, which is from the second sensor 2 back to the first sensor 1 and from there back to the second sensor 2 is reflected, so the second signal path 11.
  • the reflection from the first sensor 1 to the second sensor 2 shows it in the direction of the first measurement signal. Of course, such a reflection can be repeated several times.
  • Fig. 2 the temporal amplitude curve at the second sensor.
  • the burst 4 is inscribed on the first sensor.
  • the diagram shows the incoming direct measurement signal 5, detected by the second sensor, and the reflections 6-9, as also measured by the second sensor.
  • the transit time TOF 1 of the measuring signal passes from the first to the second sensor.
  • the measurement signal is now reflected from the second sensor to the first sensor and back to the second sensor.
  • the time interval t between two bursts 4, which are sent from the first sensor to the second sensor set to an integer multiple of (TOF 1 + TOF 2 ) / 2, here to TOF 1 + TOF 2 , measures the second Sensor superimposed on a signal from the direct measurement signal 5 and the reflections 6-9, in particular from the direct measurement signal 5 and the first reflection 6, as in Fig. 3 outlined. Due to the phase equality of the direct measurement signal 5 and the reflections 6-9, in particular the first reflection 6, there is mutual amplification of the signals and thus to a clearly receivable signal.
  • the measuring signal is designed on the transmitter according to certain process variables so that the incoming signal to the receiver is clearly receivable.
  • the successive waves are determined to reinforce each other.
  • the transit times TOF 1 and TOF 2 depend on certain process variables; such as the speed of sound in the measuring medium, of geometric variables, such as the distance between the two sensors to each other, and of course the flow of the medium through the measuring tube.
  • Fig. 3 the maximum amplitude in the steady state system state, which is measured at the second sensor.
  • the distance t of the two burts 4 can be varied until the amplitude of the signal measured at the second sensor is maximum.
  • the distance t in this example is usually the sum of TOF 1 and TOF 2 divided by a natural number.
  • Fig. 4 illustrates a level gauge with two ultrasonic sensors.
  • the ultrasonic sensors 1 and 2 are arranged parallel to the surface of the measuring medium 3. Both the first signal path 10 of the direct measurement signal, and the second signal path 11 of the reflections are shown.
  • TOF 1 and TOF 2 would be the same here, which is why a detection of TOF 2 by means of a third measurement signal is dispensed with.
  • the sensors 1 and 2 can then be designed specifically as a pure transmitter or receiver.
  • Fig. 5 shows both the emitted from the first sensor, as well as the amplitude received by the second sensor together in several idealized, temporal representations with each other, based on a test setup, like him
  • Fig. 1 shows, with two opposing ultrasonic sensors here for measuring a flow of a measuring medium in a measuring tube, which is located between the two ultrasonic sensors.
  • the measurement signals emitted by the first sensor have a rectangular shape.
  • the received signals from the second sensor 12 are shown as triangles.
  • the ordinates show the signal amplitudes qualitatively, on the abscissa the time is plotted.
  • a first measurement signal from the first sensor at time zero is emitted in the form of a burst 4. After a time T, it is, as a direct measurement signal 5, received by the second sensor. Thereafter, it is reflected back to the first sensor, which again requires the time T, when the measuring medium in the measuring tube has no flow, that is at rest. It is not received by the first sensor, since in this example the first sensor is designed only as an ultrasonic transmitter and the second sensor only as an ultrasonic receiver. After a further period T, the measurement signal is reflected once more, now from the first sensor back to the second sensor, and is registered as the first echo 6 from the second sensor. The second echo 7 and third echo are produced in equal measure by reflections of the first echo 6, respectively of the second echo 7.
  • a further burst 4 that is to say a second measurement signal
  • the first echo 6 of the first burst overlaps with the direct measurement signal 5 of FIG second bursts 4 on the second sensor, and the second echo 7 of the first burst with the first echo 6 of the second burst and the direct measurement signal 5 of a third burst 4 on the second sensor.
  • the amplitudes of the measurement signals 12 received by the second sensor are at most as clear as the third amplitude characteristic, with measurement signals already being transmitted by the first sensor at the time of less than zero.
  • the setting of the distance t between the measurement signals 4 to be transmitted by the first sensor can be done by measuring the TOF, here the TOF 1 , which in this signal curve is equal to T, and corresponding setting of t or by varying the distance t between the two measuring signals 4 to be transmitted by the first sensor, ie at least between a first and a second measuring signal, here the first burst 4 and the second burst 4, until the amplitude of the received from the second sensor Measurement signal 12 is maximum.
  • the time interval between two measurement signals T emitted by the first sensor is now T, instead of 2 * T as above.
  • the measurement signals 12 detected by the second sensor coincide with those of the measurement signals 4 emitted by the first sensor. This applies to zero flow.
  • an ultrasonic signal in the direction of the flow of the measuring medium through the measuring tube is faster than an ultrasonic signal counter to the flow of the measuring medium through the measuring tube.
  • This physical principle is used for measuring transit time difference. Now, it is assumed that a non-negligible velocity component of the flow of the measuring medium in the measuring tube counter to the direction of the first measurement signal, ie in the direction from the first sensor to the second sensor shows.
  • the first measurement signal 4 is transmitted from the first sensor to the second sensor, where it is reflected back to the first sensor and in turn reflected to the second sensor. It is slower on the way from the first sensor to the second sensor and faster from the second sensor to the first sensor. Since the first, as well as all further echoes travel the distance from the first sensor to the second sensor and back, the speed differences are canceled out and only the influence of the velocity component of the measuring medium on the direct, first measuring signal from the first sensor to the second sensor remains , So the first measurement signal is slower from the first sensor to the second sensor than with a zero flow. Although the signal of the reflection from the second to the first sensor is traveling faster, this time in comparison to the zero flow needs the reflection from the first to the second sensor again longer.
  • TOF 1 TOF 1
  • TOF 1 -t TOF 1 -t
  • x TOF 1 -t
  • TOF 1 not only can TOF 1 be measured, as usual, but it can not measure the time x directly, providing metrological benefits. Since the time t is known, thus, the flow velocity, and with a known diameter of the measuring tube and the flow of the measured medium can be determined by the measuring tube.

Description

Die vorliegende Erfindung betrifft ein Verfahren zum Messen mindestens einer Messgröße mit Messignalen in Form von Ultraschallsignalen, wobei ein erster Sensor ein erstes Messsignal aussendet, und von einem zweiten Sensor empfangbar ist, und in einem zeitlichem Abstand t zum ersten Messsignal mindestens ein zweites Messsignal aussendet, wobei zumindest ein zweiter Sensor die Messsignale empfängt, wobei die Laufzeit TOF des Messsignals zwischen Aussenden des Messsignals und Empfangen des Messsignals bekannt ist.The present invention relates to a method for measuring at least one measured variable with measurement signals in the form of ultrasound signals, wherein a first sensor emits a first measurement signal and can be received by a second sensor, and emits at least a second measurement signal at a time interval t from the first measurement signal. wherein at least one second sensor receives the measurement signals, wherein the transit time TOF of the measurement signal between emission of the measurement signal and receiving the measurement signal is known.

Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung und/oder Überwachung einer Prozessgröße. Bei der Prozessgröße handelt es sich z.B. um den Volumen- oder Massedurchfluss eines Mediums durch ein Messrohr oder den Füllstand eines Füllguts in einem Behälter.The present invention relates to a method for determining and / or monitoring a process variable. The process variable is e.g. to the volume or mass flow of a medium through a measuring tube or the level of a product in a container.

Ultraschall-Durchflussmessgeräte werden vielfach in der Prozess- und Automatisierungstechnik eingesetzt. Sie erlauben in einfacher Weise, den Volumendurchfluss und/oder Massendurchfluss in einer Rohrleitung zu bestimmen.Ultrasonic flowmeters are widely used in process and automation technology. They allow in a simple way to determine the volume flow and / or mass flow in a pipeline.

Die bekannten Ultraschall-Durchflussmessgeräte arbeiten häufig nach dem Doppler- oder nach dem Laufzeitdifferenz-Prinzip. Beim Laufzeitdifferenz-Prinzip werden die unterschiedlichen Laufzeiten von Ultraschallimpulsen relativ zur Strömungsrichtung der Flüssigkeit ausgewertet. Hierzu werden Ultraschallimpulse in einem bestimmten Winkel zur Rohrachse sowohl mit als auch entgegen der Strömung gesendet. Aus der Laufzeitdifferenz lässt sich die Fließgeschwindigkeit und damit bei bekanntem Durchmesser des Rohrleitungsabschnitts der Volumendurchfluss bestimmen.The known ultrasonic flowmeters often work according to the Doppler or the transit time difference principle. When running time difference principle, the different maturities of ultrasonic pulses are evaluated relative to the flow direction of the liquid. For this purpose, ultrasonic pulses are sent at a certain angle to the pipe axis both with and against the flow. The runtime difference can be used to determine the flow velocity and, with a known diameter of the pipe section, the volume flow rate.

Beim Doppler-Prinzip werden Ultraschallwellen mit einer bestimmten Frequenz in die Flüssigkeit eingekoppelt und die von der Flüssigkeit reflektierten Ultraschallwellen ausgewertet. Aus der Frequenzverschiebung zwischen den eingekoppelten und reflektierten Wellen lässt sich ebenfalls die Fließgeschwindigkeit der Flüssigkeit bestimmen. Reflexionen in der Flüssigkeit treten auf, wenn Luftbläschen oder Verunreinigungen in dieser vorhanden sind, so dass dieses Prinzip hauptsächlich bei verunreinigten Flüssigkeiten Verwendung findet.In the Doppler principle, ultrasonic waves of a certain frequency are coupled into the liquid and the ultrasonic waves reflected by the liquid are evaluated. From the frequency shift between the coupled and reflected waves can also determine the flow rate of the liquid. Reflections in the liquid occur when air bubbles or contaminants are present in it, so this principle is mainly used in contaminated liquids use.

Die Ultraschallwellen werden mit Hilfe so genannter Ultraschallwandler erzeugt bzw. empfangen. Hierfür sind Ultraschallwandler in der Rohrwandung des betreffenden Rohrleitungsabschnitts fest angebracht. Seit neuerem sind auch Clamp-on-Ultraschall-Durchflussmesssysteme erhältlich. Bei diesen Systemen werden die Ultraschallwandler nur noch mit einem Spannverschluss an die Rohrwandung gepresst. Ein großer Vorteil von Clamp-On-Ultraschall-Durchflussmesssystemen ist, dass sie das Messmedium nicht berühren und auf eine bereits bestehende Rohrleitung angebracht werden. Derartige Systeme sind z. B. aus der EP 686 255 B1 , US-A 44 84 478 oder US-A 45 98 593 bekannt.
Ein weiteres Ultraschall-Durchflussmessgerät, das nach dem Laufzeitdifferenz-Prinzip arbeitet, ist aus der US-A 50 52 230 bekannt. Die Laufzeit wird hier mittels kurzen Ultraschallimpulsen, so genannten Bursts, ermittelt.
The ultrasonic waves are generated or received with the help of so-called ultrasonic transducers. For this purpose, ultrasonic transducers are firmly mounted in the pipe wall of the respective pipe section. More recently, clamp-on ultrasonic flow measurement systems have become available. In these systems, the ultrasonic transducers are pressed against the pipe wall only with a tension lock. A big advantage of clamp-on ultrasonic flow measurement systems is that they do not touch the measuring medium and are mounted on an already existing pipeline. Such systems are for. B. from the EP 686 255 B1 . US-A 44 84 478 or US-A 45 98 593 known.
Another ultrasonic flowmeter, which operates on the transit time difference principle, is from the US-A 50 52 230 known. The transit time is determined here by means of short ultrasonic pulses, so-called bursts.

Die WO09624027A2 beschreibt eine Pulsechomessung unter Berücksichtigung von Mehrfachreflektionen, um Entfernungen zu messen.
Die DE19934212A1 beschreibt ein Verfahren und eine Vorrichtung zum Messen einer Strömungsgeschwindigkeit eines Fluidstroms mittels Laufzeitdifferenzenmessung von akustischen Impulsen.
Die DE102008010090A1 beschreibt ein Verfahren zur Messung der Laufzeit eines Ultraschallpulses, wobei ein Einfluss von einer Dämpfung des Ultraschallsignals auf die Laufzeitmessung umgangen wird.
Die JP58077679A beschreibt ein Ultraschall-Entfernungsmessgerät, bei welchem ein Sender eine Messsignalfolge aussendet, welche von einem zu vermessenden Objekt reflektiert und von einem Empfänger empfangen werden, wobei der zeitliche Abstand benachbarter empfangener Signale der Laufzeit der Signale entspricht.
The WO09624027A2 describes a Pulsechomessung taking into account multiple reflections to measure distances.
The DE19934212A1 describes a method and an apparatus for measuring a flow velocity of a fluid flow by means of transit time difference measurement of acoustic pulses.
The DE102008010090A1 describes a method for measuring the transit time of an ultrasonic pulse, wherein an influence of an attenuation of the ultrasonic signal on the transit time measurement is bypassed.
The JP58077679A describes an ultrasonic distance measuring device in which a transmitter emits a measurement signal sequence, which are reflected by an object to be measured and received by a receiver, wherein the time interval of adjacent received signals corresponds to the transit time of the signals.

Die Ultraschallwandler bestehen normalerweise aus einem elektromechanischen Wandlerelement, z.B. ein piezoelektrisches Element, auch kurz Piezo genannt, und einer Koppelschicht, auch Koppelkeil oder seltener Vorlaufkörper genannt. Die Koppelschicht ist dabei meist aus Kunststoff gefertigt, das piezoelektrische Element besteht in der industriellen Prozessmesstechnik üblicherweise aus einer Piezokeramik. Im piezoelektrischen Element werden die Ultraschallwellen erzeugt und über die Koppelschicht zur Rohrwandung geführt und von dort in die Flüssigkeit geleitet. Da die Schallgeschwindigkeiten in Flüssigkeiten und Kunststoffen unterschiedlich sind, werden die Ultraschallwellen beim Übergang von einem zum anderen Medium gebrochen. Der Brechungswinkel bestimmt sich in erster Näherung nach dem Snell'schen Gesetz. Der Brechungswinkel ist somit abhängig von dem Verhältnis der Ausbreitungsgeschwindigkeiten in den Medien.The ultrasonic transducers normally consist of an electromechanical transducer element, e.g. a piezoelectric element, also called piezo for short, and a coupling layer, also known as a coupling wedge or a rare lead body. The coupling layer is usually made of plastic, the piezoelectric element is in industrial process measurement usually a piezoceramic. In the piezoelectric element, the ultrasonic waves are generated and passed over the coupling layer to the pipe wall and passed from there into the liquid. Since the speeds of sound in liquids and plastics are different, the ultrasonic waves are refracted during the transition from one medium to another. The angle of refraction is determined in the first approximation according to Snell's law. The angle of refraction is thus dependent on the ratio of the propagation velocities in the media.

Zwischen dem piezoelektrischen Element und der Koppelschicht kann eine weitere Koppelschicht angeordnet sein, eine so genannte Anpassungsschicht. Die Anpassungsschicht übernimmt dabei die Funktion der Transmission des Ultraschallsignals und gleichzeitig die Reduktion einer durch unterschiedliche akustische Impedanzen verursachte Reflektion an Grenzschichten zwischen zwei Materialen.Between the piezoelectric element and the coupling layer, a further coupling layer may be arranged, a so-called adaptation layer. The adaptation layer assumes the function of the transmission of the ultrasonic signal and at the same time the reduction of a reflection caused by different acoustic impedances at boundary layers between two materials.

Weiterhin sind aus dem Stand der Technik Füllstands-Messgeräte zur Ermittlung und Überwachung des Füllstands eines Füllguts in einem Behälter oder in einem offenen Gerinne mittels einer Laufzeitmessung von Ultra-/Schallsignalen bekannt, welche häufig in vielen Industriezweigen, z.B. in der Lebensmittelindustrie, der Wasser- und Abwasserbranche und in der Chemie, eingesetzt werden. Bei einer Laufzeitmessung werden Ultra-/Schallsignale in den Prozessraum bzw. das Behälterinnere ausgesendet; und die an der Oberfläche des Füllguts im Behälter reflektierten Echowellen werden von einem Sende-/Empfangselement empfangen. Aus der Zeitdifferenz zwischen dem Aussenden der Ultra-/Schallsignale und dem Empfang der Echosignale lässt sich der Abstand des Messgerätes zu der Füllgutoberfläche ermitteln. Vorrichtungen und Verfahren zur Bestimmung des Füllstandes über die Laufzeit von Ultraschallsignalen sowie auch von anderen Messsignalen, wie z.B. Radar nutzen die physikalische Gesetzmäßigkeit aus, wonach die Laufstrecke gleich dem Produkt aus der Laufzeit und der Ausbreitungsgeschwindigkeit ist. Unter Berücksichtigung der Geometrie des Behälterinnern und/oder des Behälters wird dann der Füllstand des Füllguts als relative oder absolute Größe ermittelt.Furthermore, state-of-the-art level gauges for detecting and monitoring the level of a product in a container or in an open channel by means of a transit time measurement of ultra / sound signals are known, which are frequently used in many industries, e.g. in the food industry, the water and wastewater sector and in chemistry. In a transit time measurement ultra- / sound signals are emitted into the process chamber or the container interior; and the reflected on the surface of the filling material in the container echo waves are received by a transmitting / receiving element. From the time difference between the emission of the ultrasound / sound signals and the reception of the echo signals, the distance of the measuring device to the product surface can be determined. Devices and methods for determining the level over the duration of ultrasonic signals as well as other measurement signals, such. Radar exploits the physical law, according to which the running distance is equal to the product of the transit time and the propagation speed. Taking into account the geometry of the container interior and / or the container, the fill level of the contents is then determined as relative or absolute size.

Die Erzeugung der Schallwellen bzw. Ultraschallwellen und das Ermitteln der reflektierten Echowellen nach einer abstandsabhängigen Laufzeit können durch separate Sendeelemente und Empfangselemente oder durch gemeinsame Sende-/Empfangselemente erfolgen. In der Praxis kommt meist nur ein einzelnes Sende-/Empfangselement, ein so genannter Ultraschäll-Transceiver, der ein Sendesignal erzeugt und zeitlich versetzt ein Reflexionssignal bzw. Echosignal empfängt, zum Einsatz. Den Ultraschall-Transceiver bildet beispielsweise ein Verbundschwingsystem, das aus der Literatur als Langevin-Schwinger bekannt ist. In der DE 29 06 704 A1 ist beispielsweise der Aufbau und die Funktionsweise eines solchen Schwingers beschrieben, der auch als Tonpilz-Resonator bezeichnet wird. Das Kernstück eines Tonpilz-Resonators ist ein piezoelektrisches Element, das mittels einer Befestigungsschraube zwischen einem Abstrahlelement und einem Gegenelement eingespannt wird und mit diesem zusammen das Verbundschwingsystem bildet.The generation of the sound waves or ultrasonic waves and the determination of the reflected echo waves after a distance-dependent transit time can be effected by separate transmitting elements and receiving elements or by common transmitting / receiving elements. In practice, only a single transmitting / receiving element, a so-called ultrasonic transceiver, which generates a transmission signal and receives a reflection signal or echo signal at a later time, is usually used. The ultrasonic transceiver, for example, forms a composite vibrating system, which is known from the literature as a Langevin oscillator. In the DE 29 06 704 A1 For example, the structure and operation of such a vibrator is described, which is also referred to as a clay mushroom resonator. The core of a clay mushroom resonator is a piezoelectric element, which is clamped by means of a fastening screw between a radiating element and a counter element and forms together with this the composite vibration system.

Der elektromechanische Wandler, wie z.B. ein Piezoelement, wird in der Nähe einer seiner mechanischen Resonanzfrequenzen betrieben. Dadurch kann die Resonanzüberhöhung genutzt werden, um die Sendeamplitude zu vergrößern und die Empfindlichkeit beim Empfang zu erhöhen.The electromechanical transducer, e.g. a piezoelectric element is operated near one of its mechanical resonance frequencies. As a result, the resonance peak can be used to increase the transmission amplitude and to increase the sensitivity in the reception.

Ein generelles Problem bei Laufzeitdifferenzverfahren ist die Abgrenzung vom Nutzsignal von eventuellen Störsignalen, wie z.B. Reflexionen oder Rohrwellen.A general problem with transit time difference method is the demarcation of the useful signal of any interfering signals, such as reflections or tube waves.

Die Aufgabe der Erfindung besteht darin, ein Verfahren bereit zu stellen, mit welchem die Laufzeiten eines Messsignals zwischen einem Sender und einem Empfänger ermittelbar sind.The object of the invention is to provide a method with which the transit times of a measuring signal between a transmitter and a receiver can be determined.

Die Aufgabe wird gelöst durch ein Verfahren zum Messen mindestens einer Messgröße mit Messignalen in Form von Ultraschallsignalen, wobei ein erster Sensor ein erstes Messsignal aussendet, welches erste Messsignal insbesondere mindestens eine Halbwelle einer Ultraschallwelle umfasst, insbesondere ein Burst-Signal ist, und in einem zeitlichem Abstand t zum ersten Messsignal mindestens ein zweites Messsignal aussendet, welches insbesondere gleich dem ersten Messsignal ist, wobei zumindest ein zweiter Sensor die Messsignale empfängt, wobei der zeitliche Abstand t so gewählt wird, dass eine Amplitude eines empfangenen Messsignals am zweiten Sensor maximal wird.The object is achieved by a method for measuring at least one measured variable with measuring signals in the form of ultrasound signals, wherein a first sensor emits a first measuring signal, which first measuring signal comprises at least one half-wave of an ultrasonic wave, in particular a burst signal, and in a temporal Distance t to the first measurement signal emits at least one second measurement signal, which is in particular equal to the first measurement signal, wherein at least one second sensor receives the measurement signals, wherein the time interval t is chosen so that an amplitude of a received measurement signal at the second sensor is a maximum.

Der Erfindung liegt das folgende Prinzip zu Grunde: Die vom ersten Sensor ausgesendeten Messsignale, also insbesondere das erste und das zweite Messsignal, werden am zweiten Sensor reflektiert. Um die bestmögliche Signalstärke zu erhalten, können die Reflexionen mit dem Messsignal selbst so überlagert werden, dass die Amplitude maximal wird. Dies ist durch eine zeitliche Verschiebung von t zu erreichen.The invention is based on the following principle: The measurement signals emitted by the first sensor, that is to say in particular the first and the second measurement signal, are reflected at the second sensor. In order to obtain the best possible signal strength, the reflections can be superimposed with the measurement signal itself so that the amplitude becomes maximum. This can be achieved by a time shift of t.

Gemäß des erfindungsgemäßen Verfahrens wird der zeitliche Abstand t so gewählt, dass die Amplitude des vom zweiten Sensor empfangenen Messsignals aus einer Überlagerung von zweitem Messsignal und von vom zweiten Sensor zum ersten Sensor und wieder zurück zum zweiten Sensor reflektierten ersten Messsignal, maximal ist.According to the method according to the invention, the time interval t is selected such that the amplitude of the measurement signal received from the second sensor is at a maximum from a superposition of the second measurement signal and of the first measurement signal reflected from the second sensor to the first sensor and back again to the second sensor.

Eine Weiterbildung der Erfindung sieht vor, dass der zeitliche Abstand t über einen vorgegebenen Bereich variiert wird. Dazu werden beispielsweise viele Messsignale mit einem konstanten Abstand t zueinander vom ersten zum zweiten Sensor gesendet. Nach einer Einschwingzeit T, ist die vom zweiten Sensor gemessene Amplitude bei sonst gleich bleibendenA development of the invention provides that the time interval t is varied over a predetermined range. For this purpose, for example, many measurement signals are transmitted at a constant distance t from one another to the second sensor. After a settling time T, the amplitude measured by the second sensor is otherwise constant

Systemeigenschaften, wie z.B. Durchfluss und/oder Füllstand, konstant, d.h. sie ändert sich über einen gewissen Zeitraum nicht. Diese Amplitude wird zusammen mit dem Abstand t in einem Speicher gehalten. Danach wird der Abstand t verändert. Dies wird wiederholt, Fachmänner sprechen von einem sweep. Dies kann so lange wiederholt werden, bis ein Abbruchkriterium erfüllt ist und der zur maximalen aufgezeichnete Amplitude gehörende Abstand zwischen den Messsignalen wird eingestellt. Der Zeitpunkt des Abbrechens des Sweeps ist ein klassisches Optimierungsproblem, mit den für den Fachmann bekannten Optimierungsverfahren durchzuführen.System properties, such as Flow and / or level, constant, i. it does not change over a period of time. This amplitude is held together with the distance t in a memory. Thereafter, the distance t is changed. This is repeated, specialists speak of a sweep. This can be repeated until a termination criterion is met and the distance between the measurement signals associated with the maximum recorded amplitude is set. The time of canceling the sweep is a classic optimization problem to perform with the well-known in the art optimization process.

In einer weiteren Weiterbildung der erfindungsgemäßen Lösung wird mittels des zeitlichen Abstands t die Schallgeschwindigkeit eines durchschallten Messmediums ermittelt, welches z.B. durch ein Messrohr strömt, und/oder mittels des zeitlichen Abstands t wird der Füllstand eines Messmediums in einem Behälter ermittelt. Diese Ausgestaltung der Erfindung benötigt keine weitere aufwendige Signalverarbeitung, um die Schallgeschwindigkeit oder den Füllstand zu ermitteln.In a further development of the solution according to the invention, the speed of sound of a sound-through measuring medium is determined by means of the time interval t, which is e.g. flows through a measuring tube, and / or by means of the time interval t, the level of a measuring medium is determined in a container. This embodiment of the invention requires no further complex signal processing to determine the speed of sound or the level.

Die Aufgabe wird weiterhin gelöst durch eine Weiterbildung des erfindungsgemäßen Verfahrens, wobei die Laufzeit TOF1 des Messsignals zwischen Aussenden des Messsignals und Empfangen der Messsignale bekannt ist, wobei der zeitliche Abstand t so gewählt wird, dass der zeitliche Abstand t so gewählt wird, dass er ein ganzzahliges Vielfaches der Laufzeit TOF1 ist oder dass zusätzlich die Laufzeit TOF2 eines dritten Messsignals zwischen Aussenden des dritten Messsignals vom zweiten Sensor und Empfangen des dritten Messsignals vom ersten Sensor bekannt ist und der zeitliche Abstand t so gewählt wird, dass er die durch eine natürliche Zahl n geteilte Summe von TOF1 und TOF2 ist, z.B. dass der zeitliche Abstand t ein ganzzahliges Vielfaches des Mittelwerts der Laufzeiten TOF1 und TOF2 ist, d.h. dass der zeitliche Abstand t so gewählt wird, dass er ein ganzzahliges Vielfaches von (TOF1 + TOF2)/2 ist. In einem Beispiel beträgt t 2*(TOF1 + TOF2)/2, d.h. t = TOF1 + TOF2. Erster und zweiter Sensor sind im Falle eines Auswertens des dritten Messsignals sowohl als Sender ais auch als Empfänger einsetzbar. Mit diesem Verfahren ist ein Messsignal an einem Sender so gestaltbar, dass das am Empfänger ankommende Messsignal deutlich empfangbar ist, d.h. die Signalamplitude ist gegenüber dem Stand der Technik deutlich verbessert.The object is further achieved by a further development of the method according to the invention, wherein the transit time TOF 1 of the measurement signal between emission of the measurement signal and receiving the measurement signals is known, wherein the time interval t is chosen so that the time interval t is chosen such that it is an integer multiple of the time TOF 1 or that in addition the duration TOF 2 of a third measurement signal between sending the third measurement signal from the second sensor and receiving the third measurement signal from the first sensor is known and the time interval t is chosen so that it by a natural number n is the divided sum of TOF 1 and TOF 2 , eg that the time interval t is an integer multiple of the mean value of the transit times TOF 1 and TOF 2 , ie that the time interval t is chosen to be an integer multiple of ( TOF 1 + TOF 2 ) / 2. In one example, t is 2 * (TOF 1 + TOF 2 ) / 2, that is, t = TOF 1 + TOF 2 . First and second sensor can be used in the case of an evaluation of the third measurement signal both as a transmitter and as a receiver. With this method, a measurement signal at a transmitter can be designed such that the measurement signal arriving at the receiver can be clearly received, ie the signal amplitude is significantly improved compared to the prior art.

Die Messsignale weisen jeweils mindestens eine Halbwelle einer mechanischen Welle oder einer elektromagnetischen Welle auf. Dies gilt sowohl für das erste Messsignal, als auch für das zweite und eventuell dritte Messsignal. Physikalisch transportiert eine Welle Energie, wobei eine mechanische Welle, z.B. eine Schallwelle, sich durch eine Schwingung einer Kette elastisch gekoppelter Massen, wie. z.B. Teilchen eines Mediums, ausbreitet, wobei die Massen nicht dauerhaft,verschoben werden. Elektromagnetische Wellen hingegen benötigen kein Medium und sind auch im Vakuum ausbreitungsfähig. Bekannte Beispiele für elektromagnetische Wellen sind Radiowellen oder Licht. Eigenschaften einer Welle lassen sich z.B. über ihre Parameter Amplitude, ihre Ausbreitungsgeschwindigkeit und Frequenz bzw. Wellenlänge beschreiben. Wellen können als periodische Wellen oder als Stoßwellen auftreten. Daher können Halbwellen auch verschiedene Formen annehmen, z.B. eine Sinus-Form, eine Rechteck- oder eine DreieckForm. Eine Welle wird theoretisch über ihre Wellengleichung beschrieben, welche eine Auslenkung von einer Nulllinie aus gesehen an einem Ort zu einem bestimmten Zeitpunkt ergibt. Eine extreme Ausprägung einer Halbwelle wäre so z.B. ein Dirac-Stoß, welcher sich durch einen Raum ausbreitet. Eine Halbwelle wird allgemein durch Nullstellen begrenzt und ist positiv oder negativ. Ihre Zeitdauer entspricht einer halben Periodendauer der Welle. Schließt eine negative Halbwelle an eine positive Halbwelle gleicher Amplitude und gleicher Wellenlänge direkt an, ist also der zeitliche Abstand t vom Beginn der positiven Halbwelle bis zum Beginn der negativen Halbwelle λ/2, so entsteht eine Welle einer Periodendauer λ. Ein Signal aus mehreren Halbwellen kann somit verschiedene Frequenzen umfassen.The measurement signals each have at least one half-wave of a mechanical wave or an electromagnetic wave. This applies both to the first measurement signal and to the second and possibly third measurement signal. Physically, a wave carries energy, with a mechanical wave, e.g. a sound wave, through a vibration of a chain of elastically coupled masses, such as. e.g. Particles of a medium, spreading, the masses are not permanently moved. Electromagnetic waves, on the other hand, require no medium and are capable of propagation even in a vacuum. Well-known examples of electromagnetic waves are radio waves or light. Properties of a wave can be e.g. describe their amplitude, their propagation velocity and frequency or wavelength via their parameters. Waves can occur as periodic waves or as shockwaves. Therefore, halfwaves may take various forms, e.g. a sine shape, a rectangle or a triangle shape. A wave is theoretically described by its wave equation, which gives a deflection from a zero line in one place at a given time. An extreme form of a half wave would be e.g. a Dirac push that spreads through a room. A half-wave is generally bounded by zeros and is positive or negative. Their duration corresponds to half the period of the wave. If a negative half-wave directly adjoins a positive half-wave of the same amplitude and the same wavelength, ie if the time interval t is from the beginning of the positive half-wave to the beginning of the negative half-wave λ / 2, a wave of a period λ is formed. A signal of several half waves may thus comprise different frequencies.

In zeitlichem Abstand t zum ersten Messsignal wird vom ersten Sensor mindestens ein weiteres, zweites Messsignal, also mindestens eine weitere, zweite Halbwelle, ausgesendet. Dies geschieht einer Ausprägung des erfindungsgemäßen Verfahrens zufolge insbesondere nach dem ersten Messsignal, also nach der ersten Halbwelle. Wird der zeitliche Abstand t berechnet, ausgehend vom Beginn des ersten Messsignals, also insbesondere vom Beginn der ersten Halbwelle des ersten Messsignals, d.h. also wenn die Amplitude der ersten Halbwelle des ersten Messsignals ungleich Null wird, wie in einer Weiterbildung des erfindungsgemäßen Verfahrens offenbart, dann kann, dieser oben genannten Ausprägung der Erfindung zufolge, das zweite Messsignal, also der Beginn der zweiten Halbwelle frühestens λ/2 nach dem Beginn der ersten Halbwelle erfolgen. Allgemein liegt t im Intervall [0, T], wobei T endlich groß ist.At a time interval t from the first measuring signal, at least one further, second measuring signal, that is to say at least one further, second half-wave, is emitted by the first sensor. This happens according to an embodiment of the method according to the invention, in particular after the first measuring signal, ie after the first half-wave. If the time interval t is calculated, starting from the beginning of the first measuring signal, ie in particular from the beginning of the first half-wave of the first measuring signal, i. Thus, if the amplitude of the first half-wave of the first measurement signal is not equal to zero, as disclosed in a development of the method according to the invention, then the second measurement signal, ie the beginning of the second half-wave at the earliest λ / 2 after the Beginning of the first half wave. In general, t is in the interval [0, T], where T is finitely large.

Nun sind weitere Ausführungsformen der erfindungsgemäßen Lösung denkbar, was die Definition des Start-Zeitpunkts für die Bestimmung der Laufzeiten TOF1 und/oder TOF2 und damit auch für die Bestimmung des zeitlichen Abstands t der Messsignale zueinander betrifft, wie sie weiter unten näher ausgeführt sind.Now, further embodiments of the inventive solution are conceivable, which relates to the definition of the start time for the determination of the maturities TOF 1 and / or TOF 2 and thus also for the determination of the time interval t of the measured signals to each other, as described below ,

Der zeitliche Abstand t zwischen Aussenden des ersten Messsignals vom ersten Sensor und Aussenden des zweiten Messsignals vom ersten Sensor ist in einer Ausführungsform ein ganzzahliges Vielfaches der Laufzeit TOF1 des ersten Messsignals zwischen Aussenden des ersten Messsignals vom ersten Sensor und Empfangen des ersten Messsignals vom zweiten Sensor. D.h. das Aussenden des zweiten Messsignals wird entsprechend an die Laufzeit des ersten Messsignals angepasst.The time interval t between transmission of the first measurement signal from the first sensor and emission of the second measurement signal from the first sensor is in one embodiment an integer multiple of the transit time TOF 1 of the first measurement signal between transmission of the first measurement signal from the first sensor and receiving the first measurement signal from the second sensor , That is, the transmission of the second measurement signal is adjusted according to the duration of the first measurement signal.

Die Messsignale werden von zumindest einem weiteren, zweiten Sensor empfangen. In einer Ausgestaltung der Erfindung ist der zweite Sensor konstruktiv gleich ausgestaltet wie der erste Sensor. Insbesondere handelt es sich um Ultraschallwandler eines Füllstandsmessgeräts oder eines Durchflussmessgeräts.The measuring signals are received by at least one further, second sensor. In one embodiment of the invention, the second sensor is configured structurally the same as the first sensor. In particular, it is an ultrasonic transducer of a level gauge or a flowmeter.

In einem anderen Fall ist der zeitliche Abstand t so gewählt wird, dass er ein ganzzahliges Vielfaches des Mittelwerts der Laufzeiten TOF1 und TOF2 ist.
Die Laufzeiten TOF1 und/oder TOF2 der Messsignale zwischen Aussenden des jeweiligen Messsignals und Empfangen des entsprechenden Messsignals sind bekannt. Gemäß einer Weiterbildung des erfindungsgemäßen Verfahrens werden die Laufzeit TOF1 und/oder TOF2 mittels einer Messung bestimmt - sie werden gemessen. Die Laufzeit TOF2 ist messbar zwischen dem Aussenden des dritten Messsignals vom zweiten Sensor und dem Empfangen des dritten Messsignals vom ersten Sensor.
In another case, the time interval t is chosen to be an integer multiple of the average of the maturities TOF 1 and TOF 2 .
The transit times TOF 1 and / or TOF 2 of the measurement signals between transmission of the respective measurement signal and reception of the corresponding measurement signal are known. According to a development of the method according to the invention, the transit time TOF 1 and / or TOF 2 are determined by means of a measurement - they are measured. The transit time TOF 2 is measurable between the emission of the third measurement signal from the second sensor and the reception of the third measurement signal from the first sensor.

Nun zu den oben bereits angedeuteten weiteren Ausführungsformen der erfindungsgemäßen Lösung, was die Definition des Start-Zeitpunkts für die Bestimmung der Laufzeiten TOF1 und/oder TOF2 und damit auch für die Bestimmung des zeitlichen Abstands t der Messsignale zueinander betrifft. So wird beispielsweise eine steigende oder fallende Flanke des entsprechenden Messsignals als Start- oder Stop-Trigger verwendet. Nimmt also die erste Ableitung eines Messsignals einen bestimmten Wert an, so gilt dieser Zeitpunkt als Beginn des Messsignals. Eine weitere Alternative besteht darin, einen Wendepunkt im Messsignal als Beginn des Messslgnals heranzuziehen, ein Amplitudenmaximum. Die bisher aufgezeigten Varianten besitzen den Nachteil der schlechten Differenzierung zwischen einem Rauschen und dem eigentlichen Messsignal. Gemäß einer Weiterbildung wird die Laufzeit TOF1 des ersten Messsignals zwischen Aussenden des ersten Messsignals vom ersten Sensor und Empfangen des ersten Messsignals vom zweiten Sensor bestimmt zwischen den Zeitpunkten einer ersten Überschreitung eines vorgebbaren ersten Schwellwerts des ersten Messsignals am ersten Sensor und einer ersten Überschreitung eines vorgebbaren zweiten Schwellwerts des ersten Messsignals am zweiten Sensor. Eine Variante ist in der Gleichheit des ersten und des zweiten Schwellwerts zu sehen. Die Überschreitung eines Schwellwerts als auslösendes Ereignis bzw. Triggerung von Messungen kann alleine oder in Kombination mit den vorgenannten Merkmalen Verwendung finden. Der jeweilige End-Zeitpunkt ist entsprechend gleich gewählt. Diese Liste erhebt keinen Anspruch auf Vollständigkeit. Weitere Möglichkeiten zur Bestimmung der Laufzeit TOF1 sind aus dem Stand der Technik bekannt. Analoges gilt natürlich auch für das dritte Messsignal bzw. die Laufzeit TOF2 des dritten Messsignals. Die Laufzeit TOF2 des dritten Messsignals zwischen Aussenden des dritten Messsignals vom zweiten Sensor und Empfangen des dritten Messsignals vom ersten Sensor wird bestimmt zwischen den Zeitpunkten einer ersten Überschreitung eines vorgebbaren Schwellwerts des dritten Messsignals am zweiten Sensor und einer ersten Überschreitung des Schwellwerts des dritten Messsignals am ersten Sensor.Now to the above already indicated further embodiments of the inventive solution, which relates to the definition of the start time for the determination of the maturities TOF 1 and / or TOF 2 and thus also for the determination of the time interval t of the measured signals to each other. For example, a rising or falling edge of the corresponding measurement signal is used as a start or stop trigger. Thus, if the first derivative of a measurement signal assumes a specific value, then this time is considered the beginning of the measurement signal. Another alternative is to use a turning point in the measurement signal as the beginning of the Messslgnals, an amplitude maximum. The previously indicated variants have the disadvantage of poor differentiation between noise and the actual measurement signal. According to a further development, the transit time TOF 1 of the first measurement signal between emission of the first measurement signal from the first sensor and reception of the first measurement signal from the second sensor is determined between the times of a first exceeding of a predeterminable first threshold value of the first measurement signal at the first sensor and a first exceeding of a predeterminable one second threshold value of the first measurement signal at the second sensor. One variant is in the equality of the first and the second Threshold to see. Exceeding a threshold value as the triggering event or triggering of measurements can be used alone or in combination with the aforementioned features. The respective end time is chosen accordingly equal. This list is not exhaustive. Further possibilities for determining the transit time TOF 1 are known from the prior art. Of course, the same applies analogously to the third measurement signal or the transit time TOF2 of the third measurement signal. The transit time TOF 2 of the third measurement signal between transmission of the third measurement signal from the second sensor and receiving the third measurement signal from the first sensor is determined between the times of a first exceeding a predetermined threshold value of the third measurement signal at the second sensor and a first exceeding the threshold value of the third measurement signal on first sensor.

Entsprechend wir der zeitliche Abstand t des Messsignals zwischen Aussenden des ersten Messsignals vom ersten Sensor und Aussenden des zweiten Messsignals vom ersten Sensor gemäß einer Weiterbildung der erfindungsgemäßen Lösung bestimmt zwischen den Zeitpunkten einer ersten Überschreitung eines bestimmten ersten Schwellwerts des ersten Messsignals am ersten Sensor und einer ersten Überschreitung eines bestimmten dritten Schwellwerts des zweiten Messsignals am ersten Sensor. Der erste und der dritte Schwellwert und/oder der oben erwähnte zweite Schwellwert können wiederum gleich sein.Accordingly, the time interval t of the measurement signal between transmission of the first measurement signal from the first sensor and emission of the second measurement signal from the first sensor according to a development of the inventive solution determines between the times of a first exceeding a certain first threshold of the first measurement signal at the first sensor and a first Exceeding a certain third threshold value of the second measuring signal at the first sensor. Again, the first and third thresholds and / or the second threshold mentioned above may be the same.

Stehen sich beispielsweise zwei Ultraschallsensoren eines Durchflussmessgeräts auf einer Linie gegenüber, mit einem vorgegebenen Winkel zur Hauptströmungsrichtung eines Messmediums in einem Messrohr geneigt, sendet der erste Ultraschallsensor, der Sender, ein erstes Messsignal zum zweiten Sensor, dem Empfänger, und anschließend sendet umgekehrt der zweite Sensor, nun der Sender, ein drittes Messsignal zum nun als Empfänger fungierenden ersten Sensor, um aus den unterschiedlichen Laufzeiten TOF1 und TOF2 der beiden Messsignale zwischen den Sensoren, bedingt durch die Strömung des Messmediums im Messrohr, den Durchfluss des Messmediums durch das Messrohr zu errechnen. Der jeweilige Empfänger empfängt außer dem zur Bestimmung der Laufzeit herangezogenen Signal auch weitere Signale, verursacht durch Reflexionen. Neben den störenden Reflexionen, z.B. der Reflexion des Messsignals an der Rohrwand, tritt auch eine Reflexion am jeweiligen Sender selbst auf. Die Erste dieser Reflexionen wird vom Empfänger typischerweise zwei Laufzeiten TOF1 + TOF2 nach dem Eintreffen des Messsignals registriert. Weitere gleichartige Reflexionen treten in weiteren Abständen von zwei Laufzeiten TOF1 + TOF2 auf. Werden die Messsignale vom Sender nun mit einem Abstand von zwei Laufzeiten TOF1 + TOF2 ausgesendet, überlagern sich die Messsignale mit den genannten Reflexionen am Empfänger und das nutzbare Messsignal wird deutlich verstärkt. Analoges gilt für die Füllstandsmessung, nur mit dem Unterschied, dass die Laufzeiten TOF1 und TOF2 gleich sind, da kein Messmedium den Schall "mitnimmt". Das Laufzeitdifferenzprinzip in der Durchflussmessung wird daher auch oft als "Schallmitnahmeverfahren" bezeichnet. Daher kann in der Anwendung des erfindungsgemäßen Verfahrens in der Füllstandmesstechnik auch auf die Bestimmung des TOF2 verzichtet werden. Es gilt: 2* TOF1 = TOF1 + TOF2.For example, if two ultrasonic sensors of a flowmeter face each other on a line inclined at a predetermined angle to the main flow direction of a measuring medium in a measuring tube, sends the first ultrasonic sensor, the transmitter, a first measurement signal to the second sensor, the receiver, and then sends the second sensor vice versa , now the transmitter, a third measurement signal to now acting as a receiver first sensor to from the different maturities TOF 1 and TOF 2 of the two measurement signals between the sensors, due to the flow of the measuring medium in the measuring tube, the flow of the measured medium through the measuring tube calculate. In addition to the signal used to determine the transit time, the respective receiver also receives further signals, caused by reflections. In addition to the disturbing reflections, such as the reflection of the measurement signal on the pipe wall, a reflection on the respective transmitter itself occurs. The first of these reflections is recorded by the receiver typically two transit times TOF 1 + TOF 2 after the arrival of the measurement signal. Other similar reflections occur at further intervals of two maturities TOF 1 + TOF 2 . If the measurement signals from the transmitter are now transmitted at a distance of two transit times TOF 1 + TOF 2 , the measurement signals are superimposed with the reflections at the receiver and the usable measurement signal is significantly amplified. The same applies to level measurement, but with the difference that the transit times TOF 1 and TOF 2 are the same since no measuring medium "takes along" the sound. The transit time difference principle in the flow measurement is therefore often as "Sound recording method". Therefore, in the application of the method according to the invention in the level measurement and the determination of the TOF 2 can be omitted. The following applies: 2 * TOF 1 = TOF 1 + TOF 2 .

Ein Messsignal wird gemäß einer Ausgestaltung der Erfindung somit zur Bestimmung der Laufzeit TOF1 und/oder TOF2 des Messsignals vom Sender zum Empfänger gesendet. Der Abstand der weiteren Messsignale zueinander wird nun gemäß der vorliegenden Gegebenheiten auf ein ganzzahliges Vielfaches dieser Laufzeit TOF1 eingestellt, z.B. auf das Zweifache, oder eben auf ein ganzzahliges Vielfaches von (TOF1 + TOF2)/2.A measurement signal is thus sent to determine the maturity TOF 1 and / or TOF 2 of the measurement signal from the transmitter to the receiver according to an embodiment of the invention. The distance of the other measurement signals to each other is now set according to the existing conditions to an integer multiple of this runtime TOF 1 , for example, to twice, or even to an integer multiple of (TOF 1 + TOF 2 ) / 2.

Speziell in der Durchflussmessung mit Ultraschall werden Wellenpakete, z.B. mit 8, 16 oder 32 Bursts in schneller Reihenfolge nacheinander von einem ersten Sensor durch das Messmedium zu einem zweiten Sensor geschickt. Dabei kann das Messsignal auf direktem Wege zwischen den beiden Sensoren verlaufen, falls beide Sensoren sich gegenüberstehen, oder das Messsignal wird an dem Messrohr zu den Sensoren reflektiert. So wird die Laufzeit des Messsignals in eine Richtung bestimmt. Nach einer kurzen Pause werden die Funktionen der Sensoren umgekehrt. Nun sendet der zweite Sensor die Wellenpakete zum ersten Sensor., Das Ergebnis ist die Laufzeit des Messsignals in die andere Richtung. Anhand beider Laufzeiten kann nun die Durchflussgeschwindigkeit des Messmediums im Messrohr und damit dann der Durchfluss des Messmediums im Messrohr bestimmt werden. Dieses Verfahren wird ständig wiederholt. Nach dem erfindungsgemäßen Verfahren könnte nun beispielsweise ein einzelnes Burst-Signal, respektive zwei Burst-Signale in beide Richtungen, den Wellenpaketen vorgeschaltet werden. Anhand dieses Wellenpakets wird die Laufzeit TOF1 des Messsignals bzw. der Laufzeiten TOF1 und TOF2 der Messsignale von einem Sensor zum anderen erfasst. Der zeitliche Abstand t zwischen den einzelnen Bursts der nachfolgenden Wellenpakete wird dann anhand der Laufzeiten TOF1 und TOF2 bestimmt, er wird beispielsweise auf t = 2*TOF1 eingestellt, oder auf t = TOF1 + TOF2.Especially in flow measurement with ultrasound, wave packets, eg with 8, 16 or 32 bursts are sent in quick succession from a first sensor through the measuring medium to a second sensor. In this case, the measurement signal can run directly between the two sensors, if both sensors face each other, or the measurement signal is reflected at the measuring tube to the sensors. This determines the running time of the measuring signal in one direction. After a short break, the functions of the sensors are reversed. Now, the second sensor sends the wave packets to the first sensor., The result is the duration of the measurement signal in the other direction. On the basis of both transit times, the flow rate of the measuring medium in the measuring tube and thus the flow of the measuring medium in the measuring tube can now be determined. This procedure is repeated constantly. For example, according to the inventive method, a single burst signal, or two burst signals in both directions, could be connected upstream of the wave packets. On the basis of this wave packet, the transit time TOF 1 of the measurement signal or the transit times TOF 1 and TOF 2 of the measurement signals is detected from one sensor to another. The time interval t between the individual bursts of the subsequent wave packets is then determined on the basis of the transit times TOF 1 and TOF 2 , it is set, for example, to t = 2 * TOF 1 , or to t = TOF 1 + TOF 2 .

Im Rahmen des erfindungsgemäßen Verfahrens sind die Messsignale und die Reflexionen der Messsignale an den Sensoren so aufeinander abgestimmt, dass sie sich gegenseitig verstärken.In the context of the method according to the invention, the measurement signals and the reflections of the measurement signals at the sensors are matched to one another in such a way that they reinforce each other.

Dabei wird der zeitliche Abstand t des Messsignals zwischen Aussenden des ersten Messsignals vom ersten Sensor und Aussenden des zweiten Messsignals vom ersten Sensor nach dem erfindungsgemäßen Verfahren so gewählt, dass die Amplitude eines empfangenen Messsignals am zweiten Sensor maximal wird.In this case, the time interval t of the measurement signal between transmission of the first measurement signal from the first sensor and emission of the second measurement signal from the first sensor according to the inventive method is selected so that the amplitude of a received measurement signal at the second sensor becomes maximum.

Einer weiteren Weiterbildung der Erfindung gemäß wird mittels des zeitlichen Abstands t und mittels eines zeitlichen Abstands x zwischen Aussenden des zweiten Messsignals vom ersten Sensor und Empfangen eines Messsignals vom zweiten Sensor die Strömungsgeschwindigkeit eines Messmediums in einem Messrohr ermittelt.According to a further development of the invention, the flow velocity of a measuring medium in a measuring tube is determined by means of the time interval t and by means of a time interval x between transmission of the second measuring signal from the first sensor and receiving a measuring signal from the second sensor.

Ist der Durchmesser des Messrohrs ebenfalls bekannt; kann somit auch der Durchfluss des Messmediums durch das Messrohr ermittelt werden. Alternativ kann dies mittels des zeitlichen Abstands t und der Laufzeit TOF1 geschehen. Mathematisch ist diese Alternative mit der genannten Weiterbildung gleichzusetzen, wobei messtechnisch nicht die Laufzeit TOF1 direkt gemessen wird, sondern lediglich der zeitliche Abstand x zwischen Aussenden des ersten Messsignals vom ersten Sensor und Empfangen des Messsignals vom zweiten Sensor. Vorteilhaft geschieht dies, wenn der Abstand t so gewählt ist, dass x kleiner t/2 ist, insbesondere dass gilt: t = TOF1 - x.If the diameter of the measuring tube is also known; Thus, the flow of the measuring medium through the measuring tube can also be determined. Alternatively, this can be done by means of the time interval t and the runtime TOF 1 . Mathematically, this alternative is to be equated with the said development, wherein not the maturity TOF 1 is measured directly by measurement, but only the time interval x between emission of the first measurement signal from the first sensor and receiving the measurement signal from the second sensor. This is advantageously done when the distance t is chosen such that x is smaller than t / 2, in particular that t = TOF 1 -x.

Die Erfindung wird anhand der nachfolgenden Figuren näher erläutert, in denen jeweils ein Ausführungsbeispiel dargestellt ist. Gleiche Elemente sind in den Figuren mit gleichen Bezugszeichen versehen.

Fig. 1
zeigt zwei sich gegenüberstehende Ultraschallsensoren eines Ultraschall-Durchflussmessgeräts,
Fig. 2
zeigt den zeitlichen Verlauf der Messsignale am zweiten Sensor ohne Anwendung des erfindungsgemäßen Verfahrens,
Fig. 3
zeigt den zeitlichen Verlauf der Messsignale am ersten und zweiten Sensor überlagert unter Anwendung des erfindungsgemäßen Verfahrens,
Fig. 4
zeigt ein Füllstandsmessgerät mit zwei Ultraschallsensoren,
Fig. 5
zeigt zeitliche Amplitudenverläufe am ersten und zweiten Sensor.
The invention will be explained in more detail with reference to the following figures, in each of which an embodiment is shown. Identical elements are provided in the figures with the same reference numerals.
Fig. 1
shows two opposing ultrasonic sensors of an ultrasonic flowmeter,
Fig. 2
shows the time course of the measuring signals at the second sensor without application of the method according to the invention,
Fig. 3
shows the temporal course of the measuring signals at the first and second sensor superimposed using the method according to the invention,
Fig. 4
shows a level gauge with two ultrasonic sensors,
Fig. 5
shows temporal amplitude curves at the first and second sensor.

In Fig. 1 ist ein Inline-Ultraschall-Durchflussmessgerät mit zwei sich gegenüberstehenden Ultraschallsensoren schematisch dargestellt. Der erste Sensor 1 sendet Ultraschallsignale zum zweiten Sensor 2. Eingezeichnet sind der direkte, erste Signalpfad 10, also der direkte Weg eines Messsignals vom ersten Sensor 1 zum zweiten Sensor 2, und das Messsignal, welches vom zweiten Sensor 2 zurück zum ersten Sensor 1 und von dort wieder zurück zum zweiten Sensor 2 reflektiert wird, also der zweite Signalpfad 11. Die Reflektion vom ersten Sensor 1 zum zweiten Sensor 2 zeigt dabei in die Richtung des ersten Messsignals. Eine solche Reflektion kann sich natürlich mehrmals wiederholen.In Fig. 1 is an inline ultrasonic flowmeter with two opposing ultrasonic sensors shown schematically. The first sensor 1 transmits ultrasonic signals to the second sensor 2. The direct, first signal path 10, ie the direct path of a measurement signal from the first sensor 1 to the second sensor 2, and the measurement signal, which is from the second sensor 2 back to the first sensor 1 and from there back to the second sensor 2 is reflected, so the second signal path 11. The reflection from the first sensor 1 to the second sensor 2 shows it in the direction of the first measurement signal. Of course, such a reflection can be repeated several times.

Zu dieser Anordnung offenbart nun Fig. 2 den zeitlichen Amplitudenverlauf am zweiten Sensor. Zusätzlich ist der Burst 4 am ersten Sensor einbeschrieben. Neben dem Burst 4 am ersten Sensor, zeigt das Diagramm das ankommende direkte Messsignal 5, detektiert vom zweiten Sensor, und die Reflektionen 6-9, wie sie ebenfalls vom zweiten Sensor gemessen werden. Zwischen dem Burst 4 und dem direkten Messsignal 5, gemessen vom zweiten Sensor, vergeht die Laufzeit TOF1 des Messsignals vom ersten zum zweiten Sensor. Wie in Fig. 1 beschrieben, wird das Messsignal nun vom zweiten Sensor zum ersten Sensor und wieder zurück zum zweiten Sensor reflektiert. Dabei legt es natürlich den doppelten Weg zurück, was aber nicht unbedingt bedeutet, dass es auch die doppelte Laufzeit TOF1 zurücklegt. Denn da das Messmedium zwischen den Ultraschallsensoren 1 und 2 fließt, wird der Schall vom Medium "mitgenommen" - es wird die Tatsache ausgenutzt, dass die Ausbreitungsgeschwindigkeit von Ultraschallwellen in einem Medium von dessen Fließgeschwindigkeit direkt beeinflusst wird. Das Gleiche gilt für die weiteren Reflexionen 7, 8 und 9.To this arrangement now discloses Fig. 2 the temporal amplitude curve at the second sensor. In addition, the burst 4 is inscribed on the first sensor. In addition to the burst 4 on the first sensor, the diagram shows the incoming direct measurement signal 5, detected by the second sensor, and the reflections 6-9, as also measured by the second sensor. Between the burst 4 and the direct measuring signal 5, measured by the second sensor, the transit time TOF 1 of the measuring signal passes from the first to the second sensor. As in Fig. 1 described, the measurement signal is now reflected from the second sensor to the first sensor and back to the second sensor. Of course, it puts back the double way, but that does not necessarily mean that it covers twice the TOF 1 runtime. Because the measuring medium flows between the ultrasonic sensors 1 and 2, the sound is "taken away" by the medium - the fact is exploited that the propagation velocity of Ultrasonic waves in a medium directly influenced by its flow velocity. The same applies to the further reflections 7, 8 and 9.

Wird nun der zeitliche Abstand t zwischen zwei Bursts 4, welche vom ersten Sensor zum zweiten Sensor gesendet werden, auf ein ganzzahliges Vielfaches von (TOF1 + TOF2)/2, hier auf TOF1 + TOF2, eingestellt, so misst der zweite Sensor ein Signal überlagert aus dem direkten Messsignal 5 und den Reflektionen 6-9, insbesondere aus dem direkten Messsignal 5 und der ersten Reflektion 6, wie in Fig. 3 skizziert. Durch die Phasengleichheit des direkten Messsignals 5 und der Reflektionen 6-9, insbesondere der ersten Reflektion 6, kommt es zur gegenseitigen Verstärkung der Signale und damit zu einem deutlich empfangbaren Signal.If now the time interval t between two bursts 4, which are sent from the first sensor to the second sensor, set to an integer multiple of (TOF 1 + TOF 2 ) / 2, here to TOF 1 + TOF 2 , measures the second Sensor superimposed on a signal from the direct measurement signal 5 and the reflections 6-9, in particular from the direct measurement signal 5 and the first reflection 6, as in Fig. 3 outlined. Due to the phase equality of the direct measurement signal 5 and the reflections 6-9, in particular the first reflection 6, there is mutual amplification of the signals and thus to a clearly receivable signal.

Das Messsignal wird am Sender entsprechend bestimmter Prozessgrößen so gestaltet, dass das am Empfänger ankommende Messsignal deutlich empfangbar ist. Die aufeinander folgenden Wellen sind so bestimmt, dass sie sich gegenseitig verstärken. Die Laufzeiten TOF1 und TOF2 sind abhängig von gewissen Prozessgrößen; wie z.B. der Schallgeschwindigkeit im Messmedium, von geometrischen Größen, wie z.B. dem Abstand der beiden Sensoren zueinander, und natürlich vom Durchfluss des Messmediums durch das Messrohr.The measuring signal is designed on the transmitter according to certain process variables so that the incoming signal to the receiver is clearly receivable. The successive waves are determined to reinforce each other. The transit times TOF 1 and TOF 2 depend on certain process variables; such as the speed of sound in the measuring medium, of geometric variables, such as the distance between the two sensors to each other, and of course the flow of the medium through the measuring tube.

Gleichermaßen zeigt Fig. 3 die maximale Amplitude im eingeschwungenen Systemzustand an, welche am zweiten Sensor gemessen wird. Erfindungsgemäß kann der Abstand t der beiden Burts 4 variiert werden, bis die Amplitude des am zweiten Sensor gemessenen Signals maximal ist. Der Abstand t beträgt in diesem Beispiel dabei gewöhnlicherweise die Summe aus TOF1 und TOF2 geteilt durch eine natürliche Zahl.Equally shows Fig. 3 the maximum amplitude in the steady state system state, which is measured at the second sensor. According to the invention, the distance t of the two burts 4 can be varied until the amplitude of the signal measured at the second sensor is maximum. The distance t in this example is usually the sum of TOF 1 and TOF 2 divided by a natural number.

Fig. 4 illustriert ein Füllstandmessgerät mit zwei Ultraschallsensoren. Dabei sind die Ultraschallsensoren 1 und 2 parallel zur Oberfläche des Messmediums 3 angeordnet. Sowohl der erste Signalpfad 10 des direkten Messsignals, als auch der zweite Signalpfad 11 der Reflexionen sind eingezeichnet. TOF1 und TOF2 wären hier natürlich gleich, weshalb auf eine Erfassung von TOF2 mittels eines dritten Messsignals verzichtet wird. Die Sensoren 1 und 2 können dann speziell als reine Sender oder Empfänger ausgestaltet sein. Fig. 4 illustrates a level gauge with two ultrasonic sensors. In this case, the ultrasonic sensors 1 and 2 are arranged parallel to the surface of the measuring medium 3. Both the first signal path 10 of the direct measurement signal, and the second signal path 11 of the reflections are shown. Of course, TOF 1 and TOF 2 would be the same here, which is why a detection of TOF 2 by means of a third measurement signal is dispensed with. The sensors 1 and 2 can then be designed specifically as a pure transmitter or receiver.

Fig. 5 zeigt sowohl die vom ersten Sensor ausgesandten, als auch die vom zweiten Sensor empfangenen Amplitudenverläufe zusammen in mehreren idealisierten, zeitlichen Darstellungen untereinander, bezogen auf ein Versuchsaufbau, wie ihn die Fig. 1 zeigt, mit zwei sich gegenüberstehenden Ultraschallsensoren hier zur Messung eines Durchflusses eines Messmediums in einem Messrohr, welches sich zwischen den beiden Ultraschallsensoren befindet. Die vom ersten Sensor ausgesendeten Messsignale weisen dabei Rechteckform auf. Fig. 5 shows both the emitted from the first sensor, as well as the amplitude received by the second sensor together in several idealized, temporal representations with each other, based on a test setup, like him Fig. 1 shows, with two opposing ultrasonic sensors here for measuring a flow of a measuring medium in a measuring tube, which is located between the two ultrasonic sensors. The measurement signals emitted by the first sensor have a rectangular shape.

Die vom zweiten Sensor empfangenen Signale 12 sind hingegen als Dreiecke dargestellt. Die Ordinaten weisen die Signalamplituden qualitativ aus, auf den Abszissen ist die Zeit aufgetragen.The received signals from the second sensor 12, however, are shown as triangles. The ordinates show the signal amplitudes qualitatively, on the abscissa the time is plotted.

Im ersten Amplitudenverlauf ist ein erstes Messsignal vom ersten Sensor zum Zeitpunkt Null in Form eines Bursts 4 ausgesandt. Nach einer Zeit T wird es, als direktes Messsignal 5, vom zweiten Sensor empfangen. Danach wird es zurück zum ersten Sensor reflektiert, was wieder die Zeit T benötigt, wenn das Messmedium im Messrohr keine Strömung aufweist, also in Ruhe ist. Empfangen wird es vom ersten Sensor nicht, da in diesem Beispiel der erste Sensor nur als Ultraschall-Sender und der zweite Sensor lediglich als Ultraschall-Empfänger ausgestaltet sind. Nach einer weiteren Periode T ist das Messsignal ein weiteres Mal reflektiert, nun vom ersten Sensor wieder zurück zum zweiten Sensor, und wird als erstes Echo 6 vom zweiten Sensor registriert. Das zweite Echo 7 und dritte Echo entstehen gleichermaßen durch Reflektionen des ersten Echos 6, respektive des zweiten Echos 7.In the first amplitude curve, a first measurement signal from the first sensor at time zero is emitted in the form of a burst 4. After a time T, it is, as a direct measurement signal 5, received by the second sensor. Thereafter, it is reflected back to the first sensor, which again requires the time T, when the measuring medium in the measuring tube has no flow, that is at rest. It is not received by the first sensor, since in this example the first sensor is designed only as an ultrasonic transmitter and the second sensor only as an ultrasonic receiver. After a further period T, the measurement signal is reflected once more, now from the first sensor back to the second sensor, and is registered as the first echo 6 from the second sensor. The second echo 7 and third echo are produced in equal measure by reflections of the first echo 6, respectively of the second echo 7.

Wird nun, bei genanntem Versuchsaufbau mit einem Messmedium in Ruhe, vom ersten Sensor ein weiterer Burst 4, also ein zweites Messsignal, mit einem Abstand von 2*T ausgesandt, so überlagern sich das erste Echo 6 des ersten Bursts mit dem direkten Messsignal 5 des zweiten Bursts 4 am zweiten Sensor, sowie das zweite Echo 7 des ersten Bursts mit dem ersten Echo 6 des zweiten Bursts und dem direkten Messsignal 5 eines dritten Bursts 4 am zweiten Sensor.If a further burst 4, that is to say a second measurement signal, is emitted by the first sensor at a distance of 2 * T, with the test setup mentioned with a measurement medium at rest, then the first echo 6 of the first burst overlaps with the direct measurement signal 5 of FIG second bursts 4 on the second sensor, and the second echo 7 of the first burst with the first echo 6 of the second burst and the direct measurement signal 5 of a third burst 4 on the second sensor.

So werden die Amplituden der vom zweiten Sensor empfangenen Messsignale 12, durch die genannten Überlagerungen, maximal, wie der dritte Amplitudenverlauf verdeutlicht, wobei hier zum Zeitpunkt kleiner Null bereits Messsignale vom ersten Sensor ausgesendet werden.Thus, the amplitudes of the measurement signals 12 received by the second sensor, as a result of the above-mentioned superimpositions, are at most as clear as the third amplitude characteristic, with measurement signals already being transmitted by the first sensor at the time of less than zero.

Die Einstellung des Abstands t zwischen den vom ersten Sensor auszusendenden Messsignalen 4, also insbesondere zwischen erstem und zweitem Messsignal, welcher hier 2*t beträgt, kann geschehen durch Messen des TOF, hier des TOF1, welches hier in diesem Signalverlauf gleich T ist, und entsprechendes einstellen von t oder durch variieren des Abstands t zwischen den zwei vom ersten Sensor auszusendenden Messsignalen 4, also zumindest zwischen einem ersten und einem zweiten Messsignal, hier dem ersten Burst 4 und dem zweiten Burst 4, bis die Amplitude des vom zweiten Sensor empfangenen Messsignals 12 maximal wird.The setting of the distance t between the measurement signals 4 to be transmitted by the first sensor, that is to say between the first and second measurement signals, which in this case is 2 * t, can be done by measuring the TOF, here the TOF 1 , which in this signal curve is equal to T, and corresponding setting of t or by varying the distance t between the two measuring signals 4 to be transmitted by the first sensor, ie at least between a first and a second measuring signal, here the first burst 4 and the second burst 4, until the amplitude of the received from the second sensor Measurement signal 12 is maximum.

In der vierten zeitlichen Überlagerung der Signale von ersten und zweiten Sensor beträgt nun der zeitliche Abstand zweier vom ersten Sensor ausgesendeten Messsignale T, anstatt 2*T wie oben. Damit fallen die vom zweiten Sensor erfassten Messsignale 12 zeitlich zusammen mit denen vom ersten Sensor ausgesandten Messsignale 4. Dies gilt für Null-Durchfluss.In the fourth temporal superimposition of the signals from the first and second sensors, the time interval between two measurement signals T emitted by the first sensor is now T, instead of 2 * T as above. Thus, the measurement signals 12 detected by the second sensor coincide with those of the measurement signals 4 emitted by the first sensor. This applies to zero flow.

Ist der Durchfluss des durchschallten Messmediums im Messrohr ungleich Null, so ist ein Ultraschallsignal in Richtung der Strömung des Messmediums durch das Messrohr schneller, als ein Ultraschallsignal entgegen der Strömung des Messmediums durch das Messrohr. Dieses physikalische Prinzip wird zur Laufzeitdifferenzmessung genutzt. Nun besteht die Annahme, dass eine nicht zu vernachlässigende Geschwindigkeitskömponente der Strömung des Messmediums im Messrohr entgegen der Richtung des ersten Messsignals, also in Richtung vom ersten Sensor zum zweiten Sensor, zeigt.If the flow of the through-sounding measuring medium in the measuring tube is not equal to zero, an ultrasonic signal in the direction of the flow of the measuring medium through the measuring tube is faster than an ultrasonic signal counter to the flow of the measuring medium through the measuring tube. This physical principle is used for measuring transit time difference. Now, it is assumed that a non-negligible velocity component of the flow of the measuring medium in the measuring tube counter to the direction of the first measurement signal, ie in the direction from the first sensor to the second sensor shows.

Das erste Messsignal 4 wird vom ersten Sensor zum zweiten Sensor ausgesendet, dort zurück zum ersten Sensor reflektiert und hier wiederum reflektiert zum zweiten Sensor. Dabei ist es auf dem Weg vom ersten Sensor zum zweiten Sensor langsamer und vom zweiten Sensor zum ersten Sensor schneller. Da nun das erste, wie auch alle weiteren Echos, die Strecke vom ersten Sensor zum zweiten Sensor und zurück zurücklegen, heben sich die Geschwindigkeitsunterschiede auf und es bleibt nur der Einfluss der Geschwindigkeitskomponente des Messmediums auf das direkte, erste Messsignal vom ersten Sensor zum zweiten Sensor. Also das erste Messsignal ist vom ersten Sensor zum zweiten Sensor langsamer als bei einer Null-Strömung. Das Signal der Reflektion vom zweiten zum ersten Sensor ist zwar schneller unterwegs, diese Zeit im Vergleich zur Null-Strömung braucht aber die Reflektion vom ersten zum zweiten Sensor wieder länger. So dass die vom zweiten Sensor gemessenen Signale 12 um eine Zeit x im Vergleich zur Null-Strömung versetzt sind. Diese Zeit x ist die Differenz aus TOF1 und t, es gilt: x = TOF1 - t und x entspricht dabei der Hälfte der herkömmlicherweise ermittelten Laufzeitdifferenz Δt zwischen den Messsignalen in und entgegen der Strömungsrichtung, bzw. der Geschwindigkeitskomponente, des Messmediums im Messrohr, also x = Δt/2. Es kann aber nicht nur TOF1 gemessen werden, wie üblich, sondern es kahn die Zeit x direkt gemessen werden, was messtechnische Vorteile bietet. Da auch die Zeit t bekannt ist, lässt sich somit die Strömungsgeschwindigkeit, und bei bekanntem Durchmesser des Messrohrs auch der Durchfluss des Messmediums durch das Messrohr ermitteln.The first measurement signal 4 is transmitted from the first sensor to the second sensor, where it is reflected back to the first sensor and in turn reflected to the second sensor. It is slower on the way from the first sensor to the second sensor and faster from the second sensor to the first sensor. Since the first, as well as all further echoes travel the distance from the first sensor to the second sensor and back, the speed differences are canceled out and only the influence of the velocity component of the measuring medium on the direct, first measuring signal from the first sensor to the second sensor remains , So the first measurement signal is slower from the first sensor to the second sensor than with a zero flow. Although the signal of the reflection from the second to the first sensor is traveling faster, this time in comparison to the zero flow needs the reflection from the first to the second sensor again longer. So that the signals 12 measured by the second sensor are offset by a time x compared to the zero flow. This time x is the difference between TOF 1 and t, where x = TOF 1 -t and x corresponds to half of the conventionally determined transit time difference Δt between the measuring signals in and against the flow direction or the velocity component of the measuring medium in the measuring tube , ie x = Δt / 2. However, not only can TOF 1 be measured, as usual, but it can not measure the time x directly, providing metrological benefits. Since the time t is known, thus, the flow velocity, and with a known diameter of the measuring tube and the flow of the measured medium can be determined by the measuring tube.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Erster UltraschallsensorFirst ultrasonic sensor
22
Zweiter UltraschallsenorSecond ultrasonic sensor
33
Messmediummeasuring medium
44
Burst-SignalBurst signal
55
Direktes MesssignalDirect measuring signal
66
Erste ReflektionFirst reflection
77
Zweite ReflektionSecond reflection
88th
Dritte ReflektionThird reflection
99
Vierte ReflektionFourth reflection
1010
Erster SignalpfadFirst signal path
1111
Zweiter SignalpfadSecond signal path
1212
Überlagerte MesssignaleSuperimposed measuring signals

Claims (12)

  1. Procedure for measuring at least one measured variable with measuring signals in the form of ultrasonic signals, wherein a first sensor (1) emits a first measuring signal and, at a time interval t in relation to the first measuring signal, emits at least a second measuring signal, wherein at least a second sensor (2) receives the measuring signals,
    characterized in that
    the time interval t is selected in such a way that the amplitude of a measuring signal received by the second sensor (2) from the superposition of the second measuring signal and reflections of the first measuring signal is maximum,
    wherein
    the first measuring signal at the second sensor (2) is reflected to the first sensor (1) and is reflected back from the first sensor (1) to the second sensor (2), and in that the second measuring signal is superimposed with the first measuring signal reflected by the first sensor (1) to the second sensor (2).
  2. Procedure designed to measure at least one measured variable as claimed in Claim 1,
    characterized in that
    the time interval t is varied over a predefined range.
  3. Procedure designed to measure at least one measured variable as claimed in one of the Claims 1 or 2,
    characterized in that
    the sonic velocity of a medium is determined using the time interval t and/or the level of a medium in a vessel is determined using the time interval t.
  4. Procedure designed to measure at least one measured variable as claimed in one of the Claims 1 to 3,
    characterized in that
    a time of flight (TOF1) is the time of flight of the first measuring signal between the emission of the first measuring signal by the first sensor and the reception of the first measuring signal by the second sensor, and wherein the time of flight (TOF2) is the time of flight of a third measuring signal between the second sensor and the first sensor, and in that the time interval t is selected in such a way that t in the formula t = (TOF1+TOF2)/n, with n = 1, 2, 3... is a natural number.
  5. Procedure designed to measure at least one measured variable as claimed in Claim 4,
    characterized in that
    the times of flight (TOF1) and (TOF2) are measured.
  6. Procedure designed to measure at least one measured variable as claimed in Claim 4 or 5,
    characterized in that
    the time interval t is selected in such a way that it is a whole-number multiple of the mean of the times of flight (TOF1) and (TOF2).
  7. Procedure designed to measure at least one measured variable as claimed in one of the Claims 4 to 6,
    characterized in that
    the time interval t is determined in such a way that the time interval t is greater or equal to half of the wavelength λ of the ultrasonic wave.
  8. Procedure designed to measure at least one measured variable as claimed in one of the Claims 4 to 7,
    characterized in that
    the time of flight (TOF1) of the first measuring signal is measured between the emission of the first measuring signal by the first sensor and the reception of the first measuring signal by the second sensor and/or in that the time of flight (TOF2) of the third measuring signal is measured between the emission of the third measuring signal by the second sensor and the reception of the third measuring signal by the first sensor.
  9. Procedure designed to measure at least one measured variable as claimed in one of the Claims 4 to 8,
    characterized in that
    the time of flight (TOF1) of the first measuring signal between the emission of the first measuring signal by the first sensor and the reception of the first measuring signal by the second sensor is determined by the time of a first overshooting of a predefinable threshold value of the first measuring signal at the first sensor and the time of a first overshooting of the threshold value of the first measuring signal at the second sensor.
  10. Procedure designed to measure at least one measured variable as claimed in one of the Claims 4 to 9,
    characterized in that
    the time interval t of the measuring signal between the emission of the first measuring signal by the first sensor and the emission of the second measuring signal by the first sensor (1) is determined between the time of a first overshooting of a specific threshold value of the first measuring signal at the first sensor and the time of a first overshooting of the threshold value of the second measuring signal at the first sensor.
  11. Procedure designed to measure at least one measured variable as claimed in one of the Claims 4 to 10,
    characterized in that
    the time interval t of the measuring signal between the emission of the first measuring signal by the first sensor (1) and the emission of the second measuring signal by the first sensor is determined according to a procedure as claimed in one of the Claims 1 to 3.
  12. Procedure designed to measure at least one measured variable as claimed in one of the Claims 1 to 10,
    characterized in that
    the flow velocity of a medium in a measuring tube is determined using the time interval t and a time interval x between the emission of the second measuring signal by the first sensor and the reception of a measuring signal by the second sensor.
EP10722991.6A 2009-06-12 2010-05-17 Method for measuring a measurement variable Not-in-force EP2440888B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009026912 2009-06-12
DE102009028847A DE102009028847A1 (en) 2009-06-12 2009-08-24 Measuring device and method for measuring a measured variable
PCT/EP2010/056683 WO2010142512A1 (en) 2009-06-12 2010-05-17 Measuring device and method for measuring a measurement variable

Publications (2)

Publication Number Publication Date
EP2440888A1 EP2440888A1 (en) 2012-04-18
EP2440888B1 true EP2440888B1 (en) 2019-03-20

Family

ID=43069937

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10722991.6A Not-in-force EP2440888B1 (en) 2009-06-12 2010-05-17 Method for measuring a measurement variable

Country Status (4)

Country Link
US (1) US8881603B2 (en)
EP (1) EP2440888B1 (en)
DE (1) DE102009028847A1 (en)
WO (1) WO2010142512A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8757010B2 (en) * 2011-04-20 2014-06-24 Gilbarco Inc. Fuel dispenser flow meter fraud detection and prevention
GB201214969D0 (en) * 2012-08-22 2012-10-03 Airbus Uk Ltd Fuel quantity measurement
DE102012112522A1 (en) * 2012-12-18 2014-06-18 Endress + Hauser Flowtec Ag Method for determining a flow velocity or a flow of a measuring medium through an ultrasonic flowmeter
DE102013213340A1 (en) * 2013-07-08 2015-01-08 Vega Grieshaber Kg Determining a distance and a flow velocity of a medium
DE102013213345A1 (en) * 2013-07-08 2015-01-08 Vega Grieshaber Kg Universal data acquisition in waters
DE102013213346A1 (en) * 2013-07-08 2015-01-08 Vega Grieshaber Kg Determination of level and flow rate of a medium
EP3105139A4 (en) * 2014-02-10 2017-03-22 Big Belly Solar, Inc. Security technologies for electrically-powered trash compactors and receptacles
EP3279619B1 (en) * 2016-08-01 2020-02-12 VEGA Grieshaber KG Radar fill level measuring device
DE102020121978B4 (en) * 2020-08-21 2022-03-31 Infineon Technologies Ag CALIBRATION OF A RADAR SYSTEM

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4183007A (en) 1978-02-22 1980-01-08 Fischer & Porter Company Ultrasonic transceiver
JPS5827449B2 (en) * 1978-08-09 1983-06-09 富士電機株式会社 Ultrasonic propagation time detection circuit device
FI67627C (en) 1981-10-19 1985-04-10 Eino Haerkoenen PROCEDURE FOR THE ORGANIZATION OF THE PROCESSING OF STRUCTURES AND THE EXTENSION OF GENERATION OF THE GENOM UTNYTTJANDET AV ULTRALJUD
JPS5877679A (en) 1981-11-02 1983-05-11 Hitachi Ltd Ultrasonic measuring device for distance
US4598593A (en) 1984-05-14 1986-07-08 The United States Of America As Represented By The United States Department Of Energy Acoustic cross-correlation flowmeter for solid-gas flow
US5052230A (en) 1988-07-08 1991-10-01 Flowtec Ag Method and arrangement for flow rate measurement by means of ultrasonic waves
DE4114650A1 (en) * 1991-05-05 1992-11-12 Krieg Gunther METHOD AND DEVICE FOR MEASURING VOLUME FLOWS IN LIQUIDS AND GASES
US5233352A (en) * 1992-05-08 1993-08-03 Cournane Thomas C Level measurement using autocorrelation
EP0686255B1 (en) 1993-12-23 2000-03-15 Endress + Hauser Flowtec AG Clamp-on ultrasonic volume flow rate measuring device
GB9502087D0 (en) 1995-02-02 1995-03-22 Croma Dev Ltd Improvements relating to pulse echo distance measurement
FR2781565B1 (en) 1998-07-24 2000-08-25 Inst Francais Du Petrole METHOD AND DEVICE FOR MEASURING THE FLOW SPEED OF A FLUID VEIN
DE10003094A1 (en) * 2000-01-25 2001-07-26 Hamilton Bonaduz Ag Bonaduz Non-contact ultrasonic filling characteristic measuring method for medical/pharmaceutical material, involves estimating resonance oscillation frequency of gas under ultrasonic excitation and comparing with reference frequency
US20080250869A1 (en) * 2002-06-11 2008-10-16 Intelligent Technologies International, Inc. Remote Monitoring of Fluid Pipelines
ES2281553T3 (en) * 2002-11-25 2007-10-01 Elster-Instromet Ultrasonics B.V. ULTRASONIC SIGNAL PROCESSING METHOD, AND ITS APPLICATIONS.
US7934432B2 (en) 2007-02-27 2011-05-03 Dräger Medical GmbH Method for measuring the run time of an ultrasonic pulse in the determination of the flow velocity of a gas in a breathing gas volume flow sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2440888A1 (en) 2012-04-18
DE102009028847A1 (en) 2010-12-16
US8881603B2 (en) 2014-11-11
US20120079890A1 (en) 2012-04-05
WO2010142512A1 (en) 2010-12-16

Similar Documents

Publication Publication Date Title
EP2440888B1 (en) Method for measuring a measurement variable
DE4025326C2 (en) Method and device for measuring the liquid level of a moving liquid in a container
DE102008029772A1 (en) Method and measuring system for determining and / or monitoring the flow of a measuring medium through a measuring tube
EP0871019B1 (en) Method and device for detecting overflow in a measuring device of a level in a container according to the pulse transit time method
EP0985134A1 (en) Method for measuring density and mass flux
EP1716394A2 (en) Ultrasonic flow sensor comprising staggered transmitting and receiving elements
EP3470775B1 (en) Method and measuring assembly for measuring layer thickness and sound wave speed in single-layered or multilayered samples by means of ultrasound without a priori knowledge of the other variable
WO2018141469A1 (en) Ultrasonic meter and method for sensing a flow variable
EP1728054A1 (en) Ultrasonic flow sensor comprising a transducer array and a reflection surface
DE102014115203B3 (en) Method and arrangement for ultrasonic clamp-on flow measurement and circuit arrangement for controlling an ultrasonic clamp-on flow measurement
WO2011051006A1 (en) Ultrasonic flow and particle measuring system
DE102011089685A1 (en) Measuring arrangement for determining level and/or concentration of e.g. oil in oil tank mounted in motor car, has deflection device whose interface is formed on prism shaped element in which sound waves are propagated and impinged
EP2656017A1 (en) Coupling element of an ultrasonic transducer for an ultrasonic flow meter
EP3910296B1 (en) Method for operating a measuring device and measuring device
DE102007062913A1 (en) Ultrasonic transducer i.e. clamp-on ultrasonic transducer, for use in process and automation technology, has coupling element, where exit of ultrasonic signal from coupling element in signal path is registered by piezo-electric element
DE4204414C1 (en) Pulse echo level measuring instrument with pulse transceiver - has circuits to derive distance between transceiver and reflection surface from time between single or multiple echo pulses
EP0666974B1 (en) Process and device for non-contact determination of the mass per unit area of thin materials
EP3517946B1 (en) Method for determining a corrected value for viscosity-dependent sound velocity in a fluid to be examined
DE19542232A1 (en) Ultrasonic flow meter for liquid or gaseous media
DE19934212B4 (en) Method and device for measuring the flow rate of a fluid stream
EP3405780B1 (en) Method of determining of properties of a medium and device for determining properties of a medium
EP3405781A1 (en) Device for determining properties of a medium comprising a damping element and/or open guide element
DE10106308C1 (en) Acoustic signal propagation time measuring method uses intersection of tangent to maximum gradient point of first half wave with zero line as time reference point
DE102007062460B4 (en) ultrasonic sensor
DE4435594C2 (en) Method for detecting in particular lines transporting gas in liquid media and device for carrying out the method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180409

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010015872

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1111026

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190621

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190720

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010015872

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

26N No opposition filed

Effective date: 20200102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200522

Year of fee payment: 11

Ref country code: DE

Payment date: 20200520

Year of fee payment: 11

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1111026

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200527

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100517

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010015872

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210517

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320