EP2440689B1 - System und verfahren zur rückgewinnung von energie - Google Patents

System und verfahren zur rückgewinnung von energie Download PDF

Info

Publication number
EP2440689B1
EP2440689B1 EP10734229.7A EP10734229A EP2440689B1 EP 2440689 B1 EP2440689 B1 EP 2440689B1 EP 10734229 A EP10734229 A EP 10734229A EP 2440689 B1 EP2440689 B1 EP 2440689B1
Authority
EP
European Patent Office
Prior art keywords
fumes
gases
heat
electrolytic cell
collected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10734229.7A
Other languages
English (en)
French (fr)
Other versions
EP2440689A1 (de
Inventor
El Hani Bouhabila
Thierry Malard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fives Solios SA
Original Assignee
Fives Solios SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fives Solios SA filed Critical Fives Solios SA
Publication of EP2440689A1 publication Critical patent/EP2440689A1/de
Application granted granted Critical
Publication of EP2440689B1 publication Critical patent/EP2440689B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/22Collecting emitted gases

Definitions

  • the present invention relates to a system and a method for recovering energy released by an igneous electrolysis cell during the manufacture of aluminum.
  • an electrolytic cell having a heat exchanger in its walls is difficult to manufacture, and it is very difficult to ensure the maintenance of the exchanger, and its possible replacement.
  • the present invention is intended to provide a simpler energy recovery system and some embodiments allow greater energy recovery.
  • an igneous electrolysis cell 2 comprises a parallelepipedal box 4 open at its upper base and whose bottom carries carbonaceous blocks constituting the cathode 6.
  • This box 4 contains an electrolyte bath 8 constituted by alumina dissolved in the cryolite, brought to a temperature between 950 ° and 1000 ° C.
  • anodes 10 are immersed.
  • the alumina is decomposed into aluminum 12 forming a metal bath which covers the cathode 6, and oxygen which reacts with each anode 10 and causes the progressive combustion.
  • the aluminum 12 is regularly removed from the electrolysis cell 2.
  • the upper part of the electrolyte bath 8 is solidified, thus constituting a crust 14 which covers the bath 8 and thermally insulates it.
  • the reaction at each anode 10 gives rise to an emission of fumes and gases 18, 29 which migrate to the top of the tank comprising pollutants such as carbon dioxide and carbon monoxide, sulfur dioxide, gaseous hydrogen fluoride (HF), carbon and alumina particles, dusts and fluorinated compounds.
  • pollutants such as carbon dioxide and carbon monoxide, sulfur dioxide, gaseous hydrogen fluoride (HF), carbon and alumina particles, dusts and fluorinated compounds.
  • the decomposition of the alumina causes a decrease in its content in the electrolyte bath 8.
  • a movable tubular steel rod installed between two anodes 10, pierces the crust 14 and Alumina is injected into the electrolyte bath 8.
  • This rod hereinafter referred to as a metering injector 16, is operable in a vertical movement by means of a jack, preferably pneumatic, to pierce the crust 14.
  • the energy recovery system 22 comprises a primary circuit 24 for collecting the fumes and gases produced by the electrolytic cell 2, and a heat exchange loop 26, ci after called the first heat exchange loop 26.
  • the primary circuit 24 includes a flue gas recovery device 28 arranged to cause a depression under the hood 20 and to suck fumes and gases 29 situated between the latter and the crust 14, and a unit 30 for treating these gases. smoke and gas 29, hereinafter called the first processing unit 30.
  • the cover 20 is not hermetic and outside air is sucked under the hood 20 by the leaks due to the depression. This air mixes in large quantities with the fumes and gases coming from the tank. In the rest of the text we will no longer distinguish this air smoke and gas and we will call by the generic terms smoke and gas.
  • the fumes and gases 29 are sucked by the recovery device 28 with a specific flow rate of about 75,000 to 100,000 Nm 3 / ton Aluminum (which corresponds to 8400 to 11000 Nm 3 / h for a tank of 350 kA).
  • the fumes and gases 29 collected by the primary circuit 24 have a temperature of about 110 - 160 ° C. They contain 200 - 800 mg / Nm 3 of dust, 150 - 400 mg / Nm 3 of gaseous hydrogen fluoride and 100 - 400 mg / Nm 3 of sulfur dioxide (SO 2 ). These fumes and gases collected by the primary circuit are referenced hereinafter by the reference 29.
  • the first treatment unit 30 is able to filter the dust contained in the fumes and gases 29 collected by the recovery device 28, and to eliminate most of the hydrogen fluoride gas by adsorption of hydrogen fluoride gas from these fumes. and gas on alumina which is then separated from the fumes and gases 29 by filtering.
  • the first processing unit 30 is adapted to treat the fumes and gases 29 according to a dry process known under the name "DRY-SCRUBBER DS". This method allows a dust reduction greater than 98% by filtration and a reduction of hydrogen fluoride gas of about 99.8% by adsorption and filtration.
  • the amount of hydrogen fluoride gas contained in the fumes and gases leaving the first treatment unit 30 is less than 0.5 mg / Nm 3 .
  • the amount of dust contained in the fumes and gases coming out of the first treatment unit 30 is less than 5 mg / Nm 3 .
  • the fluorinated alumina generated by the treatment of fumes and gases 29 by the first treatment unit 30 is introduced into the electrolytic cell 2 by means of the metering piercer 16.
  • the primary circuit 24 further comprises a scrubber 32 with seawater or with a basic solution capable of eliminating, by absorption and chemical reaction, the sulfur dioxide (SO 2 ) contained in the fumes and gases leaving the first treatment unit 30, and a chimney 34 capable of evacuating the remaining fumes and purified gases.
  • a scrubber 32 with seawater or with a basic solution capable of eliminating, by absorption and chemical reaction, the sulfur dioxide (SO 2 ) contained in the fumes and gases leaving the first treatment unit 30, and a chimney 34 capable of evacuating the remaining fumes and purified gases.
  • the flue gases 29 comprise less than 60 mg / Nm 3 of sulfur dioxide.
  • the first heat exchange loop 26 comprises a heat exchanger 36, hereinafter called the first heat exchanger 36, and a heat recovery unit 38 of a heat transfer fluid.
  • the loop 26 is traversed, on the one hand, by the coolant, and on the other hand, at the level of the first heat exchanger 36, by the fumes and gases 29 leaving the recovery device 28 before they pass through the first treatment unit 30.
  • the heat transfer fluid heated by the first heat exchanger 36 is used, for example, to produce electricity by an ORC cycle generator, that is to say a generator.
  • Organic Rankine Cycle is used, for example, to produce electricity by an ORC cycle generator, that is to say a generator.
  • Organic Rankine Cycle is for example constituted by water, oil or an inert gas.
  • the first heat exchanger 36 is disposed outside the electrolysis cell 2. For example, it is disposed at a predefined distance greater than or equal to one meter from the electrolytic cell 2 to avoid any risk of contact between the heat transfer fluid and the electrolysis cell 2.
  • the first heat exchanger 36 is able to cool the fumes and gases 29 of the primary circuit 24 by a temperature of 110-160 ° C. at a temperature of 70-100 ° C.
  • a bypass line 39 is installed on the primary circuit 24 at each end of the first heat exchanger 36 to allow the fumes and gases 29 to bypass the first heat exchanger 36, when it is dirty and must be cleaned or replaced or renovated.
  • the energy recovery method begins with a step 100 of collecting fumes and gases 29 by the recovery device 28.
  • the fumes and gases 29 collected by the primary circuit 24 are transported outside and away from the electrolysis cell 2.
  • the heat transfer fluid of the first heat exchange loop 26 is warmed by passing fumes and gases 29 through the first heat exchanger 36.
  • the recovery unit 38 recovers heat from the heat transfer fluid that has passed through the first heat exchanger 36.
  • the processing unit 30 processes the fumes and gases 29 collected by the primary circuit 24 by filtering the dust and removing most of the hydrogen fluoride gas. Then, the fluorinated alumina generated by the first treatment unit 30 is introduced into the electrolyte bath 8 by the metering injector 16.
  • step 116 part of the sulfur dioxide contained in the fumes and gases 29 collected by the primary circuit 24 is removed by absorption and chemical reaction, by the washer 32.
  • the primary circuit 24 does not include a scrubber 32.
  • the step 116 is not performed.
  • the fumes and gases 29 leaving the first treatment unit 30 are directly discharged through the chimney 34.
  • the recovery unit 38 is a system for using the heat of the coolant to produce cold or heat.
  • the recovery system 40 according to the second embodiment of the invention, illustrated on the figure 3 , comprises a primary circuit 24 similar to the primary circuit 24 of the recovery system 22 according to the first embodiment of the invention, with the exception that this circuit does not include a washer 32.
  • the fumes and gases 29 collected by the recovery device 28 of the primary circuit 24 are sucked at a rate of 70000 to 100000 Nm 3 / ton of aluminum product. They comprise 100-800 mg / Nm 3 of dust, 30-100 mg / Nm 3 of hydrogen fluoride gas, 20-100 mg / Nm 3 of sulfur dioxide, 2-4 g / Nm 3 of carbon dioxide and 0.1 - 0.3 g / Nm 3 of carbon monoxide. These fumes and gases collected by the primary circuit are referenced hereinafter by the reference 29.
  • These fumes and gases 29 collected by the primary circuit have a temperature of about 110-160 ° C. before passing through the first heat exchanger 36, and a temperature of about 70-100 ° C. at the outlet of the first heat exchanger. 36.
  • the fumes and gases 29 comprise less than 5 mg / Nm3 dust and less than 0.5 mg / Nm 3 of gaseous hydrogen fluoride.
  • the recovery system 40 according to the second embodiment comprises a first heat exchange loop 26 similar to the heat exchange loop 26 of the recovery system 22 according to the first embodiment of the invention, with the exception of that this first heat exchange loop 26 further comprises a second heat exchanger 42.
  • the second heat exchanger 42 is disposed outside and at a distance of at least one meter from the electrolytic cell.
  • the second heat exchanger 42 is disposed downstream of the first heat exchanger 36, that is to say that the coolant passes first through the first heat exchanger 36 and then the second heat exchanger 42 before join the recovery unit 38.
  • the recovery system 40 further includes a secondary circuit 44 for collecting a portion of the fumes and gases 18 produced by the electrolysis cell 2.
  • the fumes and gases collected by the secondary circuit 44 are referenced hereinafter by the reference 18.
  • This secondary circuit 44 comprises a hood, hereinafter called “local hood” 46 directly embedded in the crust 14 which collects the fumes and gases 18, also called anodic gases, escaping through the hole drilled by the metering piercer 16.
  • Local hood 46 houses dosing device 16. Local hood 46 is connected to a flue gas collection tube 48.
  • An opening 50 made in the local hood 46 can suck fumes and gases 29 collected by the primary circuit 24 and located under the hood 20 to lower the temperature of the fumes and gases 18 collected by the secondary circuit 44 and sucked by the hood Local 46.
  • the opening 50 in the local hood can be set to change the ratio of smoke and gas collected by the primary circuit / fumes and gases collected by the secondary circuit to act on the anodic gas capture efficiency and the resulting temperature of the mixture.
  • 4 to 6 local hoods 46 can be installed in an electrolysis cell 2 from 300 to 400 kA to ensure a good distribution of the suction and capture the maximum of fumes and gases 18.
  • the pipes between the second heat exchanger 42 and each local hood 46 may be insulated to avoid energy losses that would be important given the small diameter of the pipes.
  • the fumes and anodic gas 18 collected by the secondary circuit 44 contain 1.2 - 8 g / Nm 3 of gaseous fluorine, 1-8 g / Nm 3 of sulfur dioxide, 110-280 g / Nm 3 of carbon dioxide and 10-26 g / Nm 3 of carbon monoxide.
  • They have a temperature of about 200-350 ° C. before passing through the second heat exchanger 42, and a temperature of about 70-100 ° C. after passing through the second heat exchanger 42.
  • the secondary circuit 44 further comprises a processing unit 52, hereinafter called a second processing unit 52, a washer 53 and a capture unit 54 connected to the chimney 34.
  • the second processing unit 52 is similar to the first processing unit 30 situated in the primary circuit 24. It is capable of removing most of the hydrogen fluoride gas from the fumes and gases 18 collected by the secondary circuit 44 by adsorption and filtering.
  • the second processing unit 52 uses partially fluorinated alumina obtained by the treatment of the fumes and gases 29 collected by the primary circuit 24 by the first treatment unit 30. Then, the fluorinated alumina generated by the second processing unit 52 is introduced into the electrolytic cell 2 by the metering injector 16.
  • the fumes and gases 18 collected by the secondary circuit 44 comprise a value of the order of 1 mg / Nm 3 of gaseous hydrogen fluoride.
  • the scrubber 53 is similar to the scrubber 32 described in the first embodiment of the invention. At the outlet of the scrubber 53, the fumes and gases 18 collected by the secondary circuit 44 have a value of less than 30 mg / Nm 3 of sulfur dioxide. They have a temperature of about 30-40 ° C.
  • the capture unit 54 is intended to capture the carbon dioxide by absorption with a solution of ammonia or with amines or other equivalent techniques.
  • the energy recovery method starts with the same steps 100 and 102 as the recovery method according to the first embodiment of the invention.
  • the fumes and gases 18 located between the crust 14 and the electrolyte bath 8 are collected by the secondary circuit 44, via the local hoods 46.
  • the fumes and gases 18 collected by the secondary circuit 44 pass through the second heat exchanger 42 and heat the preheated heat transfer fluid that has already passed through the first heat exchanger 36.
  • steps 112 and 114 which are identical to steps 112 and 114 of the method illustrated in FIG. figure 2 .
  • the hydrogen fluoride gas of the fumes and gases 18 collected by the secondary circuit 44 is treated by the second processing unit 52.
  • This treatment is similar to the treatment carried out by the first treatment unit 30. the exception that the partially fluorinated alumina generated by the treatment of fumes and gases 29 collected by the primary circuit 24 is used to adsorb the hydrogen fluoride gas from the fumes and gases 18 collected by the secondary circuit 44.
  • the fluorinated alumina is introduced into the electrolyte bath 8 by the metering piercer 16.
  • the fresh alumina is used to adsorb the gaseous hydrogen fluoride of the fumes and gases containing the least pollutants, that is to say the fumes and gases 29 collected by the primary circuit 24, and is then reused to adsorb the gaseous hydrogen fluoride gas and gas 18 containing a higher concentration of pollutants, that is to say the fumes and gases 18 collected by the secondary circuit 44.
  • a mixture, possibly in varying proportions, of fresh alumina and partially fluorinated alumina may be used in second processing unit 52.
  • a step 117 the majority of the sulfur dioxide contained in the fumes and gases 18 collected by the secondary circuit 44 is removed by a washer 53.
  • the capture unit 54 eliminates by absorption or by other techniques (adsorption, membrane filtration, etc.) a portion of the carbon dioxide from the fumes and gases from the scrubber 53.
  • the fumes and gases 29 treated by the treatment unit 30 and the fumes and gases treated by the capture unit 54 are discharged through the stack 34.
  • the secondary circuit 44 does not include a capture unit 54.
  • the fumes and gases leaving the scrubber 53 are directly directed towards the chimney 34.
  • a washer is disposed on the primary circuit 24 between the treatment unit 30 and the chimney 34.
  • bypass line 39 is mounted on either side of one of the first 36 and the second 42 heat exchangers to allow short-circuiting, for example, during the cleaning of these heat exchangers .
  • the recovery system 56 according to a third embodiment of the invention, represented on the figure 5 , comprises a primary circuit 24 and a secondary circuit 44 identical to the primary circuits 24 and secondary 44 of the recovery system 40 according to the second embodiment of the invention.
  • the recovery system 56 further comprises a first 26 and a second 62 heat exchange loops.
  • the first heat exchange loop 26 of the third embodiment is similar to the first heat exchange loop 26 of the recovery system 40 of the second embodiment of the invention with the exception of the existence of a third heat exchanger 60, also outside the tank 2.
  • the third heat exchanger 60 is disposed downstream of the second heat exchanger 42, that is to say that the heat transfer fluid first passes through, the first heat exchanger 36 then, the second heat exchanger 42 and, finally, the third heat exchanger 60 before joining the recovery unit 38.
  • the temperature of the coolant of the first loop 26 is about 80-100 ° C at the inlet of the first heat exchanger 36, about 100 ° -120 ° C at the inlet of the second heat exchanger 42, about 150 ° - 250 ° C at the inlet of the third heat exchanger 60, and finally about 200 ° - 400 ° C at the outlet thereof.
  • the second heat exchange loop 62 comprises a pipe traversed by an intermediate heat transfer fluid.
  • the pipe passes through at least one lateral wall 64 of the electrolytic cell 2 and then the third heat exchanger 60.
  • the intermediate heat transfer fluid comprises, for example, helium, air or other gas inert vis-a-vis the liquid aluminum.
  • the intermediate heat transfer fluid recovers the heat from the walls 64 of the tank, and delivers it to the third exchanger 60. Before entering the third exchanger 60, the temperature of the intermediate heat transfer fluid is between 250-600 ° C.
  • the energy recovery method according to the third embodiment of the invention is identical to the recovery method according to the second embodiment, with the exception that it comprises between steps 106 and 112, a step 108 and a step 110.
  • step 108 the intermediate heat transfer fluid of the second heat exchange loop 62 passes through the wall or walls 64 of the electrolytic cell and is thus heated.
  • step 110 the intermediate heat transfer fluid passes through the third heat exchanger 60 and thus heats the coolant of the first heat exchange loop 26 already preheated in the exchangers 36 and 42.
  • the recovery unit 38 generates electricity from the heat recovered by the coolant having passed through the first 36, the second 42, and the third 60 heat exchangers.
  • branch lines 39 are mounted on either side of the second heat exchanger 42 to allow short-circuiting, for example, during the cleaning of this heat exchanger.
  • a scrubber 32 is further installed between the processing unit 30 and the chimney 34 in the second and third embodiments of the invention.
  • the recovery system 40, 56 of the second and third embodiments of the invention comprises two different smoke and gas treatment circuits having different pollutant percentages and different temperatures.
  • Each circuit 24, 44 for treating fumes and gases is adapted to the pollutant levels therein.
  • the recovery systems 40, 56 of the second and third embodiments make it possible to increase the efficiency of the first heat exchange loop 26 by passing fumes and gases at medium temperature in a first heat exchanger 36, then the passage fumes and gases at a higher temperature in a second heat exchanger 42, and optionally in a third heat exchanger 60 at an even higher temperature.
  • the recovery system 56 comprises two heat exchange loops 26, 62 able to recover the energy, one of the walls 64 of the electrolysis cell, the other, the energy of the two circuits 24, 44 for treating fumes and gases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Treating Waste Gases (AREA)

Claims (14)

  1. Schmelzflusselektrolysezelle (2) und System (22; 40; 56) zur Rückgewinnung von Energie, die von der Schmelzflusselektrolysezelle (2) freigesetzt wird; wobei die Schmelzflusselektrolysezelle (2) geeignet ist, Rauchgase und Gase (18; 29) bei der Aluminiumherstellung (12) zu erzeugen, wobei das Rückgewinnungssystem (22; 40; 56) umfasst:
    • eine erste Wärmetauschschleife (26), die von einer Wärmeträgerflüssigkeit durchströmt wird, wobei die erste Schleife (26) umfasst:
    - einen ersten Wärmetauscher (36), und einen zweiten Wärmetauscher (42), die von der Wärmeträgerflüssigkeit durchströmt werden; und
    - eine Rückgewinnungseinheit (38), die geeignet ist, die Wärme der Wärmeträgerflüssigkeit, die durch den ersten und den zweiten (42) Wärmetauscher (36) geströmt ist, rückzugewinnen;
    • eine primäre Schaltung (24), die geeignet ist, einen ersten Teil der Rauchgase und Gase (29), die von der Elektrolysezelle (2) erzeugt werden, zu sammeln,
    dadurch gekennzeichnet, dass der erste und der zweite Wärmetauscher (36) außerhalb und in einem Abstand zu der Elektrolysezelle (2) angeordnet sind, wobei die Rauchgase und die Gase (29), die von der primären Schaltung (24) gesammelt werden, den ersten Wärmetauscher durchströmen, um die Wärmeträgerflüssigkeit zu erwärmen;
    und dass das Rückgewinnungssystem (22; 40; 56) ferner umfasst:
    • eine sekundäre Schaltung (44), die geeignet ist, einen zweiten Teil der Rauchgase und Gase (18), die von der Elektrolysezelle (2) erzeugt wurden, zu sammeln, wobei die von der sekundären Schaltung (44) gesammelten Rauchgase und Gase (18) den zweiten Wärmetauscher (42) durchströmen, um die Wärmeträgerflüssigkeit zu erwärmen;
    wobei die von der sekundären Schaltung (44) gesammelten Rauchgase und Gase (18) wärmer sind und eine höhere Schadstoffkonzentration aufweisen als die von der primären Schaltung (24) gesammelten Rauchgase und Gase (29).
  2. Schmelzflusselektrolysezelle (2) und Energierückgewinnungssystem (22; 40; 56) nach Anspruch 1, wobei die erste Wärmetauschschleife (26) einen dritten Wärmetauscher (60) umfasst,
    und wobei das Energierückgewinnungssystem (22; 40; 56) eine zweite Wärmetauschschleife (62) umfasst, die von einer Zwischenwärmeträgerflüssigkeit durchströmt wird, wobei die zweite Wärmetauschschleife (62) derart ausgeführt ist, dass die Zwischenwärmeträgerflüssigkeit den dritten Wärmetauscher (60) und mindestens eine Wand (64) der Elektrolysezelle (2) durchströmt,
    wobei die Rückgewinnungseinheit (38) geeignet ist, die Wärme der Wärmeträgerflüssigkeit, die mindestens den ersten (36) und den dritten (60) Wärmetauscher durchströmt hat, rückzugewinnen.
  3. Schmelzflusselektrolysezelle (2) und Energierückgewinnungssystem (22; 40; 56) nach Anspruch 2, umfassend mindestens eine Abzweigungsleitung (39), die geeignet ist, mindestens einen der ersten (36), zweiten (42) und dritten (60) Wärmetauscher kurzzuschließen.
  4. Schmelzflusselektrolysezelle (2) und Energierückgewinnungssystem (22; 40; 56) nach einem der Ansprüche 1 bis 3, wobei die Elektrolysezelle (2) umfasst:
    - ein Bad eines geschmolzenen Elektrolyts (8), das mit einer verfestigten Schale (14) bedeckt ist;
    - mindestens eine Kappe (20), die die verfestigte Schale (14) bedeckt;
    - mindestens einen Dosier-Bohrhammer (16), der geeignet ist, die verfestigte Schale (14) zu durchbohren und Aluminiumoxid in das Elektrolytbad (8) einzuspritzen;
    und wobei die primäre Schaltung (24) und/oder die sekundäre Schaltung (44) jeweils eine Vorrichtung (28; 46) zur Rückgewinnung der Rauchgase und Gase umfassen, und zwar eine Vorrichtung (28) zur Rückgewinnung der Rauchgase und Gase (29), die sich unter der Kappe (20) befindet, und eine Vorrichtung (46) zur Rückgewinnung der Rauchgase und Gase (18), die durch ein Loch freigesetzt werden, das regelmäßig in die verfestigte Schale (14) durch den Dosier-Bohrhammer (16) gebohrt wird.
  5. Schmelzflusselektrolysezelle (2) und Energierückgewinnungssystem (22; 40; 56) nach einem der Ansprüche 1 bis 4, wobei die Rauchgase und Gase (18; 29), die von der Elektrolysezelle (2) erzeugt werden, Staub, gasförmiges Wasserstofffluorid und Schwefeldioxid umfassen; wobei die primäre Schaltung (24) und/oder die sekundäre Schaltung (44) umfassen:
    - eine Bearbeitungseinheit (30; 52) der Rauchgase und Gase (18; 29), die geeignet ist, den Staub, der in den Rauchgasen und Gasen (18; 29), die von der primären Schaltung (24) und/oder der sekundären Schaltung (44) gesammelt wurden, enthalten ist, zu filtern und einen Teil des gasförmigen Wasserstofffluorids der Rauchgase und Gase (18; 29) durch Adsorption auf frischem oder teilweise fluoriertem Aluminiumoxid zu beseitigen; und
    - einen Wäscher (32; 53), der geeignet ist, einen Teil des Schwefeldioxids durch Absorption und chemische Reaktion zu beseitigen.
  6. Schmelzflusselektrolysezelle (2) und Energierückgewinnungssystem (22; 40; 56) nach Anspruch 5, wobei die Bearbeitungseinheit (30; 52) geeignet ist, einen Teil des gasförmigen Wasserstofffluorids der Rauchgase und Gase, die von der sekundären Schaltung (44) gesammelt wurden, durch Adsorption auf teilweise fluoriertem Aluminiumoxid zu beseitigen, wobei das teilweise fluorierte Aluminiumoxid durch die Behandlung der Rauchgase und Gase (29), die von der primären Schaltung (24) gesammelt wurden, erhalten wird.
  7. Schmelzflusselektrolysezelle (2) und Energierückgewinnungssystem (22; 40; 56) nach einem der Ansprüche 1 bis 6, wobei die Rauchgase und Gase (18; 29), die von der Elektrolysezelle (2) erzeugt werden, Kohlendioxid umfassen; wobei die sekundäre Schaltung (44) ein Auffangsystem (54) umfasst, das geeignet ist, einen Großteil des in den Rauchgasen und Gasen (18; 29) enthaltenen Kohlendioxids beispielsweise durch Absorption zu beseitigen.
  8. Verfahren zur Rückgewinnung von Energie, die von einer Schmelzflusselektrolysezelle (2) bei der Aluminiumherstellung (12) freigesetzt wird, wobei das Verfahren die folgenden Schritte umfasst:
    - Aufwärmen (102) einer Wärmeträgerflüssigkeit durch das Strömen der Rauchgase und Gase (18; 29) durch einen ersten Wärmetauscher (36), der Teil einer ersten Wärmetauschschleife (26) ist;
    - Rückgewinnung (112) der Wärme der Wärmeträgerflüssigkeit, die den ersten Wärmetauscher (36) durchströmt hat, durch eine Rückgewinnungseinheit (38), wobei die Rückgewinnungseinheit (38) Teil der ersten Wärmetauschschleife (26) ist;
    - Sammeln (200) eines ersten Teils der Rauchgase und Gase (29), die von der Elektrolysezelle (2) erzeugt werden, durch eine primäre Schaltung (24);
    dadurch gekennzeichnet, dass das Verfahren ferner die folgenden Schritte umfasst:
    - Durchströmen (102) des ersten Wärmetauschers (36) mit den Rauchgasen und Gasen (29), die gesammelt und außerhalb und in einem Abstand zu der Elektrolysezelle (2) durch die primäre Schaltung (24) befördert wurden, um die Wärmeträgerflüssigkeit zu erwärmen,
    - Sammeln (104) eines zweiten Teils der Rauchgase und Gase (18), die von der Elektrolysezelle (2) erzeugt wurden, durch eine sekundäre Schaltung (44), wobei die von der sekundären Schaltung (44) gesammelten Rauchgase und Gase (18) wärmer sind und eine höhere Schadstoffkonzentration aufweisen als die Rauchgase und Gase (29), die von der primären Schaltung (24) gesammelt wurden; und
    - Aufwärmen (106) der Wärmeträgerflüssigkeit durch das Strömen der von der sekundären Schaltung (44) gesammelten Rauchgase und Gase (29) durch einen zweiten Wärmetauscher (42), der Teil der ersten Wärmetauschschleife (26) ist.
  9. Verfahren nach Anspruch 8, bei dem die Rückgewinnungseinheit (38) Elektrizität und/oder Kälte und/oder Wärme aus der Wärme der Wärmeträgerflüssigkeit erzeugt.
  10. Rückgewinnungsverfahren nach einem der Ansprüche 8 und 9, ferner umfassend die folgenden Schritte:
    - Aufwärmen (108) einer Zwischenwärmeträgerflüssigkeit durch das Durchströmen mindestens einer Wand (64) der Elektrolysezelle (2), wobei die Zwischenwärmträgerflüssigkeit eine zweite Wärmetauschschleife (62) durchströmt;
    - Aufwärmen (110) der Wärmeträgerflüssigkeit durch das Durchströmen eines dritten Wärmetauschers (60), der Teil der ersten Wärmetauschschleife (26) ist, mit der Zwischenwärmeträgerflüssigkeit; und
    - Rückgewinnung (112) der Wärme der Wärmeträgerflüssigkeit, die mindestens den ersten (36), den zweiten (42) und den dritten (60) Wärmetauscher durchströmt hat, durch die Rückgewinnungseinheit (38).
  11. Rückgewinnungsverfahren nach einem der Ansprüche 8 bis 10, bei dem die von der Elektrolysezelle (2) erzeugten Rauchgase und Gase (18; 29) Staub und gasförmiges Wasserstofffluorid umfassen, wobei das Verfahren einen Schritt der Behandlung (114, 115) der von der primären Schaltung (24) und/oder der sekundären Schaltung (44) gesammelten Rauchgase und Gase (18; 29) durch Filtern des Staubs und Beseitigung des Großteils des gasförmigen Wasserstofffluorids einerseits durch Adsorption auf frischem oder teilweise fluoriertem Aluminiumoxid und andererseits durch Filtern umfasst.
  12. Rückgewinnungsverfahren nach Anspruch 11, umfassend einen Schritt der Behandlung (115) eines Teils des gasförmigen Wasserstofffluorids der Rauchgase und Gase (29), die von der sekundären Schaltung (44) gesammelt wurden, durch Adsorption auf teilweise fluoriertem Aluminiumoxid, wobei das teilweise fluorierte Aluminiumoxid durch die Behandlung der Rauchgase und Gase (29), die von der primären Schaltung (24) gesammelt wurden, erhalten wird.
  13. Rückgewinnungsverfahren nach einem der Ansprüche 8 bis 12, bei dem die Rauchgase und Gase (18; 29), die von der Elektrolysezelle (2) erzeugt wurden, Staub und Schwefeldioxid umfassen, wobei das Verfahren einen Schritt der Beseitigung (116, 117) eines Teils des Schwefeldioxids, das in den von der primären Schaltung (24) gesammelten Rauchgasen und Gasen (18; 29) und/oder in den von der sekundären Schaltung (44) gesammelten Rauchgasen und Gasen (18) enthalten ist, durch Absorption und chemische Reaktion in einem Wäscher (32; 53) umfasst.
  14. Rückgewinnungsverfahren nach einem der Ansprüche 8 bis 13, umfassend einen Schritt der Beseitigung (118), beispielsweise durch Absorption, eines Teils des in den von der sekundären Schaltung (44) gesammelten Rauchgasen und Gasen (18) enthaltenen Kohlendioxids durch eine Auffangeinheit (54).
EP10734229.7A 2009-06-10 2010-06-04 System und verfahren zur rückgewinnung von energie Active EP2440689B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0953834A FR2946666B1 (fr) 2009-06-10 2009-06-10 Systeme et procede de recuperation d'energie
PCT/FR2010/051100 WO2010142893A1 (fr) 2009-06-10 2010-06-04 Système et procédé de récupération d'énergie

Publications (2)

Publication Number Publication Date
EP2440689A1 EP2440689A1 (de) 2012-04-18
EP2440689B1 true EP2440689B1 (de) 2017-11-29

Family

ID=41078022

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10734229.7A Active EP2440689B1 (de) 2009-06-10 2010-06-04 System und verfahren zur rückgewinnung von energie

Country Status (5)

Country Link
EP (1) EP2440689B1 (de)
CA (1) CA2764724C (de)
FR (1) FR2946666B1 (de)
NO (1) NO2440689T3 (de)
WO (1) WO2010142893A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234286B2 (en) * 2012-05-04 2016-01-12 Alstom Technology Ltd Recycled pot gas pot distribution
CN106567105B (zh) * 2016-11-07 2018-09-25 中国铝业股份有限公司 一种铝电解槽烟气的导流方法
NO20190343A1 (en) * 2019-03-14 2020-09-15 Norsk Hydro As Arrangement for collection of hot gas from an electrolysis process, and a method for such gas collection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222841A (en) * 1979-04-23 1980-09-16 Alumax Inc. Hall cell
FR2455093A1 (fr) * 1979-04-24 1980-11-21 Pechiney Aluminium Procede et appareillage pour le captage des fumees produites dans les cuves d'electrolyse ignee a anode continue

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2262700B1 (de) 1974-02-28 1978-12-29 Pechiney Aluminium
WO1983001631A1 (en) * 1981-11-04 1983-05-11 Frilund, Eyvind Heat recovery in aluminium-melting works
DE19845258C1 (de) * 1998-10-01 2000-03-16 Hamburger Aluminium Werk Gmbh Anlage zum Absaugen der Abgase und zur Nutzung ihrer Abwärme für eine Anlage zur Aluminiumschmelzflußelektrolyse mit mehreren Elektrolysezellen
NO318012B1 (no) 2003-03-17 2005-01-17 Norsk Hydro As Strukturelle elementer for benyttelse i en elektrolysecelle
GB0705439D0 (en) * 2007-03-22 2007-05-02 Alstom Intellectual Property Improved flue gas cooling and cleaning arrangment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222841A (en) * 1979-04-23 1980-09-16 Alumax Inc. Hall cell
FR2455093A1 (fr) * 1979-04-24 1980-11-21 Pechiney Aluminium Procede et appareillage pour le captage des fumees produites dans les cuves d'electrolyse ignee a anode continue

Also Published As

Publication number Publication date
WO2010142893A1 (fr) 2010-12-16
FR2946666A1 (fr) 2010-12-17
CA2764724A1 (fr) 2010-12-16
EP2440689A1 (de) 2012-04-18
CA2764724C (fr) 2018-03-27
NO2440689T3 (de) 2018-04-28
FR2946666B1 (fr) 2015-08-07

Similar Documents

Publication Publication Date Title
WO2010142892A1 (fr) Système et procédé de traitement des fumées et gaz produits par une cuve d'électrolyse lors de la fabrication d'aluminium
CA1055423A (fr) Procede et dispositif pour le captage des gaz d'une cuve de fabrication de l'aluminium par electrolyse ignee
KR101655736B1 (ko) 습식 배기 가스 정화 장치
RU2604233C2 (ru) Система контроля загрязнения воздуха
EP2440689B1 (de) System und verfahren zur rückgewinnung von energie
WO2011131901A1 (fr) Système et procédé de traitement avec concentration des fumées et gaz produits par une cuve d'électrolyse lors de la fabrication d'aluminium
JP6071838B2 (ja) Co2又はh2s又はその双方の回収装置及び方法
CA2062493C (fr) Procede de traitement de gaz a base de fluor electrolytique et pouvant contenir des composes uraniferes
JP2012237242A (ja) 湿式排ガス浄化装置
KR101304886B1 (ko) 이산화탄소 흡수액 재생 장치
EP1576999A1 (de) Modulare und intergrierte Vorrichtung zur Filtration und katalytischen Entstickung von Rauchgasen, Anlage enthaltend eine derartige Vorrichtung und Verfahren zu ihrer Verwendung
NO179182B (no) Fremgangsmåte for rensing av röyk avgitt fra elektrolyseovner, og utstyr for utförelse av fremgangsmåten
FR3002622A1 (fr) Centre de traitement de fumees provenant d'un four a cuire des anodes
TW201408784A (zh) 用於熱處理含氟及含貴金屬之產品的裝置及方法
US6846472B2 (en) Process for treating gaseous emissions generated during production of carbon anodes in an aluminum plant
CA2969558C (fr) Usine d'electrolyse et procede de traitement des gaz de cuve
FR3019367A1 (de)
EP1243909A1 (de) Vorrichtung zur Entnahme von heissen Abgasproben in diffuser Emission
WO2023110329A1 (fr) Installation de refroidissement d'un flux gazeux contenant du co2 et procédé mettant en oeuvre une telle installation
RU2797439C2 (ru) Способ улавливания токсичных газообразных выбросов при перестановке анодных штырей алюминиевого электролизера
KR100910831B1 (ko) 현무암 화이버를 이용한 여재의 제조방법
FR2931482A1 (fr) Procede de craquage en continu de dechets de polyolefines
JP2008039331A (ja) 廃自動車の処理システムおよび処理方法
FR2848876A3 (fr) Equipement d'epuration d'effluents industriels gazeux charges
EP1558790B1 (de) Verfahren zur behandlung der abgase, die bei der herstellung von kohlenstoffanoden für aluminiumwerke entstehen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17Q First examination report despatched

Effective date: 20130718

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170522

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FIVES SOLIOS S.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 950483

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FIVES SOLIOS

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010047025

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 950483

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180301

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010047025

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010047025

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180604

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180604

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180604

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190527

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20190524

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20190521

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230524

Year of fee payment: 14