EP2437663A2 - Estimations de température dans un dispositif glucomètre - Google Patents
Estimations de température dans un dispositif glucomètreInfo
- Publication number
- EP2437663A2 EP2437663A2 EP10723938A EP10723938A EP2437663A2 EP 2437663 A2 EP2437663 A2 EP 2437663A2 EP 10723938 A EP10723938 A EP 10723938A EP 10723938 A EP10723938 A EP 10723938A EP 2437663 A2 EP2437663 A2 EP 2437663A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- heat generating
- blood glucose
- measuring device
- reaction site
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000008280 blood Substances 0.000 title claims abstract description 80
- 210000004369 blood Anatomy 0.000 title claims abstract description 80
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 title claims abstract description 78
- 239000008103 glucose Substances 0.000 title claims abstract description 78
- 238000005259 measurement Methods 0.000 claims abstract description 92
- 238000006243 chemical reaction Methods 0.000 claims abstract description 66
- 230000004044 response Effects 0.000 claims abstract description 62
- 239000011159 matrix material Substances 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 37
- 230000004913 activation Effects 0.000 claims abstract description 35
- 230000000977 initiatory effect Effects 0.000 claims abstract description 20
- 238000012360 testing method Methods 0.000 claims description 14
- 238000005070 sampling Methods 0.000 claims description 9
- 238000010295 mobile communication Methods 0.000 claims description 3
- 230000001413 cellular effect Effects 0.000 description 15
- 238000004891 communication Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 14
- 230000006870 function Effects 0.000 description 10
- 239000012080 ambient air Substances 0.000 description 8
- 206010012601 diabetes mellitus Diseases 0.000 description 6
- 238000009529 body temperature measurement Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- SXHLTVKPNQVZGL-UHFFFAOYSA-N 1,2-dichloro-3-(3-chlorophenyl)benzene Chemical compound ClC1=CC=CC(C=2C(=C(Cl)C=CC=2)Cl)=C1 SXHLTVKPNQVZGL-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 150000003071 polychlorinated biphenyls Chemical class 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000031070 response to heat Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14532—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1495—Calibrating or testing of in-vivo probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6887—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/42—Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0242—Operational features adapted to measure environmental factors, e.g. temperature, pollution
- A61B2560/0247—Operational features adapted to measure environmental factors, e.g. temperature, pollution for compensation or correction of the measured physiological value
- A61B2560/0252—Operational features adapted to measure environmental factors, e.g. temperature, pollution for compensation or correction of the measured physiological value using ambient temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0295—Strip shaped analyte sensors for apparatus classified in A61B5/145 or A61B5/157
Definitions
- the present invention generally relates to blood glucose measuring devices and, more particularly, devices and methods for estimating the temperature of a blood glucose reaction site.
- bG monitors blood glucose monitors
- Blood glucose monitors commonly comprise a base unit that houses control and test electronics required to test the glucose level in a sample of blood.
- Typical bG monitors may also have a measurement strip receptacle that accepts a disposable measurement strip. One end of the strip is inserted into the measurement strip receptacle while an exposed area contains a reaction site in which the user deposits a drop of blood, which is often obtained by pricking the skin with a lancet.
- reaction site which comprises various reagent chemicals
- base unit thereby electrically coupling the reaction site to the control and test electronics.
- the temperature at the reaction site must be within established lower and upper bounds. Therefore, an accurate temperature reading at the reaction site is desired to necessarily validate a blood glucose measurement. Due to the fact that all but the base of the bG test strip is exposed to ambient air, the reaction site temperature closely follows the ambient air temperature.
- persons with diabetes may also carry a portable electronic device, such as a cellular phone, smart phone, music player, personal digital assistant (PDA), or other similar devices.
- a portable electronic device such as a cellular phone, smart phone, music player, personal digital assistant (PDA), or other similar devices.
- PDA personal digital assistant
- a bG monitor may be integrated into a cellular phone so that a diabetic only has to carry such a single, multi-functional device.
- the core temperature of a cellular phone can rise over 20 degrees Celsius above the ambient temperature during continuous use over a period of twenty minutes.
- Blood glucose monitors commonly rely on an internal temperature sensor to determine the temperature at the reaction site. Difficulties arise when the temperature reading provided by the internal temperature sensor changes not due to changes in the ambient air, but rather due to the internal heating of electronic components inside the device.
- the internal heat generation may vary depending on how the portable electronic device is being used. Because the internal temperature of such portable devices fluctuates greatly depending on device usage (e.g., cell phone talk times) and therefore influences the internal temperature, an internal temperature sensor maintained within the device is not capable of obtaining an accurate reaction site temperature to validate the blood glucose measurement.
- a method of estimating the temperature of a reaction site on a measurement strip in a blood glucose measuring device having a plurality of heat generating components and a temperature measuring element includes determining an activation initiation time, an activation duration time, a thermal magnitude Qx and a temperature elevation Ex for each of the heat generating components.
- the temperature elevation Ex for each of the heat generating components is determined at least in part by an impulse response matrix [X 1 ] for times ti through t ⁇ x , the activation initiation time, the activation duration time and the thermal magnitude Qx for each of the heat generating components.
- the method further includes determining a total temperature elevation E tota ⁇ of the glucose measuring device by summing the temperature elevation Ex of each of the heat generating components, reading a temperature value T senso r provided by the temperature measuring element, and determining a reaction site temperature estimation T slte by subtracting the total temperature elevation E tOta i from the temperature value T senso r provided by the temperature measuring element.
- the method further includes preventing a blood glucose test if the reaction site temperature estimation T s , te is greater than a maximum reaction site temperature T max .
- a blood glucose measuring device is provided.
- the blood glucose measuring device includes a plurality of heat generating components, a measurement strip port operable to receive a removable measurement strip having a reaction site for receiving a blood sample, and a temperature measuring element operable to measure an internal temperature of the blood glucose measuring device T sen sor and to provide an internal temperature signal that corresponds with the measured internal temperature.
- the blood glucose measuring device further includes a controller operable to receive the internal temperature signal from the temperature measuring element and to determine a temperature estimate of the reaction site T slte based on blood glucose measuring device usage by applying a dynamic thermal model.
- the dynamic thermal model determines a total temperature elevation E tota i based at least on part on an activation initiation time, an activation duration time and a thermal magnitude Qx of each heat generating component within a sample period.
- the controller calculates the temperature estimate of the reaction site Tsite by subtracting the total temperature elevation E tO tai from the internal temperature T sen sor provided by the internal temperature signal.
- a blood glucose measuring device including a controller, a temperature measuring element, a measurement strip port, and a plurality of heat generating elements.
- the measurement strip port is operable to receive a removable measurement strip having a reaction site positioned at an end.
- the temperature measuring element is in electrical communication with the controller and is operable to measure the temperature of the blood glucose measuring device and transmit a temperature signal corresponding to the temperature of the blood glucose measuring device to the controller.
- the controller is programmed to determine one or more activity characteristics within a sample period for each of the heat generating components, calculate a total temperature elevation within the blood glucose measuring device due to the activity characteristics of the heat generating elements within the sample period, and calculate a temperature estimation of the reaction site by subtracting the total temperature elevation from the temperature of the blood glucose measuring device corresponding to the temperature signal received from the temperature measuring element.
- FIG. 1 depicts an exemplary portable electronic device capable of blood glucose measurement according to one or more embodiments shown and described herein;
- FIG. 2A depicts an exemplary measurement strip according to one or more embodiments shown and described herein;
- FIG. 2B depicts a cross section view of the exemplary measurement strip depicted in FIG. 2A according to one or more embodiments shown and described herein;
- FIG. 3 depicts a schematic of a blood glucose measuring module according to one or more embodiments shown and described herein;
- FIG. 4 depicts a portion of a printed circuit board of a portable electronic device having a blood glucose measurement module.
- FIG. 5 depicts a succession of impulse responses of a heat generating component within a device that is generating heat at a particular magnitude for forty minutes followed by a period of sixty minutes in which the heat generating component is not generating heat.
- the embodiments described herein generally relate to portable electronic devices which are capable of measuring blood glucose (bG) levels in a blood sample provided by an individual with diabetes. More particularly, embodiments described herein relate to estimations of the temperature at a bG measurement strip reaction site when the reaction site may be at a different temperature than the temperature of the bG measurement electronic circuitry.
- bG blood glucose
- Heat generating components within the bG measuring device may generate heat at varying levels depending on how the device is being used. It is desired to have an accurate estimation of the reaction site temperature to avoid unwarranted under or over-temperature lockout conditions that would prevent proper use of the bG measuring device.
- Embodiments described herein utilize a dynamic thermal model that uses a temperature sensor reading to dynamically estimate the reaction site temperature depending on how the portable electronic device is being used. As described in detail herein, the dynamic thermal model of particular embodiments utilize the linear superposition of temperature elevation responses of a particular heat generating component over time to determine a total temperature elevation of the heat generating component.
- the dynamic thermal model further utilizes linear superposition of the total temperature elevations of each heat generating components to determine a total internal temperature elevation that may then be subtracted from the temperature reading provided by the temperature sensor.
- the dynamic thermal model takes into account activity characteristics of the portable electronic device such as an initiation time of when a component started generating heat, how long and at what thermal magnitude each component has been generating heat. In this manner, an estimation of the temperature of the reaction site on the measurement strip that takes into consideration device usage may be achieved.
- an exemplary bG measuring device 10 configured as a cellular phone is illustrated. It will be understood that the bG measuring device may be configured as other types of portable electronic device, such as music players, personal digital assistants, smart phones, insulin pumps and others.
- the bG measuring device 10 comprises a measurement strip port 12 that may be operable to receive a measurement strip 14, which may be removably inserted into the measurement strip port 12.
- the measurement strip port 12 may be integrated into the housing of the cellular phone.
- the geometry of the port 12 may provide enough chamfer and guiding surfaces to ease the insertion of the measurement strip 14 into the port 12. It will be understood that other embodiments of the slot and the strip port are also possible.
- the measurement strip 14 may be configured to receive a blood sample in the form of a blood drop at a reaction site 16 located at a point along the measurement strip 14, such as near the tip.
- the measurement strip 14 may contain electronic circuitry and/or chemicals at the reaction site 16 which facilitate the measurement of the bG level of a blood sample.
- the measurement strip port 12 may have a plurality of electrical pads (not shown) which are configured to engage corresponding electrical pads 18 at the base of the measurement strip 14 when installed in the measurement strip port 12.
- the measurement strip port 12 and measurement strip 14 may have six electrical pads 18.
- the strip port and strip may have eight electrical pads 18.
- Electrodes 17 and 19, which may be made of a metal material such as gold or palladium, may traverse the measurement strip 14 from the reaction site 16 to the base and electrical pads 18. The electrodes electrically couple the reaction site 16 to the electrical pads 18 and measurement strip port 12.
- FIG. 3 is a schematic of exemplary bG measuring circuitry 40 of a portable electronic device that is capable of measuring blood glucose, such as the cellular phone illustrated in FIG. 1. It will be understood that the exemplary bG measuring circuitry 40 is only one configuration as other hardware and software configurations may be utilized to effectuate the temperature estimation and dynamic thermal models described herein.
- the bG measuring circuitry 40 of the embodiment illustrated in FIG. 3 comprises an interface 38, a bG microcontroller 34, an application specific integrated circuit ("ASIC") 32, a measurement strip port 12, a temperature measurement element 24 and memory 36.
- the bG measuring circuitry 40 may also comprise a code key port 25 in which to receive a code key 25A containing calibration information.
- the bG measuring circuitry 40 may be integral with other dedicated circuitry of the portable electronic device, or the bG measuring circuitry 40 may be configured as an embeddable bG module that may be installed in an external host having a host processor as disclosed in copending and commonly owned U.S. Patent App. No. 12/477,982, the entirety of which is hereby incorporated by reference herein.
- an embeddable bG module comprising the bG measuring circuitry 40 may be used as an embedded measurement engine for a glucose measurement system within the external host.
- the bG microcontroller 34 may be in electrical communication with the interface 38, the ASIC 32, and the temperature measuring element 24.
- the bG microcontroller 34 may be in electrical communication with other circuit modules of the portable electronics device ("non-bG modules") in which the bG measuring circuitry 40 is implemented.
- the interface 38 may enable the bG microcontroller 34 to communicate with a cellular phone microcontroller (not shown), for example, to determine particular attributes of components operating within the cellular phone.
- the interface 38 may be incorporated directly into the bG microcontroller 34 such that there is no dedicated interface 38 circuitry and the bG microcontroller 34 may communicate directly with other non-bG modules within the portable electronics device.
- the bG microcontroller 34 may be model
- the bG microcontroller 34 may contain a Universal Asynchronous Receiver Transmitter (UART), timers, programmable input/output (I/O) pins, data memory, program memory, and other functions which may facilitate its operation.
- UART Universal Asynchronous Receiver Transmitter
- I/O programmable input/output
- the bG microcontroller 34 may execute a computer program, hereinafter called "bG measurement software," which defines and/or enables the functioning of the bG measuring circuitry 40.
- the bG measurement software may be written in a computer language, such as "C" or assembly language, and may be stored in the program memory of the bG microcontroller 34.
- the ASIC 32 may be in electrical communication with the bG microcontroller
- the ASIC 32 may be a mixed-signal device, having both digital and analog components.
- the ASIC 32 may be operable to electrically detect the insertion and, subsequently, communicate with the measurement strip port 12 such that the ASIC 32 may receive signals from the measurement strip 14 related to the blood glucose level of a blood sample placed on the reaction site 16.
- the ASIC 32 may, after receiving the signals from the measurement strip 14, process these signals and communicate information about the bG level to the bG microcontroller 34.
- the bG microcontroller 34 may take this information and process it further in order to arrive at the final bG measurement result.
- the ASIC 32 and the bG microcontroller 34 may work together to perform the bG measurement function, with the ASIC 32 performing part of the function and the bG microcontroller 34 performing part of the function.
- the ASIC 32 may be housed in an electrical ball-grid array (BGA) package or other suitable package.
- the ASIC 32 may additionally perform other functions such as generating a fixed-frequency clock signal for the bG microcontroller 34.
- the ASIC 32 and bG microcontroller 34 may communicate with each other via a serial bus, such as I 2 C or SPI, or via a parallel interface.
- the bG measuring circuitry 40 may also include a nonvolatile configuration memory 36.
- This memory may be external to the bG microcontroller 34, as is depicted in FIG. 3, or may be integrated into the bG microcontroller 34.
- the memory 36 may be operable to store information relating to the operation of the module, such as configuration parameters, calibration data for the measurement strips, and so forth. Further, the memory may be operable to store the dynamic thermal model and the impulse response matrix for each heat generating component, as describe in detail below.
- the memory 36 may in electrical communication with the bG microcontroller 34 such that the data stored in the memory may be read by the bG microcontroller 34.
- the bG microcontroller 34 may write data to the memory 36 such that the data is stored on the memory 36 in a nonvolatile fashion.
- the memory 36 when it is external to the microcontroller, may be a 64 kilobit device, such as a 25AA640A device from Microchip Technology, Inc. Other types of memory, including flash memory, may also be utilized.
- the interface 38 may employ a serial communication scheme to provide communication between the bG microcontroller 34 and non-bG module(s) of the portable electronics device.
- the serial data interface may employ a "hard-wired" scheme, such a UART or Universal Serial Bus (USB).
- the communication signals between the bG measuring circuitry 40 and the non-bG modules may be implemented with electrical conductors. Furthermore, the connection may be made through an electrical connector.
- the UART may employ two signals: one signal may transmit data from the non- bG module to the bG measuring circuitry 40, and the other signal may transmit data from the bG measuring circuitry 40 to the non-bG module.
- Other communications schemes such as parallel or infrared communication, may also be utilized.
- the bG measuring device 10 when provided as an embeddable module may also include a code key port 25.
- the code key port 25 may allow the user to install an external code key 25 A which may contain calibration information related to the measurement strip reaction site 16. This calibration information may permit the bG measuring circuitry 40 to improve the accuracy of the bG measurement due to, for example, slight variations in the measurement strip which may have been introduced during the manufacturing process.
- the measurement strip 14 (or, typically, package of strips) may also include a code key 25 A which is operable to store information relating to calibration data for the strip 14 (or package of strips).
- the calibration information contained on the code key 25A may be read by the bG microcontroller 34.
- the code key 25A may provide calibration information which permits the bG microcontroller 34 to improve the accuracy of the bG measurement.
- the temperature measuring element 24 may be used to measure the internal temperature of the bG measuring device 10 and to estimate the temperature of the measurement strip 14.
- the temperature measuring element 24 may be in electrical communication with the bG microcontroller 34 such that the bG microcontroller 34 may request a temperature measurement during a bG measurement session or any other time.
- the temperature measuring element 24 may comprise a thermistor, the resistance of which is a known function of temperature. Other embodiments may use similar devices, such as semiconductor temperature sensors, resistance thermal devices (RTDs) and thermocouples.
- the temperature measurement may be used to improve the accuracy of the bG measurement.
- the temperature measurement provided by the temperature measuring element 24 may also indicate conditions in which the bG measurement should not be made, such as when the ambient temperature in which the bG measuring device 10 is operating is outside of the operating range of the measurement strip 14.
- a measurement strip 14 may be designed to operate from 10 degrees C to 40 degrees C. Outside this range, the measurement strip 14 may not produce sufficiently accurate results.
- the bG measuring circuitry 40 may recognize this condition and may refuse to take a measurement under such conditions, since the result may not be sufficiently accurate.
- the bG measuring circuitry 40 may comprise additional components, such as but not limited to resistors, capacitors, inductors, transformers, transistors, and diodes. These additional components may be used to facilitate the operation of the bG measuring device 10. For example, one or more capacitors may be electrically connected to the power supply voltage in order to provide filtering for the bG measuring circuitry 40.
- inductors may be placed between the bG microcontroller 34 and the measurement strip port 12 so as to reduce the possibility of damage to the bG microcontroller 37 due to an electrostatic discharge generated by the user when inserting the measurement strip 14 into the measurement strip port 12. Additional electronic components may be used to perform similar functions.
- Dynamic thermal models providing estimations of the temperature at a bG measurement strip reaction site 16 when the reaction site 16 may be at a different temperature than the internal temperature of the bG measuring device 10 will now be described. As discussed above, it may be important to know the temperature at the measurement strip reaction site 16 in order to avoid unwarranted under or over-temperature lockout conditions that would prevent proper use of the bG measuring device 10. Referring to FIG.
- the reaction site temperature is governed primarily by convective heat exchange with the ambient air and that the thermal conductivity of the strip is so low that the temperature of the inserted end of the measurement strip 14, which is close to the internal temperature of the bG measuring device 10, will have little measurable effect on the temperature at the other end of the strip 14 wherein the reaction site 16 is located. Therefore, the reaction site temperature closely follows the ambient air temperature.
- Embodiments described herein utilize a dynamic thermal model that uses a temperature sensor reading to dynamically estimate the reaction site temperature depending on how the portable electronic device is being used. As described in detail herein, embodiments utilize linear superposition of temperature elevation responses of a particular heat generating component over time to determine a total temperature elevation of the particular heat generating component based on the activity characteristics of each heat generating component. From this total temperature elevation and an internal temperature provided by the temperature measuring element 24, an estimation of the temperature of the reaction site 16 on the measurement strip 14 may be achieved. [0032] Now referring to FIG. 4, a schematic of an exemplary bG measuring device printed circuit board (“PCB”) 20 is illustrated.
- PCB printed circuit board
- the PCB 20 which may comprise several layers of copper and has a plurality of electronic components, including the bG microcontroller 34 and temperature measuring element (e.g., sensor) 24.
- FIG. 4 is for illustrative purposes only and embodiments of the present disclosure are in no way limited thereto. It will be understood that additional PCBs may be located within the bG measuring device 10.
- Located on the PCB are a plurality of heat generating components A-J.
- the heat generating components may be any electrical component that generates heat, such as microcontrollers, radio frequency power amplifiers, audio amplifiers, batteries, voltage regulators, and the like.
- heat generating component A may be a communications microcontroller in a cellular phone application
- heat generating component F may be a resistor.
- the bG microcontroller 34 may also generate heat. [0033] A number of factors may affect the temperature response of a given heat source at the temperature measuring element 24. Within the device 10 enclosure, the heat source may be located on the same circuit board as the temperature measuring element 24 or on another circuit board, and it may be near the sensor or far from it. The heat generation of a particular electronic component may vary greatly during its various modes of operation. The corresponding temperature response at the temperature measuring element 24 may be measured with reasonable accuracy. Depending on the location of the heat producing electronic component relative to the temperature measuring element 24 and the nature of the thermal pathways between them (e.g., the thermal resistance of the PCB substrate or substrates), the temperature response at the temperature measuring element 24 may vary a great deal from component to component.
- a heat generating component near the temperature measuring element 24 may tend to produce a rapid rise in temperature as measured by the temperature measuring element 24 after the heat is applied, followed by a rapid decline in temperature when the heat is removed.
- the rise and fall in temperature may be more gradual and more time may elapse before the peak temperature is reached.
- embodiments of the present disclosure may obtain an improved estimate of the ambient air temperature, and hence the reaction site 16 temperature, by amplifying those changes in the temperature measuring element 24 reading and formulating a new prediction based on a dynamic thermal model of the bG measuring device 10. As described above, difficulties may arise when the reading from the temperature measuring element 24 is changing not due to changes in the ambient air, but rather due to the internal heating of electronic components inside the device containing the bG circuitry.
- the temperature readings from the temperature measuring element 24 may be unduly elevated.
- the internal heat caused by the heat generating components A-J may vary depending on how the cell phone 10 is being used. For example, a recent and lengthy talk session may cause a significant rise in internal temperature that should be accounted for. Similarly, the heat generated by a lengthy talk session that occurred forty-five minutes prior to the bG measurement test may have dissipated. Accurate temperature estimation should continue even when the thermal characteristics of the device change with specific usage.
- Embodiments of the present disclosure utilize a dynamic thermal model that provide for estimating the temperature elevation due to any number of heat sources of arbitrary strength and arbitrary duration in a bG measuring device. Once the total expected temperature elevation has been determined from the dynamic thermal model, then this quantity may be subtracted from the temperature reading of the temperature measuring element 24 to furnish a corrected temperature reading upon which an accurate ambient temperature prediction may be based.
- the thermal model may be dynamically adjusted depending on the specific usage of the device. As more functions are added to the meter, (e.g., communication capabilities, multimedia capabilities, etc.) it becomes increasingly important to estimate the temperature of the reaction site 16 based on how the device 10 has been used prior to the bG measurement test.
- Dynamic thermal models of the present disclosure rely upon the linear superposition of temperature responses to an applied heat generating component or components.
- a time-varying heat source may be characterized as a series of heat "impulses" of varying magnitude.
- An "impulse” may be defined as period of heating lasting a short time as compared to the total duration of heating. Due to linear superposition, the temperature response of a heat generating component of extended duration can be found by adding up the temperature responses of a succession of impulses that represent that heat generating component.
- FIG. 5 is a graph illustrating a succession of impulse responses of a heat generating component within a device that is generating heat at a particular magnitude for forty minutes followed by a period of sixty minutes in which the heat generating component is not generating heat. The x-axis is time in minutes and the y-axis is in hundredths of a Fahrenheit degree. The information illustrated in graph may be utilized to determine the temperature elevation of a particular heat generating element at a particular time.
- a bG measuring device there may be multiple sources of heat. Again by linear superposition, the total temperature response of all of these heat generating components may be found by summing their individual contributions. These heat sources may become active prior to or during a blood glucose measurement.
- the dynamic thermal model may be used to characterize the combined effect of multiple, time-varying heat sources in a portable electronic device incorporating bG measurement circuitry. Referring to FIG. 4, consider the case of a heat generating component "A" of strength Qa being applied for duration (Na/2) ⁇ t, where Na is an even positive integer and ⁇ t is an increment of time.
- the temperature measuring element 24 is installed in the bG measuring device 10 at a location different than the heat source.
- T re f is a suitable reference temperature.
- the reference temperature may T ref be the ambient temperature of the bG measuring device 10 such that T re f - Tam t ,.
- Qa is the magnitude of the heat generating component at location "A;" [U] is a matrix of unit impulses;
- [A] is a matrix of impulse responses
- [Ea] is a matrix of temperature elevations.
- Qb is the magnitude of the heat generating component at point "B;"
- [U] is a matrix of unit impulses
- [B] is a matrix of impulse responses
- Nx- ⁇ t the total time duration Nx- ⁇ t should be sufficiently long that for time t > Nx- ⁇ t, the magnitude of the impulse response is approximately zero, i.e., X 1 ⁇ 0 for i > Nx.
- the interval ⁇ t corresponds to the "impulse" interval, a suitably short interval of time over which a heat generating component of a unit strength acts.
- the interval ⁇ t should be small compared to the total duration Nx- ⁇ t over which the temperature elevations resulting from the applied heat generating component persist in the enclosure of the electronic device.
- N a number equal to the maximum of the individual interval counts Na, Nb, etc.:
- the upper limit N on the interval counts will be sufficiently large that the matrix of impulse responses for each and every heat source may be characterized with minimal loss due to truncation.
- N is the total number of samples and ⁇ t is the sampling interval. From the standpoint of the dynamic thermal model, N is the total number of elements in the impulse temperature response matrix [X] (dimension N x 1) and ⁇ t is the impulse duration. For a handheld electronic device, this maximum period may be on the order of one to two hours. By that time, virtually all of any generated heat will have been dissipated to the environment of the device.
- sampling interval ⁇ t which is also the assumed impulse duration, should be small enough to resolve the time-varying temperature response from a transient heat release with a sufficient degree of precision that reasonably accurate estimates of the individual and total temperature elevations can be calculated.
- the ambient environment of the bG measuring device 10 should be held to conditions representative of the environment in which the device is expected to be used. For example, if the device will spend most of its time in still air at room temperature, then these conditions should be maintained during the experiments. If the operating environment is expected to be drafty, then a suitable airflow should be imposed.
- the impulse response matrices may be developed by procedures other than the procedure described above. For example, the impulse response matrices may be developed by computer simulations and not actual experimentation and measurement. [0047] The above discussion considered heat generating components operating at a constant magnitude Qx.
- a particular component such as an audio amplifier used in a communications circuit of a cellular phone may operate at a different temperature at varying points during a phone call.
- a current of varying amplitude may pass through a resistor during a call.
- the temperature elevation Ek due to this sequence of heat impulses from heat generating component K may be given by:
- the impulse response matrices for all of the heat sources may be determined, whether the magnitude of the heat generating component Q is constant or variable, then the principle of superposition may be applied to determine the expected temperature response of the device to the influence of any combination of heat generating components acting at arbitrary strengths and for arbitrary durations.
- the total temperature elevation due to M sources may be expressed as:
- the bG microcontroller 34 should know which heat generating components are being activated, and at what strength and for how long. This information plus the reading of the temperature measuring element (device) 24 mounted on the PCB of the bG measuring circuitry 40 may be used to determine the temperature response to heat released by each of the heat generating components. In operation, the impulse response matrix for each heat generating component of interest may be stored in the non-volatile memory 36 or within the bG microcontroller 34. The bG microcontroller 34 is operable to read a temperature signal from the temperature measuring element 24.
- the bG microcontroller 34 is operable to communicate with the other non-bG modules either via the interface 38 or directly to obtain activity characteristic information regarding the heat generating components of interest.
- the activity characteristic information may include the initiation time that a heat generating component became active, the duration in which the heat generating component had been active and the magnitude at which the heat generating component had been active.
- the various controllers of the non-bG modules may provide the activity characteristic information to the bG microcontroller 34.
- the cellular phone microcontroller may transmit the activation initiation time, activation duration time and thermal magnitudes of each heat generating component when requested by the bG microcontroller.
- the cellular phone microcontroller may provide a code to the bG microcontroller that indicates when a cellular phone call was initiated and when or if the call was ended. With this information, the bG microcontroller may have stored within its memory (or within the non- volatile memory 22) thermal magnitude and durational information for the particular heat generating components.
- the bG microcontroller 34 may obtain the activity characteristics for each heat generating component of interest from the non-bG modules and the internal temperature provided by the temperature measuring element 24. With this information, the bG microcontroller 34 may initiate the dynamic thermal model by retrieving the impulse response matrix for each heat generating component of interest. Based on the timing and type of function initiated by the bG measuring device (e.g., a phone call), the bG microcontroller 34 may calculate the temperature elevations Ex for each heat generating component of interest utilizing the superposition method as described above (e.g., Eqs. 3 and 4).
- the bG microcontroller 34 may then determine a total temperature elevation E tota i due to the heat generating component by superposition and subtract that total from the temperature value T sensor provided by the temperature measuring element (device) 24 to achieve a reaction site temperature estimate T S i te .
- the bG microcontroller 34 may then take appropriate action based on the reaction site temperature estimate T S j te such as preventing a measurement test if T S j te is not within certain bounds, or allowing measurement test if T S i te is within the bounds.
- blood glucose measuring devices described herein may be operable to provide a temperature estimation of a reaction site on a blood glucose measuring strip.
- the dynamic thermal model of the disclosed embodiments may predict the reaction site temperature despite any changing internal device temperatures measured by an internal temperature measuring element.
- references herein to the manner in which a component is "programmed,” “configured” or “operable” denotes an existing physical condition of the component and, as such, is to be taken as a definite recitation of the structural characteristics of the component.
- a method of estimating the temperature of a reaction site on a measurement strip in a blood glucose measuring device having a plurality of heat generating components and a temperature measuring element comprising:
- determining an activation initiation time, an activation duration time, and a thermal magnitude Qx for each of the heat generating components determining a temperature elevation Ex for each of the heat generating components, wherein the temperature elevation Ex for each of the heat generating components is determined at least in part by an impulse response matrix [X 1 ] for times ti through t ⁇ x , the activation initiation time, the activation duration time and the thermal magnitude Qx for each of the heat generating components; determining a total temperature elevation E tota i of the glucose measuring device by summing the temperature elevation Ex of each of the heat generating components; reading a temperature value T sensor provided by the temperature measuring element; and determining a reaction site temperature estimation T s ⁇ te by subtracting the total temperature elevation E to tai from the temperature value T sen sor provided by the temperature measuring element.
- reaction site temperature estimation T site is greater than a maximum reaction site temperature T max or less than a minimum reaction site temperature T mm .
- [EXJ] is a temperature elevation matrix of a heat generating component
- Qx is the thermal magnitude of a heat generating component
- [U] is a unit impulse matrix
- [X 1 ] is the impulse response matrix of a heat generating component.
- N is greater than or equal to the number of values of the impulse response matrix having the largest number of values.
- the blood glucose measuring device further comprises a mobile communications module.
- a blood glucose measuring device comprising: a plurality of heat generating components; a measurement strip port operable to receive a removable measurement strip having a reaction site for receiving a blood sample; a temperature measuring element operable to measure an internal temperature T senso r of the blood glucose measuring device and provide an internal temperature signal that corresponds with the measured internal temperature T sen sor; and a controller operable to receive the internal temperature signal from the temperature measuring element and to determine a temperature estimate of the reaction site T s , te based on blood glucose measuring device usage by applying a dynamic thermal model, wherein: the dynamic thermal model determines a total temperature elevation E tO tai based at least on part on an activation initiation time, an activation duration time and a thermal magnitude Qx of each heat generating component within a sample period; and the controller calculates the temperature estimate of the reaction site T site by subtracting the total temperature elevation E to tai from the internal temperature T sen sor provided by the internal temperature signal.
- the blood glucose measuring device of preferred embodiment 9 wherein the dynamic thermal model determines a temperature elevation Ex for each heat generating component by summing a succession of heat impulse responses that are defined at least in part by the activation initiation time, the activation duration time and the thermal magnitude Qx of the heat generating component. 11.
- a blood glucose measuring device of preferred embodiment 9 wherein: the dynamic thermal model determines a temperature elevation Ex for each of the heat generating components, wherein the temperature elevation Ex for each of the heat generating components is determined at least in part by an impulse response matrix [X 1 ] for times tj through t Nx , the activation initiation time, the activation duration time and the thermal magnitude Qx for each of the heat generating components; and the dynamic thermal model determines a total temperature elevation E tota i of the glucose measuring device by summing the temperature elevation Ex of the heat generating components. 12.
- [EXJ] is a temperature elevation matrix of a heat generating component for times ti through tw x ;
- Qx is the thermal magnitude of a heat generating component
- [U] is a unit impulse matrix
- [Xi] is the impulse response matrix of a heat generating component.
- a blood glucose measuring device of preferred embodiment 9 wherein the controller is further operable to determine the activation initiation time, the activation duration time and the thermal magnitude Qx of each heat generating component. 17. A blood glucose measuring device of preferred embodiment 9 wherein the blood glucose measuring device is implemented into a mobile communications device, a personal computer or a personal data assistant.
- a blood glucose measuring device comprising a controller, a temperature measuring element, a measurement strip port, and a plurality of heat generating elements, wherein: the measurement strip port is operable to receive a removable measurement strip having a reaction site positioned at an end; the temperature measuring element is in electrical communication with the controller and is operable to measure the temperature of the blood glucose measuring device and transmit a temperature signal corresponding to the temperature of the blood glucose measuring device to the controller; and the controller is programmed to: determine one or more activity characteristics within a sample period for each of the heat generating components; calculate a total temperature elevation within the blood glucose measuring device due to the activity characteristics of the heat generating elements within the sample period; and calculate a temperature estimation of the reaction site by subtracting the total temperature elevation from the temperature of the blood glucose measuring device corresponding to the temperature signal received from the temperature measuring element.
- a blood glucose measuring device of preferred embodiment 18 wherein the one or more activity characteristics comprises an initiation time when a heat generating element becomes active, how long a heat generating element had been active within a sample period, and a thermal magnitude at which a heat generating element had been active within the sample period.
- a blood glucose measuring device of preferred embodiment 19 wherein: the blood glucose measuring device further comprises a non-volatile memory; the controller is further programmed to calculate the temperature elevation of the blood glucose measuring device by performing a linear superposition of a plurality of temperature elevations corresponding to the heat generating components; and the controller is further programmed to determine the temperature elevation for each of the heat generating components by performing a linear superposition of a succession of heat impulse responses for each heat generating component, wherein the succession of heat impulse responses is defined by the activity characteristics for each heat generating component within the sample period.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Emergency Medicine (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/479,212 US8140294B2 (en) | 2009-06-05 | 2009-06-05 | Temperature estimations in a blood glucose measuring device |
PCT/EP2010/003361 WO2010139473A2 (fr) | 2009-06-05 | 2010-06-02 | Estimations de température dans un dispositif glucomètre |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2437663A2 true EP2437663A2 (fr) | 2012-04-11 |
EP2437663B1 EP2437663B1 (fr) | 2020-08-26 |
Family
ID=43034184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10723938.6A Active EP2437663B1 (fr) | 2009-06-05 | 2010-06-02 | Estimations de température dans un dispositif glucomètre |
Country Status (3)
Country | Link |
---|---|
US (1) | US8140294B2 (fr) |
EP (1) | EP2437663B1 (fr) |
WO (1) | WO2010139473A2 (fr) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6175752B1 (en) * | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US8688188B2 (en) | 1998-04-30 | 2014-04-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8465425B2 (en) | 1998-04-30 | 2013-06-18 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8346337B2 (en) | 1998-04-30 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8974386B2 (en) | 1998-04-30 | 2015-03-10 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9066695B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8480580B2 (en) | 1998-04-30 | 2013-07-09 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US6560471B1 (en) | 2001-01-02 | 2003-05-06 | Therasense, Inc. | Analyte monitoring device and methods of use |
AU2003303597A1 (en) | 2002-12-31 | 2004-07-29 | Therasense, Inc. | Continuous glucose monitoring system and methods of use |
US9628880B2 (en) | 2008-04-07 | 2017-04-18 | Koss Corporation | Wooden or other dielectric capacitive touch interface and loudspeaker having same |
EP2399518B1 (fr) * | 2009-02-18 | 2013-11-20 | Panasonic Corporation | Outil de ponction, dispositif de mesure d'échantillon biologique et système de mesure d'échantillon biologique |
US8801275B2 (en) | 2010-09-23 | 2014-08-12 | Bayer Healthcare Llc | System and apparatus for determining ambient temperatures for a fluid analyte system |
US9587989B2 (en) * | 2011-03-01 | 2017-03-07 | Panasonic Healthcare Holdings Co., Ltd. | Biological sample measurement device |
GB201116481D0 (en) * | 2011-09-26 | 2011-11-09 | Cellnovo Ltd | Monitoring devices |
US9823214B2 (en) * | 2011-11-01 | 2017-11-21 | Panasonic Healthcare Holdings Co., Ltd. | Biological sample measuring apparatus |
US20130116526A1 (en) | 2011-11-09 | 2013-05-09 | Telcare, Inc. | Handheld Blood Glucose Monitoring Device with Messaging Capability |
GB201121122D0 (en) | 2011-12-08 | 2012-01-18 | Dow Corning | Hydrolysable silanes and elastomer compositions containing them |
GB201121124D0 (en) | 2011-12-08 | 2012-01-18 | Dow Corning | Hydrolysable silanes |
GB201121130D0 (en) | 2011-12-08 | 2012-01-18 | Dow Corning | Polymeric materials modified by silanes |
GB201121128D0 (en) | 2011-12-08 | 2012-01-18 | Dow Corning | Treatment of filler with silane |
GB201121133D0 (en) | 2011-12-08 | 2012-01-18 | Dow Corning | Hydrolysable silanes |
US9008993B2 (en) * | 2011-12-19 | 2015-04-14 | Blackberry Limited | Methods and apparatus for detecting unauthorized batteries or tampering by monitoring a thermal profile |
EP2682715B1 (fr) | 2012-07-02 | 2015-03-11 | Sensirion AG | Dispositif électronique portable |
EP2728327B1 (fr) * | 2012-11-02 | 2020-02-19 | Sensirion AG | Dispositif électronique portable |
EP2802128B1 (fr) | 2013-05-06 | 2018-07-11 | Sensirion AG | Auto-étalonnage d'un capteur de température dans un terminal mobile |
EP2801804B1 (fr) | 2013-05-06 | 2018-07-11 | Sensirion AG | Auto-étalonnage d'un capteur de température dans un terminal mobile |
EP2808650B1 (fr) * | 2013-05-31 | 2017-03-22 | Sensirion AG | Dispositif électronique portable |
EP2808652B1 (fr) | 2013-05-31 | 2016-11-16 | Sensirion AG | Dispositif électronique portable avec capteur de température intégré compensée par des donnes d'autre senseurs |
US9645617B2 (en) * | 2013-11-06 | 2017-05-09 | Northrop Grumman Systems Corporation | Compact memory device |
US9689753B2 (en) | 2014-05-22 | 2017-06-27 | Roche Diabetes Care, Inc. | Handheld analyte meter with recharging control for improved analyte testing |
KR101605110B1 (ko) * | 2014-05-22 | 2016-03-22 | 주식회사 아이센스 | 휴대용 혈당 측정기 |
EP2930475B1 (fr) | 2014-12-22 | 2017-11-15 | Sensirion AG | Agencement de capteur de débit |
WO2019121450A1 (fr) * | 2017-12-18 | 2019-06-27 | Sanofi | Glucomètre nfc contenant une batterie rechargeable pour utilisation indépendante |
DE102022107214B4 (de) | 2022-03-28 | 2024-07-18 | Senslab - Gesellschaft Zur Entwicklung Und Herstellung Bioelektrochemischer Sensoren Mbh | Verfahren und Sensor zur Bestimmung einer plasmabezogenen Analytkonzentration in Vollblut |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5405511A (en) * | 1993-06-08 | 1995-04-11 | Boehringer Mannheim Corporation | Biosensing meter with ambient temperature estimation method and system |
JPH09159541A (ja) | 1995-12-12 | 1997-06-20 | Oki Electric Ind Co Ltd | 温度検出方法および温度検出機能を有するプリンタ装置 |
US6349269B1 (en) * | 1998-12-11 | 2002-02-19 | Dell U.S.A., L.P. | Thermal management data prediction system |
KR20060031804A (ko) | 2003-06-03 | 2006-04-13 | 바이엘 헬쓰케어, 엘엘씨 | 휴대용 의료진단장치 |
JP4711333B2 (ja) | 2005-06-28 | 2011-06-29 | グンゼ株式会社 | 計測表示器、及び血糖値計測表示器 |
-
2009
- 2009-06-05 US US12/479,212 patent/US8140294B2/en active Active
-
2010
- 2010-06-02 WO PCT/EP2010/003361 patent/WO2010139473A2/fr active Application Filing
- 2010-06-02 EP EP10723938.6A patent/EP2437663B1/fr active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2010139473A2 * |
Also Published As
Publication number | Publication date |
---|---|
EP2437663B1 (fr) | 2020-08-26 |
WO2010139473A2 (fr) | 2010-12-09 |
US20100307916A1 (en) | 2010-12-09 |
US8140294B2 (en) | 2012-03-20 |
WO2010139473A3 (fr) | 2011-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8140294B2 (en) | Temperature estimations in a blood glucose measuring device | |
EP2627253B1 (fr) | Contrôle de puissance pour un dispositif médical portatif | |
CN102178537B (zh) | 测定装置及测定方法 | |
JP5771557B2 (ja) | 環境温度測定方法、液体試料測定方法および測定器 | |
EP2344027A2 (fr) | Système et procédé permettant la prédiction de la température ambiante dans un dispositif de mesure d'analytes fluides | |
JP6406825B2 (ja) | バッテリー容量を検知するためのシステム及び方法 | |
JP2021511094A (ja) | センサに対する温度効果を補償するためのシステム、デバイスおよび方法 | |
US8636661B2 (en) | Embeddable modules for measuring blood glucose levels | |
TW201340939A (zh) | 具有通信能力之手持式血糖監測裝置 | |
US20130311103A1 (en) | System and Method for Determining the Point of Hydration and Proper Time to Apply Potential to a Glucose Sensor | |
US20080249384A1 (en) | System and Method for Estimating the Glucose Concentration in Blood | |
CN107847191A (zh) | 绷带型分析传感器的校准方法 | |
WO1993023747A1 (fr) | Commande de temperature pour systeme diagnostique portatif | |
CN110996767A (zh) | 耐环境条件的可身体安装的热耦合设备 | |
JP2022519854A (ja) | 連続的分析物感知および自動較正のセンサ動作を精査するための装置および方法 | |
US11666253B2 (en) | Methods and apparatus for analyte concentration monitoring using harmonic relationships | |
CN102421355B (zh) | 一种在手指处测量血氧的方法及指夹式血氧测量仪 | |
CN110998314A (zh) | 测量目标气体的浓度 | |
US20210068723A1 (en) | Intelligent prediction-based glucose alarm devices, systems, and methods | |
US20030220583A1 (en) | Portable diagnostic system | |
CN211347138U (zh) | 一种测量血栓弹力图仪加热温度的装置 | |
JP2015139587A (ja) | 健康管理装置 | |
CN105492899A (zh) | 在测试测量序列期间确定错误测量信号的方法和系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120105 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20130627 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ROCHE DIABETES CARE GMBH Owner name: F.HOFFMANN-LA ROCHE AG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200108 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: RAMEY, BLAINE, EDWARD Inventor name: PAULEY, JR., JAMES, L. Inventor name: BROWN, MICHAEL, L. |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
INTG | Intention to grant announced |
Effective date: 20200623 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010065268 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1305582 Country of ref document: AT Kind code of ref document: T Effective date: 20200915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201126 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201127 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201228 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201126 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200826 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1305582 Country of ref document: AT Kind code of ref document: T Effective date: 20200826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010065268 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
26N | No opposition filed |
Effective date: 20210527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210602 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210602 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210602 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100602 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230509 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |