EP2437017A1 - Method for melting non ferrous-metals in a gas-fed shaft furnace and shaft furnace assembly for performing the method - Google Patents
Method for melting non ferrous-metals in a gas-fed shaft furnace and shaft furnace assembly for performing the method Download PDFInfo
- Publication number
- EP2437017A1 EP2437017A1 EP20110007882 EP11007882A EP2437017A1 EP 2437017 A1 EP2437017 A1 EP 2437017A1 EP 20110007882 EP20110007882 EP 20110007882 EP 11007882 A EP11007882 A EP 11007882A EP 2437017 A1 EP2437017 A1 EP 2437017A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- furnace
- burner
- melting
- zone
- shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002844 melting Methods 0.000 title claims abstract description 69
- 230000008018 melting Effects 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims description 21
- 229910052751 metal Inorganic materials 0.000 title claims description 13
- 239000002184 metal Substances 0.000 title claims description 13
- 229910001338 liquidmetal Inorganic materials 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 9
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000007789 gas Substances 0.000 claims description 39
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 25
- 229910052802 copper Inorganic materials 0.000 claims description 25
- 239000010949 copper Substances 0.000 claims description 25
- 238000010304 firing Methods 0.000 claims description 11
- -1 ferrous metals Chemical class 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 238000003723 Smelting Methods 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 230000001276 controlling effect Effects 0.000 claims description 3
- 230000000630 rising effect Effects 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 2
- 238000009434 installation Methods 0.000 claims 7
- 239000007769 metal material Substances 0.000 abstract 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 241001156002 Anthonomus pomorum Species 0.000 description 7
- 239000003345 natural gas Substances 0.000 description 5
- 239000002737 fuel gas Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
- F27B1/02—Shaft or like vertical or substantially vertical furnaces with two or more shafts or chambers, e.g. multi-storey
- F27B1/025—Shaft or like vertical or substantially vertical furnaces with two or more shafts or chambers, e.g. multi-storey with fore-hearth
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
- C22B15/0026—Pyrometallurgy
- C22B15/0028—Smelting or converting
- C22B15/003—Bath smelting or converting
- C22B15/0032—Bath smelting or converting in shaft furnaces, e.g. blast furnaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
- F27B1/10—Details, accessories, or equipment peculiar to furnaces of these types
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
- F27B1/10—Details, accessories, or equipment peculiar to furnaces of these types
- F27B1/28—Arrangements of monitoring devices, of indicators, of alarm devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D99/00—Subject matter not provided for in other groups of this subclass
- F27D99/0001—Heating elements or systems
- F27D99/0033—Heating elements or systems using burners
Definitions
- the invention relates to a method for melting non-ferrous metals, in particular copper cathodes and scrap copper, in a gas-fired shaft furnace, wherein the non-ferrous metal to be melted fed in the head of the shaft furnace, due to gravity drops down and is melted by means of several gas-powered burner.
- the invention further relates to a suitable shaft furnace system for carrying out the method.
- a still today in practice used shaft furnace is from the US 3 199 977 A and the US 3,366,465 A
- the furnace consists of a vertically arranged furnace shaft with a circular cross-section. At the lower end there is a flat floor inclined towards the tapping opening (gradient approx. 16%). At the upper end sits an exhaust hood on the furnace opening through which the kiln exhaust gases are discharged.
- the exhaust hood has a large opening through which copper cathodes and copper scrap are fed to the shaft furnace.
- the Schsch cross-section narrows conically continuously to about 80% of the cross-sectional area in the upper region.
- the furnace shell surface are located in an annular arrangement eight or nine natural gas-air burners, which are at a height. Depending on the size of the furnace, three or four such burner rings are arranged at different heights (viewed from the bottom) at a distance from one another. The last burner ring is in a case, e.g. arranged at a height which is 36% of the total height.
- the penultimate burner ring is mounted above the conical taper in the cylindrical part of the furnace shaft.
- each burner is supplied with a natural gas-air mixture, which is continuously analyzed.
- the analysis result is a CO value, which is compared to a setpoint and then used to alter the ratio of natural gas to air so that the burner flame is set reducing.
- a shaft melting furnace ( DE 3 603 251 A1 ) for melting aluminum or aluminum alloys, which consists of a cylindrical shaft and a furnace hearth, which is formed concave and steeply sloping, and an outlet trough. Stove and outlet trough are inclined downwards against the tapping device.
- the burners for heating the melt are arranged in the hearth and in the shaft at different heights.
- the outlet openings of the burners are chosen so that their axes are inclined downwards to prevent metal droplets can reach the opposite wall or the burner opening.
- the outlet trough must be kept hot with a separate burner. The hot metal should thereby flow as quickly as possible towards the outlet.
- This furnace is therefore unsuitable for melting copper.
- the invention has for its object to provide a method for melting of non-ferrous metals in a gas-fired shaft furnace, which is characterized in comparison to the known methods by a higher efficiency and leads to lower environmental impact. Furthermore, a suitable for carrying out the method shaft furnace system is to be created.
- the metal to be melted first enters a vertical cylindrical preheating zone.
- a first arrangement of burners which are installed at the phase boundary between the preheating zone and the melting zone in the shaft furnace annularly at equal radial distances from each other, as well as by the output by rising, hot exhaust heat energy, the flow material is heated.
- the heating is controlled so that the precursor material is uniformly heated, except for a temperature range near the melting temperature, which is achieved in the lower exit region of the preheating zone, in the axial direction of the melting furnace there is a temperature gradient.
- the regulation of the heat supply in the shaft furnace is tuned so that in the preheating zone no melting takes place.
- the heat input required for this purpose takes place via a second burner arrangement, wherein the burners are arranged distributed in a plane uniformly over the circumference, preferably in a radial offset from the burners of the first arrangement.
- the melting zone differs significantly in its furnace geometry from the preheating zone. At the phase boundary between the preheating and melting zone, a shaft cross-sectional widening takes place with subsequent continuous cross-sectional constriction of the furnace interior in the direction of the discharge opening.
- the geometry of the furnace interior of the molten zone corresponds to the outer shape of an obelisk.
- This special design of the furnace interior in conjunction with the targeted heat supply allows a targeted melting in the direction of liquid discharge.
- the liquid metal flows off as a channel in the direction of the discharge opening.
- heat energy is also supplied via a third burner arrangement, which may consist of a burner.
- a third burner arrangement which may consist of a burner. This measure ensures a safe continuous discharge of the liquid metal from the discharge and a given liquid metal overheating.
- the temperature of the exhaust gases is measured at the furnace head and controlled by controlling the furnace performance (melting power) and / or by changing the thermal performance of the burner so that it becomes smaller, at most 600 ° C.
- the exhaust gas temperatures at the top of the shaft furnace are above 1000 ° C.
- the measures according to the invention for reducing the exhaust gas temperature are of decisive importance for economic operation.
- the special furnace geometry has an advantageous effect on lowering the exhaust gas temperature without adversely affecting the melting performance.
- the furnace geometry ensures a uniform, constant flow of the exhaust gas in the furnace shaft.
- the proposed procedure makes it possible to achieve firing efficiency ⁇ f of about 0.70.
- the consumption of fuel or natural gas to melt one tonne of copper scrap can thus be reduced by approx. 20 to 25% depending on the selected melting performance.
- the supply of heat energy in the preheating and melting zone can be controlled separately (separate heating zones) from each other.
- the firing capacity can be tailored to the quality and condition of the flow material.
- the exhaust gas temperature measured at the shaft furnace head is used as a reference for controlling and regulating the process parameters (the shaft furnace melting operation) by linking the combustion control per heating zone, the control of the feed level and the control of the mechanical exhaust gas discharge.
- the temperature of the exhaust gases used for preheating in the exhaust pipe is measured and set to a value of less than or equal to 600 ° C.
- the furnace chamber pressure in the head area of the shaft furnace can be adjusted to a value ⁇ zero level by changing the capacity for exhaust gas extraction.
- the kiln exhaust gases are sucked off and subjected to exhaust aftertreatment. According to the mode of operation, the waste heat of the resulting exhaust gases can be used primarily or secondarily.
- the height or length of the preheating zone is about 4D to 6D, where D is the inside diameter of the furnace shaft.
- the height of the melting zone, based on the center axis of the shaft furnace is in the range of about 1 D to 1, SD.
- the length of the furnace bottom from the center shaft shaft furnace is about 1.07D to 1.2D.
- the arranged in the wall of the preheating zone burners are arranged inclined in the axial direction at an angle of about 8 to 15 ° downwards.
- the burners arranged in the wall of the preheating zone and the melting zone are radially offset relative to one another in their planes as a first arrangement and a second arrangement.
- the feed opening can be closed and provided at the top of the shaft furnace is an under suction exhaust pipe with a temperature measuring device.
- Fig. 1 Schachtschmelzofenstrom shown consists of a gas-fired shaft furnace 1 and a shaft furnace upper part 2 with a feed lock 3 and a shaft 4 for supplying einmelzendem material, such as copper cathodes and copper scrap, and an exhaust pipe or exhaust duct 5.
- the exhaust pipe 5 In the exhaust pipe 5 are a Notesse 6 and an induced draft 7 integrated.
- a temperature sensor 8 is installed in the wall of the exhaust pipe, with which the exhaust gas temperature is measured. The measured values are transmitted to a computer-aided control unit, not further shown, which will be discussed briefly below.
- For loading lock 3 belongs at least one lock gate 9 with slide 9a. About the lock gate 9, the opening of the feed shaft 4 is closed.
- the shaft furnace 1 consists of a vertically arranged, cylindrical furnace shaft 10 a, as preheating zone 10, to which a section 11 a adjoins, which forms the melting zone 11.
- the interior of the preheating zone 10 is cylindrical.
- the interior of the melting zone 11 has a widening enlarging steadily downwards, in the direction of the oven floor 18, e.g. has the shape of an obelisk.
- the furnace interior tapers in the liquid metal zone in the direction of liquid metal discharge 19,
- the height of a shaft furnace 1 is approximately 5 to 7.5 times the inside diameter D.
- the height or length of the preheating zone is 4D to 6D, where D is the inside diameter of the furnace shaft, and e.g. 1.5 to 2 m.
- the furnace volume of the preheating zone is about 80 to 90% of the total furnace volume.
- the preheating zone 10 is designed exclusively as a cylindrical space with a constant inner diameter D.
- a first annular burner assembly 12 consisting of nine gas-fired burners 13 arranged at equal radial distances (4D ° to each other) in a plane as in Figs FIGS. 1 to 3 you can see.
- the individual burners 13 are arranged so that the burner axes point slightly downwards in the direction of the oven floor 18.
- the burner 13 are not shown in detail, but only the corresponding inserts for receiving the burner indicated.
- the melting zone 11 begins immediately after the burner assembly 12 and is bounded below by a flat furnace sole 18 which extends slightly inclined in the flow direction. At the front, lowest end of the furnace sole 18 is the discharge opening 19 for the liquid metal.
- the rear wall 16 of the melting zone is semicircular, as in particular in Figs Figures 2 and 4 you can see.
- the front wall 14 of the shaft furnace 1 merges into the upper wall section 20, which runs approximately parallel to the furnace sole 18.
- the adjoining the rear wall 16 at the bottom side walls 17 extend conically tapered in the direction of discharge opening 19.
- the furnace sole 18 has, for example, a teardrop-shaped cross section, as in Fig. 4 to see.
- a second burner arrangement 21 is provided, consisting of ten burners 22.
- the burners 22 are arranged at equal distances from one another in a plane (FIG. FIGS. 1 to 3 ).
- the arranged in schreisförrnigen section 16 burner 22 are arranged at a radial distance of 36 °.
- the burners 22 are offset by half the radial distance ( Fig. 3 ). In the accompanying drawing only the burner inserts are to be seen,
- a third burner assembly 23 is still provided, which consists for example only of a burner 24.
- this burner 24 19 so much heat energy is supplied to the area in the immediate vicinity of the discharge 19 in continuous operation state that the liquid metal can flow continuously.
- This burner 24 is inclined in the direction of the central axis of the shaft furnace 1 ( Fig. 1 ) and arranged so that a possible inlet of liquid metal is largely excluded.
- the shaft furnace 1 shown is equipped with a total of twenty burners. Due to the staggered arrangement of the burners 13 and 22 of the first and second burner assemblies 12 and 21, a continuous cross-sectional heat load is achieved in the operating state, which has a favorable effect on the melting process.
- the burners of the shaft furnace 1 are operated with natural gas neck fuel gas.
- the parameters of this fuel gas are well known.
- To maintain a low-oxygen smelting firing takes place via the burner 12, 21 and 24 with a gas-air ratio control.
- a combustion air preheating can take place.
- the material to be melted (copper cathodes, copper scrap) is lowered from a feed lock 3 into the cylindrical furnace shaft 4 in accordance with the respectively required melting rate.
- the feed material supplied is heated by the specific firing capacity of the annularly arranged burner 13 of the first burner assembly 12 and the rising hot exhaust gases to temperatures near melting point.
- the temperature is lowered.
- the furnace internal space pressure is regulated. The regulation is to be made so that the zero pressure level is in the region of the interface between the preheating zone 10 and the melting zone 11, in particular in order to avoid false air aspiration via the liquid metal outlet. Procedurally, it is thus ensured that the exhaust gas flows off evenly and is not subjected to any major temperature fluctuations.
- the exhaust gas temperature can be used as a guide variable or essential control parameters for the entire process control of the melting furnace.
- the exhaust gas temperature is continuously measured by means of temperature sensor 8 at the upper end of the preheating zone 10 and adjusted by quantitative change regarding the supply of feed material (melting power) and / or change the firing capacity, in particular the burner 13 at the phase boundary between preheating zone 10 and the melting zone 11 in that the actual exhaust gas temperature in continuous operation is as low as possible and at most 600 ° C.
- the advantage of the comparatively low exhaust gas temperature is a considerable cost-reducing after-treatment (purification) of the exhaust gas.
- the resulting exhaust gas can still be used economically as secondary energy.
- the supplied preheated feedstock is melted, the heat energy supply required for this purpose via the two gas burner assemblies 12 and 21.
- the proposed furnace geometry, in particular the shaft cross-sectional enlargement 15 with subsequent continuous tapering through the side walls 17, ensures a continuous melting over the cross section and a uniform and almost constant temperature distribution in the liquid metal.
- the molten to liquid metal lead material collects as channels on the slightly inclined furnace bottom 18 and flows at the end of the furnace bottom via the discharge opening 19 from.
- the geometric design of the melting zone 11 in conjunction with the arrangement of the burner, in particular the burner 24, allow a continuous and constant liquid metal discharge.
- the current melting performance is determined and displayed based on the currently measured exhaust gas temperature. Also, the current consumption of natural gas is displayed separately for each burner as well as the total consumption value. If the measured exhaust gas temperature is above 600 ° C, first calculates whether a correction can be made by adjusting the filling level in the shaft. If this is not possible, the firing capacity must be adjusted.
- Both the preheating zone and the melting zone can be controlled independently of each other technologically.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
Die Erfindung bezieht sich auf ein Verfahren zum Einschmelzen von NE-Metallen, insbesondere Kupferkathoden und Kupferschrotte, in einem gasbefeuerten Schachtofen, wobei das einzuschmelzende NE-Metall im Kopfbereich des Schachtofens zugeführt, infolge Schwerkraft nach unten sinkt und mittels mehrerer gasbetriebener Brenner aufgeschmolzen wird. Die Erfindung betrifft ferner eine geeignete Schachtofenanlage zur Durchführung des Verfahrens.The invention relates to a method for melting non-ferrous metals, in particular copper cathodes and scrap copper, in a gas-fired shaft furnace, wherein the non-ferrous metal to be melted fed in the head of the shaft furnace, due to gravity drops down and is melted by means of several gas-powered burner. The invention further relates to a suitable shaft furnace system for carrying out the method.
Ein heute noch in der Praxis zum Einsatz kommender Schachtofen ist aus der
Im unteren Teil des Ofenschachtes verengt sich der Schschtquerschnitt konisch kontinuierlich auf etwa 80% der Querschnittsfläche im oberen Bereich.In the lower part of the furnace shaft, the Schsch cross-section narrows conically continuously to about 80% of the cross-sectional area in the upper region.
In der Ofenmantelfläche befinden sich in ringförmiger Anordnung acht oder neun Erdgas-Luft-Brenner, die auf einer Höhe liegen. Je nach Ofengröße sind drei oder vier derartiger Brenner-Ringe in unterschiedlichen Höhen (vom Boden aus betrachtet) beabstandet zueinander angeordnet. Der letzte Brennerring ist in einem Fall, z.B. in einer Höhe angeordnet, die 36% der Gesamthöhe beträgt. Auch der vorletzte Brennerring ist oberhalb der konischen Verjüngung, im zylindrischen Teil des Ofenschachtes angebracht.In the furnace shell surface are located in an annular arrangement eight or nine natural gas-air burners, which are at a height. Depending on the size of the furnace, three or four such burner rings are arranged at different heights (viewed from the bottom) at a distance from one another. The last burner ring is in a case, e.g. arranged at a height which is 36% of the total height. The penultimate burner ring is mounted above the conical taper in the cylindrical part of the furnace shaft.
Aus der
Hierzu wird jeder Brenner mit einem Erdgas-Luft-Gemisch versorgt, das kontinuierlich analysiert wird. Das Analyseergebnis ist ein CO-Wert, der mit einem Sollwert verglichen und dann dazu benutzt wird, das Verhältnis von Erdgas und Luft so zu verändern, dass die Brennerflamme reduzierend eingestellt ist.For this purpose, each burner is supplied with a natural gas-air mixture, which is continuously analyzed. The analysis result is a CO value, which is compared to a setpoint and then used to alter the ratio of natural gas to air so that the burner flame is set reducing.
Der Nachteil dieses Ofens besteht darin, dass der feuerungstechnische Wirkungsgrad gering ist. Im praktischen Betrieb (Aufheizen, Anheizen, schlechtere Auslastung) werden nur Werte von knapp über 40% erreicht. Die Betriebkosten dieses Schachtofens sind sehr hoch. Außerdem fällt verfahrensbedingt ein relativ hoher Anteil an CO2 pro Tonne Kupferschmelze an, wodurch die Umwelt belastet wird.The disadvantage of this furnace is that the firing efficiency is low. In practical operation (heating, heating, poorer utilization) only values of just over 40% are achieved. The operating costs of this shaft furnace are very high high. In addition, due to the process, a relatively high proportion of CO 2 per ton of copper melt is incurred, which pollutes the environment.
Bekannt ist auch ein Schachtschmelzofen (
Die Brenner zum Beheizen des Schmelzgutes sind im Herd und im Schacht in verschiedenen Höhen angeordnet. Die Austrittsöffnungen der Brenner sind so gewählt, dass deren Achsen abwärts geneigt verlaufen, um zu verhindern, dass Metalltröpfchen an die gegenüberliegende Wandung bzw. die Brenneröffnung gelangen können. Der Auslasstrog muss mit einem separaten Brenner heiß gehalten werden. Das heiße Metall soll dadurch so schnell wie möglich in Richtung Austritt fließen.The burners for heating the melt are arranged in the hearth and in the shaft at different heights. The outlet openings of the burners are chosen so that their axes are inclined downwards to prevent metal droplets can reach the opposite wall or the burner opening. The outlet trough must be kept hot with a separate burner. The hot metal should thereby flow as quickly as possible towards the outlet.
Im Falle von Kupfer würde sich dies als Nachteil erweisen, weil die Überhitzung (Temperaturdifferenz zwischen Flüssigmetall und Schmelztemperatur) des Metalls sehr gering bleibt.In the case of copper, this would prove to be a disadvantage because the overheating (temperature difference between liquid metal and melting temperature) of the metal remains very low.
Dieser Ofen ist daher zum Schmelzen von Kupfer ungeeignet.This furnace is therefore unsuitable for melting copper.
Da die Schmelztemperatur von Kupfer höher liegt als die von Aluminium, wären auch geringere Wirkungsgrade zu erwarten.Since the melting temperature of copper is higher than that of aluminum, lower efficiencies would be expected.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Einschmelzen von NE-Metallen in einem gasbefeuerten Schachtofen zu schaffen, das sich im Vergleich zu den bekannten Verfahren durch einen höheren Wirkungsgrad auszeichnet und zu geringeren Umweltbelastungen führt. Ferner soll eine zur Durchführung des Verfahrens geeignete Schachtofenanlage geschaffen werden.The invention has for its object to provide a method for melting of non-ferrous metals in a gas-fired shaft furnace, which is characterized in comparison to the known methods by a higher efficiency and leads to lower environmental impact. Furthermore, a suitable for carrying out the method shaft furnace system is to be created.
Erfindungsgemäß wird die Aufgabe durch die in den Ansprüchen 1 und 8 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen sind Gegenstand der jeweils abhängigen Ansprüche.According to the invention the object is achieved by the features specified in
Gemäß der vorgeschlagenen Verfahrensweise gelangt das einzuschmelzende Metall (Vorlaufmaterial) zuerst in eine vertikale zylindrische Vorwärmzone. Über eine erste Anordnung von Brennern, die an der Phasengrenze zwischen Vorwärmzone und Schmelzzone im Schachtofen ringförmig in gleichen radialen Abständen zueinander eingebaut sind, sowie durch die durch aufsteigende, heiße Abgase abgegebene Wärmeenergie wird das Vorlaufmaterial aufgeheizt. Die Aufheizung wird so gesteuert, dass das Vorlaufmaterial gleichmäßig aufgeheizt wird, bis auf einen Temperaturbereich nahe der Schmelztemperatur, die im unteren Austrittsbereich der Vorwärmzone erreicht wird, in axialer Richtung des Schmelzofens besteht ein Temperaturgefälle. Die Regulierung der Wärmezufuhr in den Schachtofen wird so abgestimmt, dass in der Vorwärmzone noch kein Schmelzvorgang stattfindet.According to the proposed procedure, the metal to be melted (precursor material) first enters a vertical cylindrical preheating zone. About a first arrangement of burners, which are installed at the phase boundary between the preheating zone and the melting zone in the shaft furnace annularly at equal radial distances from each other, as well as by the output by rising, hot exhaust heat energy, the flow material is heated. The heating is controlled so that the precursor material is uniformly heated, except for a temperature range near the melting temperature, which is achieved in the lower exit region of the preheating zone, in the axial direction of the melting furnace there is a temperature gradient. The regulation of the heat supply in the shaft furnace is tuned so that in the preheating zone no melting takes place.
Das weiter nach unten sinkende heiße Vorlaufmaterial wird in der nachfolgenden Schmelzzone vollständig zu Flüssigmetall aufgeschmolzen.The further downwardly sinking hot flow material is completely melted in the subsequent melting zone to liquid metal.
Der hierzu erforderliche Wärmeeintrag erfolgt über eine zweite Brenneranordnung, wobei die Brenner in einer Ebene gleichmäßig über den Umfang verteilt angeordnet sind, vorzugsweise in einem radialen Versatz zu den Brennem der ersten Anordnung.The heat input required for this purpose takes place via a second burner arrangement, wherein the burners are arranged distributed in a plane uniformly over the circumference, preferably in a radial offset from the burners of the first arrangement.
Die Schmelzzone unterscheidet sich in ihrer Ofengeometrie deutlich von der Vorwärmzone. An der Phasengrenze zwischen Vorwärm- und Schmelzzone erfolgt eine Schachtofenquerschnittserweiterung mit anschließender kontinuierlicher Querschnittsverengung des Ofeninnenraumes in Richtung Austragsöffnung. Beispielsweise entspricht die Geometrie des Ofeninnenraumes der Schmelzzone der äußeren Form eines Obelisk.The melting zone differs significantly in its furnace geometry from the preheating zone. At the phase boundary between the preheating and melting zone, a shaft cross-sectional widening takes place with subsequent continuous cross-sectional constriction of the furnace interior in the direction of the discharge opening. For example, the geometry of the furnace interior of the molten zone corresponds to the outer shape of an obelisk.
Diese spezielle Gestaltung des Ofeninnenraumes in Verbindung mit der gezielten Wärmezuführung ermöglicht ein gezieltes Einschmelzen in Richtung Flüssigmeiallaustrag. Im Bereich der Ofensohle fließt das Flüssigmetall als Gerinne in Richtung Austragsöffnung ab.This special design of the furnace interior in conjunction with the targeted heat supply allows a targeted melting in the direction of liquid discharge. In the area of the furnace bottom, the liquid metal flows off as a channel in the direction of the discharge opening.
Im Bereich der Austragsöffnung wird über eine dritte Brenneranordnung, die aus einem Brenner bestehen kann, ebenfalls Wärmeenergie zugeführt. Diese Maßnahme gewährleistet einen sicheren kontinuierlichen Austrag des Flüssigmetalls aus der Austragsöffnung und eine gegebene Flüssigmetallüberhitzung.In the region of the discharge opening, heat energy is also supplied via a third burner arrangement, which may consist of a burner. This measure ensures a safe continuous discharge of the liquid metal from the discharge and a given liquid metal overheating.
Während des Betriebes des Schachtofens wird die Temperatur der Abgase am Ofenkopf gemessen und durch Steuerung der Ofenleistung (Schmelzleistung) und/oder durch Veränderung der thermischen Leistung der Brenner so geregelt, dass diese kleiner, höchstens 600 °C wird. Bei bekannten Schachtöfen zum Schmelzen von Kupferschrott liegen die Abgastemperaturen am Kopf des Schachtofens bei über 1000 °C.During the operation of the shaft furnace, the temperature of the exhaust gases is measured at the furnace head and controlled by controlling the furnace performance (melting power) and / or by changing the thermal performance of the burner so that it becomes smaller, at most 600 ° C. In known shaft furnaces for melting copper scrap, the exhaust gas temperatures at the top of the shaft furnace are above 1000 ° C.
Die erfindungsgemäßen Maßnahmen zur Reduzierung der Abgastemperatur sind für eine wirtschaftliche Betriebsweise von entscheidender Bedeutung. Die spezielle Ofengeometrie wirkt sich vorteilhaft auf eine Absenkung der Abgastemperatur aus, ohne nachteilige Auswirkungen auf die Schmelzleistung. Die Ofengeometrie sorgt für eine gleichmäßig konstante Strömung des Abgases im Ofenschacht. Die vorgeschlagene Verfahrensweise ermöglicht die Erzielung feuerungstechnischer Wirkungsgrade ηf von ca. 0,70. Der Verbrauch an Brenn- bzw. Erdgas, um eine Tonne Kupferschrott zu schmelzen, lässt sich somit in Abhängigkeit der jeweils gewählten Schmelzleistung um ca. 20 bis 25% verringern.The measures according to the invention for reducing the exhaust gas temperature are of decisive importance for economic operation. The special furnace geometry has an advantageous effect on lowering the exhaust gas temperature without adversely affecting the melting performance. The furnace geometry ensures a uniform, constant flow of the exhaust gas in the furnace shaft. The proposed procedure makes it possible to achieve firing efficiency ηf of about 0.70. The consumption of fuel or natural gas to melt one tonne of copper scrap can thus be reduced by approx. 20 to 25% depending on the selected melting performance.
Die Zuführung von Wärmeenergie in die Vorwärmzone und Schmelzzone kann separat (getrennte Heizzonen) voneinander geregelt werden. Dadurch kann die Feuerungsleistung gezielt auf die Qualität und Beschaffenheit des Vorlaufmaterials abgestimmt werden. Die am Schachtofenkopf gemessene Abgastemperatur wird als Leitgröße zur Steuerung und Regelung der Prozessparameter (des Schachtofenschmelzbetriebes) verwendet, durch Verknüpfung der Feuerungsleistungsregelung je Heizzone, der Steuerung des Beschickungspegelstandes sowie der Steuerung der mechanischen Abgasableitung. Wie bereits erwähnt, wird die Temperatur der zur Vorwärmung genutzten Abgase in der Abgasleitung gemessen und auf einen Wert von kleiner/gleich 600 °C eingestetlt.The supply of heat energy in the preheating and melting zone can be controlled separately (separate heating zones) from each other. As a result, the firing capacity can be tailored to the quality and condition of the flow material. The exhaust gas temperature measured at the shaft furnace head is used as a reference for controlling and regulating the process parameters (the shaft furnace melting operation) by linking the combustion control per heating zone, the control of the feed level and the control of the mechanical exhaust gas discharge. As already mentioned, the temperature of the exhaust gases used for preheating in the exhaust pipe is measured and set to a value of less than or equal to 600 ° C.
Der Ofenraumdruck im Kopfbereich des Schachtofens kann durch Veränderung der Förderleistung zur Abgasabsaugung auf einen Wert < Nullniveau eingeregelt werden.The furnace chamber pressure in the head area of the shaft furnace can be adjusted to a value <zero level by changing the capacity for exhaust gas extraction.
Über die In der Vorwärmzone vorgesehene erste Anordnung an Brennern können 40 bis 50% und über die in der Schmelzzone vorgesehene zweite und dritte Anordnung an Brennern 50 bis 60% der Gesamtfeuerungsleistung zugeführt werden.About the provided in the preheating first arrangement of burners 40 to 50% and about the provided in the melting zone second and third arrangement of burners 50 to 60% of the total firing power can be supplied.
Die Ofenabgase werden abgesaugt und einer Abgasnachbehandlung unterzogen. Entsprechend der Betriebsweise kann die Abwärme der anfallenden Abgase primär oder sekundär genutzt werden.The kiln exhaust gases are sucked off and subjected to exhaust aftertreatment. According to the mode of operation, the waste heat of the resulting exhaust gases can be used primarily or secondarily.
Insbesondere zum sauerstoffarmen Einschmelzen von Kupfer wird die Gasbefeuerung aller Brenner über eine Gas/Luft/Verhäitnisregetung vorgenommen.In particular, for low-oxygen smelting of copper gas firing of all burners is made via a gas / air / Verhäitreregetung.
Eine geeignete Schachtofenaniage zum Einschmelzen von NE-Metallen, insbesondere Kupferkathoden und Kupferschrotte, ist durch folgende Merkmale charakterisiert:
- a) einer unterhalb der Beschickungsöffnung vertikal angeordneten Vorwärmzone mit einem zylindrischen Ofeninnenraum, dessen Ofenvolumen 60 bis 80% des Gesamtvolumens des Schachtofens beträgt,
- b) einer sich an die Vorwärmzone anschließenden Schmeizzone, die eine Schachtofenquerschnittserweiterung mit einer Verjüngung in Richtung Flüssigmetallaustragsöffnung besitzt, wobei die Schmelzzone durch eine in Fließrichtung leicht geneigt angeordnete ebene Ofensohle, an deren Ende sich die Austragsöffnung befindet, begrenzt ist,
- c) einer ersten Anordnung gasbefeuerter Brenner, die an der Phasengrenze zwischen Vorwärmzone und Schmelzzone in der zylindrischen Wandung in einer Ebene ringförmig angeordnet ist und
- d) einer zweiten Anordnung gasbefeuerter Brenner, die im unteren Bereich der Schmelzzone In der Wandung in einer Ebene angeordnet Ist,
- e) in dem gegenüberllegend zur Ofensohle angeordneten Wandabschnitt eine dritte Anordnung mit mindestens einem gasbefeuerter Brenner vorgesehen ist, wobei die vertikale Achse der Brenner in Richtung vertikaler Mittelachse Schachtofen geneigt ist, und
- f) einer Messeinrichtung für die Abgastemperatur sowie einer computergestützten Steuer-und Regeleinheit mindestens zur Veränderung der Vorlaufmateriaimenge und/oder Feuerleistung der Brenner der ersten und/oder zweiten Brenneranordnung.
- a) a preheating zone arranged vertically below the feed opening and having a cylindrical furnace interior whose furnace volume is 60 to 80% of the total volume of the shaft furnace,
- b) a melting zone adjoining the preheating zone and having a shaft cross-sectional widening with a taper towards the liquid metal discharge opening, wherein the melting zone is delimited by a flat furnace sole slightly inclined in the flow direction, at the end of which the discharge opening is located;
- c) a first arrangement gas-fired burner, which is arranged in a ring at the phase boundary between preheating and melting zone in the cylindrical wall in a plane and
- d) a second arrangement of gas-fired burners, which is arranged in the lower region of the melting zone in the wall in a plane,
- e) in the Opposite to the furnace bottom arranged wall portion, a third arrangement is provided with at least one gas-fired burner, wherein the vertical axis of the burner is inclined towards the vertical central axis shaft furnace, and
- f) a measuring device for the exhaust gas temperature and a computer-aided control and regulating unit at least for changing the Vorlaufmateriaimenge and / or fire performance of the burner of the first and / or second burner assembly.
Die Höhe bzw. Länge der Vorwärmzone beträgt ca. 4D bis 6D, wobei D der lichte Innendurchmesser des Ofenschachtes ist.The height or length of the preheating zone is about 4D to 6D, where D is the inside diameter of the furnace shaft.
Die Höhe der Schmelzzone, bezogen auf die Mittelachse des Schachtofens liegt im Bereich von ca. 1 D bis 1,SD.The height of the melting zone, based on the center axis of the shaft furnace is in the range of about 1 D to 1, SD.
Die Länge der Ofensohle ab Mittelachse Schachtofen beträgt ca. 1,07D bis 1,2D.The length of the furnace bottom from the center shaft shaft furnace is about 1.07D to 1.2D.
Die in der Wandung der Vorwärmzone angeordneten Brenner sind In Achsrichtung in einem Winkel von ca. 8 bis 15° nach unten geneigt angeordnet.The arranged in the wall of the preheating zone burners are arranged inclined in the axial direction at an angle of about 8 to 15 ° downwards.
Die in der Wandung von Vorwärmzone und Schmelzzone angeordneten Brenner sind als erste Anordnung und zweite Anordnung in ihren Ebenen zueinander radial versetzt.The burners arranged in the wall of the preheating zone and the melting zone are radially offset relative to one another in their planes as a first arrangement and a second arrangement.
Die Beschickungsöffnung ist verschließbar und am Kopf des Schachtofens ist eine unter Saugkraft stehende Abgasleitung mit einer Temperaturmesseinrichtung vorgesehen.The feed opening can be closed and provided at the top of the shaft furnace is an under suction exhaust pipe with a temperature measuring device.
Die Erfindung soll nachstehend an einem Ausführungsbeispiel näher erläutert werden. In der zugehörigen Zeichnung zeigen:
-
Fig. 1 eine erfindungsgemäße Schachtschmelzofenantage in vereinfachter schematischer Darstellung, als Längsschnitt, -
Fig. 2 den mittleren und unteren Teil des Schachtschmelzofens gemäßFig. 1 in perspektivischer Darstellung, -
Fig. 3 den unteren Teil des Schachtschmelzofens gemäßFig. 1 als Längsschnitt, -
Fig. 4 einen Schnitt gemäß der Linie B-B inFig. 3 , -
Fig. 5 einen Schnitt gemäß der Unie A-A inFig. 3 und -
Fig. 6 die Einzelheit X inFig. 4 als Längsschnitt.
-
Fig. 1 a Schachtschmelzofenantage invention in a simplified schematic representation, as a longitudinal section, -
Fig. 2 the middle and lower part of the shaft melting furnace according toFig. 1 in perspective, -
Fig. 3 the lower part of the shaft melting furnace according toFig. 1 as a longitudinal section, -
Fig. 4 a section along the line BB inFig. 3 . -
Fig. 5 a section according to the Unie AA inFig. 3 and -
Fig. 6 the detail X inFig. 4 as a longitudinal section.
Die in
Zur Beschickungsschleuse 3 gehört mindestens ein Schleusentor 9 mit Schieber 9a. Über das Schleusentor 9 wird die Öffnung des Beschickungsschachtes 4 verschlossen.For
Der Schachtofen 1 besteht aus einem vertikal angeordneten, zylindrischen Ofenschacht 10a, als Vorwärmzone 10, an den sich ein Abschnitt 11a anschließt, der die Schmelzzone 11 bildet. Der Innenraum der Vorwärmzone 10 ist zylindrisch, Der Innenraum der Schmelzzone 11 hat eine sich stetig nach unten, in Richtung Ofensohle 18, vergrößernde Erweiterung, die z.B. die Form eines Obelisken hat. Der Ofeninnenraum verjüngt sich in der Flüssigmetallzone in Richtung Flüssigmetallaustrag 19,The
Die Höhe eines Schachtofens 1 beträgt in etwa das 5 bis 7,5-fache des Innendurchmessers D. Die Höhe bzw. Länge der Vorwärmzone beträgt 4D bis 6D, wobei D der lichte Innendurchmesser des Ofenschachtes Ist und z.B. 1,5 bis 2 m beträgt.The height of a
Das Ofenvolumen der Vorwärmzone beträgt ca. 80 bis 90% des Gesamtofenvoiumens. Die Vorwärmzone 10 ist ausschließlich als zylindrischer Raum mit konstantem Innendurchmesser D ausgeführt.The furnace volume of the preheating zone is about 80 to 90% of the total furnace volume. The preheating
An der Phasengrenze zwischen Vorwärmzone 14 und Schmelzzone 11 befindet sich eine erste ringförmige Brenneranordnung 12, die aus neun gasbetriebenen Brennem 13 besteht, die in gleichen radialen Abständen (jeweils 4D°) zueinander in einer Ebene angeordnet sind, wie in den
Die Schmelzzone 11 beginnt unmittelbar nach der Brenneranordnung 12 und Ist nach unten durch eine ebene Ofensohle 18 begrenzt, die leicht geneigt in Fließrichtung verläuft. Am vorderen, tiefsten Ende der Ofensohle 18 befindet sich die Austragsöffnung 19 für das Flüssigmetall. Die hintere Wand 16 der Schmelzzone ist halbkreisförmig, wie insbesondere in den
Im unteren Bereich der Schmelzzone 11, oberhalb der Ofensohle 18, ist eine zweite Brenneranordnung 21 vorgesehen, bestehend aus zehn Brennern 22. Die Brenner 22 sind in gleichen Abständen zueinander in einer Ebene angeordnet (
Zusätzlich ist in dem oberen Wandabschnitt 20 noch eine dritte Brenneranordnung 23 vorgesehen, die z.B. nur aus einem Brenner 24 besteht. Über diesen Brenner 24 wird im Dauerbetriebszustand dem Bereich in unmittelbarer Nähe der Austragsöffnung 19 so viel Wärmeenergie zugeführt, dass das Flüssigmetall kontinuierlich abfließen kann. Gegebenenfalls kann über diesen Brenner 24 auch eine Überhitzung des Flüssigmetallgerinnes erzeugt werden. Dieser Brenner 24 ist in Richtung zur Mittelachse des Schachtofens 1 geneigt (
Der gezeigte Schachtofen 1 ist insgesamt mit zwanzig Brennern ausgerüstet. Durch die versetzte Anordnung der Brenner 13 und 22 der ersten und zweiten Brenneranordnungen 12 und 21 wird im Betriebszustand eine kontinuierliche Querschnittswärmebelastung erzielt, die sich günstig auf den Schmelzprozess auswirkt.The
Bezogen auf eine Auslegung des gasbeheizten Schachtschmelzofens mit einer Schmelzleistung von 30 t/h (Kupferkathoden und Kupferschrotte) ist von folgenden charakteristischen Ofendaten auszugehen:
- Gesamthöhe des Schachtofens: 5
bis 7,5 fache des lichten Schachtofendurchmessers, bezogen auf Leerrohrgeschwindigkeit im Normzustand, Lichter Ofenschachtdurchmesser 1,5 m bis 2 m,Anzahl der Brenner 20 Stück (Anordnung wie vorstehend),- Brennerleistung je Brenner ≤ 450 kW (ohne primäre Abwärmerückführung),
- Brenngas: Erdgas H.
- Total height of the shaft furnace: 5 to 7.5 times the clear shaft furnace diameter, relative to the empty pipe speed in the standard state,
- Lights kiln shaft diameter 1.5 m to 2 m,
- Number of
burners 20 pieces (arrangement as above), - Burner output per burner ≤ 450 kW (without primary waste heat recovery),
- Fuel gas: natural gas H.
Nachfolgend wird die Verfahrensweise näher erläutert.The procedure is explained in more detail below.
Die Brenner des Schachtofens 1 werden mit Erdgas Hals Brenngas betrieben. Die Parameter dieses Brenngases sind allgemein bekannt. Zur Einhaltung eines sauerstoffarmen Einschmelzens erfolgt die Befeuerung über die Brenner 12, 21 und 24 mit einer Gas-Luft-Verhältnisregelung. Gegebenenfalls kann auch noch eine Verbrennungsluftvorerwärmung erfolgen.The burners of the
Das zu schmelzende Vorlaufmaterial (Kupferkathoden, Kupferschrotte) wird aus einer Beschickungsschleuse 3 in den zylindrischen Ofenschacht 4 entsprechend der jeweils geforderten Schmelzleistung abgesenkt.The material to be melted (copper cathodes, copper scrap) is lowered from a
In der Vorwärmzone 10 wird das zugeführte Vorlaufmaterial durch die spezifische Feuerungsleistung der ringförmig angeordneten Brenner 13 der ersten Brenneranordnung 12 und der aufsteigenden heißen Abgase auf Temperaturen nahe Schmelzpunkt aufgeheizt. Da die Abgase entsprechende Wärme an das Vorlaufmaterial abgeben, wird deren Temperatur gesenkt. Durch die Absaugung der Abgase (mechanische Abgasableitung) wird im Bereich der Vorwärmzone 10 eine auf den gesamten Ofenquerschnitt bezogene kontinuierliche Abgasumströmung des Vorlaufmateriais erreicht. Gleichzeitig wird somit auch der Ofenrauminnendruck geregelt. Die Regelung ist so vorzunehmen, dass die Nulldruckebene im Bereich der Schnittstelle zwischen Vorwärmzone 10 und Schmelzzone 11 liegt, insbesondere, um Falschluftansaugungen über den Flüssigmetallaustritt zu vermeiden. Verfahrenstechnisch wird somit sichergestellt, dass das Abgas gleichmäßig abströmt und keinen größeren Temperaturschwankungen unterworfen ist.In the preheating
Dadurch kann die Abgastemperatur als Leitgröße bzw. wesentlicher Regelparameter für die gesamte Prozessteuerung des Schmelzofens verwendet werden.As a result, the exhaust gas temperature can be used as a guide variable or essential control parameters for the entire process control of the melting furnace.
Die Abgastemperatur wird mittels Temperaturfühler 8 am oberen Ende der Vorwärmzone 10 kontinuierlich gemessen und durch mengenmäßige Veränderung bzgl. der Zuführung von Vorlaufmaterial (Schmelzleistung) und/oder Veränderung der Feuerungsleistung, insbesondere der Brenner 13 an der Phasengrenze zwischen Vorwärmzone 10 und Schmelzzone 11, so eingestellt, dass die tatsächliche Abgastemperatur im Dauerbetrieb möglichst unter und höchstens 600 °C beträgt. Der Vorteil der vergleichsweise niedrigen Abgastemperatur besteht in einer erheblich kostenmindernden Nachbehandlung (Reinigung) des Abgases. Zusätzlich kann das anfallende Abgas noch als Sekundärenergie wirtschaftlich genutzt werden.The exhaust gas temperature is continuously measured by means of temperature sensor 8 at the upper end of the preheating
In der Schmelzzone 11 wird das zugeführte vorgewärmte Vorlaufmaterial geschmolzen, die hierzu erforderliche Wärmeenerglezuführung erfolgt über die beiden Gasbrenneranordnungen 12 und 21. Die vorgeschlagene Ofengeometrie, insbesondere die Schachtofenquerschnittserweiterung 15 mit nachfolgender kontinuierlicher Verjüngung durch die Seitenwände 17, sorgt für ein über den Querschnitt kontinuierliches Einschmelzen sowie einer gleichmäßigen und annähernd konstanten Temperaturverteilung im Flüssigmetall. Das zu Flüssigmetall geschmolzene Vorlaufmaterial sammelt sich als Gerinne auf der leicht schräg geneigten Ofensohle 18 und fließt am Ende der Ofensohle über die Austragsöffnung 19 ab.In the
Die geometrische Auslegung der Schmelzzone 11 in Verbindung mit der Anordnung der Brenner, insbesondere des Brenners 24, ermöglichen einen kontinuierlichen und konstanten Flüssigmetallaustrag.The geometric design of the
Über die Steuer- und Regeleinheit wird ausgehend von der momentan gemessenen Abgastemperatur die aktuelle Schmelzleistung ermittelt und angezeigt. Auch der aktuelle Verbrauch an Erdgas wird für jeden Brenner gesondert angezeigt sowie als Gesamtverbrauchswert. Liegt die gemessene Abgastemperatur oberhalb von 600 °C, so wird zuerst berechnet, ob eine Korrektur über die Anpassung der Füllhöhe im Schacht erfolgen kann. Ist dies nicht möglich, so muss die Feuerungsleistung angepasst werden.About the control and regulation unit, the current melting performance is determined and displayed based on the currently measured exhaust gas temperature. Also, the current consumption of natural gas is displayed separately for each burner as well as the total consumption value. If the measured exhaust gas temperature is above 600 ° C, first calculates whether a correction can be made by adjusting the filling level in the shaft. If this is not possible, the firing capacity must be adjusted.
Sowohl die Vorwärmzone als auch die Schmelzzone können technologisch unabhängig voneinander geregelt werden.Both the preheating zone and the melting zone can be controlled independently of each other technologically.
Claims (14)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010047056.2A DE102010047056B4 (en) | 2010-09-29 | 2010-09-29 | Process for melting non-ferrous metals in a gas-fired shaft furnace and shaft furnace system for carrying out the process |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2437017A1 true EP2437017A1 (en) | 2012-04-04 |
EP2437017B1 EP2437017B1 (en) | 2018-05-09 |
Family
ID=44719096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11007882.1A Active EP2437017B1 (en) | 2010-09-29 | 2011-09-28 | Method for melting non ferrous-metals in a gas-fed shaft furnace and shaft furnace assembly for performing the method |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2437017B1 (en) |
DE (1) | DE102010047056B4 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114645136A (en) * | 2022-03-16 | 2022-06-21 | 杭州富通集团有限公司 | Processing technology of copper rod |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3199977A (en) | 1962-06-22 | 1965-08-10 | American Smelting Refining | Method and apparatus for melting copper |
US3366465A (en) | 1962-06-22 | 1968-01-30 | American Smelting Refining | Cast copper wire bar |
US3715203A (en) * | 1969-12-24 | 1973-02-06 | Metallurgie Hoboken | Melting of metals |
CA955399A (en) * | 1971-06-10 | 1974-10-01 | International Nickel Company Of Canada | Vertical melting furnace |
CA986300A (en) * | 1973-02-14 | 1976-03-30 | Ralph A. Vogel | Vertical melting surface |
DE3603251A1 (en) | 1985-02-04 | 1986-08-07 | Southwire Co., Carrollton, Ga. | METHOD AND VERTICAL CHAMBER FOR MELTING ALUMINUM AND ALUMINUM ALLOYS |
US4844426A (en) * | 1985-02-04 | 1989-07-04 | Southwire Company | Vertical shaft furnace for melting aluminum |
US5397109A (en) * | 1993-10-29 | 1995-03-14 | Southwire Company | Reduced emissions metal melting furnace |
DE69230152T2 (en) | 1991-04-25 | 2000-04-06 | Asarco Inc. | METHOD FOR REGULATING THE FUEL / AIR RATIO OF A BURNER |
JP2001027482A (en) * | 1999-07-12 | 2001-01-30 | Furukawa Electric Co Ltd:The | Copper melting furnace |
JP2001141367A (en) * | 1999-11-18 | 2001-05-25 | Daido Steel Co Ltd | Copper melting shaft furnace |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2284130A1 (en) | 2009-07-07 | 2011-02-16 | Linde Aktiengesellschaft | Method for manufacturing mineral wool |
-
2010
- 2010-09-29 DE DE102010047056.2A patent/DE102010047056B4/en active Active
-
2011
- 2011-09-28 EP EP11007882.1A patent/EP2437017B1/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3199977A (en) | 1962-06-22 | 1965-08-10 | American Smelting Refining | Method and apparatus for melting copper |
US3366465A (en) | 1962-06-22 | 1968-01-30 | American Smelting Refining | Cast copper wire bar |
US3715203A (en) * | 1969-12-24 | 1973-02-06 | Metallurgie Hoboken | Melting of metals |
CA955399A (en) * | 1971-06-10 | 1974-10-01 | International Nickel Company Of Canada | Vertical melting furnace |
CA986300A (en) * | 1973-02-14 | 1976-03-30 | Ralph A. Vogel | Vertical melting surface |
DE3603251A1 (en) | 1985-02-04 | 1986-08-07 | Southwire Co., Carrollton, Ga. | METHOD AND VERTICAL CHAMBER FOR MELTING ALUMINUM AND ALUMINUM ALLOYS |
US4844426A (en) * | 1985-02-04 | 1989-07-04 | Southwire Company | Vertical shaft furnace for melting aluminum |
DE69230152T2 (en) | 1991-04-25 | 2000-04-06 | Asarco Inc. | METHOD FOR REGULATING THE FUEL / AIR RATIO OF A BURNER |
US5397109A (en) * | 1993-10-29 | 1995-03-14 | Southwire Company | Reduced emissions metal melting furnace |
JP2001027482A (en) * | 1999-07-12 | 2001-01-30 | Furukawa Electric Co Ltd:The | Copper melting furnace |
JP2001141367A (en) * | 1999-11-18 | 2001-05-25 | Daido Steel Co Ltd | Copper melting shaft furnace |
Non-Patent Citations (1)
Title |
---|
KNIGHT S J ET AL: "DEVELOPMENT OF GAS-FIRED TOWER FURNACES FOR MELTING ALUMINIUM", FOUNDRY TRADE JOURNAL, INSTITUTE OF CAST METALS ENGINEERS, WEST BROMWICH, GB, vol. 118, no. 2530, 3 June 1965 (1965-06-03), pages 653 - 661, XP001231503, ISSN: 0015-9042 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114645136A (en) * | 2022-03-16 | 2022-06-21 | 杭州富通集团有限公司 | Processing technology of copper rod |
CN114645136B (en) * | 2022-03-16 | 2024-08-09 | 杭州富通集团有限公司 | Copper rod processing technology |
Also Published As
Publication number | Publication date |
---|---|
EP2437017B1 (en) | 2018-05-09 |
DE102010047056A1 (en) | 2012-03-29 |
DE102010047056B4 (en) | 2021-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60305321T2 (en) | INJECTOR BURNER FOR METALLURGIC MELTING VESSELS | |
DE2062144C3 (en) | Process and vertical furnace for melting and refining raw or blister copper | |
EP2166284B1 (en) | Rotary drum furnace and method of operating | |
EP2284130A1 (en) | Method for manufacturing mineral wool | |
EP2032726B1 (en) | Method and furnace for melting steel scrap | |
EP1481101B1 (en) | Method and device for the continuous production of steel using metal charge material | |
DE1957109B2 (en) | METHOD OF MELTING ALUMINUM IN A FLUSH FURNACE | |
EP2437017B1 (en) | Method for melting non ferrous-metals in a gas-fed shaft furnace and shaft furnace assembly for performing the method | |
DE1924812C3 (en) | Burner lance for a metallurgical furnace and method for operating such a furnace with this burner lance | |
DE102013016192B3 (en) | Apparatus and method for electroslag remelting | |
EP2213971B1 (en) | Device for melting inset material in a cupola | |
EP3320286B1 (en) | Melt metallurgical furnace | |
DE2014043A1 (en) | Melting furnace and method for melting meltable materials | |
EP3228403B1 (en) | Method and device for keeping liquid metals warm | |
EP1835039B1 (en) | Smelting unit, comprising an injector, a lance or a burner | |
DE2926345A1 (en) | METHOD FOR HEATING AND MELTING A MATERIAL FILLING IN A MELTING FURNACE AND BURNER FOR THE COMBUSTION OF LIQUID FUEL | |
DE3106859C2 (en) | cupola | |
DE2904855B2 (en) | Coke-heated cupola furnace | |
DE2951826C2 (en) | Metallurgical melting and refining unit | |
DE102022206100A1 (en) | Shaft furnace for smelting copper and process therefor | |
DE665124C (en) | Shaft furnace for reducing ores and for carrying out other reactions | |
DE2327072B1 (en) | ||
DE102012017066A1 (en) | Shaft furnace i.e. cupola furnace, for melting e.g. raw material, has outlet for combustion gases and arranged above feeding aperture, and oxygen supply and ignition device arranged below aperture during functional alignment of furnace | |
DE213720C (en) | ||
EP2189742A1 (en) | Cupola with under-floor heating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20120914 |
|
17Q | First examination report despatched |
Effective date: 20150515 |
|
19U | Interruption of proceedings before grant |
Effective date: 20151016 |
|
19W | Proceedings resumed before grant after interruption of proceedings |
Effective date: 20160502 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20171206 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 997959 Country of ref document: AT Kind code of ref document: T Effective date: 20180515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011014154 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180509 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180809 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180809 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180810 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011014154 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180930 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502011014154 Country of ref document: DE Representative=s name: BOCKERMANN KSOLL GRIEPENSTROH OSTERHOFF, DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180930 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180930 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502011014154 Country of ref document: DE Representative=s name: BOCKERMANN KSOLL GRIEPENSTROH OSTERHOFF, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502011014154 Country of ref document: DE Owner name: KME MANSFELD GMBH, DE Free format text: FORMER OWNER: MKM MANSFELDER KUPFER UND MESSING GMBH, 06333 HETTSTEDT, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180928 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 997959 Country of ref document: AT Kind code of ref document: T Effective date: 20180928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180928 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180509 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180909 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240926 Year of fee payment: 14 |