EP2436240B1 - Cascade accelerator - Google Patents

Cascade accelerator Download PDF

Info

Publication number
EP2436240B1
EP2436240B1 EP10717563.0A EP10717563A EP2436240B1 EP 2436240 B1 EP2436240 B1 EP 2436240B1 EP 10717563 A EP10717563 A EP 10717563A EP 2436240 B1 EP2436240 B1 EP 2436240B1
Authority
EP
European Patent Office
Prior art keywords
cascade
electrodes
accelerator
voltage
cascade accelerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10717563.0A
Other languages
German (de)
French (fr)
Other versions
EP2436240A1 (en
Inventor
Oliver Heid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2436240A1 publication Critical patent/EP2436240A1/en
Application granted granted Critical
Publication of EP2436240B1 publication Critical patent/EP2436240B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H5/00Direct voltage accelerators; Accelerators using single pulses
    • H05H5/06Multistage accelerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Definitions

  • the invention relates to a cascade accelerator with two sets of each connected in series, connected via diodes in the manner of a Greinacherkaskade capacitors. It further relates to a radiotherapy device with such a cascade accelerator.
  • ionizing radiation is used to cure or delay disease progression.
  • high-energy beams mainly gamma radiation, X-rays and electrons are used.
  • Particle accelerators are commonly used to generate an electron beam either for direct therapy or X-ray generation.
  • charged particles are brought to high speeds and thus kinetic energies by electric fields, with the electric fields in some types of accelerators being produced by electromagnetic induction in variable magnetic fields.
  • the particles acquire a kinetic energy that corresponds to a multiple of their own rest energy.
  • the particle accelerators distinguish between cyclic acceleration particle accelerators such as the betatron or cyclotron and those with straight acceleration.
  • the latter allow a more compact design and also include so-called cascade accelerators (also Cockcroft Walton accelerator) in which by means of a Greinacher circuit, which is repeatedly cascaded, by multiplication and rectification an AC voltage high DC voltage and thus a strong electric field can be generated.
  • the functioning of the Greinacher circuit is based on an arrangement of diodes and capacitors.
  • the negative half-wave of an AC voltage source charges via a first diode to a first capacitor to the voltage of the AC voltage source.
  • the subsequent positive half-wave then adds the voltage of the first capacitor to the voltage of the AC voltage source, so that a second capacitor is charged via a second diode now to twice the output voltage of the AC voltage source.
  • the respective first capacitors form a first set of capacitors of the cascade connected directly in series, the respective second capacitors a corresponding second set.
  • the diodes form the cross-connection between the sets.
  • a cascade accelerator according to the preamble of claim 1 is made EP 0 412 896 A1 known.
  • the electrodes of the capacitors of this cascade accelerator are insulated from one another by a pressurized gas, in particular SF 6
  • the invention is therefore based on the object to provide a cascade accelerator having a particularly high achievable particle energy in a compact design.
  • a cascade accelerator with a formed by openings in the electrodes of the capacitors of a set to one in the area Acceleration channel directed to the electrode with the highest voltage arranged particle source, wherein the electrodes of the capacitors are insulated from one another with the exception of the acceleration channel with a solid or liquid insulating material.
  • the invention is based on the consideration that an increase in the energy of the generated particle beam of the cascade accelerator would be possible by increasing the acceleration voltage.
  • the distance between the individual capacitor plates of the cascade accelerator could be increased.
  • the capacitors should therefore be otherwise protected against electrical flashovers.
  • appropriate liquid or solid insulators should be used, which allow a reliable insulation of the capacitor plates. This can be achieved by the interstices of the electrodes is filled to the acceleration channel with a solid or liquid insulating material.
  • a cascade accelerator high voltages should be secured in addition to a corresponding insulation thickness by a corresponding design of the geometry against electrical breakdown. Therefore, voltage generation and particle accelerators should be integrated and the components with particularly high voltage should be accommodated within the smallest possible volume.
  • a spherical or ellipsoid geometry is of particular advantage.
  • a spherical geometry means a particularly small volume in terms of the maximum possible electric field strength within the insulator and therefore also a particularly small mass.
  • deformation towards an ellipsoid may be desired.
  • a plurality of electrodes are formed as concentric hollow ellipsoidal segments spaced apart from the particle source.
  • a particularly simple construction which combines the advantages of an ellipsoid geometry with the simple generation of stress within a Greinach cascade is possible in that the electrodes designed as hollow ellipsoidal segments are each half-hollow ellipsoids, i. that is, separation at the equator of the respective hollow ellipsoid so that the resulting multiple layers of semi-hollow ellipsoids form the two sets of capacitors needed for the Greinach cascade.
  • the acceleration channel then advantageously leads through the vertex of the respective semi-hollow ellipsoid, whereby a particularly simple geometry is achieved.
  • the respective diodes are arranged in the region of a great circle of the respective semi-hollow ellipsoid. Namely, when the half-hollow ellipsoids each form the two sets of capacitors connected in series, the diodes each connect half-hollow ellipsoids on alternating hemispheres. The diodes can then be arranged for an especially simple construction within an equatorial section.
  • a uniform voltage gradient along the acceleration path, d. H. be provided between the individual electrodes of the Greinacherkaskade. This can be achieved by a plurality of electrodes are equidistant from each other. Since the electrodes of each set have a linear voltage increase, this results in a practically linear increase in the voltage along the acceleration channel.
  • the particle source is a cold cathode. Electrodes of a cold cathode are unheated and remain so cold during operation that no glow emission takes place on them. This allows a particularly simple construction of the cascade accelerator.
  • the acceleration channel allows the particle stream to be extracted from the cascade accelerator.
  • the acceleration channel should comprise a cylindrical wall coated with diamond-like carbon and / or oxidized diamond. These materials are able to withstand these comparatively high voltages.
  • such a cascade accelerator is used in a radiotherapy device.
  • the advantages achieved by the invention are in particular that in a cascade accelerator based on a Greinacherkaskade by embedding particle source and / or electrodes in a solid or liquid insulating material, a particularly high acceleration voltage for the acceleration of charged particles can be generated.
  • a particularly high acceleration voltage for the acceleration of charged particles can be generated.
  • the electrodes in a spherical or ellipsoidal geometry a particularly compact design is possible and the two capacitor sets of the Greinacher circuit are additionally used as concentric potential equilibration electrodes for the electric field distribution around the particle source and high voltage electrode.
  • Such a cascade accelerator enables a particularly high voltage with a particularly compact design, as is particularly desirable in medical applications.
  • the cascade generator 1 after the FIG. 1 has a first set 2 and a second set 4 of semi-hollow spherical electrodes. These are arranged concentrically around a particle source 6.
  • an acceleration channel 8 which is directed to the particle source 6 and allows extraction of the particle stream 10, which emanates from the particle source 6 and receives a high acceleration voltage from the hollow-spherical high-voltage electrode 12.
  • the particle source 6 can be completely embedded in a solid or liquid insulating material 14, so that the space between high voltage electrode 12 and particle source 6 except for the acceleration channel 8 with the insulating material 14 is completed.
  • particularly high voltages can be applied to the high-voltage electrode 12, which results in a particularly high particle energy.
  • the electrodes or the capacitor plates of the electrodes can be insulated from one another substantially up to the acceleration channel 8 by the solid or liquid insulating material 14.
  • the voltage generation of the high voltage on the high voltage electrode 12 is done by means of a Greinacherkaskade 20, which serves as a circuit diagram in the FIG. 2 is shown.
  • a Greinacherkaskade 20 which serves as a circuit diagram in the FIG. 2 is shown.
  • At the input 22 an AC voltage U is applied.
  • the first half-wave charges the capacitor 26 to the voltage U via the diode 24.
  • the voltage U from the capacitor 26 is added to the voltage U at the input 22, so that the capacitor 28 is now charged via the diode 30 to the voltage 2U.
  • This process is repeated in the subsequent diodes and capacitors, so that in the in FIG. 2 shown circuit total at the output 32, the voltage 6U is achieved.
  • the FIG. 2 also clearly shows how each of the first set 2 of capacitors and the second set 4 of capacitors is formed by the illustrated circuit.
  • each in the FIG. 2 interconnected electrodes of two capacitors are now in the cascade accelerator 1 after the FIG. 1 each formed as a semi-hollow spherical shell concentric.
  • the voltage U of the voltage source 22 is applied to the outermost shells 40, 42.
  • the diodes for forming the circuit are arranged in the region of the great circle of the respective semi-hollow sphere, ie in the equatorial section of the respective hollow spheres.
  • This field strength is quadratically dependent on the radius and thus increases strongly towards the inner electrode.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Particle Accelerators (AREA)

Description

Die Erfindung betrifft einen Kaskadenbeschleuniger mit zwei Sätzen von jeweils in Reihe geschalteten, über Dioden in der Art einer Greinacherkaskade verschalteten Kondensatoren. Sie betrifft weiterhin ein Strahlentherapiegerät mit einem derartigen Kaskadenbeschleuniger.The invention relates to a cascade accelerator with two sets of each connected in series, connected via diodes in the manner of a Greinacherkaskade capacitors. It further relates to a radiotherapy device with such a cascade accelerator.

In der medizinischen Strahlentherapie wird ionisierende Strahlung verwendet, um Krankheiten zu heilen oder deren Fortschreiten zu verzögern. Als ionisierende, hochenergetische Strahlen werden vorwiegend Gammastrahlung, Röntgenstrahlung und Elektronen verwendet.In medical radiotherapy, ionizing radiation is used to cure or delay disease progression. As ionizing, high-energy beams mainly gamma radiation, X-rays and electrons are used.

Zur Erzeugung eines Elektronenstrahls entweder zum direkten Therapieeinsatz oder zur Erzeugung von Röntgenstrahlung werden üblicherweise Teilchenbeschleuniger verwendet. In Teilchenbeschleunigern werden geladene Teilchen durch elektrische Felder auf große Geschwindigkeiten und damit kinetische Energien gebracht, wobei die elektrischen Felder bei einigen Beschleunigertypen durch elektromagnetische Induktion in veränderlichen Magnetfeldern entstehen. Dabei erlangen die Teilchen eine Bewegungsenergie, die einem Vielfachen ihrer eigenen Ruheenergie entspricht.Particle accelerators are commonly used to generate an electron beam either for direct therapy or X-ray generation. In particle accelerators, charged particles are brought to high speeds and thus kinetic energies by electric fields, with the electric fields in some types of accelerators being produced by electromagnetic induction in variable magnetic fields. The particles acquire a kinetic energy that corresponds to a multiple of their own rest energy.

Bei den Teilchenbeschleunigern wird zwischen Teilchenbeschleunigern mit zyklischer Beschleunigung wie beispielsweise dem Betatron oder dem Zyklotron und solchen mit geradliniger Beschleunigung unterschieden. Letztere ermöglichen eine kompaktere Bauweise und umfassen auch so genannte Kaskadenbeschleuniger (auch Cockcroft-Walton-Beschleuniger), bei denen mittels einer Greinacherschaltung, welche mehrfach hintereinander geschaltet (kaskadiert) wird, durch Vervielfachung und Gleichrichtung eine Wechselspannung eine hohe Gleichspannung und damit ein starkes elektrisches Feld erzeugt werden kann.The particle accelerators distinguish between cyclic acceleration particle accelerators such as the betatron or cyclotron and those with straight acceleration. The latter allow a more compact design and also include so-called cascade accelerators (also Cockcroft Walton accelerator) in which by means of a Greinacher circuit, which is repeatedly cascaded, by multiplication and rectification an AC voltage high DC voltage and thus a strong electric field can be generated.

Die Funktionsweise der Greinacherschaltung basiert dabei auf einer Anordnung von Dioden und Kondensatoren. Die negative Halbwelle einer Wechselspannungsquelle lädt über eine erste Diode einen ersten Kondensator auf die Spannung der Wechselspannungsquelle auf. Bei der darauf folgenden positiven Halbwelle addiert sich dann die Spannung des ersten Kondensators mit der Spannung der Wechselspannungsquelle, so dass ein zweiter Kondensator über eine zweite Diode nun auf die doppelte Ausgangsspannung der Wechselspannungsquelle aufgeladen wird. Durch mehrfache Kaskadierung in der Art einer Greinacherkaskade erhält man so einen Spannungsvervielfacher. Die jeweils ersten Kondensatoren bilden dabei einen ersten Satz von unmittelbar in Serie geschalteten Kondensatoren der Kaskade, die jeweils zweiten Kondensatoren einen entsprechenden zweiten Satz. Die Dioden bilden die Querverbindung zwischen den Sätzen.The functioning of the Greinacher circuit is based on an arrangement of diodes and capacitors. The negative half-wave of an AC voltage source charges via a first diode to a first capacitor to the voltage of the AC voltage source. In the subsequent positive half-wave then adds the voltage of the first capacitor to the voltage of the AC voltage source, so that a second capacitor is charged via a second diode now to twice the output voltage of the AC voltage source. By multiple cascading in the manner of a Greinacherkaskade one obtains such a voltage multiplier. The respective first capacitors form a first set of capacitors of the cascade connected directly in series, the respective second capacitors a corresponding second set. The diodes form the cross-connection between the sets.

In einem derartigen Kaskadenbeschleuniger ist es möglich, vergleichsweise hohe Teilchenenergien im Megaelektronenvoltbereich zu erreichen. Dabei besteht jedoch insbesondere bei unter normalem Luftdruck aufgestellten Kaskadenbeschleunigern die Gefahr elektrischer Überschläge (Durchschlagsspannung Luft: 3 kV/mm), wodurch die maximale Teilchenenergie in unerwünschter Weise limitiert wird.In such a cascade accelerator, it is possible to achieve comparatively high particle energies in the megaelectron volt range. However, there is the risk of electrical flashovers (breakdown voltage air: 3 kV / mm), especially in the case of cascade accelerators set up under normal atmospheric pressure, whereby the maximum particle energy is undesirably limited.

Ein Kaskadenbeschleuniger gemäß dem Oberbegriff des Patentanspruchs 1 ist aus EP 0 412 896 A1 bekannt. Die Elektroden der Kondensatoren dieses Kaskadenbeschleunigers sind durch ein unter Druck stehendes Gas, insbesondere SF6 zueinander isoliertA cascade accelerator according to the preamble of claim 1 is made EP 0 412 896 A1 known. The electrodes of the capacitors of this cascade accelerator are insulated from one another by a pressurized gas, in particular SF 6

Der Erfindung liegt daher die Aufgabe zugrunde, einen Kaskadenbeschleuniger anzugeben, der bei kompakter Bauweise eine besonders hohe erreichbare Teilchenenergie aufweist.The invention is therefore based on the object to provide a cascade accelerator having a particularly high achievable particle energy in a compact design.

Diese Aufgabe wird erfindungsgemäß gelöst durch einen Kaskadenbeschleuniger mit einem durch Öffnungen in den Elektroden der Kondensatoren eines Satzes gebildeten, auf eine im Bereich der Elektrode mit der höchsten Spannung angeordneten Teilchenquelle gerichteten Beschleunigungskanal, wobei die Elektroden der Kondensatoren zueinander bis auf den Beschleunigungskanal mit einem festen oder flüssigen Isoliermaterial isoliert sind.This object is achieved by a cascade accelerator with a formed by openings in the electrodes of the capacitors of a set to one in the area Acceleration channel directed to the electrode with the highest voltage arranged particle source, wherein the electrodes of the capacitors are insulated from one another with the exception of the acceleration channel with a solid or liquid insulating material.

Die Erfindung geht dabei von der Überlegung aus, dass eine Erhöhung der Energie des erzeugten Teilchenstrahls des Kaskadenbeschleunigers durch eine Erhöhung der Beschleunigungsspannung möglich wäre. Um die dabei entstehende Gefahr des elektrischen Überschlages zu minimieren, könnte der Abstand der einzelnen Kondensatorplatten des Kaskadenbeschleunigers vergrößert werden. Allerdings würde dies einer kompakten Bauweise widersprechen, die gerade für die Einsatzfähigkeit im medizinischen Bereich erwünscht ist. Um eine Erhöhung der Beschleunigungsspannung bei gleichzeitig kompakter Bauweise zu ermöglichen, sollten die Kondensatoren daher anderweitig gegen elektrische Überschläge geschützt werden. Dazu sollten entsprechende flüssige oder feste Isolatoren verwendet werden, die eine zuverlässige Isolierung der Kondensatorplatten ermöglichen. Dies ist erreichbar, indem die Zwischenräume der Elektroden bis auf den Beschleunigungskanal mit einem festen oder flüssigen Isoliermaterial ausgefüllt ist.The invention is based on the consideration that an increase in the energy of the generated particle beam of the cascade accelerator would be possible by increasing the acceleration voltage. In order to minimize the resulting risk of electrical flashover, the distance between the individual capacitor plates of the cascade accelerator could be increased. However, this would contradict a compact design, which is just wanted for the use in the medical field. In order to allow an increase in the acceleration voltage at the same time compact design, the capacitors should therefore be otherwise protected against electrical flashovers. For this purpose, appropriate liquid or solid insulators should be used, which allow a reliable insulation of the capacitor plates. This can be achieved by the interstices of the electrodes is filled to the acceleration channel with a solid or liquid insulating material.

Die in einem Kaskadenbeschleuniger entstehenden hohen Spannungen sollten neben einer entsprechenden Isolierungsdicke auch durch eine entsprechende Ausgestaltung der Geometrie gegen ein elektrisches Durchschlagen gesichert sein. Daher sollten Spannungserzeugung und Teilchenbeschleuniger integriert sein und die Bauteile mit besonders hoher Spannung innerhalb des kleinstmöglichen Volumens untergebracht sein. Da die maximale elektrische Feldstärke proportional zur Krümmung der Elektroden ist, ist eine Kugel- oder Ellipsoidgeometrie von besonderem Vorteil. Insbesondere eine Kugelgeometrie bedeutet hinsichtlich der maximal möglichen elektrischen Feldstärke innerhalb des Isolators ein besonders kleines Volumen und demzufolge zudem eine besonders kleine Masse. Allerdings kann in bestimmten Bauformen eine Verformung hin zu einem Ellipsoid erwünscht sein. Daher ist vorteilhafterweise eine Mehrzahl von Elektroden als konzentrische, um die Teilchenquelle voneinander beabstandet angeordnete Hohlellipsoidsegmente ausgebildet.The resulting in a cascade accelerator high voltages should be secured in addition to a corresponding insulation thickness by a corresponding design of the geometry against electrical breakdown. Therefore, voltage generation and particle accelerators should be integrated and the components with particularly high voltage should be accommodated within the smallest possible volume. Since the maximum electric field strength is proportional to the curvature of the electrodes, a spherical or ellipsoid geometry is of particular advantage. In particular, a spherical geometry means a particularly small volume in terms of the maximum possible electric field strength within the insulator and therefore also a particularly small mass. However, in certain designs, deformation towards an ellipsoid may be desired. Thus, advantageously, a plurality of electrodes are formed as concentric hollow ellipsoidal segments spaced apart from the particle source.

Eine besonders einfache Bauweise, die die Vorteile einer Ellipsoidgeometrie mit der einfachen Spannungserzeugung innerhalb einer Greinacherkaskade verbindet, ist möglich, indem die als Hohlellipsoidsegmente ausgebildeten Elektroden jeweils Halbhohlellipsoide sind, d. h., eine Trennung am Äquator des jeweiligen Hohlellipsoids erfolgt, so dass die so entstehenden mehrfachen Schichten von Halbhohlellipsoiden die beiden Sätze von Kondensatoren bilden, die für die Greinacherkaskade benötigt werden. Der Beschleunigungskanal führt dann vorteilhafterweise durch den Scheitelpunkt des jeweiligen Halbhohlellipsoids, wodurch eine besonders einfache Geometrie erreicht wird.A particularly simple construction which combines the advantages of an ellipsoid geometry with the simple generation of stress within a Greinach cascade is possible in that the electrodes designed as hollow ellipsoidal segments are each half-hollow ellipsoids, i. that is, separation at the equator of the respective hollow ellipsoid so that the resulting multiple layers of semi-hollow ellipsoids form the two sets of capacitors needed for the Greinach cascade. The acceleration channel then advantageously leads through the vertex of the respective semi-hollow ellipsoid, whereby a particularly simple geometry is achieved.

In weiterer vorteilhafter Ausgestaltung sind die jeweiligen Dioden im Bereich eines Großkreises des jeweiligen Halbhohlellipsoids angeordnet. Wenn nämlich die Halbhohlellipsoide jeweils die beiden Sätze von jeweils in Reihe geschalteten Kondensatoren bilden, verbinden die Dioden jeweils Halbhohlellipsoide auf alternierenden Halbkugeln. Die Dioden können dann für eine besonders einfache Konstruktion innerhalb eines äquatorialen Schnitts angeordnet werden.In a further advantageous embodiment, the respective diodes are arranged in the region of a great circle of the respective semi-hollow ellipsoid. Namely, when the half-hollow ellipsoids each form the two sets of capacitors connected in series, the diodes each connect half-hollow ellipsoids on alternating hemispheres. The diodes can then be arranged for an especially simple construction within an equatorial section.

Um eine besondere hohe Stabilität des Kaskadenbeschleunigers gegen Durchschlagen zu erzielen, sollte ein gleichmäßiger Spannungsgradient entlang der Beschleunigungsstrecke, d. h. zwischen den einzelnen Elektroden der Greinacherkaskade vorgesehen werden. Dies ist erreichbar, indem eine Mehrzahl von Elektroden äquidistant voneinander beabstandet sind. Da die Elektroden jedes Satzes einen linearen Spannungsanstieg aufweisen, ergibt sich dadurch entlang des Beschleunigungskanals ein praktisch linearer Anstieg der Spannung.In order to achieve a particularly high stability of the cascade accelerator against breakdown, a uniform voltage gradient along the acceleration path, d. H. be provided between the individual electrodes of the Greinacherkaskade. This can be achieved by a plurality of electrodes are equidistant from each other. Since the electrodes of each set have a linear voltage increase, this results in a practically linear increase in the voltage along the acceleration channel.

In weiterer vorteilhafter Ausgestaltung ist die Teilchenquelle eine Kaltkathode. Elektroden einer Kaltkathode sind ungeheizt und bleiben auch im Betrieb so kalt, dass keine Glühemission an ihnen stattfindet. Dadurch wird eine besonders einfache Konstruktion des Kaskadenbeschleunigers ermöglicht.In a further advantageous embodiment, the particle source is a cold cathode. Electrodes of a cold cathode are unheated and remain so cold during operation that no glow emission takes place on them. This allows a particularly simple construction of the cascade accelerator.

Der Beschleunigungskanal erlaubt es, den Teilchenstrom aus dem Kaskadenbeschleuniger zu extrahieren. Damit auch der Beschleunigungskanal den tangentialen elektrischen Feldern ohne Durchschlag widersteht, sollte der Beschleunigungskanal eine zylinderförmige Wand umfassen, welche mit diamantartigem Kohlenstoff und/oder oxidiertem Diamant beschichtet ist. Diese Werkstoffe sind in der Lage, diesen vergleichsweise hohen Spannungen zu widerstehen.The acceleration channel allows the particle stream to be extracted from the cascade accelerator. In order for the acceleration channel also to resist the tangential electric fields without breakdown, the acceleration channel should comprise a cylindrical wall coated with diamond-like carbon and / or oxidized diamond. These materials are able to withstand these comparatively high voltages.

Vorteilhafterweise kommt ein derartiger Kaskadenbeschleuniger in einem Strahlentherapiegerät zum Einsatz.Advantageously, such a cascade accelerator is used in a radiotherapy device.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass bei einem Kaskadenbeschleuniger auf Basis einer Greinacherkaskade durch die Einbettung von Teilchenquelle und/oder Elektroden in ein festes oder flüssiges Isoliermaterial eine besonders hohe Beschleunigungsspannung zur Beschleunigung von geladenen Teilchen erzeugt werden kann. Bei Ausbildung der Elektroden in einer sphärischen oder ellipsoiden Geometrie ist außerdem eine besonders kompakte Bauweise möglich und die zwei Kondensatorsätze der Greinacherschaltung werden als konzentrische Potentialäquilibrierungselektroden für die elektrische Feldverteilung um die Teilchenquelle und Hochspannungselektrode zusätzlich genutzt. Ein derartiger Kaskadenbeschleuniger ermöglicht eine besonders hohe Spannung bei besonders kompaktem Design, wie es insbesondere in medizinischen Anwendungen erwünscht ist.The advantages achieved by the invention are in particular that in a cascade accelerator based on a Greinacherkaskade by embedding particle source and / or electrodes in a solid or liquid insulating material, a particularly high acceleration voltage for the acceleration of charged particles can be generated. In addition, when forming the electrodes in a spherical or ellipsoidal geometry, a particularly compact design is possible and the two capacitor sets of the Greinacher circuit are additionally used as concentric potential equilibration electrodes for the electric field distribution around the particle source and high voltage electrode. Such a cascade accelerator enables a particularly high voltage with a particularly compact design, as is particularly desirable in medical applications.

Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:

FIG 1
eine schematische Darstellung eines Schnitts durch einen Kaskadenbeschleuniger, und
FIG 2
eine schematische Darstellung einer Greinacherschaltung.
An embodiment of the invention will be explained in more detail with reference to a drawing. Show:
FIG. 1
a schematic representation of a section through a cascade accelerator, and
FIG. 2
a schematic representation of a Greinacherschaltung.

Gleiche Teile sind in beiden Figuren mit denselben Bezugszeichen versehen.Identical parts are provided in both figures with the same reference numerals.

Der Kaskadengenerator 1 nach der FIG 1 weist einen ersten Satz 2 sowie einen zweiten Satz 4 von halbhohlkugelförmigen Elektroden auf. Diese sind konzentrisch um eine Teilchenquelle 6 angeordnet.The cascade generator 1 after the FIG. 1 has a first set 2 and a second set 4 of semi-hollow spherical electrodes. These are arranged concentrically around a particle source 6.

Durch den zweiten Satz von Elektroden 4 führt ein Beschleunigungskanal 8, welcher auf die Teilchenquelle 6 gerichtet ist und eine Extraktion des Teilchenstroms 10 ermöglicht, der von der Teilchenquelle 6 ausgeht und von der hohlkugelförmigen Hochspannungselektrode 12 eine hohe Beschleunigungsspannung erfährt.Through the second set of electrodes 4 leads an acceleration channel 8, which is directed to the particle source 6 and allows extraction of the particle stream 10, which emanates from the particle source 6 and receives a high acceleration voltage from the hollow-spherical high-voltage electrode 12.

Um im Inneren ein Durchschlagen der Hochspannung von der Hochspannungselektrode 12 auf die Teilchenquelle 6 zu verhindern, kann die Teilchenquelle 6 vollständig in ein festes oder flüssiges Isoliermaterial 14 eingebettet, so dass der Raum zwischen Hochspannungselektrode 12 und Teilchenquelle 6 bis auf den Beschleunigungskanal 8 mit den Isoliermaterial 14 ausgefüllt ist. Dadurch können besonders hohe Spannungen auf der Hochspannungselektrode 12 angelegt werden, was eine besonders hohe Teilchenenergie zur Folge hat. Zudem können die Elektroden bzw. die Kondensatorplatten der Elektroden zueinander im Wesentlichen bis auf den Beschleunigungskanal 8 durch das feste oder flüssige Isoliermaterial 14 zueinander isoliert sein.In order to prevent internal breakdown of the high voltage from the high voltage electrode 12 to the particle source 6, the particle source 6 can be completely embedded in a solid or liquid insulating material 14, so that the space between high voltage electrode 12 and particle source 6 except for the acceleration channel 8 with the insulating material 14 is completed. As a result, particularly high voltages can be applied to the high-voltage electrode 12, which results in a particularly high particle energy. In addition, the electrodes or the capacitor plates of the electrodes can be insulated from one another substantially up to the acceleration channel 8 by the solid or liquid insulating material 14.

Die Spannungserzeugung der hohen Spannung auf der Hochspannungselektrode 12 geschieht mittels einer Greinacherkaskade 20, welche als Schaltbild in der FIG 2 dargestellt ist. Am Eingang 22 wird eine Wechselspannung U angelegt. Die erste Halbwelle lädt über die Diode 24 den Kondensator 26 auf die Spannung U auf. Bei der darauf folgenden Halbwelle der Wechselspannung addiert sich die Spannung U vom Kondensator 26 mit der Spannung U am Eingang 22, so dass der Kondensator 28 über die Diode 30 nun auf die Spannung 2U aufgeladen wird. Dieser Prozess wiederholt sich in den darauf folgenden Dioden und Kondensatoren, so dass in der in FIG 2 abgebildeten Schaltung insgesamt am Ausgang 32 die Spannung 6U erzielt wird. Die FIG 2 zeigt auch deutlich, wie durch die dargestellte Schaltung jeweils der erste Satz 2 von Kondensatoren und der zweite Satz 4 von Kondensatoren gebildet wird.The voltage generation of the high voltage on the high voltage electrode 12 is done by means of a Greinacherkaskade 20, which serves as a circuit diagram in the FIG. 2 is shown. At the input 22 an AC voltage U is applied. The first half-wave charges the capacitor 26 to the voltage U via the diode 24. At the following half cycle of the alternating voltage, the voltage U from the capacitor 26 is added to the voltage U at the input 22, so that the capacitor 28 is now charged via the diode 30 to the voltage 2U. This process is repeated in the subsequent diodes and capacitors, so that in the in FIG. 2 shown circuit total at the output 32, the voltage 6U is achieved. The FIG. 2 also clearly shows how each of the first set 2 of capacitors and the second set 4 of capacitors is formed by the illustrated circuit.

Die jeweils in der FIG 2 miteinander verbundenen Elektroden zweier Kondensatoren sind nun in dem Kaskadenbeschleuniger 1 nach der FIG 1 jeweils als eine Halbhohlkugelschale konzentrisch ausgebildet. Dabei wird auf die äußersten Schalen 40, 42 jeweils die Spannung U der Spannungsquelle 22 aufgebracht. Die Dioden zur Bildung der Schaltung sind im Bereich des Großkreises der jeweiligen Halbhohlkugel angeordnet, d. h. im äquatorialen Schnitt der jeweiligen Hohlkugeln.Each in the FIG. 2 interconnected electrodes of two capacitors are now in the cascade accelerator 1 after the FIG. 1 each formed as a semi-hollow spherical shell concentric. In each case, the voltage U of the voltage source 22 is applied to the outermost shells 40, 42. The diodes for forming the circuit are arranged in the region of the great circle of the respective semi-hollow sphere, ie in the equatorial section of the respective hollow spheres.

Ein Kugelkondensator mit innerem Radius r0 und äußerem Radius r1 hat die Kapazität C = 4 πε r 0 r 1 r 1 r 0 .

Figure imgb0001
A ball capacitor with inner radius r 0 and outer radius r 1 has the capacity C = 4 πε r 0 r 1 r 1 - r 0 ,
Figure imgb0001

Die Feldstärke bei Radius r ist dann E = r 0 r 1 U r 1 r 0 r 2 .

Figure imgb0002
The field strength at radius r is then e = r 0 r 1 U r 1 - r 0 r 2 ,
Figure imgb0002

Diese Feldstärke ist quadratisch abhängig vom Radius und nimmt zur inneren Elektrode hin somit stark zu.This field strength is quadratically dependent on the radius and thus increases strongly towards the inner electrode.

Dadurch, dass im Kaskadenbeschleuniger 1 die Elektroden der Kondensatoren der Greinacherkaskade 20 als Zwischenelektroden auf klar definiertem Potential eingefügt sind, wird die Feldstärkeverteilung über den Radius linear angeglichen, da für dünnwandige Hohlkugeln die elektrische Feldstärke ungefähr gleich dem flachen Fall E = U r 1 r 0

Figure imgb0003
mit minimaler maximaler Feldstärke ist.Characterized in that in the cascade accelerator 1, the electrodes of the capacitors of the Greinacherkaskade 20 are inserted as intermediate electrodes at a well-defined potential, the field strength distribution over the radius is linearly aligned because for thin-walled hollow spheres, the electric field strength is approximately equal to the flat case e = U r 1 - r 0
Figure imgb0003
with minimum maximum field strength.

Durch die Zusatznutzung der zwei Kondensatorsätze 2, 4 einer Greinacherkaskade 20 als konzentrische Potentialäquilibrierungselektroden für die elektrische Feldverteilung in einer im Wesentlichen vollständig in einem festen oder flüssigen Isoliermaterial 14 gekapselten Hochspannungselektrode 12 und Teilchenquelle 6 wird eine besonders hohen Beschleunigungsspannung in einem Kaskadenbeschleuniger 1 erreicht. Gleichzeitig ist das Design sehr kompakt, was eine flexible Anwendung insbesondere in der Strahlentherapie ermöglicht.Due to the additional use of the two capacitor sets 2, 4 of a Greinacherkaskade 20 as concentric Potentialequilibrierungselektroden for electric field distribution in a substantially completely encapsulated in a solid or liquid insulating material 14 high voltage electrode 12 and particle source 6 a particularly high acceleration voltage in a cascade accelerator 1 is achieved. At the same time, the design is very compact, which allows a flexible application, especially in radiotherapy.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Kaskadengeneratorcascade generator
22
erster Satzfirst sentence
44
zweiter Satzsecond sentence
66
Teilchenquelleparticle
88th
Beschleunigungskanalaccelerating channel
1010
Teilchenstromparticle
1212
HochspannungselektrodeHigh-voltage electrode
1414
Isoliermaterialinsulating material
2020
GreinacherkaskadeGreinacher cascade
2222
Spannungsquellevoltage source
2424
Diodediode
26, 2826, 28
Kondensatorcapacitor
3030
Diodediode
3232
Ausgangoutput
40, 4240, 42
äußerste Schalenextreme shells
r0 r 0
innerer Radius eines Kugelkondensatorsinner radius of a ball capacitor
r1 r 1
äußerer Radius eines Kugelkondensatorsouter radius of a ball capacitor
UU
Spannungtension

Claims (8)

  1. Cascade accelerator (1) which has two sets (2, 4) of respectively series-connected capacitors (26, 28) connected up via diodes (24, 30) in the manner of a Greinacher cascade (20), and an acceleration channel (8) formed by openings in the electrodes of the capacitors of a set (4) and directed at a particle source (6) arranged in the region of the electrode with the highest voltage (12), characterized in that the electrodes are insulated from one another, except for the acceleration channel (8), by a solid or liquid insulating material (14).
  2. Cascade accelerator (1) according to Claim 1, in which a plurality of electrodes are designed as hollow ellipsoidal segments arranged concentrically around the particle source (6) in a fashion separated from one another.
  3. Cascade accelerator (1) according to Claim 2, in which the respective hollow ellipsoidal segment is a hollow half ellipsoid, and the acceleration channel (8) is guided through the vertex of the hollow half ellipsoid.
  4. Cascade accelerator (1) according to Claim 3, in which the respective diode (24, 30) is arranged in the region of a great circle of the respective hollow half ellipsoid.
  5. Cascade accelerator (1) according to one of Claims 1 to 4, in which a plurality of electrodes are spaced apart equidistantly from one another.
  6. Cascade accelerator (1) according to one of Claims 1 to 5, in which the particle source (6) is a cold cathode.
  7. Cascade accelerator (1) according to one of Claims 1 to 6, in which the acceleration channel (8) comprises cylindrical wall that is coated with diamond-like carbon and/or oxidized diamond.
  8. Beam therapy device having a cascade accelerator (1) according to one of Claims 1 to 7.
EP10717563.0A 2009-05-29 2010-03-26 Cascade accelerator Not-in-force EP2436240B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009023305.9A DE102009023305B4 (en) 2009-05-29 2009-05-29 cascade accelerator
PCT/EP2010/054021 WO2010136235A1 (en) 2009-05-29 2010-03-26 Cascade accelerator

Publications (2)

Publication Number Publication Date
EP2436240A1 EP2436240A1 (en) 2012-04-04
EP2436240B1 true EP2436240B1 (en) 2017-03-22

Family

ID=42790689

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10717563.0A Not-in-force EP2436240B1 (en) 2009-05-29 2010-03-26 Cascade accelerator

Country Status (8)

Country Link
US (1) US8653761B2 (en)
EP (1) EP2436240B1 (en)
JP (1) JP5507672B2 (en)
CN (1) CN102440080B (en)
CA (1) CA2763577C (en)
DE (1) DE102009023305B4 (en)
RU (1) RU2531635C2 (en)
WO (1) WO2010136235A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023305B4 (en) 2009-05-29 2019-05-16 Siemens Aktiengesellschaft cascade accelerator
DE102010008991A1 (en) 2010-02-24 2011-08-25 Siemens Aktiengesellschaft, 80333 Accelerator for charged particles
DE102010008995A1 (en) 2010-02-24 2011-08-25 Siemens Aktiengesellschaft, 80333 DC high voltage source and particle accelerator
DE102010023339A1 (en) 2010-06-10 2011-12-15 Siemens Aktiengesellschaft Accelerator for two particle beams to create a collision
DE102010040615A1 (en) * 2010-09-13 2012-03-15 Siemens Aktiengesellschaft Particle accelerator with integrated in the accelerator cell voltage multiplier
DE102010040855A1 (en) 2010-09-16 2012-03-22 Siemens Aktiengesellschaft DC particle accelerator
WO2014048496A1 (en) * 2012-09-28 2014-04-03 Siemens Aktiengesellschaft High-voltage electrostatic generator
EP2997799A4 (en) * 2013-05-17 2016-11-02 Martin A Stuart Dielectric wall accelerator utilizing diamond or diamond like carbon
EP3072369B1 (en) * 2013-11-21 2021-04-28 Martin A. Stuart Nuclear reactor and method of controlling a nuclear reaction in a nuclear reactor
JP7321536B2 (en) 2018-04-30 2023-08-07 ニュートロン・セラピューティクス・インコーポレイテッド Small motor-driven insulated electrostatic particle accelerator
US10772185B1 (en) * 2019-09-13 2020-09-08 SpaceFab.US, Inc. Modular beam amplifier

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2887599A (en) * 1957-06-17 1959-05-19 High Voltage Engineering Corp Electron acceleration tube
US4092712A (en) * 1977-05-27 1978-05-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Regulated high efficiency, lightweight capacitor-diode multiplier dc to dc converter
FR2650935B1 (en) * 1989-08-08 1991-12-27 Commissariat Energie Atomique ELECTROSTATIC ELECTRON ACCELERATOR
US5135704A (en) * 1990-03-02 1992-08-04 Science Research Laboratory, Inc. Radiation source utilizing a unique accelerator and apparatus for the use thereof
US5757146A (en) * 1995-11-09 1998-05-26 Carder; Bruce M. High-gradient compact linear accelerator
US5821705A (en) * 1996-06-25 1998-10-13 The United States Of America As Represented By The United States Department Of Energy Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators
US5811944A (en) * 1996-06-25 1998-09-22 The United States Of America As Represented By The Department Of Energy Enhanced dielectric-wall linear accelerator
RU2104595C1 (en) * 1996-10-16 1998-02-10 Центральный научно-исследовательский рентгено-радиологический институт МЗМП РФ Method for exposition of three-dimensional brain tumors to ionizing radiation and device which implements said method
JP2003522398A (en) * 2000-02-11 2003-07-22 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド Method and apparatus for operating a high energy accelerator in a low energy mode
US6459766B1 (en) * 2000-04-17 2002-10-01 Brookhaven Science Associates, Llc Photon generator
TWI287950B (en) * 2003-11-28 2007-10-01 Kobe Steel Ltd High-voltage generator and accelerator using same
US7173385B2 (en) 2004-01-15 2007-02-06 The Regents Of The University Of California Compact accelerator
US7710051B2 (en) * 2004-01-15 2010-05-04 Lawrence Livermore National Security, Llc Compact accelerator for medical therapy
DE202004009421U1 (en) 2004-06-16 2005-11-03 Gesellschaft für Schwerionenforschung mbH Particle accelerator for ion beam radiation therapy
US7227297B2 (en) * 2004-08-13 2007-06-05 Brookhaven Science Associates, Llc Secondary emission electron gun using external primaries
EP1949769B1 (en) * 2005-11-14 2011-05-11 Lawrence Livermore National Security LLC Cast dielectric composite linear accelerator
US7924121B2 (en) * 2007-06-21 2011-04-12 Lawrence Livermore National Security, Llc Dispersion-free radial transmission lines
JP5158585B2 (en) * 2007-10-12 2013-03-06 株式会社ネットコムセック Power supply device and high-frequency circuit system
US7994739B2 (en) * 2008-12-14 2011-08-09 Schlumberger Technology Corporation Internal injection betatron
DE102009023305B4 (en) 2009-05-29 2019-05-16 Siemens Aktiengesellschaft cascade accelerator
DE102010008991A1 (en) * 2010-02-24 2011-08-25 Siemens Aktiengesellschaft, 80333 Accelerator for charged particles
DE102010008992A1 (en) * 2010-02-24 2011-08-25 Siemens Aktiengesellschaft, 80333 DC high voltage source and particle accelerator
DE102010008995A1 (en) * 2010-02-24 2011-08-25 Siemens Aktiengesellschaft, 80333 DC high voltage source and particle accelerator

Also Published As

Publication number Publication date
RU2531635C2 (en) 2014-10-27
CA2763577C (en) 2017-07-04
JP2012528427A (en) 2012-11-12
US8653761B2 (en) 2014-02-18
EP2436240A1 (en) 2012-04-04
RU2011154159A (en) 2013-07-10
DE102009023305A1 (en) 2010-12-02
CN102440080B (en) 2014-09-10
CA2763577A1 (en) 2010-12-02
CN102440080A (en) 2012-05-02
WO2010136235A1 (en) 2010-12-02
JP5507672B2 (en) 2014-05-28
DE102009023305B4 (en) 2019-05-16
US20120068632A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
EP2436240B1 (en) Cascade accelerator
EP2540143B1 (en) Accelerator for charged particles
EP2540144B1 (en) Dc high voltage source and particle accelerator
EP2580947B1 (en) Accelerator for two particle beams for producing a collision
DE112005003138B4 (en) Multi-channel unloader with multiple intervals and pulsed high-power generator
DE1222589B (en) Device for generating a space-charge-neutralized beam of charged particles
DE1230135B (en) Electrode arrangement for a vacuum channel
DE1179309B (en) High frequency ion source
EP2540145B1 (en) Dc high voltage source and particle accelerator
WO2014111274A1 (en) Pulse generator and method for operating a pulse generator
EP2617269B1 (en) Particle accelerator comprising a voltage multiplier integrated into the accelerator cell
EP2604099B1 (en) Dc voltage-operated particle accelerator
WO2011104081A1 (en) Dc high voltage source and particle accelerator
DE102010008993A1 (en) Accelerator for charged particles
WO2014111328A1 (en) High-voltage pulse generator and method for generating high-voltage pulses
DE3844814C2 (en)
DE102011052269B4 (en) Arrangement for generating high-energy proton beams and their use
DE1051428B (en) Acceleration tube for electrically charged particles, especially for electrostatic particle accelerators
DE202015005070U1 (en) Device for reducing electrode burn-up in electro-hydraulic shock wave generation
AT362844B (en) METHOD FOR OBTAINING RADIAL ION ACCELERATION BY MEANS OF A CASCADE-SHAPED ELECTROFIELD
CH348472A (en) Extra high voltage discharge tube
DE1244989B (en) Device for ionizing a gas jet and using the device in an MHD generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161012

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 878884

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010013344

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170722

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010013344

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170326

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

26N No opposition filed

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170326

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 878884

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170326

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180518

Year of fee payment: 9

Ref country code: CH

Payment date: 20180614

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190322

Year of fee payment: 10

Ref country code: GB

Payment date: 20190313

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20190320

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100326

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010013344

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200326