EP2435599B1 - Method for fabricating a layer with absorbing particles for an energy radiation - Google Patents

Method for fabricating a layer with absorbing particles for an energy radiation Download PDF

Info

Publication number
EP2435599B1
EP2435599B1 EP10723956.8A EP10723956A EP2435599B1 EP 2435599 B1 EP2435599 B1 EP 2435599B1 EP 10723956 A EP10723956 A EP 10723956A EP 2435599 B1 EP2435599 B1 EP 2435599B1
Authority
EP
European Patent Office
Prior art keywords
layer
coating material
absorber particles
absorber
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10723956.8A
Other languages
German (de)
French (fr)
Other versions
EP2435599A2 (en
Inventor
Jens Dahl Jensen
Ursus KRÜGER
Gabriele Winkler
Christian Doye
Kathrin Kunert
Raymond Ullrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2435599A2 publication Critical patent/EP2435599A2/en
Application granted granted Critical
Publication of EP2435599B1 publication Critical patent/EP2435599B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles

Definitions

  • the invention relates to a method for producing a layer on a substrate.
  • a coating material containing a solvent or dispersant, chemical precursors of a ceramic and absorber particles for energy radiation is applied to the substrate.
  • the substrate provided with the coating material is subjected to a heat treatment in which the solvent or dispersant is evaporated and the chemical precursors are converted into the ceramic to form the layer, wherein the heat treatment comprises introducing an electromagnetic energy radiation from the absorber particles into heat is implemented.
  • the absorber particles are therefore made of a material which is able to absorb the energy radiation.
  • the energy radiation must provide an energy that can be absorbed by certain absorber materials and suitably selected to match the absorber particles used.
  • electromagnetic radiation is used as energy radiation, for the selection of the material of the absorber particles are a wealth of materials for selection (more on this below), so that depending on the application, a suitable material to be produced layer system can be selected.
  • the process of producing ceramic layers from chemical precursors of the ceramic is known per se.
  • the chemical precursors of ceramics are materials which themselves do not belong to the group of ceramics but dissolve in solvents or disperse in dispersants. In this way, a liquid or paste is obtained, which can be applied to the substrate to be coated.
  • a subsequent heat treatment serves to evaporate first the solvent or dispersion medium, whereby the layer can be solidified.
  • a subsequent sintering treatment leads to the crosslinking of the precursors to the desired ceramic (pyrolysis).
  • the heat input in the heat treatment is usually done in an oven in which the substrate is heated with the applied layer to the desired temperature.
  • a heat input can also be made more targeted by, for example, particles of a UV light absorber such as titanium oxide or zinc oxide can be incorporated into the layer.
  • the heat treatment can then take place by means of UV light irradiation or at least be supported.
  • the object of the invention is to provide a method for producing a layer on a substrate by means of heat treatment of chemical precursors of a ceramic, which opens up a comparatively large scope for the adaptation of the layers to the required application and is economically applicable.
  • the coating material with the absorber particles only for a part of the volume Layer is used as a first coating material and for the remainder of the volume of the layer at least one further coating material, containing a solvent or dispersion medium, and chemical precursors of a ceramic is used.
  • several coating materials are used for the method according to the invention, which differ from each other at least with regard to the choice of absorber particles.
  • the first coating material contains in each case a certain type of absorber particles, while the other coating material contains other absorber particles or the other coating materials at least partially contain other absorber particles than the first coating material.
  • absorber particles according to the invention can be adapted specifically to the requirements of the method of a particular application.
  • relatively thick layers can be produced in the manner shown, wherein the deeper layers in the vicinity of the substrate can be provided with absorber particles. If these layers are subsequently subjected to a conventional heat treatment in an oven, then the near-surface layers of the layer initially heat up, while the layers of the layers near the substrate would require a longer time for this purpose. In this area, however, the heat input can be accelerated by introducing an appropriate energy radiation to the absorber particles used, so that a homogeneous heating and implementation of the chemical precursors in the layer to the ceramic to be produced can be ensured. As a result, a thermal load of the substrate is advantageously reduced, the treatment time of the heat treatment is shortened and a formation of residual stresses in the layer is counteracted. In addition, an alternating application of Layer material and performing a heat treatment at higher film thicknesses are avoided. Thus, it is possible to produce layers of a higher quality as well as manufacturing costs and thus save costs.
  • absorber particles By introducing absorber particles only into a specific part of the volume of the layer, it is advantageously also possible to produce layers in which ceramics are used which require different temperatures during the heat treatment.
  • the ceramic in which the temperature is higher, can be provided with the absorber particles or alternatively be provided with a higher concentration of absorber particles, so that arise in the heat treatment in this area higher temperatures.
  • the parts of the layer volume which contain different coating materials are preferably individual layers of a multilayer layer.
  • the different partial volumes of the layer are formed by successively applying the different coating materials. In this way, dispersion layers can also be produced if, during the subsequent heat treatment of the layer, layer components diffuse and thus contribute to a concentration balance between the layers. This creates a concentration gradient that makes up the properties of the gradient layer.
  • the partial volumes of the layer to be produced can also be distributed differently than in a sheet-like manner.
  • layer areas with different tasks can be produced on the substrate.
  • subregions of the layer with special properties such as electrical conductivity or wear resistance.
  • absorber particles are also used in the further coating material or at least one of the further coating materials, this use being with regard to the concentration of absorber particles in the coating material and / or the chemical composition of the absorber particles and / or the mixing ratio differ from absorber particles of different types.
  • the composition of the absorber particles can advantageously be used to be able to work with different types of energy radiation simultaneously or successively during the heat treatment. Each energy radiation can then be used to specifically influence the temperature in certain layer volumes. It is also possible with the aid of the absorber particles of different composition to use energy beams which have different specific penetration depths into the layer (more on that below).
  • the concentration of absorber particles in the coating material determines the heat energy that can be converted by irradiation of the layer in the relevant layer. In this way, in particular the speed of heating can be influenced.
  • By setting different mixing ratios of absorber particles of different types in a certain position it is also possible to use energy radiations of different types.
  • a layer of a coating material with absorber particles for microwaves and overlying a layer of a coating material with absorber particles for IR and / or UV light is applied.
  • the microwaves have a greater penetration depth into the layer as electromagnetic radiation than IR or UV light.
  • a layer constructed in the specified manner can thus be heated by simultaneous irradiation with IR light or UV light and with microwaves, with a suitable choice of the concentration of absorber particles in the layers uniform heating of the layer results and the formation of a temperature gradient within the layer can be avoided during the heat treatment.
  • the different energy radiations can also be used to heat the layers of the layer sequentially in a desired sequence.
  • the energy radiations are used successively in a sequence and it can be achieved, for example, that first the layer on the substrate is converted into a ceramic and only then the overlying layers. This has a positive effect on the adhesion of the layer or the formation of residual stresses in the layer.
  • the coating material is applied to the substrate with regions of different thickness and comparatively more absorber particles are used in the regions of greater thickness.
  • layers which have a different thickness locally on the substrate can also be cured in a heat treatment step.
  • the areas of greater layer thickness, which would promote a longer treatment time in conventional oven heating, are provided with the absorber particles such that they lead to an additional heat input into this area with the consequence of faster heating.
  • the concentration of absorber particles can be adjusted so that the treatment time for the layer region of greater thickness is adapted to the treatment time of the regions of lesser thickness.
  • absorber particles are also particularly advantageous in the case of large workpieces, since the introduction of heat during the heat treatment by the absorber particles can take place with greater homogeneity. This favors a uniform layer structure even if, for example, microwaves are introduced only locally into a specific region of the layer surface of the large-area workpiece and at the same time a support of the energy input by IR- or UV-sensitive absorber particles is supported.
  • the coating of the substrate can be carried out by conventional methods, for example by spraying, knife coating, brushing, rolling or dipping.
  • metal oxides or metal nitrides or else metal oxynitrides can preferably be produced.
  • metal sulfides or oxysulfides can be prepared as layer materials (for example molybdenum disulfide or tungsten disulfide). Common precursors are thiocarboxylic acids, alkanethiols and carboxylic acids, which are mixed with the corresponding metal salts. The following materials are suitable for the absorber particles.
  • IR ultraviolet
  • absorber particles of inorganic and / or organic nature are used.
  • inorganic absorbers are the metal oxides titanium dioxide; Zinc oxide, silicon dioxide, tin dioxide or copper oxide.
  • organic IR absorbers are the various Phthalo-, naphthalo- and carbocyanines, polymethines, and methylene chloride mentioned.
  • absorbers are selected whose molecules have dipole moments and react to alternating electromagnetic fields (for example TiN, CuCr, ZrO, SiO, BO, AgCr, AuCr, CrCu, iron ferrites Fe 2 O 3 or Fe 3 O 4 , which by addition magnetized by nickel, zinc or manganese compounds).
  • alternating electromagnetic fields for example TiN, CuCr, ZrO, SiO, BO, AgCr, AuCr, CrCu, iron ferrites Fe 2 O 3 or Fe 3 O 4 , which by addition magnetized by nickel, zinc or manganese compounds.
  • the absorber particles used have characteristically excitation frequencies, which must be taken into account when designing the excitation energy sources. Typical excitation frequencies of some absorbers for the microwave radiation are listed in the following table. material excitation frequency titanium nitride 18589 MHz boron oxide 2570 GHz BO2 BO boron carbide 53165 MHz silver chrome 1,701 GHz gold chrome 168 MHz chromium copper 0.14 GHz SiO 797 MHz
  • Absorbers whose atoms or molecules are excited by both photons and electromagnetic alternating fields, can also be used (for example, synthetic iron manganese mixed oxide (Fe, Mn) 2 O 3 available as Bayferrox ® 303 T from the company Lanxess Germany GmbH) ,
  • the base components can be used both as a microwave absorber (for example acetic acid at 5 GHz or propionic acid at 2.5 GHz as a solvent or diluent) or as an IR absorber (additions of organometallic Compounds such as carboxylates, alkoxides, or mixtures thereof, for example, titanium 2-ethylhexanoate, zinc 2-ethylhexanoate, which form the corresponding metal oxides in situ in pyrolytic decomposition), and accelerate chemical conversion to a ceramic coating material.
  • a microwave absorber for example acetic acid at 5 GHz or propionic acid at 2.5 GHz as a solvent or diluent
  • an IR absorber additionals of organometallic Compounds such as carboxylates, alkoxides, or mixtures thereof, for example, titanium 2-ethylhexanoate, zinc 2-ethylhexanoate, which form the corresponding metal oxides in situ in pyrolytic decom
  • a microwave absorber In the case of zirconia, a microwave absorber is available, which is formed by pyrolysis of zirconium 2-ethylhexanoate and propionic acid and then accelerates the overall reaction while forming part of the coating material.
  • Iron oxide which can act as an IR absorber and as a microwave absorber, can also be prepared from iron 2-ethylhexanoate and propionic acid during pyrolytic decomposition during the heat treatment.
  • the absorbers can be used both as microparticles and as nanoparticles in the precursor solutions.
  • a supporting addition in the form of suspensions and dispersions of suitable absorbers is also possible.
  • these light-absorbing particles are added in the entire layer or in individual layers.
  • antimony-doped tin dioxide as an IR-absorber under the product Minatec ® 230 A-IR from Merck is commercially available.
  • the sythethischen iron oxides are available under the product name Bayferrox ® 306 and Bayoxide ® E 8611, as well as the synthetic iron manganese oxide under the name Bayferrox ® 303 T at the company Lanxess Germany GmbH.
  • Coating materials in which a pyrolysis ⁇ 300 ° C can also be added to IR absorbers of organic nature.
  • organic absorbers various phthalo- and naphthalocyanines, carbocyanines, polymethines, and methylene chloride can be.
  • phthalocyanines examples are:
  • PRO-JET TM 800NP PRO-JET TM 830NP
  • PRO-JET TM 900NP PRO-JET TM 800NP
  • Products of Aldrich are IR-780 iodide, IR-786 iodide, IR-780 perchlorate, IR-786 perchlorate, IR-792 perchlorate and IR-768 perchlorate.
  • the group of polymethines are included in the product PRO-JET TM 830LDI and commercially available from Fujifilm.
  • IRA 980 from Excition contains the above-mentioned methylene chloride.
  • the absorbers can be used both as microparticles and as nanoparticles in the precursor solutions.
  • IR absorber can also minor additions of organometallic compounds of the above. Metals (alkoxides, carboxylates or mixtures of both), which then form in situ in the pyrolytic decomposition the corresponding IR-absorbing metal oxides, which then accelerate the overall reaction.
  • the required temperature for the chemical conversion of the precursor can be set.
  • metal oxides and nitrides which consist of precursors, of organic and / or inorganic solutions, dispersions and suspensions, is well known.
  • the coating materials are prepared for a multilayer layer consisting of three layers a, b, and c.
  • the partial precursor for the first layer a on the substrate contains particles which absorb microwave radiation.
  • the partial precursor for the second layer b is added with light-absorbing particles (absorber particles). Due to the simultaneous use of light field (UV or IR radiator) and microwave energy is introduced into the intermediate layers, since the precursor is heated from the inner to the outer layer.
  • UV or IR radiator light field
  • microwave energy is introduced into the intermediate layers, since the precursor is heated from the inner to the outer layer.
  • the coating materials are prepared for a multilayer layer consisting of three layers a, b and c.
  • the partial precursor for the first layer a contains light-absorbing particles (absorber particles) on the substrate.
  • the energy is introduced into the intermediate layer b, since the precursor is heated starting from the inner to the outer layer.
  • a uniform heating of the precursor during the chemical conversion from the inside to the outside can take place.
  • a coating material (precursor) for a layer the light-absorbing particles (absorber particles) are admixed, but only in areas with increased thickness.
  • This precursor is used to coat the inside of a tube.
  • the areas of increased layer thickness are in pipe sections with increased pipe friction (for example pipe bends).
  • it is irradiated by an infrared and heating probe.
  • a substrate 11 is shown, on which a coating material in the form of a layer 12 has been applied.
  • This layer has an (inner) layer 13 lying on the substrate, a middle layer 14 and an upper (outer) layer 15.
  • the layer 13 contains absorber particles 16, which can be excited by microwaves 17.
  • absorber particles 16 are provided, which can be excited by IR radiation 18.
  • the layer 15 has no absorber particles.
  • thermal radiation 19 is introduced into the layer 15, which gradually spreads from the surface of the layer in the entire layer.
  • the heat input is also supported by the IR radiation 18 and the microwave radiation 17, which contributes to a direct heating of the layers 14 and 13 by absorption in the absorber particles 16. It should be noted that the absorber particles 16 are within the maximum penetration depth for the radiation in question.
  • FIG. 2 a substrate 11 is shown which has a recess 20. This is filled by the layer 12, wherein in the region of the recess 20 absorber particles 16 are added in the coating material in order to accelerate the heat input in this area by the subsequent heat treatment.
  • FIG. 3 a complex component is shown, which forms the substrate 11. This is designed substantially cylindrical and coated in the region of the lateral surface with two layers 13, 14.
  • a coating material is selected in this volume fraction, which also contains metallic particles in addition to the precursors for the ceramic, which ensure the electrical conductivity of this volume fraction after carrying out the heat treatment.
  • the layer 14 has at the front end of the substrate 11 a region 22 which has a deviating from the rest of the layer 14 layer composition.
  • This area consists of ceramics, which have a higher wear resistance, so that this area can be used for example as a sliding bearing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemically Coating (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Erzeugen einer Schicht auf einem Substrat. Nach diesem Verfahren wird auf das Substrat ein Beschichtungsstoff aufgetragen, der ein Lösungs- oder Dispersionsmittel, chemische Vorstufen einer Keramik und Absorberpartikel für eine Energiestrahlung enthält. Danach wird das mit dem Beschichtungsstoff versehene Substrat einer Wärmebehandlung unterworfen, bei der das Lösungs- oder Dispersionsmittel verdampft und die chemischen Vorstufen unter Ausbildung der Schicht in die Keramik umgewandelt werden, wobei die Wärmebehandlung das Einbringen einer elektromagnetischen Energiestrahlung umfasst, die von den Absorberpartikeln in Wärme umgesetzt wird. Die Absorberpartikel bestehen daher aus einem Material, welches die Energiestrahlung zu absorbieren vermag. Die Energiestrahlung muss eine Energie zur Verfügung stellen, welche sich von bestimmten Absorbermaterialien absorbieren lässt und in geeigneter Weise passend zu den verwendeten Absorberpartikeln gewählt werden. Als Energiestrahlung kommt insbesondere elektromagnetische Strahlung zum Einsatz, für die Auswahl des Materials der Absorberpartikel stehen eine Fülle von Materialien zur Auswahl (hierzu im Folgenden mehr), so dass in Abhängigkeit vom Anwendungsfall ein zum zu erzeugenden Schichtsystem passendes Material ausgewählt werden kann.The invention relates to a method for producing a layer on a substrate. According to this method, a coating material containing a solvent or dispersant, chemical precursors of a ceramic and absorber particles for energy radiation is applied to the substrate. Thereafter, the substrate provided with the coating material is subjected to a heat treatment in which the solvent or dispersant is evaporated and the chemical precursors are converted into the ceramic to form the layer, wherein the heat treatment comprises introducing an electromagnetic energy radiation from the absorber particles into heat is implemented. The absorber particles are therefore made of a material which is able to absorb the energy radiation. The energy radiation must provide an energy that can be absorbed by certain absorber materials and suitably selected to match the absorber particles used. In particular electromagnetic radiation is used as energy radiation, for the selection of the material of the absorber particles are a wealth of materials for selection (more on this below), so that depending on the application, a suitable material to be produced layer system can be selected.

Das Verfahren, Keramikschichten aus chemischen Vorstufen der Keramik herzustellen, ist an sich bekannt. Beispielsweise wird ein solches Verfahren in der WO 00/00660 A beschrieben. Bei den chemischen Vorstufen der Keramik handelt es sich um Materialien, welche selbst nicht zur Stoffgruppe der Keramiken gehören, sich jedoch in Lösungsmitteln lösen bzw. in Dispersionsmitteln dispergieren lassen. Auf diese Weise erhält man eine Flüssigkeit oder Paste, welche sich auf das zu beschichtende Substrat auftragen lässt. Eine nachfolgende Wärmebehandlung dient dazu, zunächst das Lösungs- bzw. Dispersionsmittel zu verdampfen, wodurch sich die Schicht verfestigen lässt. Eine anschließende Sinterbehandlung führt zur Vernetzung der Vorstufen zur gewünschten Keramik (Pyrolyse). Durch Auftragen mehrerer Lagen mit unterschiedlicher Zusammensetzung können mittels des Verfahrens auch sogenannte Multilayer- oder Gradientenschichten hergestellt werden, bei denen sich die Schichtzusammensetzung kontinuierlich oder sprunghaft ändert.The process of producing ceramic layers from chemical precursors of the ceramic is known per se. For example, such a method in the WO 00/00660 A described. The chemical precursors of ceramics are materials which themselves do not belong to the group of ceramics but dissolve in solvents or disperse in dispersants. In this way, a liquid or paste is obtained, which can be applied to the substrate to be coated. A subsequent heat treatment serves to evaporate first the solvent or dispersion medium, whereby the layer can be solidified. A subsequent sintering treatment leads to the crosslinking of the precursors to the desired ceramic (pyrolysis). By applying a plurality of layers having a different composition, so-called multilayer or gradient layers can also be produced by means of the method in which the layer composition changes continuously or suddenly.

Der Wärmeeintrag bei der Wärmebehandlung geschieht gewöhnlich in einem Ofen, in dem das Substrat mit der aufgebrachten Schicht auf die gewünschte Temperatur erhitzt wird. Gemäß der DE 10 2007 026 626 B3 ist beschrieben, dass ein Wärmeeintrag jedoch auch gezielter vorgenommen werden kann, indem beispielsweise Partikel eines UV-Lichtabsorbers wie Titanoxid oder Zinkoxid in die Schicht eingebaut werden kann. Die Wärmebehandlung kann dann mittels UV-Lichteinstrahlung erfolgen oder zumindest unterstützt werden.The heat input in the heat treatment is usually done in an oven in which the substrate is heated with the applied layer to the desired temperature. According to the DE 10 2007 026 626 B3 However, it is described that a heat input can also be made more targeted by, for example, particles of a UV light absorber such as titanium oxide or zinc oxide can be incorporated into the layer. The heat treatment can then take place by means of UV light irradiation or at least be supported.

Die Aufgabe der Erfindung liegt darin, ein Verfahren zum Erzeugen einer Schicht auf einem Substrat mittels Wärmebehandlung von chemischen Vorstufen einer Keramik anzugeben, welches einen vergleichsweise großen Spielraum für die Anpassung der Schichten an den geforderten Anwendungsfall eröffnet und dabei wirtschaftlich anwendbar ist.The object of the invention is to provide a method for producing a layer on a substrate by means of heat treatment of chemical precursors of a ceramic, which opens up a comparatively large scope for the adaptation of the layers to the required application and is economically applicable.

Diese Aufgabe wird mit dem eingangs angegebenen Verfahren erfindungsgemäß dadurch gelöst, dass der Beschichtungsstoff mit den Absorberpartikeln nur für einen Teil des Volumens der Schicht als erster Beschichtungsstoff verwendet wird und für den Rest des Volumens der Schicht mindestens ein weiterer Beschichtungsstoff, enthaltend ein Lösungs- oder Dispersionsmittel, und chemische Vorstufen einer Keramik verwendet wird. Mit anderen Worten kommen für das erfindungsgemäße Verfahren mehrere Beschichtungsstoffe zum Einsatz, die sich zumindest hinsichtlich der Wahl der Absorberpartikel voneinander unterscheiden. Der erste Beschichtungsstoff enthält in jedem Fall eine bestimmte Art von Absorberpartikeln, während der weitere Beschichtungsstoff andere Absorberpartikel oder die weiteren Beschichtungsstoffe zumindest teilweise andere Absorberpartikel als der erste Beschichtungsstoff enthält bzw. enthalten.This object is achieved with the method given above according to the invention that the coating material with the absorber particles only for a part of the volume Layer is used as a first coating material and for the remainder of the volume of the layer at least one further coating material, containing a solvent or dispersion medium, and chemical precursors of a ceramic is used. In other words, several coating materials are used for the method according to the invention, which differ from each other at least with regard to the choice of absorber particles. The first coating material contains in each case a certain type of absorber particles, while the other coating material contains other absorber particles or the other coating materials at least partially contain other absorber particles than the first coating material.

Der Vorteil der erfindungsgemäßen Verwendung von Absorberpartikeln liegt darin, dass diese gezielt an die Anforderungen des Verfahrens eines bestimmten Anwendungsfalles angepasst werden können.The advantage of the use of absorber particles according to the invention is that they can be adapted specifically to the requirements of the method of a particular application.

Zum Beispiel lassen sich in der dargestellten Weise verhältnismäßig dicke Schichten erzeugen, wobei die tieferen Lagen in der Nähe des Substrates mit Absorberpartikeln versehen werden können. Werden diese Schichten anschließend einer konventionellen Wärmebehandlung in einem Ofen unterworfen, so erwärmen sich zunächst die oberflächennahen Lagen der Schicht, während die substratnahen Lagen der Schichten hierfür eine längere Zeit benötigen würden. In diesem Bereich kann der Wärmeeintrag jedoch durch Einbringen einer zu den verwendeten Absorberpartikeln passenden Energiestrahlung beschleunigt werden, so dass eine homogene Erwärmung und Umsetzung der chemischen Vorstufen in der Schicht zu der zu erzeugenden Keramik gewährleistet werden kann. Hierdurch wird vorteilhaft eine thermische Belastung des Substrates vermindert, die Behandlungszeit der Wärmebehandlung verkürzt und eine Ausbildung von Eigenspannungen in der Schicht entgegengewirkt. Außerdem kann ein abwechselndes Aufbringen von Schichtmaterial und Durchführen einer Wärmebehandlung bei größeren Schichtdicken vermieden werden. Es lassen sich also sowohl Schichten einer höheren Qualität herstellen als auch Fertigungsaufwand und damit Kosten einsparen.For example, relatively thick layers can be produced in the manner shown, wherein the deeper layers in the vicinity of the substrate can be provided with absorber particles. If these layers are subsequently subjected to a conventional heat treatment in an oven, then the near-surface layers of the layer initially heat up, while the layers of the layers near the substrate would require a longer time for this purpose. In this area, however, the heat input can be accelerated by introducing an appropriate energy radiation to the absorber particles used, so that a homogeneous heating and implementation of the chemical precursors in the layer to the ceramic to be produced can be ensured. As a result, a thermal load of the substrate is advantageously reduced, the treatment time of the heat treatment is shortened and a formation of residual stresses in the layer is counteracted. In addition, an alternating application of Layer material and performing a heat treatment at higher film thicknesses are avoided. Thus, it is possible to produce layers of a higher quality as well as manufacturing costs and thus save costs.

Durch Einbringen von Absorberpartikeln nur in einen bestimmten Teil des Volumens der Schicht lassen sich vorteilhaft auch Schichten herstellen, in denen Keramiken zum Einsatz kommen, welche unterschiedliche Temperaturen bei der Wärmebehandlung erfordern. Die Keramik, bei der die Temperatur höher liegt, kann mit den Absorberpartikeln versehen werden oder alternativ mit einer höheren Konzentration an Absorberpartikeln versehen werden, so dass bei der Wärmebehandlung in diesem Bereich höhere Temperaturen entstehen.By introducing absorber particles only into a specific part of the volume of the layer, it is advantageously also possible to produce layers in which ceramics are used which require different temperatures during the heat treatment. The ceramic, in which the temperature is higher, can be provided with the absorber particles or alternatively be provided with a higher concentration of absorber particles, so that arise in the heat treatment in this area higher temperatures.

Vorzugsweise sind die Teile des Schichtvolumens, welche unterschiedliche Beschichtungsstoffe enthalten, einzelne Lagen einer Multilayer-Schicht. Die unterschiedlichen Teilvolumina der Schicht entstehen dadurch, dass nacheinander die unterschiedlichen Beschichtungsstoffe aufgebracht werden. Auf diesem Wege lassen sich auch Dispersionsschichten erzeugen, wenn bei der nachfolgenden Wärmebehandlung der Schicht Schichtbestandteile diffundieren und so zu einem Konzentrationsausgleich zwischen den Lagen beitragen. Hierdurch entsteht ein Konzentrationsgradient, der die Eigenschaften der Gradientenschicht ausmacht.The parts of the layer volume which contain different coating materials are preferably individual layers of a multilayer layer. The different partial volumes of the layer are formed by successively applying the different coating materials. In this way, dispersion layers can also be produced if, during the subsequent heat treatment of the layer, layer components diffuse and thus contribute to a concentration balance between the layers. This creates a concentration gradient that makes up the properties of the gradient layer.

Die Teilvolumina der zu erzeugenden Schicht können jedoch auch anders als lagenartig verteilt sein. Beispielsweise können auf dem Substrat Schichtbereiche mit unterschiedlichen Aufgaben erzeugt werden. So ist es beispielsweise denkbar, Teilbereiche der Schicht mit besonderen Eigenschaften wie elektrische Leitfähigkeit oder Verschleißwiderstand zu erzeugen.However, the partial volumes of the layer to be produced can also be distributed differently than in a sheet-like manner. For example, layer areas with different tasks can be produced on the substrate. For example, it is conceivable to produce subregions of the layer with special properties such as electrical conductivity or wear resistance.

Gemäß einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass auch in dem weiteren Beschichtungsstoff oder mindestens einem der weiteren Beschichtungsstoffe Absorberpartikel verwendet werden, wobei sich diese Verwendung hinsichtlich der Konzentration an Absorberpartikeln im Beschichtungsstoff und/oder der chemischen Zusammensetzung der Absorberpartikel und/oder des Mischungsverhältnisses von Absorberpartikeln unterschiedlicher Art unterscheiden. Die Zusammensetzung der Absorberpartikel kann vorteilhaft dazu genutzt werden, mit unterschiedlichen Arten von Energiestrahlung gleichzeitig oder nacheinander bei der Wärmebehandlung arbeiten zu können. Jede Energiestrahlung kann dann zur gezielten Beeinflussung der Temperatur in bestimmten Schichtvolumina Verwendung finden. Auch können mit Hilfe der Absorberpartikel unterschiedlicher Zusammensetzung Energiestrahlen verwendet werden, die unterschiedliche spezifische Eindringtiefen in die Schicht aufweisen (hierzu im Folgenden mehr). Die Konzentration an Absorberpartikeln im Beschichtungsstoff bestimmt an Wärmeenergie, die durch Bestrahlung der Schicht in der betreffenden Lage umgesetzt werden kann. Hierdurch kann insbesondere die Geschwindigkeit der Erwärmung beeinflusst werden. Durch Einstellen unterschiedlicher Mischungsverhältnisse von Absorberpartikeln unterschiedlicher Art in einer bestimmten Lage lassen sich auch Energiestrahlungen unterschiedlicher Art nutzen.According to an advantageous embodiment of the method according to the invention, it is provided that absorber particles are also used in the further coating material or at least one of the further coating materials, this use being with regard to the concentration of absorber particles in the coating material and / or the chemical composition of the absorber particles and / or the mixing ratio differ from absorber particles of different types. The composition of the absorber particles can advantageously be used to be able to work with different types of energy radiation simultaneously or successively during the heat treatment. Each energy radiation can then be used to specifically influence the temperature in certain layer volumes. It is also possible with the aid of the absorber particles of different composition to use energy beams which have different specific penetration depths into the layer (more on that below). The concentration of absorber particles in the coating material determines the heat energy that can be converted by irradiation of the layer in the relevant layer. In this way, in particular the speed of heating can be influenced. By setting different mixing ratios of absorber particles of different types in a certain position, it is also possible to use energy radiations of different types.

Besonders vorteilhaft ist es, wenn eine Lage aus einem Beschichtungsstoff mit Absorberpartikeln für Mikrowellen und darüberliegend eine Lage aus einem Beschichtungsstoff mit Absorberpartikeln für IR- und/oder UV-Licht aufgetragen wird. Hierbei macht man sich den Umstand zunutze, dass die Mikrowellen als elektromagnetische Strahlung eine größere Eindringtiefe in die Schicht aufweisen, als IR- oder UV-Licht.It is particularly advantageous if a layer of a coating material with absorber particles for microwaves and overlying a layer of a coating material with absorber particles for IR and / or UV light is applied. In this case, one makes use of the fact that the microwaves have a greater penetration depth into the layer as electromagnetic radiation than IR or UV light.

Eine in der angegebenen Art aufgebaute Schicht kann also durch gleichzeitige Bestrahlung mit IR-Licht oder UV-Licht und mit Mikrowellen erwärmt werden, wobei sich bei geeigneter Wahl der Konzentration an Absorberpartikeln in den Lagen eine gleichmäßige Erwärmung der Schicht ergibt und die Ausbildung eines Temperaturgradienten innerhalb der Schicht während der Wärmebehandlung vermieden werden kann.A layer constructed in the specified manner can thus be heated by simultaneous irradiation with IR light or UV light and with microwaves, with a suitable choice of the concentration of absorber particles in the layers uniform heating of the layer results and the formation of a temperature gradient within the layer can be avoided during the heat treatment.

Vorteilhaft können die unterschiedlichen Energiestrahlungen aber auch verwendet werden, um die Lagen der Schicht in einer gewünschten Abfolge nacheinander zu erwärmen. Dafür werden die Energiestrahlungen in einer Abfolge nacheinander verwendet und es kann beispielsweise erreicht werden, dass zunächst die Lage auf dem Substrat in eine Keramik umgewandelt wird und erst anschließend die darüberliegenden Lagen. Dies wirkt sich positiv auf die Haftung der Schicht bzw. die Ausbildung von Eigenspannungen in der Schicht aus.Advantageously, however, the different energy radiations can also be used to heat the layers of the layer sequentially in a desired sequence. For this purpose, the energy radiations are used successively in a sequence and it can be achieved, for example, that first the layer on the substrate is converted into a ceramic and only then the overlying layers. This has a positive effect on the adhesion of the layer or the formation of residual stresses in the layer.

Vorteilhaft kann auch vorgesehen werden dass der Beschichtungsstoff auf dem Substrat mit Regionen unterschiedlicher Dicke aufgebracht wird und in den Regionen größerer Dicke vergleichsweise mehr Absorberpartikel verwendet werden. Hierdurch kann vorteilhafterweise erreicht werden, dass auch Schichten, die lokal eine unterschiedliche Dicke auf dem Substrat haben, in einem Wärmebehandlungsschritt ausgehärtet werden können. Die Bereiche größerer Schichtdicke, welche bei konventioneller Erwärmung im Ofen eine längere Behandlungszeit erfördern würden, werden derart mit den Absorberpartikeln versehen, dass diese für einen zusätzlichen Wärmeeintrag in diesen Bereich mit der Konsequenz einer schnelleren Erwärmung führen. Die Konzentration an Absorberpartikeln kann so eingestellt werden, dass die Behandlungszeit für den Schichtbereich größerer Dicke an die Behandlungszeit der Bereiche geringerer Dicke angepasst ist.Advantageously, it can also be provided that the coating material is applied to the substrate with regions of different thickness and comparatively more absorber particles are used in the regions of greater thickness. As a result, it can advantageously be achieved that layers which have a different thickness locally on the substrate can also be cured in a heat treatment step. The areas of greater layer thickness, which would promote a longer treatment time in conventional oven heating, are provided with the absorber particles such that they lead to an additional heat input into this area with the consequence of faster heating. The concentration of absorber particles can be adjusted so that the treatment time for the layer region of greater thickness is adapted to the treatment time of the regions of lesser thickness.

Besonders vorteilhaft ist die Einbringung von Absorberpartikeln auch bei großflächigen Werkstücken, da das Einbringen von Wärme bei der Wärmebehandlung durch die Absorberpartikel mit einer größeren Homogenität erfolgen kann. Dies begünstigt einen gleichmäßigen Schichtaufbau auch dann, wenn beispielsweise Mikrowellen nur lokal in einen bestimmten Bereich der Schichtoberfläche des großflächigen Werkstückes eingebracht werden und gleichzeitig eine Unterstützung der Energieeinbringung durch IR- oder UV-empfindliche Absorberpartikel unterstützt wird.The introduction of absorber particles is also particularly advantageous in the case of large workpieces, since the introduction of heat during the heat treatment by the absorber particles can take place with greater homogeneity. This favors a uniform layer structure even if, for example, microwaves are introduced only locally into a specific region of the layer surface of the large-area workpiece and at the same time a support of the energy input by IR- or UV-sensitive absorber particles is supported.

Die Beschichtung des Substrates kann nach gebräuchlichen Methoden erfolgen, beispielsweise durch Spritzen, Rakeln, Streichen, Rollen oder Tauchen. Als Keramiken können bevorzugt Metalloxide oder Metallnitride oder auch Metalloxinitride hergestellt werden. Weiterhin sind Metallsulfide oder -oxisulfide als Schichtmaterialien herstellbar (beispielsweise Molybdändisulfid oder Wolfamdisulfid). Gebräuchliche Vorstufen sind Thiocarbonsäuren, Alkanthiole und Carbonsäuren, die mit den entsprechenden Metallsalzen gemischt werden. Für die Absorberpartikel kommen folgende Materialien in Frage.The coating of the substrate can be carried out by conventional methods, for example by spraying, knife coating, brushing, rolling or dipping. As ceramics, metal oxides or metal nitrides or else metal oxynitrides can preferably be produced. Furthermore, metal sulfides or oxysulfides can be prepared as layer materials (for example molybdenum disulfide or tungsten disulfide). Common precursors are thiocarboxylic acids, alkanethiols and carboxylic acids, which are mixed with the corresponding metal salts. The following materials are suitable for the absorber particles.

Erfolgt die Energiezufuhr durch eine Lichtquelle (IR- oder UV- Strahler), so kommen allgemein alle Absorbermaterialien in Frage, bei denen die Photonen bestimmter Energie Atome oder Moleküle des Absorbers anregen. Je nach erforderlicher Temperatur der Wärmebehandlung (Pyrolyse) und eventuell geforderter Zersetzung der lichtabsorbierenden Partikel werden Absorberpartikel anorganischer und/oder organischer Natur verwendet. Beispiele für anorganische Absorber sind die Metalloxide Titandioxid; Zinkoxid, Siliziumdioxid, Zinndioxid oder Kupferoxid. Als organische IR- Absorber seien die verschiedenen Phthalo-, Naphthalo- und Carbocyanine, Polymethine, sowie Methylenchlorid erwähnt.If the energy is supplied by a light source (IR or UV radiator), then generally all absorber materials in question, in which the photons of certain energy atoms or molecules of the absorber excite. Depending on the required temperature of the heat treatment (pyrolysis) and possibly required decomposition of the light-absorbing particles, absorber particles of inorganic and / or organic nature are used. Examples of inorganic absorbers are the metal oxides titanium dioxide; Zinc oxide, silicon dioxide, tin dioxide or copper oxide. As organic IR absorbers are the various Phthalo-, naphthalo- and carbocyanines, polymethines, and methylene chloride mentioned.

Zur Einkopplung von Mikrowellen werden Absorber gewählt, deren Moleküle Dipolmomente aufweisen und auf elektromagnetische Wechselfelder reagieren (zum Beispiel TiN, CuCr, ZrO, SiO, BO, AgCr, AuCr, CrCu, Eisenferrite Fe2O3 oder Fe3O4, die durch Zusatz von Nickel, Zink oder Mangan- Verbindungen magnetisiert werden).For the coupling of microwaves, absorbers are selected whose molecules have dipole moments and react to alternating electromagnetic fields (for example TiN, CuCr, ZrO, SiO, BO, AgCr, AuCr, CrCu, iron ferrites Fe 2 O 3 or Fe 3 O 4 , which by addition magnetized by nickel, zinc or manganese compounds).

Die verwendeten Absorberpartikel haben charakterischisch Anregungsfrequenzen, die bei der Auslegung der Anregungs-Energiequellen berücksichtigt werden müssen. Typischen Anregungsfrequenzen einiger Absorber für die Mikrowellenstrahlung sind in folgender Tabelle aufgeführt. Material Anregungsfrequenz Titannitrid 18589 MHz Boroxid 2570 GHz BO2 BO Borkarbid 53165 MHz Silberchrom 1,701 GHz Goldchrom 168 MHz Chromkupfer 0,14 GHz SiO 797 MHz The absorber particles used have characteristically excitation frequencies, which must be taken into account when designing the excitation energy sources. Typical excitation frequencies of some absorbers for the microwave radiation are listed in the following table. material excitation frequency titanium nitride 18589 MHz boron oxide 2570 GHz BO2 BO boron carbide 53165 MHz silver chrome 1,701 GHz gold chrome 168 MHz chromium copper 0.14 GHz SiO 797 MHz

Absorber, deren Atome oder Moleküle sowohl durch Photonen als auch durch elektromagnetische Wechselfelder angeregt werden, sind ebenfalls einsetzbar (zum Beispiel synthetisches Eisen-Mangan-Mischoxid (Fe, Mn)2O3 erhältlich als Bayferrox ® 303 T bei der Firma Lanxess Deutschland GmbH).Absorbers, whose atoms or molecules are excited by both photons and electromagnetic alternating fields, can also be used (for example, synthetic iron manganese mixed oxide (Fe, Mn) 2 O 3 available as Bayferrox ® 303 T from the company Lanxess Germany GmbH) ,

Im Beschichtungsstoff können simultan die Basisbestandteile sowohl als Mikrowellen-Absorber (zum Beispiel Essigsäure bei 5 GHz oder Propionsäure bei 2,5 GHz als Lösungs- oder Verdünnungsmittel) oder als IR-Absorber (Zusätze von metallorganischen Verbindungen als Karboxylate, Alkoxide oder Gemische davon, zum Beispiel Titan-2-ethylhexanoat, Zink-2-ethylhexanoat, die bei der pyrolytischen Zersetzung "in situ" die entsprechenden Metalloxide bilden) fungieren und die chemische Umwandlung in einen keramischen Beschichtungswerkstoff beschleunigen. Im Fall von Zirkonoxid steht ein Mirkowellen-Absorber zur Verfügung, der bei der Pyrolyse aus Zirkon-2-ethylhexanoat und Propionsäure entsteht und dann die Gesamtreaktion beschleunigt und gleichzeitig einen Teil des Beschichtungswerkstoffes bildet. Eisenoxid, das als IR-Absorber und als Mikrowellen-Absorber wirken kann, lässt sich ebenfalls aus Eisen-2-ethylhexanoat und Propionsäure bei der pyrolytischen Zersetzung während der Wärmebehandlung herstellen.In the coating material, the base components can be used both as a microwave absorber (for example acetic acid at 5 GHz or propionic acid at 2.5 GHz as a solvent or diluent) or as an IR absorber (additions of organometallic Compounds such as carboxylates, alkoxides, or mixtures thereof, for example, titanium 2-ethylhexanoate, zinc 2-ethylhexanoate, which form the corresponding metal oxides in situ in pyrolytic decomposition), and accelerate chemical conversion to a ceramic coating material. In the case of zirconia, a microwave absorber is available, which is formed by pyrolysis of zirconium 2-ethylhexanoate and propionic acid and then accelerates the overall reaction while forming part of the coating material. Iron oxide, which can act as an IR absorber and as a microwave absorber, can also be prepared from iron 2-ethylhexanoate and propionic acid during pyrolytic decomposition during the heat treatment.

Die Absorber können sowohl als Mikro- als auch als Nanoteilchen in den Precursorlösungen eingesetzt werden. Eine unterstützende Zugabe in Form von Suspensionen und Dispersionen geeigneter Absorber ist ebenfalls möglich.The absorbers can be used both as microparticles and as nanoparticles in the precursor solutions. A supporting addition in the form of suspensions and dispersions of suitable absorbers is also possible.

Je nach Schichtaufbau werden diese lichtabsorbierenden Partikel in der gesamten Schicht oder in einzelnen Lagen zugegeben.Depending on the layer structure, these light-absorbing particles are added in the entire layer or in individual layers.

Vor allem großflächig beschichtete Werkstücke können nun ohne spezielle Techniken mit einem Lichtfeld (IR, UV) bestrahlt werden. Durch die Energieeinkopplung, die mit Hilfe der Absorberpartikel stattfindet, entsteht in der Precursorschicht die notwendige Reaktionsenergie. Dadurch erfolgt die notwendige chemische Umwandlung des Precursors zu einer keramischen Schicht. Als Adsorber bei höheren Pyrolysetemperaturen > 350 °C lassen sich vorwiegend anorganische Substanzen einsetzen, zum Beispiel Zinkoxid. Aluminiumoxid, Titandioxid, Siliziumdioxid, Kupferoxid, synthetisches Eisenoxid Fe3O4, synthetisches Eisen-Mangan-Mischoxid (Fe, Mn)2O3, Zinndioxid in undotierter oder dotierter Form. Zum Beispiel ist antimondotiertes Zinndioxid als IR-Absorber unter der Produktbezeichnung Minatec® 230 A- IR bei der Firma Merck kommerziell erhältlich. Die sythethischen Eisenoxide sind unter dem Produktname Bayferrox® 306 und Bayoxide® E 8611, sowie das synthetische Eisen- Mangan-Mischoxid unter der Bezeichnung Bayferrox® 303 T bei der Firma Lanxess Deutschland GmbH erhältlich.Primarily coated workpieces can now be irradiated with a light field (IR, UV) without special techniques. Due to the energy coupling, which takes place with the help of the absorber particles, the necessary reaction energy is produced in the precursor layer. This results in the necessary chemical conversion of the precursor to a ceramic layer. As an adsorber at higher pyrolysis temperatures> 350 ° C can be used predominantly inorganic substances, for example zinc oxide. Alumina, titania, silica, copper oxide, synthetic iron oxide Fe 3 O 4 , synthetic Iron-manganese mixed oxide (Fe, Mn) 2 O 3 , tin dioxide in undoped or doped form. For example, antimony-doped tin dioxide as an IR-absorber under the product Minatec ® 230 A-IR from Merck is commercially available. The sythethischen iron oxides are available under the product name Bayferrox ® 306 and Bayoxide ® E 8611, as well as the synthetic iron manganese oxide under the name Bayferrox ® 303 T at the company Lanxess Germany GmbH.

Beschichtungsstoffe (Precursoren), bei denen eine Pyrolse < 300 °C erfolgen kann, können auch IR-Absorber organischer Beschaffenheit zugemischt werden. Als organische Absorber können verschiedene Phthalo- und Naphthalocyanine, Carbocyanine, Polymethine, sowie Methylenchlorid werden.Coating materials (precursors) in which a pyrolysis <300 ° C can also be added to IR absorbers of organic nature. As organic absorbers, various phthalo- and naphthalocyanines, carbocyanines, polymethines, and methylene chloride can be.

Beispiele für Phthalocyanine sind:Examples of phthalocyanines are:

  • Zinc 2, 9, 16, 23-tetra-tert-butyl-29H, 31H-phthalocyanineZinc 2, 9, 16, 23-tetra-tert-butyl-29H, 31H-phthalocyanines
  • Silicon 2, 9, 16, 23-tetra-tert-butyl-29H, 31H-phthalocyanine dichlorideSilicon 2, 9, 16, 23-tetra-tert-butyl-29H, 31H-phthalocyanines dichlorides
  • Copper (II) 2, 9, 16, 23-tetra-tert-butyl-29H, 31 H-phthalocyanineCopper (II) 2, 9, 16, 23-tetra-tert-butyl-29H, 31H-phthalocyanines
  • Silicon (IV) phthalocyanine bis(trihexylsilyloxide)Silicon (IV) phthalocyanines bis (trihexylsilyloxide)

Die genannten Verbindungen sind kommerziell erhältlich bei der Firma Aldrich.The compounds mentioned are commercially available from Aldrich.

Weitere Produkte, die ebenfalls zu der Gruppe der Phthalocyanine gehören, sind PRO-JET ™ 800NP, PRO-JET ™ 830NP und PRO-JET ™ 900NP von der Firma Fujifilm.Other products that also belong to the group of phthalocyanines are PRO-JET ™ 800NP, PRO-JET ™ 830NP and PRO-JET ™ 900NP from Fujifilm.

Beispiele für Naphthalocyanine:Examples of naphthalocyanines:

  • Vanadyl 2, 11, 20, 29-tetra-tert-butyl-2, 3-naphthalocyanineVanadyl 2, 11, 20, 29-tetra-tert-butyl-2,3-naphthalocyanines
  • Nickel(II) 2, 11, 20, 29-tetra-tert-butyl- 2, 3-naphthalocyanineNickel (II) 2, 11, 20, 29-tetra-tert-butyl-2,3-naphthalocyanines
  • Zinc 2, 11, 20, 29-tetra-tert-butyl-2, 3-naphthalocyanineZinc 2, 11, 20, 29-tetra-tert-butyl-2,3-naphthalocyanines
  • 2, 11, 20, 29-Tetra-tert-butyl-2,3-naphthalocyanine2, 11, 20, 29-tetra-tert-butyl-2,3-naphthalocyanines

Die genannten Verbindungen sind kommerziell erhältlich bei der Firma Aldrich.The compounds mentioned are commercially available from Aldrich.

Beispiele für Carbocyanine:Examples of carbocyanines:

Produkte der Firma Aldrich sind IR-780 iodide, IR-786 iodide, IR-780 perchlorate, IR-786 perchlorate, IR-792 perchlorate und IR-768 perchlorate.Products of Aldrich are IR-780 iodide, IR-786 iodide, IR-780 perchlorate, IR-786 perchlorate, IR-792 perchlorate and IR-768 perchlorate.

Die Gruppe der Polymethine sind in dem Produkt PRO-JET ™ 830LDI enthalten und bei der Firma Fujifilm kommerziell erhältlich.The group of polymethines are included in the product PRO-JET ™ 830LDI and commercially available from Fujifilm.

IRA 980 der Firma Excition enthält das oben genannte Methylenchlorid.IRA 980 from Excition contains the above-mentioned methylene chloride.

Die Absorber können sowohl als Mikro- als auch als Nanoteilchen in den Precursorlösungen eingesetzt werden.The absorbers can be used both as microparticles and as nanoparticles in the precursor solutions.

Eine Zugabe in Form von Lösungen, Suspensionen und Dispersionen geeigneter Absorber ist ebenfalls möglich.An addition in the form of solutions, suspensions and dispersions of suitable absorbers is also possible.

Als IR-Absorber können ebenfalls geringe Zusätze von metallorganischen Verbindungen der o.g. Metalle (Alkoxide, Carboxylaten bzw. Gemische von beiden) fungieren, die dann in situ bei der pyrolytischen Zersetzung die entsprechenden IR-absorbierenden Metalloxiden bilden, die dann die Gesamtreaktion beschleunigen.As an IR absorber can also minor additions of organometallic compounds of the above. Metals (alkoxides, carboxylates or mixtures of both), which then form in situ in the pyrolytic decomposition the corresponding IR-absorbing metal oxides, which then accelerate the overall reaction.

Je nach Konzentration des Absorbers lässt sich die erforderliche Temperatur für die chemische Umwandlung des Precursors einstellen.Depending on the concentration of the absorber, the required temperature for the chemical conversion of the precursor can be set.

Die Herstellung von Metalloxiden und -nitriden, die aus Vorstufen (Precursor), aus organischen und/oder anorganischen Lösungen, Dispersionen und Suspensionen bestehen, ist allgemein bekannt.The preparation of metal oxides and nitrides, which consist of precursors, of organic and / or inorganic solutions, dispersions and suspensions, is well known.

Folgende Ausführungsbeispiele zeigen Möglichkeiten für den Aufbau von Schichten nach dem erfindungsgemäßen Verfahren auf:The following exemplary embodiments show possibilities for the construction of layers by the method according to the invention:

Beispiel 1:Example 1:

Die Beschichtungsstoffe werden vorbereitet für eine Multilayer-Schicht, bestehend aus drei Lagen a, b, und c.The coating materials are prepared for a multilayer layer consisting of three layers a, b, and c.

Dabei enthält der Teilprecursor für die erste Lage a auf dem Substrat Partikel, die Mikrowellenstrahlen absorbieren.In this case, the partial precursor for the first layer a on the substrate contains particles which absorb microwave radiation.

Dem Teilprecursor für die zweite Schicht b werden lichtabsorbierende Partikel (Absorberpartikel) zugesetzt. Durch den simultanen Einsatz von Lichtfeld (UV- oder IR- Strahler) und Mikrowelle erfolgt ein Energieeintrag in die Zwischenschichten, da der Precursor ausgehend von der inneren zur äußeren Schicht erwärmt wird. Durch einen gezielten Einbau der Absorber-Partikel sowohl zur verstärkten Einkopplung von IR- oder UV- Strahlen und Mikrowellen kann eine Erwärmung des Beschichtungsstoffes (Precursors) bei der chemischen Umwandlung von innen (nahe dem Substrat) nach außen (nahe der Oberfläche) bis zu einer Schichtdicke in den cm-Bereich erfolgen.The partial precursor for the second layer b is added with light-absorbing particles (absorber particles). Due to the simultaneous use of light field (UV or IR radiator) and microwave energy is introduced into the intermediate layers, since the precursor is heated from the inner to the outer layer. By a selective incorporation of the absorber particles both for increased coupling of IR or UV rays and microwaves can be a heating of the coating material (precursor) in the chemical conversion from the inside (near the substrate) to the outside (near the surface) to a Layer thickness in the cm range.

Beispiel 2:Example 2:

Die Beschichtungsstoffe (Precursor) werden vorbereitet für eine Multilayer-Schicht bestehend aus drei Lagen a, b und c. Dabei enthält der Teilprecursor für die erste Lage a auf dem Substrat lichtabsorbierende Partikel (Absorberpartikel). Durch die Bestrahlung mit dem Lichtfeld erfolgt der Energieeintrag in die Zwischenlage b, da der Precursor ausgehend von der inneren zur äußeren Schicht erwärmt wird. Durch einen gezielten Einbau der Absorber-Partikel kann eine gleichmäßige Erwärmung des Precursors bei der chemischen Umwandlung von innen nach außen erfolgen.The coating materials (precursor) are prepared for a multilayer layer consisting of three layers a, b and c. In this case, the partial precursor for the first layer a contains light-absorbing particles (absorber particles) on the substrate. As a result of the irradiation with the light field, the energy is introduced into the intermediate layer b, since the precursor is heated starting from the inner to the outer layer. Through a targeted installation of the absorber particles, a uniform heating of the precursor during the chemical conversion from the inside to the outside can take place.

Beispiel 3:Example 3:

Einem Beschichtungsstoff (Precursor) für eine Schicht werden die lichtabsorbierenden Partikel (Absorberpartikel) zugemischt, jedoch nur in Bereichen mit erhöhter Schichtdicke. Mit diesem Precursor wird die Innenseite eines Rohres beschichtet. Die Bereiche erhöhter Schichtdicke liegen in Rohrabschnitten mit erhöhter Rohrreibung (zum Beispiel Rohrkrümmungen). Anschließend wird durch eine Infrarot- und Heizsonde bestrahlt. Dadurch erfolgt die chemische Umwandlung des Precursors zu einer keramischen Schutzschicht, wobei die Behandlungsdauer in den Bereichen erhöhter Schichtdicke wegen der zusätzlichen Aktivierung der lichtabsorbierenden Partikel genauso lang sein kann wie in den dünneren Bereichen. Deswegen kann die Sonde ohne Berücksichtigung des einzelnen Bereiches mit konstanter Geschwindigkeit das Rohr durchlaufen.A coating material (precursor) for a layer, the light-absorbing particles (absorber particles) are admixed, but only in areas with increased thickness. This precursor is used to coat the inside of a tube. The areas of increased layer thickness are in pipe sections with increased pipe friction (for example pipe bends). Subsequently, it is irradiated by an infrared and heating probe. This results in the chemical conversion of the precursor to a ceramic protective layer, wherein the treatment time in the areas of increased layer thickness due to the additional activation of the light-absorbing particles can be as long as in the thinner areas. Therefore, the probe can pass through the tube without consideration of the single area at a constant speed.

Weitere Einzelheiten der Erfindung werden im Folgenden anhand der Zeichnung beschrieben. Gleiche oder sich entsprechende Zeichnungselemente sind jeweils mit den gleichen Bezugszeichen versehen und werden nur insoweit mehrfach erläutert, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen

Figur 1
den Schnitt durch eine Multilayer-Schicht, hergestellt nach einem Ausführungsbeispiel des erfindungsgemäßen Verfahrens,
Figur 2
den Schnitt durch eine Schicht mit unterschiedlicher Schichtdicke, hergestellt nach einem anderen Ausführungsbeispiel des erfindungsgemäßen Verfahren, und
Figur 3
die räumliche Darstellung eines Bauteils mit unterschiedlichen Schichtzonen, hergestellt nach einem weiteren Ausführungsbeispiel des erfindungsgemäßen Verfahrens.
Further details of the invention will be described below with reference to the drawing. Identical or corresponding drawing elements are each provided with the same reference numerals and will only be explained several times as far as there are differences between the individual figures. Show it
FIG. 1
the section through a multilayer layer, produced according to an embodiment of the method according to the invention,
FIG. 2
the section through a layer with different layer thickness, prepared according to another embodiment of the method according to the invention, and
FIG. 3
the spatial representation of a component with different layer zones, prepared according to a further embodiment of the method according to the invention.

Gemäß Figur 1 ist ein Substrat 11 dargestellt, auf dem ein Beschichtungsstoff in Form einer Schicht 12 aufgebracht wurde. Diese Schicht weist eine auf dem Substrat liegende (innere) Lage 13, eine mittlere Lage 14 und eine obere (äußere) Lage 15 auf. In der Lage 13 sind Absorberpartikel 16 enthalten, die von Mikrowellen 17 angeregt werden können. In der Lage 14 sind Absorberpartikel 16 vorgesehen, die von IR-Strahlung 18 angeregt werden können. Die Lage 15 weist keine Absorberpartikel auf.According to FIG. 1 a substrate 11 is shown, on which a coating material in the form of a layer 12 has been applied. This layer has an (inner) layer 13 lying on the substrate, a middle layer 14 and an upper (outer) layer 15. The layer 13 contains absorber particles 16, which can be excited by microwaves 17. In position 14 absorber particles 16 are provided, which can be excited by IR radiation 18. The layer 15 has no absorber particles.

Bei der nachfolgenden Wärmebehandlung wird Wärmestrahlung 19 in die Schicht 15 eingetragen, die sich allmählich ausgehend von der Oberfläche der Schicht in der gesamten Schicht ausbreitet. Der Wärmeeintrag wird jedoch auch durch die IR-Strahlung 18 und die Mikrowellenstrahlung 17 unterstützt, welche durch Absorption in den Absorberpartikeln 16 zu einer direkten Erwärmung der Lagen 14 und 13 beiträgt. Hierbei ist zu berücksichtigen, dass sich die Absorberpartikel 16 innerhalb der für die betreffende Strahlung maximalen Eindringtiefe befinden.In the subsequent heat treatment, thermal radiation 19 is introduced into the layer 15, which gradually spreads from the surface of the layer in the entire layer. However, the heat input is also supported by the IR radiation 18 and the microwave radiation 17, which contributes to a direct heating of the layers 14 and 13 by absorption in the absorber particles 16. It should be noted that the absorber particles 16 are within the maximum penetration depth for the radiation in question.

In Figur 2 ist ein Substrat 11 dargestellt, welches eine Vertiefung 20 aufweist. Diese ist durch die Schicht 12 ausgefüllt, wobei im Bereich der Vertiefung 20 Absorberpartikel 16 in den Beschichtungsstoff zugegeben werden, um in diesem Bereich den Wärmeeintrag durch die nachfolgende Wärmebehandlung zu beschleunigen.In FIG. 2 a substrate 11 is shown which has a recess 20. This is filled by the layer 12, wherein in the region of the recess 20 absorber particles 16 are added in the coating material in order to accelerate the heat input in this area by the subsequent heat treatment.

In Figur 3 ist ein komplexes Bauteil dargestellt, welches das Substrat 11 bildet. Dieses ist im Wesentlichen zylindrisch ausgeführt und im Bereich der Mantelfläche mit zwei Lagen 13, 14 beschichtet. Die Lage 13, die man im Bereich des Aufbruchs der Lage 14 erkennen kann, weist einen Volumenanteil 21 auf, der als Leiterbahn ausgeführt ist. Hierzu wird in diesem Volumenanteil ein Beschichtungsstoff gewählt, der neben den Vorstufen für die Keramik auch metallische Partikel enthält, die die elektrische Leitfähigkeit dieses Volumenanteils nach Durchführung der Wärmebehandlung gewährleisten.In FIG. 3 a complex component is shown, which forms the substrate 11. This is designed substantially cylindrical and coated in the region of the lateral surface with two layers 13, 14. The layer 13, which can be seen in the region of the opening of the layer 14, has a volume fraction 21, which is designed as a conductor track. For this purpose, a coating material is selected in this volume fraction, which also contains metallic particles in addition to the precursors for the ceramic, which ensure the electrical conductivity of this volume fraction after carrying out the heat treatment.

Die Schicht 14 weist am stirnseitigen Ende des Substrates 11 einen Bereich 22 auf, der eine vom Rest der Lage 14 abweichende Schichtzusammensetzung besitzt. Dieser Bereich besteht aus Keramiken, die einen höheren Verschleißwiderstand aufweisen, so dass dieser Bereich beispielsweise als Gleitlager Verwendung finden kann.The layer 14 has at the front end of the substrate 11 a region 22 which has a deviating from the rest of the layer 14 layer composition. This area consists of ceramics, which have a higher wear resistance, so that this area can be used for example as a sliding bearing.

Claims (6)

  1. Method for producing a layer (12) on a substrate (11), in which
    ● a coating material, containing a solvent or dispersion medium, chemical precursors of a ceramic and absorber particles (16) for an electromagnetic energy radiation, is applied onto the substrate (11) and
    ● the substrate (11) provided with the coating material is subjected to a heat treatment in which the solvent or dispersion medium is evaporated and the chemical precursors are converted into the ceramic so as to form the layer (12), the heat treatment comprising the input of an electromagnetic energy radiation which is converted into heat by the absorber particles,
    characterized in that
    ● the coating material comprising the absorber particles is used as a first coating material only for a part of the volume of the layer (12),
    ● at least one further coating material, containing a solvent or dispersion medium and chemical precursors of a ceramic, is used for the rest of the volume of the layer (12) and
    ● absorber particles (16) are used in at least one of the further coating materials, this use differing in respect of the concentration of absorber particles in the coating material and/or the chemical composition of the absorber particles and/or the mixing ratio of absorber particles of different types.
  2. Method according to Claim 1, characterized in that the first coating material and at least one further coating material are applied in at least two coats (13, 14, 15).
  3. Method according to Claim 2, characterized in that a coating material without absorber particles is used for the top coat (15).
  4. Method according to Claim 2 or 3, characterized in that a coat (13) of a coating material comprising absorber particles for microwaves is applied, and a coat (14) of a coating material comprising absorber particles for IR and/or UV light is applied thereon.
  5. Method according to one of the preceding claims, characterized in that a sequence of energy radiations is used in succession, by which the absorber particles (16) in the individual coats are heated in succession.
  6. Method according to one of the preceding claims, characterized in that the coating material is applied on the substrate (11) with regions of different thickness, and comparatively more absorber particles are used in the regions of greater thickness.
EP10723956.8A 2009-05-27 2010-05-12 Method for fabricating a layer with absorbing particles for an energy radiation Not-in-force EP2435599B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009023628A DE102009023628A1 (en) 2009-05-27 2009-05-27 A method of forming a layer of absorber particles for energy radiation
PCT/EP2010/056546 WO2010136338A2 (en) 2009-05-27 2010-05-12 Method for fabricating a layer with absorbing particles for an energy radiation

Publications (2)

Publication Number Publication Date
EP2435599A2 EP2435599A2 (en) 2012-04-04
EP2435599B1 true EP2435599B1 (en) 2013-07-03

Family

ID=43027500

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10723956.8A Not-in-force EP2435599B1 (en) 2009-05-27 2010-05-12 Method for fabricating a layer with absorbing particles for an energy radiation

Country Status (5)

Country Link
US (1) US9200370B2 (en)
EP (1) EP2435599B1 (en)
CN (1) CN102449191B (en)
DE (1) DE102009023628A1 (en)
WO (1) WO2010136338A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9679684B2 (en) * 2014-03-19 2017-06-13 Ngk Insulators, Ltd. Voltage nonlinear resistive element and method for manufacturing the same
TW201606813A (en) * 2014-03-19 2016-02-16 日本碍子股份有限公司 Voltage nonlinear resistive element and method for manufacturing the same
IT201800002349A1 (en) * 2018-02-02 2019-08-02 Univ Degli Studi Di Milano Bicocca METHOD FOR THE PRODUCTION OF THIN FILMS OF TRANSITION METAL DICALCOGENIDE
US11453618B2 (en) * 2018-11-06 2022-09-27 Utility Global, Inc. Ceramic sintering
US11539053B2 (en) * 2018-11-12 2022-12-27 Utility Global, Inc. Method of making copper electrode

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585136A (en) 1995-03-22 1996-12-17 Queen's University At Kingston Method for producing thick ceramic films by a sol gel coating process
BR9610289A (en) * 1995-09-15 1999-12-21 Rhodia Chimie Sa Substrate, glazing, use of the substrate, process of obtaining the substrate, organic dispersion and use of the dispersion.
US6447848B1 (en) 1995-11-13 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Nanosize particle coatings made by thermally spraying solution precursor feedstocks
US20060280955A1 (en) * 2005-06-13 2006-12-14 Irene Spitsberg Corrosion resistant sealant for EBC of silicon-containing substrate and processes for preparing same
CN101210701A (en) * 2006-12-29 2008-07-02 乐金电子(天津)电器有限公司 Microwave furnace baking tray and manufacturing method thereof
DE102007026626B3 (en) 2007-06-07 2008-09-11 Siemens Ag Production of a dry lubricating layer made from a metal sulfide for lubricating a bearing shell comprise applying a coating material made from a solvent and dissolved precursors of a metal sulfide on a substrate and heat treating
DE102007030588A1 (en) * 2007-06-27 2009-01-02 Siemens Ag Component with a dye-containing ceramic layer and method for their preparation
DE102007030585A1 (en) 2007-06-27 2009-01-02 Siemens Ag Method for producing a ceramic layer on a component
US20090274850A1 (en) * 2008-05-01 2009-11-05 United Technologies Corporation Low cost non-line-of -sight protective coatings
CN101323529B (en) * 2008-07-11 2013-03-13 中国科学院上海硅酸盐研究所 Graded transmitted wave structure in microwave sintering and method for preparing ceramic material using the same

Also Published As

Publication number Publication date
CN102449191A (en) 2012-05-09
US9200370B2 (en) 2015-12-01
CN102449191B (en) 2013-09-18
US20120128872A1 (en) 2012-05-24
WO2010136338A3 (en) 2011-01-27
EP2435599A2 (en) 2012-04-04
DE102009023628A1 (en) 2010-12-02
WO2010136338A2 (en) 2010-12-02

Similar Documents

Publication Publication Date Title
EP2435599B1 (en) Method for fabricating a layer with absorbing particles for an energy radiation
DE69601846T2 (en) Shielding against electromagnetic impulses and manufacturing method
DE3781228T2 (en) CORROSION-RESISTANT, AMORPHOUS SURFACE ALLOYS AND METHOD FOR THEIR PRODUCTION.
DE102012214274B4 (en) Pre-diffused Al-Si coatings for use in rapid induction heating of press-hardened steel
DE202008018514U1 (en) material
EP3235580A1 (en) Method and device for additive manufacture of at least one component area of a component
DE69223186T2 (en) Composition for use in a transparent electroconductive film and process for producing the same
DE102008046391A1 (en) Process for the preparation of carbon-modified photocatalyst layers
WO2011020721A1 (en) Method for producing a domestic appliance cover panel
DE60021302T2 (en) Method and device for treating a material with electromagnetic radiation in a controlled atmosphere
DE102008016969B3 (en) Method for producing a layer by cold gas spraying
DE102007030585A1 (en) Method for producing a ceramic layer on a component
DE2845756A1 (en) ION NITRATION CURING PROCESS
WO2012140253A1 (en) Method and device for thermally treating substrates
CH633047A5 (en) METHOD FOR PRODUCING A SUPRAL-CONDUCTIVE NB3SN LAYER ON A NIOBO SURFACE FOR HIGH-FREQUENCY APPLICATIONS.
Kenéz et al. Anodic plasma nitriding in hollow cathode (HCAPN)
DE102012021061B4 (en) Method for producing a coating on a substrate surface
DE112010003373T5 (en) Photocatalytic multi-layer metal compound thin film and process for its production
WO2020234205A2 (en) Method for producing a conductive plant material, conductive plant material and use
EP4215348A1 (en) Method for smoothing a surface of a body produced in an additive production method and body produced in an additive production method
DE102008050196A1 (en) Apparatus and method for depositing a gradient layer
DE2246653B2 (en) Coated organic polymer molding and process for producing the same
DE102007011865A1 (en) Production of electrochromic or gasochromic tungsten oxide layers on substrates comprises adding precursor to mixture of combustible gas and oxidizer and feeding product to burner, oxidized product being deposited on substrate
WO2012007401A1 (en) Coating for converting radiation energy
WO2010136337A2 (en) Utilization of a ceramic layer and method for fabricating such a layer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111108

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 619839

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130715

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010003894

Country of ref document: DE

Effective date: 20130829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130703

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131003

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131103

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130821

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131104

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131004

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131014

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

26N No opposition filed

Effective date: 20140404

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010003894

Country of ref document: DE

Effective date: 20140404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150511

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150720

Year of fee payment: 6

Ref country code: CH

Payment date: 20150803

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 619839

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140531

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010003894

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703