EP2433084B1 - Guided missile - Google Patents

Guided missile Download PDF

Info

Publication number
EP2433084B1
EP2433084B1 EP10784603.2A EP10784603A EP2433084B1 EP 2433084 B1 EP2433084 B1 EP 2433084B1 EP 10784603 A EP10784603 A EP 10784603A EP 2433084 B1 EP2433084 B1 EP 2433084B1
Authority
EP
European Patent Office
Prior art keywords
missile
wings
fins
set forth
aft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10784603.2A
Other languages
German (de)
French (fr)
Other versions
EP2433084A2 (en
Inventor
Michael P. Unger
Stephen D. Witherspoon
James T. Schleining
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of EP2433084A2 publication Critical patent/EP2433084A2/en
Application granted granted Critical
Publication of EP2433084B1 publication Critical patent/EP2433084B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/02Stabilising arrangements
    • F42B10/14Stabilising arrangements using fins spread or deployed after launch, e.g. after leaving the barrel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/62Steering by movement of flight surfaces
    • F42B10/64Steering by movement of flight surfaces of fins

Definitions

  • a guided missile having a projectile body and aerodynamic surfaces that stabilize, guide, and/or lift the projectile body during various stages of a flight path.
  • Range e.g ., 25 nautical miles
  • accuracy e.g ., within 10 meters of identified target
  • effectiveness e.g ., greater than 99% lethality
  • these key factors need to be balanced within a missile design to insure that all three are optimized. For example, while range can be prolonged by faster muzzle velocity, the resulting increased setback acceleration can negatively impact crucial instrumentation and thereby shortchange accuracy and/or effectiveness.
  • a missile also often inherits other variables that afford little or no liberties during design development.
  • the projectile body usually must have a size/shape to accommodate an intended artillery platform and/or gun barrel (e.g ., 155 mm diameter and 1 m length).
  • a missile includes a payload (e.g ., a warhead), its size, shape, and/or weight are almost always dictated primarily by mission objectives.
  • a missile design is provided that reduces costs, increases reliability, and/or simplifies structure without compromising key performance parameters. Range performance is achieved by enhanced acceleration capability and improved lift-to-drag ratio, not faster muzzle velocities and/or greater launch charges. In this manner, setback acceleration is decreased, whereby the missile's instrumentation can reside in a less reliability-threatening environment. And, thanks to lower launch loads, the missile's structural-strength requirements can be relaxed.
  • the missile achieves its enhanced-acceleration feature by combining the functionality of certain aerodynamic surfaces.
  • the missile comprises tail fins that perform a stabilizing function during the just-launched stage of the flight path and perform a guiding function during post-ballistic stages of the flight path.
  • the missile achieves its improved-lift feature by a pair of wings that are deployed from a mid portion of the projectile body. By controlled maneuvering of the wings and the fins, the missile can cruise during an apogee stage, precisely adjust direction during a midcourse trajectory stage, and/or situate itself for a near vertical angle-of-attack during terminal trajectory.
  • the missile can be constructed to have a conventional projectile-body shape) and to carry a payload adequate for most mission objectives.
  • the projectile body can have a diameter ( e.g ., 155 mm) and length ( e.g ., 1 m) compatible with current and future artillery platforms and/or howitzers.
  • the missile can provide accurate, first round fire-for-effect capacity.
  • a missile includes: a projectile body having a fore-aft axis and comprising a nose portion, and a mid portion aft of the nose portion, and a tail portion aft of the mid portion; a bearing coupler within the projectile body allowing at least a part of the tail portion to rotate freely relative to the mid portion about the fore-aft axis; a clutch within the projectile body that engages/disengages to selectively allow/prevent rotation of the at least part of the tail portion; wings, stowed within pockets in the mid portion, that extend to deployed positions outside of the projectile body; fins stored within slots in the at least part of the tail portion, wherein the fins are biased to extend radially outward in roll-stabilizing orientations; and a deflector that deflects the fins from their roll-stabilizing orientations to angularly align their leading edges relative to the aft-fore axis in direction-controlling orientations.
  • a method of missile flight includes the steps of: launching a missile from a launch unit; deploying fins of the missile with their leading edges in roll-stabilizing orientations; during an initial roll-stabilized flight regime, allowing free rotation of a tail of the missile that includes the fins; after the roll-stabilized flight regime, engaging a clutch of the missile to prevent tail rotation; and deflecting leading edges of the fins using a deflector of the missile.
  • a missile 10 is shown in a military setting as it follows a flight path from a launch unit 11 to a target 12.
  • the launch unit 11 can comprise a howitzer 13, or other gun or cannon, having conventional specifications and/or capabilities.
  • muzzle velocity can be 700 - 1000 m/s and the launch acceleration can be 8 - 15K.
  • the illustrated flight path includes a just-launched stage (immediately after exit from the howitzer 13) and post-launch stages thereafter.
  • the post-launch stages include a ballistic stage (determined primarily by muzzle velocity and launch angle), an apogee stage (upon reaching a cruise elevation), a mid-course trajectory stage (optimized for target range/arrival), and a terminal trajectory stage (optimized for target impact).
  • Other flight paths are possible and contemplated. For example, if the missile 10 was on a battle-damage-assessment or other information-collecting mission, the flight path may not includes the latter trajectory stages.
  • the missile's pursuit of the target 12 can be collaborated by other manned and unmanned units, such as a remote command unit 15, a field intelligence unit 16, and/or a global-positioning-system unit 17.
  • the missile 10 comprises a projectile body 20 having a generally cylindrical shape with a fore-aft axis 21.
  • the projectile body 20 can be shaped/sized to accommodate a conventional launch unit (e.g ., launch unit 11).
  • the projectile body 20 can have a diameter of 155 mm and a length of 1 - 3 meters ( e.g ., 1 m, 1.55 m, 2.25 mm, etc.).
  • the projectile body 20 comprises a nose portion 30, a mid portion 40 aft of the nose portion 30, and a tail portion 50 aft of the mid portion 40.
  • the nose portion 30 can comprise a payload chamber 31 occupying most of its interior space.
  • the midportion 40 comprises diametric wing slots 41 and can comprise instrument bays 42 occupying the space around the slots 41.
  • the tail portion 50 can comprise a base part 51, a retainer part 52, a bearing coupler 53, and a clutch 54.
  • the base part 51 can be fixedly mounted to the mid portion 40 and the retainer part 52 attached to the base part 51 by the bearing coupler 53.
  • the retainer part 52 includes radial slots 55 ( e.g ., four) spaced circumferentially around its outer surface.
  • the bearing coupler 53 allows the retainer part 52 to rotate freely relatively to the base 51 (and/or the mid portion 40) about the fore-aft axis 21.
  • the clutch 54 can be engaged-disengaged to allow-prevent tail rotation.
  • the entire tail portion 50 could be coupled to the mid portion 40 by the bearing coupler 53, whereby it would constitute the retainer part 52. In either event, at least part of the tail portion 50 can rotate freely relative to the mid portion 40.
  • the retainer part 52 includes (has in it) the slots 55.
  • the missile 10 can comprise a payload 60, contained within the chamber 31 in the nose portion 30.
  • the payload 60 could comprise a warhead (e.g ., destructive munitions).
  • the nose portion 30 and/or the chamber 31 can include other objects or devices, such as communication/guidance gear for actively or passively interacting with remote units 11, 15, 16, and/or 17.
  • the missile 10 further comprises wings 70 and fins 80.
  • the wings 70 are shown stowed within the pockets 41 in the mid portion 40 and the fins 80 are shown stored within the slots 55 in the tail portion 50.
  • the wings 70 are shown in deployed positions and the fins 80 are shown in released conditions.
  • the wings 70 each comprise an airfoil 71 having a leading edge 72.
  • a wing deployer 73 within the mid portion 40 is operative to deploy the wings 70 from their stowed positions ( Figure 2A and Figure 3A ) to their deployed positions ( Figures 2B - 2C and Figures 3B - 3C .)
  • the wings' leading edges 72 are aligned substantially parallel with the fore-aft axis 21.
  • the wings' leading edges 72 extend radially outward from the fore-aft axis 21 in lift-imparting orientations.
  • the wings 70 can comprise arms 74 connected to their inboard edges and the wing deployer can comprise a rod 75 to which the distal ends of the arms 74 are pivotally attached.
  • the rod 75 can be located in an aft region of the mid portion 40, and the wings 70 can symmetrically move in the aft direction to deploy from the pockets 71.
  • the rod 75 can be located in a fore region of the mid portion 40, and the wings 70 can symmetrically move in the fore direction to deploy from the pockets 71.
  • the deployed position of the wings 70 can be rigid whereby their leading edges 72 remain at a constant deflection angle relative to the fore-aft axis 21.
  • the fins 80 each comprise an airfoil 81 having a leading edge 82.
  • An obturator 83 maintains the fins in their stored condition ( Figure 2A and Figure 3A ) until muzzle exit and releases them upon muzzle exit for movement to their released conditions ( Figures 2B - 2C and Figures 3B - 3C .)
  • the obturator 83 is designed to break, fracture, or otherwise destruct to release the fins 80 during the just-launched stage of the flight path.
  • the obturator 83 is located towards the aft end of the tail portion 50, to protect the fins 80 during firing and/or reduce pressure on protective covers (not shown).
  • a fin deflector 84 within the tail portion 50, is operative to deflect the fins 80 from their roll-stabilizing orientations to angularly align their leading edges 82 relative to the aft-fore axis 81 in direction-controlling orientations.
  • the missile 10 can further comprise a controller 90, such as schematically shown in Figure 4 .
  • the controller 90 can comprise, for example, an output panel 91 that conveys control signals to the clutch 54, the wing deployer 73, and the fin deflector 84.
  • the illustrated controller 90 also comprises an input panel 92 that receives information from onboard sensors, a GPS receiver 93, a collector 94, a command-unit receiver 95, a command-unit transmitter 96, a processor 97, and memory/storage 98.
  • the controller 90 can be housed within the instrument bay 42 in the mid portion 40 and/or it can be powered by a battery 99 also housed within the instrument bay 42.
  • the wings 70 Prior to launch of the missile 10, the wings 70 would be stowed within the mid portion 40, the fins 80 would be stored within the tail portion 50, and the obturator 83 would be intact. As the missile 10 exits the gun muzzle, the obturator 83 would release the fins 80 and they would move to released conditions whereat their leading edges 82 are in roll-stabilizing orientations.
  • the clutch 54 would be disengaged, thereby allowing tail rotation during the ballistic stage of the path flight.
  • the clutch 54 would remain disengaged, the wings 70 would stay in stowed positions, and the fins 80 would maintain roll-stabilizing orientations until the missile 10 reached the apogee stage of the flight path.
  • the controller 90 can begin its contribution to the flight path. Specifically, the controller 90 can be programmed to send control signals (via its output panel 91) to the deployer 73 to deploy the wings 70.
  • the wings 70 can be adapted to impart substantial lift to the projectile body 20, with little or no steering or guiding responsibilities. To this end, the tip-to-tip span of the wings 70 can be greater ( e.g ., 50% greater, 75% greater, 100% greater, 150% greater, and/or 200% greater) than the tail span of the fins 80.
  • the wings' leading edge 72 can rigidly remain at a constant angle relative to the fore-aft axis 21.
  • the clutch 54 can be engaged to prevent tail rotation.
  • the controller 90 can signal the fin deflector 84 to deflect the fins' leading edges 82 in particular direction-determining orientations.
  • the fins 80 and/or the deflector 84 are designed to deflect in a multitude of orientations (about a plurality of axes) for optimum guidance of the missile 10.
  • the wings 70 can remain deployed or be returned to stowage (depending upon descent angle). And the fins 80 can continue to be maneuvered to direct the missile 10 towards the target 12.
  • the wings 70 can be returned to stowed positions (if not already there) during the terminal trajectory stage, to allow a near vertical angle of attack.
  • the controller 90 can ascertain the missile's stage in the flight path in a variety of ways. For example, the controller 90 can continuously obtain the missile's current global position (via its GPS receiver 93) and compare this to previously input positions ( e.g ., input prior to launch). Flight path stages can be ascertained by the altitude of the missile 10 and/or predetermined period of times. If the missile 10 and/or the controller 90 are equipped with target-seeking instrumentation ( e.g ., the collector 94), visual data concerning the target 12 can be used for this purpose. And/or a remote unit, such as the command unit 15, can receive data from and/or convey instructions to the controller 90 ( e.g ., via receiver 95 and transmitter 96).
  • target-seeking instrumentation e.g ., the collector 94
  • visual data concerning the target 12 can be used for this purpose.
  • a remote unit such as the command unit 15, can receive data from and/or convey instructions to the controller 90 ( e.g ., via receiver 95 and transmitter 96).
  • the missile 10 has design that reduces costs, increases reliability, and/or simplifies structure without compromising key performance parameters.
  • the fins 80 function both as stabilizing components during the ballistic stage of the flight path and later as guiding components during post-ballistic stages of the flight path. This combined functionality removes the need for canards or other separate guiding components.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

    FIELD
  • A guided missile having a projectile body and aerodynamic surfaces that stabilize, guide, and/or lift the projectile body during various stages of a flight path.
  • A prior art example of such a missile is described in US 4,076,187 A , which forms a starting point for independent claims 1 and 12.
  • BACKGROUND
  • Range (e.g., 25 nautical miles), accuracy (e.g., within 10 meters of identified target), and effectiveness (e.g., greater than 99% lethality), are usually considered key performance parameters when designing a guided missile. In other words, these parameters cannot be compromised in the interest of reduced costs, manufacturing reliability, and/or simplified structure. Moreover, these key factors need to be balanced within a missile design to insure that all three are optimized. For example, while range can be prolonged by faster muzzle velocity, the resulting increased setback acceleration can negatively impact crucial instrumentation and thereby shortchange accuracy and/or effectiveness.
  • A missile also often inherits other variables that afford little or no liberties during design development. For example, the projectile body usually must have a size/shape to accommodate an intended artillery platform and/or gun barrel (e.g., 155 mm diameter and 1 m length). And if a missile includes a payload (e.g., a warhead), its size, shape, and/or weight are almost always dictated primarily by mission objectives.
  • SUMMARY
  • A missile design is provided that reduces costs, increases reliability, and/or simplifies structure without compromising key performance parameters. Range performance is achieved by enhanced acceleration capability and improved lift-to-drag ratio, not faster muzzle velocities and/or greater launch charges. In this manner, setback acceleration is decreased, whereby the missile's instrumentation can reside in a less reliability-threatening environment. And, thanks to lower launch loads, the missile's structural-strength requirements can be relaxed.
  • The missile achieves its enhanced-acceleration feature by combining the functionality of certain aerodynamic surfaces. Specifically, the missile comprises tail fins that perform a stabilizing function during the just-launched stage of the flight path and perform a guiding function during post-ballistic stages of the flight path. And the missile achieves its improved-lift feature by a pair of wings that are deployed from a mid portion of the projectile body. By controlled maneuvering of the wings and the fins, the missile can cruise during an apogee stage, precisely adjust direction during a midcourse trajectory stage, and/or situate itself for a near vertical angle-of-attack during terminal trajectory.
  • The missile can be constructed to have a conventional projectile-body shape) and to carry a payload adequate for most mission objectives. For example, the projectile body can have a diameter (e.g., 155 mm) and length (e.g., 1 m) compatible with current and future artillery platforms and/or howitzers. And the missile can provide accurate, first round fire-for-effect capacity.
  • According to an aspect of the invention, a missile includes: a projectile body having a fore-aft axis and comprising a nose portion, and a mid portion aft of the nose portion, and a tail portion aft of the mid portion; a bearing coupler within the projectile body allowing at least a part of the tail portion to rotate freely relative to the mid portion about the fore-aft axis; a clutch within the projectile body that engages/disengages to selectively allow/prevent rotation of the at least part of the tail portion; wings, stowed within pockets in the mid portion, that extend to deployed positions outside of the projectile body; fins stored within slots in the at least part of the tail portion, wherein the fins are biased to extend radially outward in roll-stabilizing orientations; and a deflector that deflects the fins from their roll-stabilizing orientations to angularly align their leading edges relative to the aft-fore axis in direction-controlling orientations.
  • According to another aspect of the invention, a method of missile flight includes the steps of: launching a missile from a launch unit; deploying fins of the missile with their leading edges in roll-stabilizing orientations; during an initial roll-stabilized flight regime, allowing free rotation of a tail of the missile that includes the fins; after the roll-stabilized flight regime, engaging a clutch of the missile to prevent tail rotation; and deflecting leading edges of the fins using a deflector of the missile.
  • These and other features of the missile are fully described and particularly pointed out in the claims. The following description and annexed drawings set forth in detail certain illustrative embodiments, these embodiments being indicative of but a few of the various ways in which the principles may be employed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • Figure 1 is schematic diagram of a mission wherein a missile is launched and then guided to encounter a target.
    • Figures 2A - 2C are side, top, and aft schematic views of a missile having wings deployed in an aft direction.
    • Figures 3A - 3C are side, top, and aft schematic views of a missile having wings deployed in a fore direction.
    • Figure 4 is a schematic diagram of a controller of the missile.
    DETAILED DESCRIPTION
  • Referring now to the drawings, and initially to Figure 1, a missile 10 is shown in a military setting as it follows a flight path from a launch unit 11 to a target 12. The launch unit 11 can comprise a howitzer 13, or other gun or cannon, having conventional specifications and/or capabilities. For example, muzzle velocity can be 700 - 1000 m/s and the launch acceleration can be 8 - 15K.
  • The illustrated flight path includes a just-launched stage (immediately after exit from the howitzer 13) and post-launch stages thereafter. The post-launch stages include a ballistic stage (determined primarily by muzzle velocity and launch angle), an apogee stage (upon reaching a cruise elevation), a mid-course trajectory stage (optimized for target range/arrival), and a terminal trajectory stage (optimized for target impact). Other flight paths are possible and contemplated. For example, if the missile 10 was on a battle-damage-assessment or other information-collecting mission, the flight path may not includes the latter trajectory stages.
  • The missile's pursuit of the target 12 can be collaborated by other manned and unmanned units, such as a remote command unit 15, a field intelligence unit 16, and/or a global-positioning-system unit 17.
  • Referring now to Figures 2A - 2C and/or Figures 3A - 3C, the missile 10 is shown in more detail. The missile 10 comprises a projectile body 20 having a generally cylindrical shape with a fore-aft axis 21. The projectile body 20 can be shaped/sized to accommodate a conventional launch unit (e.g., launch unit 11). For example, the projectile body 20 can have a diameter of 155 mm and a length of 1 - 3 meters (e.g., 1 m, 1.55 m, 2.25 mm, etc.).
  • The projectile body 20 comprises a nose portion 30, a mid portion 40 aft of the nose portion 30, and a tail portion 50 aft of the mid portion 40. The nose portion 30 can comprise a payload chamber 31 occupying most of its interior space. The midportion 40 comprises diametric wing slots 41 and can comprise instrument bays 42 occupying the space around the slots 41.
  • The tail portion 50 can comprise a base part 51, a retainer part 52, a bearing coupler 53, and a clutch 54. The base part 51 can be fixedly mounted to the mid portion 40 and the retainer part 52 attached to the base part 51 by the bearing coupler 53. The retainer part 52 includes radial slots 55 (e.g., four) spaced circumferentially around its outer surface.
  • The bearing coupler 53 allows the retainer part 52 to rotate freely relatively to the base 51 (and/or the mid portion 40) about the fore-aft axis 21. The clutch 54 can be engaged-disengaged to allow-prevent tail rotation. In an alternative design, the entire tail portion 50 could be coupled to the mid portion 40 by the bearing coupler 53, whereby it would constitute the retainer part 52. In either event, at least part of the tail portion 50 can rotate freely relative to the mid portion 40. The retainer part 52 includes (has in it) the slots 55.
  • The missile 10 can comprise a payload 60, contained within the chamber 31 in the nose portion 30. In a military setting, such as illustrated, the payload 60 could comprise a warhead (e.g., destructive munitions). The nose portion 30 and/or the chamber 31 can include other objects or devices, such as communication/guidance gear for actively or passively interacting with remote units 11, 15, 16, and/or 17.
  • The missile 10 further comprises wings 70 and fins 80. In Figure 2A and Figure 3A, the wings 70 are shown stowed within the pockets 41 in the mid portion 40 and the fins 80 are shown stored within the slots 55 in the tail portion 50. In Figures 2B - 2C and Figures 3B - 3C, the wings 70 are shown in deployed positions and the fins 80 are shown in released conditions.
  • The wings 70 each comprise an airfoil 71 having a leading edge 72. A wing deployer 73 within the mid portion 40 is operative to deploy the wings 70 from their stowed positions (Figure 2A and Figure 3A) to their deployed positions (Figures 2B - 2C and Figures 3B - 3C.) In the stowed position, the wings' leading edges 72 are aligned substantially parallel with the fore-aft axis 21. In the deployed positions, the wings' leading edges 72 extend radially outward from the fore-aft axis 21 in lift-imparting orientations.
  • The wings 70 can comprise arms 74 connected to their inboard edges and the wing deployer can comprise a rod 75 to which the distal ends of the arms 74 are pivotally attached. As shown in Figures 2A - 2C, the rod 75 can be located in an aft region of the mid portion 40, and the wings 70 can symmetrically move in the aft direction to deploy from the pockets 71. Alternatively, as shown in Figures 3A - 3C, the rod 75 can be located in a fore region of the mid portion 40, and the wings 70 can symmetrically move in the fore direction to deploy from the pockets 71. In either or any event, the deployed position of the wings 70 can be rigid whereby their leading edges 72 remain at a constant deflection angle relative to the fore-aft axis 21.
  • The fins 80 each comprise an airfoil 81 having a leading edge 82. An obturator 83 maintains the fins in their stored condition (Figure 2A and Figure 3A) until muzzle exit and releases them upon muzzle exit for movement to their released conditions (Figures 2B - 2C and Figures 3B - 3C.) The obturator 83 is designed to break, fracture, or otherwise destruct to release the fins 80 during the just-launched stage of the flight path. Preferably, the obturator 83 is located towards the aft end of the tail portion 50, to protect the fins 80 during firing and/or reduce pressure on protective covers (not shown).
  • When the fins 80 are in released conditions, their leading edges 82 extend radially outward from the aft-fore axis 21 in roll-stabilizing orientations. A fin deflector 84, within the tail portion 50, is operative to deflect the fins 80 from their roll-stabilizing orientations to angularly align their leading edges 82 relative to the aft-fore axis 81 in direction-controlling orientations.
  • The missile 10 can further comprise a controller 90, such as schematically shown in Figure 4. The controller 90 can comprise, for example, an output panel 91 that conveys control signals to the clutch 54, the wing deployer 73, and the fin deflector 84. The illustrated controller 90 also comprises an input panel 92 that receives information from onboard sensors, a GPS receiver 93, a collector 94, a command-unit receiver 95, a command-unit transmitter 96, a processor 97, and memory/storage 98. The controller 90 can be housed within the instrument bay 42 in the mid portion 40 and/or it can be powered by a battery 99 also housed within the instrument bay 42.
  • Prior to launch of the missile 10, the wings 70 would be stowed within the mid portion 40, the fins 80 would be stored within the tail portion 50, and the obturator 83 would be intact. As the missile 10 exits the gun muzzle, the obturator 83 would release the fins 80 and they would move to released conditions whereat their leading edges 82 are in roll-stabilizing orientations. The clutch 54 would be disengaged, thereby allowing tail rotation during the ballistic stage of the path flight. The clutch 54 would remain disengaged, the wings 70 would stay in stowed positions, and the fins 80 would maintain roll-stabilizing orientations until the missile 10 reached the apogee stage of the flight path.
  • Upon reaching the apogee of the ballistic stage of the flight path, the controller 90 can begin its contribution to the flight path. Specifically, the controller 90 can be programmed to send control signals (via its output panel 91) to the deployer 73 to deploy the wings 70. The wings 70 can be adapted to impart substantial lift to the projectile body 20, with little or no steering or guiding responsibilities. To this end, the tip-to-tip span of the wings 70 can be greater (e.g., 50% greater, 75% greater, 100% greater, 150% greater, and/or 200% greater) than the tail span of the fins 80. And, as indicated above, the wings' leading edge 72 can rigidly remain at a constant angle relative to the fore-aft axis 21.
  • During the apogee stage of the flight path, the clutch 54 can be engaged to prevent tail rotation. And the controller 90 can signal the fin deflector 84 to deflect the fins' leading edges 82 in particular direction-determining orientations. Preferably, the fins 80 and/or the deflector 84 are designed to deflect in a multitude of orientations (about a plurality of axes) for optimum guidance of the missile 10.
  • As the missile 10 approaches the target 12, and begins the midcourse trajectory stage of the flight path, the wings 70 can remain deployed or be returned to stowage (depending upon descent angle). And the fins 80 can continue to be maneuvered to direct the missile 10 towards the target 12. The wings 70 can be returned to stowed positions (if not already there) during the terminal trajectory stage, to allow a near vertical angle of attack.
  • The controller 90 can ascertain the missile's stage in the flight path in a variety of ways. For example, the controller 90 can continuously obtain the missile's current global position (via its GPS receiver 93) and compare this to previously input positions (e.g., input prior to launch). Flight path stages can be ascertained by the altitude of the missile 10 and/or predetermined period of times. If the missile 10 and/or the controller 90 are equipped with target-seeking instrumentation (e.g., the collector 94), visual data concerning the target 12 can be used for this purpose. And/or a remote unit, such as the command unit 15, can receive data from and/or convey instructions to the controller 90 (e.g., via receiver 95 and transmitter 96).
  • One may now appreciate that the missile 10 has design that reduces costs, increases reliability, and/or simplifies structure without compromising key performance parameters. With particular reference to the fins 80, they function both as stabilizing components during the ballistic stage of the flight path and later as guiding components during post-ballistic stages of the flight path. This combined functionality removes the need for canards or other separate guiding components. Such a canard-less design, especially with a fore-stored payload, frees up space in the mid portion 40 for the relatively large wings 70 which provide additional lift/acceleration capability and an improved lift-to-drag ratio.

Claims (15)

  1. A missile (10) comprising:
    a projectile body (20) having a fore-aft axis (21) and comprising a nose portion (30), and a mid portion (40) aft of the nose portion (30), and a tail portion (50) aft of the mid portion (40); a bearing coupler (53) within the projectile body (20) allowing at least a part of the tail portion (50) to rotate freely relative to the mid portion (40) about the fore-aft axis (21);
    a clutch (54) within the projectile body (20) that engages/disengages to selectively allow/prevent rotation of the at least part of the tail portion (50);
    fins (80) stored within slots (55) in the at least part of the tail portion (50), wherein the fins (80) are biased to extend radially outward in roll-stabilizing orientations;
    characterized by :
    wings (70), stowed within pockets (41) in the mid portion (40), that extend to deployed positions outside of the projectile body (20); and
    a deflector (84) that deflects the fins (80) from their roll-stabilizing orientations to angularly align their leading edges (82) relative to the aft-fore axis (21) in direction-controlling orientations.
  2. A missile (10) as set forth in claim 1,
    further comprising a controller (90);
    wherein the controller (90) is programmed to control the clutch (54) to prevent tail rotation upon reaching a fin-guiding stage of the flight path.
  3. A missile (10) as set forth in claim 1,
    further comprising a controller (90);
    wherein the controller (90) is programmed to control a deployer (73) to deploy the wings (70) upon reaching a wing-deploying stage of the flight path.
  4. A missile (10) as set forth in claim 3, wherein the controller (90) is programmed to control the deployer (73) to return the wings (70) to the pockets (41) upon reaching a large angle-of-attack stage of the flight path.
  5. A missile (10) as set forth in any of claims 2 to 4, wherein the controller (90) is programmed to control a deflector (84) to deflect the fins (80) in different angular alignments whereat their leading edges (82) are in direction-controlling orientations.
  6. A missile (10) as set forth in any of claims 1 to 5, wherein the tip-to-tip span of the wings (70) is greater than the tail span of the fins (80).
  7. A missile (10) as set forth in any of claims 1 to 5, wherein the tip-to-tip span of the wings (70) is at least 50% greater than the tail span of the fins (80).
  8. A missile (10) as set forth in any of claims 1 to 7,
    further comprising an obturator (83) on an aft end of the projectile body (20);
    wherein the obturator (83) protects the fins (80) during launch of the missile (10).
  9. A missile (10) as set forth in any of claims 1 to 8,
    further comprising a deployer (73), within the mid portion (40), that selectively deploys the wings (70) from the pockets (41) to deployed positions.
  10. A missile (10) as set forth in claim 9,
    wherein the deployer (73) includes a rod (75);
    wherein the wings (70) each include an airfoil (71) and an arm (74) having one end connected to the airfoil (71) and another end pivotally connected to the rod (75); and
    wherein the wings (70) pivot in an aft direction when moving from the pockets (41) to their deployed positions.
  11. A missile (10) as set forth in claim 9,
    wherein the deployer (73) includes a rod (75);
    wherein the wings (70) each include an airfoil (71) and an arm (74) having one end connected to the airfoil (71) and another end pivotally connected to the rod (75); and
    wherein the wings (70) pivot in a fore direction when moving from the pockets (41) to their deployed positions.
  12. A method of missile flight, the method comprising:
    launching a missile from a launch unit;
    deploying fins of the missile with their leading edges in roll-stabilizing orientations;
    during an initial roll-stabilized flight regime, allowing free rotation of a tail of the missile that includes the fins;
    after the roll-stabilized flight regime, engaging a clutch of the missile to prevent tail rotation relative to a mid portion of the missile; characterized in :
    deflecting leading edges of the fins using a deflector of the missile.
  13. A method as set forth in claim 12, further comprising deploying wings of the missile during flight.
  14. A method as set forth in claim 13, wherein the deploying the wings occurs after the beginning of the roll-stabilized flight regime, and before the conclusion of the roll-stabilized flight regime.
  15. A method as set forth in claim 13 or claim 14, further comprising, after the deploying the wings, stowing the wings while the missile is still in flight.
EP10784603.2A 2009-05-19 2010-05-18 Guided missile Not-in-force EP2433084B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17939109P 2009-05-19 2009-05-19
PCT/US2010/035178 WO2011019424A2 (en) 2009-05-19 2010-05-18 Guided missile

Publications (2)

Publication Number Publication Date
EP2433084A2 EP2433084A2 (en) 2012-03-28
EP2433084B1 true EP2433084B1 (en) 2013-05-08

Family

ID=43586715

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10784603.2A Not-in-force EP2433084B1 (en) 2009-05-19 2010-05-18 Guided missile

Country Status (3)

Country Link
US (1) US20120068002A1 (en)
EP (1) EP2433084B1 (en)
WO (1) WO2011019424A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020105188A1 (en) 2020-02-27 2021-09-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Missile fin deployment device, missile and method of operating a missile

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102362141A (en) 2009-02-02 2012-02-22 威罗门飞行公司 Multimode unmanned aerial vehicle
DK2475578T3 (en) 2009-09-09 2017-09-11 Aerovironment Inc Reinforced UAV extension tube
DK2475575T3 (en) 2009-09-09 2017-12-11 Aerovironment Inc UAV with deployable wings and flight control method
SE535991C2 (en) * 2011-07-07 2013-03-19 Bae Systems Bofors Ab Rotationally stabilized controllable projectile and procedure therefore
DK2858898T3 (en) * 2012-06-07 2017-11-27 Aerovironment Inc SYSTEM TO REMOVELY CONNECT A DRIVERLESS AIRCRAFT INTO AN EXHAUST PIPE
US9759535B2 (en) * 2014-04-30 2017-09-12 Bae Systems Land & Armaments L.P. Gun launched munition with strakes
CA2930145A1 (en) * 2015-06-05 2016-12-05 Lockheed Martin Corporation Deployment mechanism
FR3041744B1 (en) * 2015-09-29 2018-08-17 Nexter Munitions ARTILLERY PROJECTILE HAVING A PILOTED PHASE.
DE102015013913A1 (en) * 2015-10-27 2017-04-27 Deutsch Französisches Forschungsinstitut Saint Louis Full-caliber, spin-stabilized steer bullet with a long range
KR101903250B1 (en) 2016-12-22 2018-10-01 주식회사 한화 Apparatus and method for controlling roll canard of precision guidance kit
US11624594B1 (en) * 2020-03-31 2023-04-11 Barron Associates, Inc. Device, method and system for extending range and improving tracking precision of mortar rounds

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2321723A1 (en) * 1975-07-29 1977-03-18 Thomson Brandt ATTITUDE CONTROL SYSTEM AND MACHINE EQUIPPED WITH SUCH A SYSTEM
US4425785A (en) * 1982-01-11 1984-01-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Missile rolling tail brake torque system
US4565340A (en) * 1984-08-15 1986-01-21 Ford Aerospace & Communications Corporation Guided projectile flight control fin system
GB2184414B (en) * 1985-12-21 1989-10-18 Plessey Co Plc Rocket propelled vehicle
US5035378A (en) * 1990-05-07 1991-07-30 Spanovich Joseph P Variable alignment mechanism
US5452864A (en) * 1994-03-31 1995-09-26 Alliant Techsystems Inc. Electro-mechanical roll control apparatus and method
DE10130383A1 (en) * 2001-06-23 2003-01-09 Diehl Munitionssysteme Gmbh Artillery projectile with interchangeable payload
US6869044B2 (en) * 2003-05-23 2005-03-22 Raytheon Company Missile with odd symmetry tail fins
US7412930B2 (en) * 2004-09-30 2008-08-19 General Dynamic Ordnance And Tactical Systems, Inc. Frictional roll control apparatus for a spinning projectile
US20070018033A1 (en) * 2005-03-22 2007-01-25 Fanucci Jerome P Precision aerial delivery of payloads
US7354017B2 (en) * 2005-09-09 2008-04-08 Morris Joseph P Projectile trajectory control system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020105188A1 (en) 2020-02-27 2021-09-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Missile fin deployment device, missile and method of operating a missile
WO2021170484A1 (en) 2020-02-27 2021-09-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Missile fin-folding device, missile, and method for operating a missile
DE102020105188B4 (en) 2020-02-27 2023-08-31 Deutsches Zentrum für Luft- und Raumfahrt e.V. Missile fin deployment device, missile and method of operating a missile

Also Published As

Publication number Publication date
US20120068002A1 (en) 2012-03-22
EP2433084A2 (en) 2012-03-28
WO2011019424A3 (en) 2011-05-05
WO2011019424A2 (en) 2011-02-17

Similar Documents

Publication Publication Date Title
EP2433084B1 (en) Guided missile
US12078459B1 (en) Methods for extended-range, enhanced-precision gun-fired rounds using g-hardened flow control systems
US10788297B2 (en) Artillery projectile with a piloted phase
US6610971B1 (en) Ship self-defense missile weapon system
US5467940A (en) Artillery rocket
US8664575B2 (en) Miniature missile
US6135387A (en) Method for autonomous guidance of a spin-stabilized artillery projectile and autonomously guided artillery projectile for realizing this method
US8115149B1 (en) Gun launched hybrid projectile
US6481666B2 (en) Method and system for guiding submunitions
US11371814B2 (en) Ground-projectile guidance system
US20120048991A1 (en) Tail thruster control for projectiles
US20240175666A1 (en) Maneuvering aeromechanicaly stable sabot system
EP2276998B1 (en) Apparatus for air brake retention and deployment
WO2020222250A1 (en) Modified re-entry vehicle design with dynamic trajectory glide control system
US10371495B2 (en) Reaction control system
EP2659219B1 (en) Projectile
US9121680B2 (en) Air vehicle with control surfaces and vectored thrust
RU2709121C1 (en) Jet projectile control unit
US12031802B2 (en) Despun wing control system for guided projectile maneuvers
TROSKY TRENDS OF PRECISION GUIDED PROJECTILES
Geswender-Raytheon Guided Projectiles Theory of Operation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111128

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F42B 10/64 20060101AFI20121016BHEP

Ipc: F42B 10/14 20060101ALN20121016BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 611291

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010007001

Country of ref document: DE

Effective date: 20130704

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 611291

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130508

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130908

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130809

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130819

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130808

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130808

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130518

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010007001

Country of ref document: DE

Effective date: 20140211

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130518

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100518

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190508

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190410

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190515

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010007001

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200518

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201