EP2431791B1 - Acoustic-optical filtering method and device based on a long acousto-optical interaction - Google Patents

Acoustic-optical filtering method and device based on a long acousto-optical interaction Download PDF

Info

Publication number
EP2431791B1
EP2431791B1 EP10177128A EP10177128A EP2431791B1 EP 2431791 B1 EP2431791 B1 EP 2431791B1 EP 10177128 A EP10177128 A EP 10177128A EP 10177128 A EP10177128 A EP 10177128A EP 2431791 B1 EP2431791 B1 EP 2431791B1
Authority
EP
European Patent Office
Prior art keywords
acoustic
optical
wave
crystal
optical crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10177128A
Other languages
German (de)
French (fr)
Other versions
EP2431791A1 (en
Inventor
Daniel Kaplan
Pierre Tournois
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fastlite SARL
Original Assignee
Fastlite SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fastlite SARL filed Critical Fastlite SARL
Priority to EP10177128A priority Critical patent/EP2431791B1/en
Priority to AT10177128T priority patent/ATE557315T1/en
Publication of EP2431791A1 publication Critical patent/EP2431791A1/en
Application granted granted Critical
Publication of EP2431791B1 publication Critical patent/EP2431791B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • G02F1/116Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves using an optically anisotropic medium, wherein the incident and the diffracted light waves have different polarizations, e.g. acousto-optic tunable filter [AOTF]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/17Multi-pass arrangements, i.e. arrangements to pass light a plurality of times through the same element, e.g. by using an enhancement cavity

Definitions

  • the present invention relates to a method and a device for acousto-optical filtering of great length of optical and acoustic interaction.
  • This method applies in particular to devices whose configuration is such that the direction of propagation of the energy of the optical beam (referred to as the direction of the optical beam and characterized by the Poynting vector) coincides with the direction of propagation of the energy. of the acoustic beam (called direction of the acoustic beam).
  • This condition ensures the greatest possible interaction length between the optical and acoustic waves, which is favorable for interaction efficiency.
  • these devices are used for a spectral filtering function of the optical wave, this condition favors obtaining a high spectral resolution.
  • the lengthening of the length of the device to increase the interaction length is technologically limited by the existing capacities to date of crystal growth. With regard to tellurium dioxide, for example, the available devices are limited to a few centimeters in length.
  • One solution is to fold the beams by optical and acoustic reflections on the crystalline faces that maintain the optical and acoustic collinearity. Nevertheless, the anisotropic nature of the crystal and the very large difference in wave and beam vector directions will, in general, have the effect that collinear beams before reflection will no longer be colinear after reflection.
  • crystalline classes that satisfy these requirements are those for which the optical and acoustic axes of symmetry are combined, such as, for example, the tetragonal crystalline classes 422, 4 / mm and 4 / 2m.
  • tellurium dioxide TeO 2
  • mercury halides Hg 2 Cl 2 , Hg 2 Br 2 , Hg 2 I 2
  • KDP KDP
  • the subject of the invention is therefore a method and a device for acousto-optical filtering of great length of optical and acoustic interaction; she proposes, for this purpose, a method and an acousto-optical filtering device as defined in claims 1 and 5, and in particular the use of a birefringent acousto-optical crystal whose propagation speed of the acoustic waves is as low as possible , which acousto-optical crystal comprises on one of its faces, a piezoelectric transducer for generating a transverse acoustic wave whose energy is propagated collinearly to the energy of an incident optical wave, all along the path of said incident optical wave, in the aforesaid birefringent acousto-optical crystal, knowing that the transverse acoustic wave and the incident optical wave travel over a path comprising multiple reflections on one or the other of the reflective faces of the birefringent acousto-optical crystal per
  • the schematic representation of ordinary and extraordinary optical index curves (upper dials) and of the acoustic slowing curve (lower dials) shows, in the orthonormal system defined by the Ox and Oz axes of the birefringent crystal, the acoustic wave vectors and incident optical wave, respectively k a and k 0 ;
  • the acoustic wave vector k has an angle ⁇ a with the axis Ox;
  • the incident optical wave vector k o makes an angle ⁇ with the axis Ox.
  • the optical Poynting vector Ko is collinear with the incident optical wave vector k o ; the acoustic Poynting vector Ka is parallel with the optical vector Ko and therefore makes an angle ⁇ with the axis Ox.
  • the schematic representation of a first example of acoustic and optical beam reflection on an oblique plane plane, parallel to the Oy axis of a birefringent crystal of Tellurium dioxide (TeO 2 ), shows, in the orthonormal system defined by the Ox and Oz axes of the birefringent crystal, the directions of the incident optical and acoustic energies and the directions of the optical and acoustic energies after reflection on an oblique plane P.
  • the plane P is parallel to the axis Oy and is at an angle of 45 ° with respect to the axis Ox; the incident optical and acoustic energies Eoi, Eai, are at an angle of 60 ° with respect to the Ox axis; the reflection of the optical energies Eor and acoustic Ear is not done according to the same directions.
  • the schematic representation of a second example of acoustic and optical beam reflection on a plane parallel to the Oy and Ox axes of the birefringent Tellurium dioxide crystal (TeO 2 ) shows, in the orthonormal system defined by the Ox and Oz axes of the birefringent crystal, the directions of the incident optical and acoustic energies and the directions of the optical and acoustic energies after reflection on a plane P.
  • the plane P is parallel to the axis Oy and to the axis Ox; the incident optical and acoustic energies Eoi, Eai, are at an angle of 60 ° with respect to the Ox axis; the reflection of the optical and acoustic energies Eor, Ear, is in the same direction.
  • an acousto-optical filter structure of great length of optical and acoustic interaction involves an acousto-optical crystal of Tellurium dioxide (TeO 2 ), represented schematically by its polygonal section PO 1 by a plane perpendicular to the Oy axis and called P. propagation plan.
  • TeO 2 acousto-optical crystal of Tellurium dioxide
  • the orientation of the acousto-optic crystal is defined by its two axes [110] and [001]. Since the propagation plane P is orthonormed respectively along Ox and Oz, the axis Ox is parallel to the axis [110], and the axis Oz is parallel to the axis [001].
  • the optical propagation angle ⁇ with respect to the direction Ox is chosen according to a functional criterion.
  • the angles ⁇ are respectively close to 60 °, 50 ° and 45 °.
  • the crystals considered have a prismatic shape, defined by their polygonal cross section by a plane parallel to the plane of propagation P and by the direction common to their edges perpendicular to the plane of propagation.
  • the faces of interest of these crystals are those parallel to the edges and containing a given segment of the cross section.
  • the crystal PO 1 of TeO 2 defined by the polygon PO 1 of vertices ABCDEF, comprises a first face AB containing the segment AB, A along the axis Oz close to the point O and B along the axis Ox close to the point O , a second face BC along the axis Ox, then a third face CD perpendicular to the axis Ox, then a fourth face DE perpendicular to the axis Oz, then a fifth face EF making an angle ⁇ 1 with the normal to the axis Oz, then a sixth face FA closing the polygonal section PO 1 .
  • the face AB of the crystal PO 1 constitutes an input face Fe 1 on which is applied at a point M0, perpendicular to said input face Fe 1 , an incident optical beam O i1 , polarized perpendicular to the propagation plane P containing said polygonal section PO 1 ; the incident optical beam O i1 and the corresponding wave vector k o1 are collinear with the normal to the face AB.
  • a transducer T 1 located on the face FA, generates a transverse acoustic beam, whose vibrations are perpendicular to the plane of propagation P; this acoustic beam leads to the point M0 of said input face Fe 1 , then is reflected so that the corresponding acoustic Poynting vector is perpendicular to the aforesaid face AB.
  • the reflected acoustic beam and the aforesaid incident optical beam O i1 travel through a first collinear interaction zone Z1 between the point M0 of the face AB and a reflection point M1 on the face DE, then traverse a second interaction zone.
  • colinear Z2 between the point M1 on the face DE and a reflection point M2 on the face CD then traverse a third colinear interaction zone Z3 between the point M2 on the face CD and a reflection point M3 on the face BC, then traverse a fourth colinear interaction zone Z4 between the point M3 on the BC face and a point M4 on the EF face, which constitutes the output face Fs 1 of the reflected optical beam O s1 .
  • the collinear propagation direction is ⁇ or - ⁇ ; given the elements defined above, the incident ordinary optical wave vector k o1 makes an angle ⁇ close to 60 ° with the axis [110].
  • the interaction length of the optical and acoustic waves has been multiplied by a factor close to 3 with respect to the length of the crystal whose height is defined by the distance between the aforementioned faces BC and DE.
  • an acousto-optic filter structure of great length of optical and acoustic interaction involves an acousto-optic Calomel crystal (Hg 2 Cl 2 ) represented schematically by its polygonal section PO 2 , located in the plane of propagation P .
  • Hg 2 Cl 2 acousto-optic Calomel crystal
  • the orientation of the acousto-optic crystal is defined by its two axes [110] and [001]. Since the propagation plane P is orthonormed respectively along Ox and Oz, the axis Ox is parallel to the axis [110], and the axis Oz is parallel to the axis [001].
  • the crystal PO 2 comprises a first face AB, A along the axis Oz close to the point O and B along the axis Ox close to the point O, a second face BC along the axis Ox, then a third face CD perpendicular to the axis Ox, then a fourth face DE perpendicular to the axis Oz, then a fifth face EF making an angle ⁇ 2 with the normal to the axis Oz, then a sixth face FA closing the polygonal section PO 2 , of vertices ABCDEF .
  • the face AB of the crystal PO 2 constitutes an input face Fe 2 on which is applied at a point M0, perpendicular to said input face Fe 2 , an incident optical beam O 12 , polarized perpendicularly to the plane of propagation P containing said polygonal section PO 2 ; the incident optical beam O i2 as well as the corresponding wave vector k o2 are collinear with the abnormal at the AB face.
  • a transducer T 2 located on the face FA, generates a transverse acoustic beam, whose vibrations are perpendicular to the plane of propagation P; this acoustic beam leads to the point M0 of said input face Fe 2 , and is then reflected so that the corresponding acoustic Poynting vector is perpendicular to the aforesaid face AB.
  • the reflected acoustic beam and the aforesaid incident optical beam O i2 travel through a first collinear interaction zone Z1 between the point M0 of the face AB and a reflection point M1 on the face DE, then travel through a second interaction zone.
  • colinear Z2 between the point M1 on the face DE and a reflection point M2 on the face CD then traverse a third colinear interaction zone Z3 between the point M2 on the face CD and a reflection point M3 on the face BC, then traverse a fourth colinear interaction zone Z4 between the point M3 on the BC face and a point M4 on the EF face, which constitutes the output face Fs 2 of the reflected optical beam O s2 .
  • the collinear propagation direction is ⁇ or - ⁇ ; given the elements defined above, the incident ordinary optical wave vector k o1 makes an angle ⁇ close to 50 ° with the axis [110].
  • the interaction length of the optical and acoustic waves has been multiplied by a factor close to 3 with respect to the length of the crystal whose height is defined by the distance between the aforementioned faces BC and DE.
  • a acousto-optic filter structure of great length of optical and acoustic interaction involves an acousto-optical KDP crystal, represented schematically by its polygonal section PO 3 , located in the propagation plane P; the proposed structure is different from those previously described, given the characteristics of anisotropy and birefringence of this material.
  • the orientation of the acousto-optic crystal is defined by its two axes [100] and [001].
  • the propagation plane P being orthonormed respectively according to Ox and Oz, the axis Ox is parallel to the axis [100], and the axis Oz is parallel to the axis [001].
  • the crystal PO 3 comprises a first face AB, A along the axis Oz and B along the axis Ox, a second face BC perpendicular to the axis Ox, then a third oblique face DC making an angle ⁇ 3 with the normal to the axis Oz, then a fourth face DE perpendicular to the axis Oz, then a fifth face EA closing the polygonal section PO 3 , vertex ABCDE.
  • the face AB of the crystal PO 3 constitutes an input face Fe 3 on which is applied at a point M0, perpendicular to said input face Fe 3 , an incident optical beam Oi 3 , polarized perpendicularly to the plane of propagation P containing said polygonal section PO 3 ; the incident optical beam O i3 and the corresponding wave vector k o3 are collinear with the normal to the AB face.
  • a transducer T 3 located on the face CD, generates a transverse acoustic beam, whose vibrations are perpendicular to the plane of propagation P; this acoustic beam leads to the point M0 of said input face Fe 3 , then is reflected so that the corresponding acoustic Poynting vector is perpendicular to the aforesaid face AB.
  • the reflected acoustic beam and the aforesaid incident optical beam O i3 run through a first collinear interaction zone Z1 between the point M0 of the face AB and a reflection point M1 on the face BC, then traverse a second interaction zone.
  • collinear Z2 between the point M1 on the face BC and a reflection point M2 on the face DE then traverse a third collinear interaction zone Z3 between the point M2 on the face DE and a reflection point M3 on the face EA, then go through a fourth interaction zone collinear Z4 between the point M3 on the EA face and a point M4 on the BC face, then traverse a fifth colinear interaction zone Z5 between the point M4 on the BC face and a M5 point on the AB face, which constitutes the face output Fs 3 of the reflected optical beam O s2 , said output face Fs 3 being merged with said input face Fe 3 .
  • the collinear propagation direction is ⁇ or - ⁇ ; given the elements defined above, the incident ordinary optical wave vector k o1 makes an angle ⁇ close to 45 ° with the axis [100].
  • the interaction length of the optical and acoustic waves has been multiplied by a factor close to 5 with respect to the length of the crystal whose height is defined by the distance between the aforementioned faces BC and EA.
  • the solution of folding the beams by optical and acoustic reflections on the crystalline faces of the birefringent acoustic-optical crystal makes it possible to multiply by a factor close to or even greater than 3, with respect to the length said crystal; this method thus allows the significant increase in the length of optical and acoustic interaction while respecting the economic constraints related to the production of such crystals.
  • the aforementioned reflective faces may or may not comprise thin dielectric layers or thin metal films.
  • the aforesaid piezoelectric transducer (T 1 , T 2 , T 3 ) intended to generate a transverse acoustic wave will be a transducer welded on one side (FA, CD) of the birefringent acousto-optical crystal (PO 1 , PO 2 , PO 3 ).
  • a first application of this acousto-optical acousto-optical long-distance acousto-optic filter relates to the stents of frequency drift lasers such as those described in the article of D. Strickland and G. Mourou: "Compression of amplified chirped optical pulses", Optics Communications, 56 (1985), p.219 , which make it possible to generate short pulses of very high power.
  • a programmable expander in amplitude and phase of long extension time is desirable to compensate for amplitude and phase defects of the compressors.
  • a second application of this acousto-optical acousto-optical long-distance acousto-optic filter concerns spectral analyzers that use acousto-optical filters AOTF (Acousto-Optic Tunable Filters) fast and compact.
  • AOTF Acoustic-Optic Tunable Filters
  • a third application of this acousto-optic filter of great length of acousto-optical interaction relates to the generation of multiple short light pulses, adjustable time spacings over a very long duration, obtained by simultaneous programming of several acoustic signals in the acousto-optical filter.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)
  • Polarising Elements (AREA)

Abstract

The method involves generating a transverse acoustic beam. Energy of the acoustic beam is propagated in a co-linear manner with energy of incident optical beam (Oi1) along a path of optical beam in a birefringent acousto-optical crystal (PO1) by a piezo-electric transducer (T1-T3), where the acoustic and optical beams travel a path i.e. collinear interaction zone (Z1), with reflections on one or other of reflecting faces (AB, BC, CD, DE, EA) of the crystal perpendicular to symmetric axes common to acoustic slowness curve and curves of ordinary and extraordinary optic indices of the crystal. An independent claim is also included for a device for implementing a method for acoustic-optical filtering of large acoustic and optical filtering interaction between acoustic and optical waves.

Description

La présente invention concerne un procédé et un dispositif pour le filtrage acousto-optique de grande longueur d'interaction optique et acoustique.The present invention relates to a method and a device for acousto-optical filtering of great length of optical and acoustic interaction.

Ce procédé s'applique notamment aux dispositifs dont la configuration est telle que la direction de propagation de l'énergie du faisceau optique (dite direction du faisceau optique et caractérisée par le vecteur de Poynting) est confondue avec la direction de propagation de l'énergie du faisceau acoustique (dite direction du faisceau acoustique). Cette condition assure la plus grande longueur d'interaction possible entre les ondes optiques et acoustiques, ce qui est favorable pour l'efficacité d'interaction. Par ailleurs, lorsque ces dispositifs sont utilisés pour une fonction de filtrage spectrale de l'onde optique, cette condition favorise l'obtention d'une résolution spectrale élevée.This method applies in particular to devices whose configuration is such that the direction of propagation of the energy of the optical beam (referred to as the direction of the optical beam and characterized by the Poynting vector) coincides with the direction of propagation of the energy. of the acoustic beam (called direction of the acoustic beam). This condition ensures the greatest possible interaction length between the optical and acoustic waves, which is favorable for interaction efficiency. Moreover, when these devices are used for a spectral filtering function of the optical wave, this condition favors obtaining a high spectral resolution.

D'une façon générale, on sait que les conditions conduisant à l'interaction colinéaire dans un matériau biréfringent ont été discutées par V.B. Voloshinov dans : « Close to collinear acousto-optique interaction in Paratellurite », Optical Engineering, 31 (1992), p. 2089 . Il est bien connu que lorsque le cristal utilisé est fortement anisotrope et biréfringent, la colinéarité des faisceaux acoustiques et optiques n'implique pas la colinéarité des vecteurs d'ondes acoustiques et optiques. L'article " Application of Acousto-Optic Interactions in Anisotropic Media for Control of Light Radiation" par V.B. Voloshinov et N.V. Polikarpova (Acta Acustica united with Acustica, vol. 89 (2003), pages 930-935 ) présente un dispositif de filtrage acousto-optique tel que défini dans le préambule de la revendication 5. Le brevet français FR 9610717 de P. Tournois « Dispositif de contrôle d'impulsions lumineuses par un dispositif programmable acousto-optique » et la publication de D. Kaplan et de P. Tournois « Theory and performance of the acousto-optic programmable dispersive filter used for femtosecond laser pulse shaping », J. Phys. IV, 12 (2002), Pr5-69/75 , décrivent l'utilisation d'une configuration colinéaire pour réaliser un filtrage spectrale programmable en amplitude et en phase d'impulsions laser. Le dioxyde de tellure ou Paratellurite, matériau fortement anisotrope, est le plus utilisé pour cette application.In general, it is known that the conditions leading to collinear interaction in a birefringent material have been discussed by VB Voloshinov in: "Close to collinear acousto-optics interaction in Paratellurite", Optical Engineering, 31 (1992), p. 2089 . It is well known that when the crystal used is highly anisotropic and birefringent, the collinearity of the acoustic and optical beams does not imply the collinearity of the acoustic and optical wave vectors. The article Application of Acousto-Optic Interactions in Anisotropic Media for Control of Light Radiation by VB Voloshinov and NV Polikarpova (Acta Acoustica united with Acustica, vol 89 (2003), pages 930-935 ) has an acousto-optical filtering device as defined in the preamble of claim 5. The French patent FR 9610717 by P. Tournois "Apparatus for controlling light pulses by an acousto-optical programmable device" and the publication of D. Kaplan and P. Tournaments "Theory and performance of the programmable acousto-optic dispersive filter used for femtosecond laser pulse shaping", J. Phys. IV, 12 (2002), Pr5-69 / 75 , describe the use of a collinear configuration to perform a programmable spectral filtering in amplitude and phase of laser pulses. Tellurium dioxide or Paratellurite, a highly anisotropic material, is the most used for this application.

L'allongement de la longueur du dispositif pour augmenter la longueur d'interaction est limité technologiquement par les capacités existantes à ce jour de croissance cristalline. Concernant le dioxyde de Tellure, par exemple, les dispositifs disponibles sont limités à quelques centimètres de longueur. Une solution consiste à replier les faisceaux par des réflexions optiques et acoustiques sur les faces cristallines qui maintiennent la colinéarité optique et acoustique. Néanmoins, le caractère anisotrope du cristal et la très grande différence des directions de vecteur d'onde et de faisceau auront, en général, pour effet que des faisceaux colinéaires avant réflexion ne seront plus colinéaires après réflexion.The lengthening of the length of the device to increase the interaction length is technologically limited by the existing capacities to date of crystal growth. With regard to tellurium dioxide, for example, the available devices are limited to a few centimeters in length. One solution is to fold the beams by optical and acoustic reflections on the crystalline faces that maintain the optical and acoustic collinearity. Nevertheless, the anisotropic nature of the crystal and the very large difference in wave and beam vector directions will, in general, have the effect that collinear beams before reflection will no longer be colinear after reflection.

Les seules classes cristallines permettant de répondre à ces exigences sont celles pour lesquelles les axes de symétrie optiques et acoustique sont confondus, telles que, par exemple, les classes cristallines tétragonales 422, 4/mmm et 4/2m.The only crystalline classes that satisfy these requirements are those for which the optical and acoustic axes of symmetry are combined, such as, for example, the tetragonal crystalline classes 422, 4 / mm and 4 / 2m.

Les matériaux combinant cette condition et les performances adéquates pour une telle application sont : le dioxyde de Tellure (TeO2), les halogénures de Mercure (Hg2Cl2, Hg2Br2, Hg2I2), et le KDP ; parmi ces matériaux, seuls le dioxyde de Tellure (TeO2), le Calomel (Hg2Cl2), et le KDP sont aujourd'hui susceptibles d'exploitation industrielle.The materials combining this condition and the adequate performance for such an application are: tellurium dioxide (TeO 2 ), mercury halides (Hg 2 Cl 2 , Hg 2 Br 2 , Hg 2 I 2 ), and KDP; among these materials, only tellurium dioxide (TeO 2 ), Calomel (Hg 2 Cl 2 ), and KDP are currently susceptible to industrial exploitation.

L'invention a donc pour objet un procédé et un dispositif pour le filtrage acousto-optique de grande longueur d'interaction optique et acoustique; elle propose, à cet effet, un procédé et un dispositif de filtrage acousto-optique tels que définis dans les revendications 1 et 5, et notamment l'utilisation un cristal acousto-optique biréfringent dont la vitesse de propagation des ondes acoustiques est la plus faible possible, lequel cristal acousto-optique comprend sur l'une de ses faces, un transducteur piézo-électrique destiné à générer une onde acoustique transversale dont l'énergie se propage de manière colinéaire à l'énergie d'une onde optique incidente, tout au long du trajet de ladite onde optique incidente, dans le susdit cristal acousto-optique biréfringent,
sachant que l'onde acoustique transversale et l'onde optique incidente parcourent un trajet comportant des réflexions multiples sur l'une ou l'autre des faces réfléchissantes du cristal acousto-optique biréfringent perpendiculaires aux axes de symétrie communs à la courbe des lenteurs acoustiques et aux courbes des indices optiques ordinaire et extraordinaire dudit cristal acousto-optique.
The subject of the invention is therefore a method and a device for acousto-optical filtering of great length of optical and acoustic interaction; she proposes, for this purpose, a method and an acousto-optical filtering device as defined in claims 1 and 5, and in particular the use of a birefringent acousto-optical crystal whose propagation speed of the acoustic waves is as low as possible , which acousto-optical crystal comprises on one of its faces, a piezoelectric transducer for generating a transverse acoustic wave whose energy is propagated collinearly to the energy of an incident optical wave, all along the path of said incident optical wave, in the aforesaid birefringent acousto-optical crystal,
knowing that the transverse acoustic wave and the incident optical wave travel over a path comprising multiple reflections on one or the other of the reflective faces of the birefringent acousto-optical crystal perpendicular to the axes of symmetry common to the curve of the acoustic and to the curves of ordinary and extraordinary optical indices of said acousto-optical crystal.

Un mode de mise en oeuvre du procédé selon l'invention sera décrit ci-après, à titre d'exemple non limitatif, avec référence aux dessins annexés dans lesquels :

  • La figure 1 est une représentation schématique pour un cristal anisotrope de la courbe des lenteurs acoustiques et des courbes des indices optiques ordinaire et extraordinaire définissant la composition des vecteurs d'onde acoustique et optiques, caractéristiques de l'interaction acousto-optique ;
  • La figure 2 est une représentation schématique d'un premier exemple de réflexion des faisceaux acoustique et optique sur un plan oblique, parallèle à l'axe Oy du cristal biréfringent;
  • La figure 3 est une représentation schématique d'un deuxième exemple de réflexion des faisceaux acoustique et optique sur un plan parallèle aux axes Oy et Ox du cristal biréfringent;
  • La figure 4 représente un premier exemple d'une représentation schématique d'une structure de filtre acousto-optique de grande longueur d'interaction optique et acoustique dans le dioxyde de Tellure;
  • La figure 5 représente un deuxième exemple d'une représentation schématique d'une structure de filtre acousto-optique de grande longueur d'interaction optique et acoustique dans le Calomel, et
  • La figure 6 représente un troisième exemple d'une représentation schématique d'une structure de filtre acousto-optique de grande longueur d'interaction optique et acoustique dans le KDP.
One embodiment of the method according to the invention will be described below, by way of non-limiting example, with reference to the accompanying drawings in which:
  • The figure 1 is a schematic representation for an anisotropic crystal of the curve of acoustic delays and curves of ordinary and extraordinary optical indices defining the composition of the acoustic and optical wave vectors, characteristic of the acousto-optical interaction;
  • The figure 2 is a schematic representation of a first example of reflection of the acoustic and optical beams on an oblique plane, parallel to the axis Oy of the birefringent crystal;
  • The figure 3 is a schematic representation of a second example of acoustic and optical beam reflection on a plane parallel to the Oy and Ox axes of the birefringent crystal;
  • The figure 4 represents a first example of a schematic representation of an acousto-optical filter structure of great length of optical and acoustic interaction in the tellurium dioxide;
  • The figure 5 represents a second example of a schematic representation of an acousto-optical filter structure of great length of optical and acoustic interaction in the Calomel, and
  • The figure 6 represents a third example of a schematic representation of an acousto-optical filter structure of great length of optical and acoustic interaction in the KDP.

Dans l'exemple représenté sur la figure 1, la représentation schématique des courbes de indices optiques ordinaire et extraordinaire (cadrans supérieurs) et de la courbe des lenteurs acoustiques (cadrans inférieurs) montre, dans le système orthonormé défini par les axes Ox et Oz du cristal biréfringent, les vecteurs d'onde acoustique et d'onde optique incidente, respectivement ka et k0 ; le vecteur d'onde acoustique ka fait un angle θa avec l'axe Ox ; le vecteur d'onde optique incidente ko fait un angle θ avec l'axe Ox.In the example shown on the figure 1 the schematic representation of ordinary and extraordinary optical index curves (upper dials) and of the acoustic slowing curve (lower dials) shows, in the orthonormal system defined by the Ox and Oz axes of the birefringent crystal, the acoustic wave vectors and incident optical wave, respectively k a and k 0 ; the acoustic wave vector k has an angle θ a with the axis Ox; the incident optical wave vector k o makes an angle θ with the axis Ox.

Le vecteur de Poynting optique Ko est colinéaire avec le vecteur d'onde optique incidente ko ; le vecteur de Poynting acoustique Ka est parallèle avec le vecteur optique Ko et fait par conséquent un angle θ avec l'axe Ox.The optical Poynting vector Ko is collinear with the incident optical wave vector k o ; the acoustic Poynting vector Ka is parallel with the optical vector Ko and therefore makes an angle θ with the axis Ox.

Dans l'exemple représenté sur la figure 2, la représentation schématique d'un premier exemple de réflexion des faisceaux acoustique et optique sur un plan plan oblique, parallèle à l'axe Oy d'un cristal biréfringent de dioxyde de Tellure (TeO2), montre, dans le système orthonormé défini par les axes Ox et Oz du cristal biréfringent, les directions des énergies optique et acoustique incidentes et les directions des énergies optique et acoustique après réflexion sur un plan P oblique.In the example shown on the figure 2 , the schematic representation of a first example of acoustic and optical beam reflection on an oblique plane plane, parallel to the Oy axis of a birefringent crystal of Tellurium dioxide (TeO 2 ), shows, in the orthonormal system defined by the Ox and Oz axes of the birefringent crystal, the directions of the incident optical and acoustic energies and the directions of the optical and acoustic energies after reflection on an oblique plane P.

Dans le cas présent, le plan P est parallèle à l'axe Oy et fait un angle de 45° par rapport à l'axe Ox ; les énergies optique et acoustique incidentes Eoi, Eai, font un angle de 60° par rapport à l'axe Ox ; la réflexion des énergies optique Eor et acoustique Ear ne se fait pas selon les mêmes directions.In the present case, the plane P is parallel to the axis Oy and is at an angle of 45 ° with respect to the axis Ox; the incident optical and acoustic energies Eoi, Eai, are at an angle of 60 ° with respect to the Ox axis; the reflection of the optical energies Eor and acoustic Ear is not done according to the same directions.

Dans l'exemple représenté sur la figure 3, la représentation schématique d'un deuxième exemple de réflexion des faisceaux acoustique et optique sur un plan parallèle aux axes Oy et Ox du cristal biréfringent de dioxyde de Tellure (TeO2), montre, dans le système orthonormé défini par les axes Ox et Oz du cristal biréfringent, les directions des énergies optique et acoustique incidentes et les directions des énergies optique et acoustique après réflexion sur un plan P.In the example shown on the figure 3 , the schematic representation of a second example of acoustic and optical beam reflection on a plane parallel to the Oy and Ox axes of the birefringent Tellurium dioxide crystal (TeO 2 ), shows, in the orthonormal system defined by the Ox and Oz axes of the birefringent crystal, the directions of the incident optical and acoustic energies and the directions of the optical and acoustic energies after reflection on a plane P.

Dans le cas présent, le plan P est parallèle à l'axe Oy et à l'axe Ox ; les énergies optique et acoustique incidentes Eoi, Eai, font un angle de 60° par rapport à l'axe Ox ; la réflexion des énergies optique et acoustique Eor, Ear, se fait selon la même direction.In the present case, the plane P is parallel to the axis Oy and to the axis Ox; the incident optical and acoustic energies Eoi, Eai, are at an angle of 60 ° with respect to the Ox axis; the reflection of the optical and acoustic energies Eor, Ear, is in the same direction.

Dans l'exemple représenté sur la figure 4, une structure de filtre acousto-optique de grande longueur d'interaction optique et acoustique fait intervenir un cristal acousto-optique de dioxyde de Tellure (TeO2), représenté de façon schématique par sa section polygonale PO1 par un plan perpendiculaire à l'axe Oy et appelé plan de propagation P.In the example shown on the figure 4 , an acousto-optical filter structure of great length of optical and acoustic interaction involves an acousto-optical crystal of Tellurium dioxide (TeO 2 ), represented schematically by its polygonal section PO 1 by a plane perpendicular to the Oy axis and called P. propagation plan.

L'orientation du cristal acousto-optique est définie par ses deux axes [110] et [001]. Le plan de propagation P étant orthonormé respectivement suivant Ox et Oz, l'axe Ox est parallèle à l'axe [110], et l'axe Oz est parallèle à l'axe [001].The orientation of the acousto-optic crystal is defined by its two axes [110] and [001]. Since the propagation plane P is orthonormed respectively along Ox and Oz, the axis Ox is parallel to the axis [110], and the axis Oz is parallel to the axis [001].

L'angle de propagation optique θ par rapport à la direction Ox est choisi selon un critère fonctionnel. Dans l'exemple de la figure 4, il est choisi pour maximiser le facteur de mérite de l'efficacité de diffraction M2 donné approximativement par la formule : M 2 = n o 2 n e 3 p 2 / ρ V 3 ,

Figure imgb0001

dans laquelle : no, ne, p, ρ et V sont respectivement l'indice ordinaire, l'indice extraordinaire, le coefficient élasto-optique efficace, la densité du cristal et la vitesse de phase des ondes acoustiques transversales dans la direction θa qui correspond à la direction θ de propagation de l'énergie acoustique.The optical propagation angle θ with respect to the direction Ox is chosen according to a functional criterion. In the example of the figure 4 he is chosen for to maximize the merit factor of diffraction efficiency M 2 given approximately by the formula: M 2 = not o 2 not e 3 p 2 / ρ V 3 ,
Figure imgb0001

in which: n o , n e , p, ρ and V are respectively the ordinary index, the extraordinary index, the effective elasto-optical coefficient, the crystal density and the phase velocity of the transverse acoustic waves in the θ direction has matching the direction θ of propagation of the acoustic energy.

La vitesse de phase des ondes acoustiques transversales V est donnée par : V = V x 2 cos 2 θ a + V z 2 sin 2 θ a 1 / 2 ,

Figure imgb0002
avec : tanθ a = V x / V z 2 . tanθ ,
Figure imgb0003
qui est la condition d'alignement des énergies optique et acoustique, Vx étant la vitesse acoustique selon Ox, et Vz étant la vitesse acoustique selon Oz.The phase velocity of transverse acoustic waves V is given by: V = V x 2 cos 2 θ at + V z 2 sin 2 θ at 1 / 2 ,
Figure imgb0002
with: tanθ at = V x / V z 2 . tanθ ,
Figure imgb0003
which is the alignment condition of the optical and acoustic energies, V x being the acoustic velocity according to Ox, and V z being the acoustic velocity according to Oz.

Pour les cristaux de TeO2, Hg2Cl2 et KDP, les angles θ sont respectivement proches de 60°, 50° et 45°.For the crystals of TeO 2 , Hg 2 Cl 2 and KDP, the angles θ are respectively close to 60 °, 50 ° and 45 °.

Les cristaux considérés ont une forme prismatique, définie par leur section droite polygonale par un plan parallèle au plan de propagation P et par la direction commune à leurs arêtes perpendiculaires au plan de propagation. Les faces d'intérêt de ces cristaux sont celles parallèles aux arêtes et contenant un segment donné de la section droite. Dans la suite, on désignera les cristaux considérés par leur section droite et les faces cristallines par le segment correspondant de section droite.The crystals considered have a prismatic shape, defined by their polygonal cross section by a plane parallel to the plane of propagation P and by the direction common to their edges perpendicular to the plane of propagation. The faces of interest of these crystals are those parallel to the edges and containing a given segment of the cross section. In the following, we designate the crystals considered by their cross section and the crystal faces by the corresponding segment of cross section.

Dans le premier exemple de la figure 4, le cristal PO1 de TeO2, défini par le polygone PO1 de sommets ABCDEF, comprend une première face AB contenant le segment AB, A selon l'axe Oz proche du point O et B selon l'axe Ox proche du point O, une seconde face BC selon l'axe Ox, puis une troisième face CD perpendiculaire à l'axe Ox, puis une quatrième face DE perpendiculaire à l'axe Oz, puis une cinquième face EF faisant un angle θ1 avec la normale à l'axe Oz, puis une sixième face FA fermant la section polygonale PO1.In the first example of the figure 4 , the crystal PO 1 of TeO 2 , defined by the polygon PO 1 of vertices ABCDEF, comprises a first face AB containing the segment AB, A along the axis Oz close to the point O and B along the axis Ox close to the point O , a second face BC along the axis Ox, then a third face CD perpendicular to the axis Ox, then a fourth face DE perpendicular to the axis Oz, then a fifth face EF making an angle θ 1 with the normal to the axis Oz, then a sixth face FA closing the polygonal section PO 1 .

La face AB du cristal PO1 constitue une face d'entrée Fe1 sur laquelle est appliqué en un point M0, perpendiculairement à ladite face d'entrée Fe1, un faisceau optique incident Oi1, polarisé perpendiculairement au plan de propagation P contenant ladite section polygonale PO1 ; le faisceau optique incident Oi1 ainsi que le vecteur d'onde correspondant ko1 sont colinéaires avec la normale à la face AB.The face AB of the crystal PO 1 constitutes an input face Fe 1 on which is applied at a point M0, perpendicular to said input face Fe 1 , an incident optical beam O i1 , polarized perpendicular to the propagation plane P containing said polygonal section PO 1 ; the incident optical beam O i1 and the corresponding wave vector k o1 are collinear with the normal to the face AB.

Un transducteur T1, situé sur la face FA, génère un faisceau acoustique transverse, dont les vibrations sont perpendiculaires au plan de propagation P ; ce faisceau acoustique aboutit au point M0 de ladite face d'entrée Fe1, puis est réfléchi de manière à ce que le vecteur de Poynting acoustique correspondant soit perpendiculaire à la susdite face AB.A transducer T 1 , located on the face FA, generates a transverse acoustic beam, whose vibrations are perpendicular to the plane of propagation P; this acoustic beam leads to the point M0 of said input face Fe 1 , then is reflected so that the corresponding acoustic Poynting vector is perpendicular to the aforesaid face AB.

Ainsi, le faisceau acoustique réfléchi et le susdit faisceau optique incident Oi1 parcourent une première zone d'interaction colinéaire Z1 entre le point M0 de la face AB et un point de réflexion M1 sur la face DE, puis parcourent une deuxième zone d'interaction colinéaire Z2 entre le point M1 sur la face DE et un point de réflexion M2 sur la face CD, puis parcourent une troisième zone d'interaction colinéaire Z3 entre le point M2 sur la face CD et un point de réflexion M3 sur la face BC, puis parcourent une quatrième zone d'interaction colinéaire Z4 entre le point M3 sur la face BC et un point M4 sur la face EF, laquelle constitue la face de sortie Fs1 du faisceau optique réfléchi Os1.Thus, the reflected acoustic beam and the aforesaid incident optical beam O i1 travel through a first collinear interaction zone Z1 between the point M0 of the face AB and a reflection point M1 on the face DE, then traverse a second interaction zone. colinear Z2 between the point M1 on the face DE and a reflection point M2 on the face CD, then traverse a third colinear interaction zone Z3 between the point M2 on the face CD and a reflection point M3 on the face BC, then traverse a fourth colinear interaction zone Z4 between the point M3 on the BC face and a point M4 on the EF face, which constitutes the output face Fs 1 of the reflected optical beam O s1 .

Dans chacune des zones d'interaction, la direction de propagation colinéaire est de θ ou de -θ ; compte tenu des éléments définis précédemment, le vecteur d'onde optique ordinaire incident ko1 fait un angle θ proche de 60° avec l'axe [110].In each of the interaction zones, the collinear propagation direction is θ or ; given the elements defined above, the incident ordinary optical wave vector k o1 makes an angle θ close to 60 ° with the axis [110].

La longueur d'interaction des ondes optique et acoustique a été multipliée par un facteur proche de 3 par rapport à la longueur du cristal dont la hauteur est définie par la distance entre les susdites faces BC et DE.The interaction length of the optical and acoustic waves has been multiplied by a factor close to 3 with respect to the length of the crystal whose height is defined by the distance between the aforementioned faces BC and DE.

Dans l'exemple représenté sur la figure 5, une structure de filtre acousto-optique de grande longueur d'interaction optique et acoustique fait intervenir un cristal acousto-optique de Calomel (Hg2Cl2) représenté de façon schématique par sa section polygonale PO2, située dans le plan de propagation P.In the example shown on the figure 5 , an acousto-optic filter structure of great length of optical and acoustic interaction involves an acousto-optic Calomel crystal (Hg 2 Cl 2 ) represented schematically by its polygonal section PO 2 , located in the plane of propagation P .

L'orientation du cristal acousto-optique est définie par ses deux axes [110] et [001]. Le plan de propagation P étant orthonormé respectivement suivant Ox et Oz, l'axe Ox est parallèle à l'axe [110], et l'axe Oz est parallèle à l'axe [001].The orientation of the acousto-optic crystal is defined by its two axes [110] and [001]. Since the propagation plane P is orthonormed respectively along Ox and Oz, the axis Ox is parallel to the axis [110], and the axis Oz is parallel to the axis [001].

Le cristal PO2 comprend une première face AB, A selon l'axe Oz proche du point O et B selon l'axe Ox proche du point O, une seconde face BC selon l'axe Ox, puis une troisième face CD perpendiculaire à l'axe Ox, puis une quatrième face DE perpendiculaire à l'axe Oz, puis une cinquième face EF faisant un angle θ2 avec la normale à l'axe Oz, puis une sixième face FA fermant la section polygonale PO2, de sommets ABCDEF.The crystal PO 2 comprises a first face AB, A along the axis Oz close to the point O and B along the axis Ox close to the point O, a second face BC along the axis Ox, then a third face CD perpendicular to the axis Ox, then a fourth face DE perpendicular to the axis Oz, then a fifth face EF making an angle θ 2 with the normal to the axis Oz, then a sixth face FA closing the polygonal section PO 2 , of vertices ABCDEF .

La face AB du cristal PO2 constitue une face d'entrée Fe2 sur laquelle est appliqué en un point M0, perpendiculairement à ladite face d'entrée Fe2, un faisceau optique incident Oi2, polarisé perpendiculairement au plan de propagation P contenant ladite section polygonale PO2 ; le faisceau optique incident Oi2 ainsi que le vecteur d'onde correspondant ko2 sont colinéaires avec la anormale à la face AB.The face AB of the crystal PO 2 constitutes an input face Fe 2 on which is applied at a point M0, perpendicular to said input face Fe 2 , an incident optical beam O 12 , polarized perpendicularly to the plane of propagation P containing said polygonal section PO 2 ; the incident optical beam O i2 as well as the corresponding wave vector k o2 are collinear with the abnormal at the AB face.

Un transducteur T2, situé sur la face FA, génère un faisceau acoustique transverse, dont les vibrations sont perpendiculaires au plan de propagation P ; ce faisceau acoustique aboutit au point M0 de ladite face d'entrée Fe2, puis est réfléchi de manière à ce que le vecteur de Poynting acoustique correspondant soit perpendiculaire à la susdite face AB.A transducer T 2 , located on the face FA, generates a transverse acoustic beam, whose vibrations are perpendicular to the plane of propagation P; this acoustic beam leads to the point M0 of said input face Fe 2 , and is then reflected so that the corresponding acoustic Poynting vector is perpendicular to the aforesaid face AB.

Ainsi, le faisceau acoustique réfléchi et le susdit faisceau optique incident Oi2 parcourent une première zone d'interaction colinéaire Z1 entre le point M0 de la face AB et un point de réflexion M1 sur la face DE, puis parcourent une deuxième zone d'interaction colinéaire Z2 entre le point M1 sur la face DE et un point de réflexion M2 sur la face CD, puis parcourent une troisième zone d'interaction colinéaire Z3 entre le point M2 sur la face CD et un point de réflexion M3 sur la face BC, puis parcourent une quatrième zone d'interaction colinéaire Z4 entre le point M3 sur la face BC et un point M4 sur la face EF, laquelle constitue la face de sortie Fs2 du faisceau optique réfléchi Os2.Thus, the reflected acoustic beam and the aforesaid incident optical beam O i2 travel through a first collinear interaction zone Z1 between the point M0 of the face AB and a reflection point M1 on the face DE, then travel through a second interaction zone. colinear Z2 between the point M1 on the face DE and a reflection point M2 on the face CD, then traverse a third colinear interaction zone Z3 between the point M2 on the face CD and a reflection point M3 on the face BC, then traverse a fourth colinear interaction zone Z4 between the point M3 on the BC face and a point M4 on the EF face, which constitutes the output face Fs 2 of the reflected optical beam O s2 .

Dans chacune des zones d'interaction, la direction de propagation colinéaire est de θ ou de -θ ; compte tenu des éléments définis précédemment, le vecteur d'onde optique ordinaire incident ko1 fait un angle θ proche de 50° avec l'axe [110].In each of the interaction zones, the collinear propagation direction is θ or ; given the elements defined above, the incident ordinary optical wave vector k o1 makes an angle θ close to 50 ° with the axis [110].

La longueur d'interaction des ondes optique et acoustique a été multipliée par un facteur proche de 3 par rapport à la longueur du cristal dont la hauteur est définie par la distance entre les susdites faces BC et DE.The interaction length of the optical and acoustic waves has been multiplied by a factor close to 3 with respect to the length of the crystal whose height is defined by the distance between the aforementioned faces BC and DE.

Dans l'exemple représenté sur la figure 6, une structure de filtre acousto-optique de grande longueur d'interaction optique et acoustique fait intervenir un cristal acousto-optique de KDP, représenté de façon schématique par sa section polygonale PO3, située dans le plan de propagation P; la structure proposée est différente de celles décrites précédemment, compte tenu des caractéristiques d'anisotropie et de biréfringence de ce matériau.In the example shown on the figure 6 a acousto-optic filter structure of great length of optical and acoustic interaction involves an acousto-optical KDP crystal, represented schematically by its polygonal section PO 3 , located in the propagation plane P; the proposed structure is different from those previously described, given the characteristics of anisotropy and birefringence of this material.

L'orientation du cristal acousto-optique est définie par ses deux axes [100] et [001]. Le plan de propagation P étant orthonormé respectivement suivant Ox et Oz, l'axe Ox est parallèle à l'axe [100], et l'axe Oz est parallèle à l'axe [001].The orientation of the acousto-optic crystal is defined by its two axes [100] and [001]. The propagation plane P being orthonormed respectively according to Ox and Oz, the axis Ox is parallel to the axis [100], and the axis Oz is parallel to the axis [001].

Le cristal PO3 comprend une première face AB, A selon l'axe Oz et B selon l'axe Ox, une seconde face BC perpendiculaire à l'axe Ox, puis une troisième face CD oblique faisant un angle θ3 avec la normale à l'axe Oz, puis une quatrième face DE perpendiculaire à l'axe Oz, puis une cinquième face EA fermant la section polygonale PO3, de sommets ABCDE.The crystal PO 3 comprises a first face AB, A along the axis Oz and B along the axis Ox, a second face BC perpendicular to the axis Ox, then a third oblique face DC making an angle θ 3 with the normal to the axis Oz, then a fourth face DE perpendicular to the axis Oz, then a fifth face EA closing the polygonal section PO 3 , vertex ABCDE.

La face AB du cristal PO3 constitue une face d'entrée Fe3 sur laquelle est appliqué en un point M0, perpendiculairement à ladite face d'entrée Fe3, un faisceau optique incident Oi3, polarisé perpendiculairement au plan de propagation P contenant ladite section polygonale PO3 ; le faisceau optique incident Oi3 ainsi que le vecteur d'onde correspondant ko3 sont colinéaires avec la normale à la face AB.The face AB of the crystal PO 3 constitutes an input face Fe 3 on which is applied at a point M0, perpendicular to said input face Fe 3 , an incident optical beam Oi 3 , polarized perpendicularly to the plane of propagation P containing said polygonal section PO 3 ; the incident optical beam O i3 and the corresponding wave vector k o3 are collinear with the normal to the AB face.

Un transducteur T3, situé sur la face CD, génère un faisceau acoustique transverse, dont les vibrations sont perpendiculaires au plan de propagation P ; ce faisceau acoustique aboutit au point M0 de ladite face d'entrée Fe3, puis est réfléchi de manière à ce que le vecteur de Poynting acoustique correspondant soit perpendiculaire à la susdite face AB.A transducer T 3 , located on the face CD, generates a transverse acoustic beam, whose vibrations are perpendicular to the plane of propagation P; this acoustic beam leads to the point M0 of said input face Fe 3 , then is reflected so that the corresponding acoustic Poynting vector is perpendicular to the aforesaid face AB.

Ainsi, le faisceau acoustique réfléchi et le susdit faisceau optique incident Oi3 parcourent une première zone d'interaction colinéaire Z1 entre le point M0 de la face AB et un point de réflexion M1 sur la face BC, puis parcourent une deuxième zone d'interaction colinéaire Z2 entre le point M1 sur la face BC et un point de réflexion M2 sur la face DE, puis parcourent une troisième zone d'interaction colinéaire Z3 entre le point M2 sur la face DE et un point de réflexion M3 sur la face EA, puis parcourent une quatrième zone d'interaction colinéaire Z4 entre le point M3 sur la face EA et un point M4 sur la face BC, puis parcourent une cinquième zone d'interaction colinéaire Z5 entre le point M4 sur la face BC et un point M5 sur la face AB, laquelle constitue la face de sortie Fs3 du faisceau optique réfléchi Os2, ladite face de sortie Fs3 étant confondue avec ladite face d'entrée Fe3.Thus, the reflected acoustic beam and the aforesaid incident optical beam O i3 run through a first collinear interaction zone Z1 between the point M0 of the face AB and a reflection point M1 on the face BC, then traverse a second interaction zone. collinear Z2 between the point M1 on the face BC and a reflection point M2 on the face DE, then traverse a third collinear interaction zone Z3 between the point M2 on the face DE and a reflection point M3 on the face EA, then go through a fourth interaction zone collinear Z4 between the point M3 on the EA face and a point M4 on the BC face, then traverse a fifth colinear interaction zone Z5 between the point M4 on the BC face and a M5 point on the AB face, which constitutes the face output Fs 3 of the reflected optical beam O s2 , said output face Fs 3 being merged with said input face Fe 3 .

Dans chacune des zones d'interaction, la direction de propagation colinéaire est de θ ou de -θ ; compte tenu des éléments définis précédemment, le vecteur d'onde optique ordinaire incident ko1 fait un angle θ proche de 45° avec l'axe [100].In each of the interaction zones, the collinear propagation direction is θ or ; given the elements defined above, the incident ordinary optical wave vector k o1 makes an angle θ close to 45 ° with the axis [100].

La longueur d'interaction des ondes optique et acoustique a été multipliée par un facteur proche de 5 par rapport à la longueur du cristal dont la hauteur est définie par la distance entre les susdites faces BC et EA.The interaction length of the optical and acoustic waves has been multiplied by a factor close to 5 with respect to the length of the crystal whose height is defined by the distance between the aforementioned faces BC and EA.

Selon les trois exemples, cités précédemment, la solution consistant à replier les faisceaux par des réflexions optique et acoustique sur les faces cristallines du cristal acousto-optique biréfringent, permet de multiplier par un facteur proche, voire supérieur à 3, par rapport à la longueur dudit cristal; ce procédé autorise ainsi l'augmentation significative de la longueur d'interaction optique et acoustique tout en respectant les contraintes économiques liées à la réalisation de tels cristaux.According to the three examples mentioned above, the solution of folding the beams by optical and acoustic reflections on the crystalline faces of the birefringent acoustic-optical crystal makes it possible to multiply by a factor close to or even greater than 3, with respect to the length said crystal; this method thus allows the significant increase in the length of optical and acoustic interaction while respecting the economic constraints related to the production of such crystals.

Avantageusement, les susdites faces réfléchissantes (AB, BC, CD, DE, EA) pourront comprendre, ou non, des couches minces diélectriques ou des films minces métalliques.Advantageously, the aforementioned reflective faces (AB, BC, CD, DE, EA) may or may not comprise thin dielectric layers or thin metal films.

Avantageusement le susdit transducteur piézo-électrique (T1, T2, T3) destiné à générer une onde acoustique transversale sera un transducteur soudé sur une face (FA, CD) du cristal acousto-optique biréfringent (PO1, PO2, PO3).Advantageously, the aforesaid piezoelectric transducer (T 1 , T 2 , T 3 ) intended to generate a transverse acoustic wave will be a transducer welded on one side (FA, CD) of the birefringent acousto-optical crystal (PO 1 , PO 2 , PO 3 ).

Une première application de ce filtre acousto-optique de grande longueur d'interaction acousto-optique, selon l'invention, concerne les extenseurs des lasers à dérive de fréquence tels que ceux décrits dans l'article de D. Strickland et G. Mourou : « Compression of amplified chirped optical pulses », Optics Communications, 56 (1985), p.219 , qui permettent de générer des impulsions lumineuses brèves de très grande puissance. Dans ce type de laser, un extenseur programmable en amplitude et en phase de grande durée d'extension est souhaitable pour compenser des défauts d'amplitude et de phase des compresseurs.A first application of this acousto-optical acousto-optical long-distance acousto-optic filter, according to the invention, relates to the stents of frequency drift lasers such as those described in the article of D. Strickland and G. Mourou: "Compression of amplified chirped optical pulses", Optics Communications, 56 (1985), p.219 , which make it possible to generate short pulses of very high power. In this type of laser, a programmable expander in amplitude and phase of long extension time is desirable to compensate for amplitude and phase defects of the compressors.

Une deuxième application de ce filtre acousto-optique de grande longueur d'interaction acousto-optique, selon l'invention, concerne les analyseurs de spectres qui utilisent des filtres acousto-optiques AOTF (Acousto-Optic Tunable Filters) rapides et compacts. Dans ce type de filtre, une grande longueur d'interaction acousto-optique permet d'augmenter notablement la résolution spectrale de ces filtres.A second application of this acousto-optical acousto-optical long-distance acousto-optic filter, according to the invention, concerns spectral analyzers that use acousto-optical filters AOTF (Acousto-Optic Tunable Filters) fast and compact. In this type of filter, a large length of acousto-optical interaction makes it possible to significantly increase the spectral resolution of these filters.

Une troisième application de ce filtre acousto-optique de grande longueur d'interaction acousto-optique, selon l'invention, concerne la génération d'impulsions lumineuses brèves multiples, d'espacements temporels réglables sur une très grande durée, obtenues par la programmation simultanée de plusieurs signaux acoustiques dans le filtre acousto-optique.A third application of this acousto-optic filter of great length of acousto-optical interaction, according to the invention, relates to the generation of multiple short light pulses, adjustable time spacings over a very long duration, obtained by simultaneous programming of several acoustic signals in the acousto-optical filter.

Claims (11)

  1. An acoustic-optical filtering method, in which a birefringent acoustic-optical crystal (PO1, PO2, PO3) is provided having an input surface (Fei1, Fe2, Fe3) intended to receive an incident optical wave (Oi1, Oi2, Oi3), said acoustic-optical crystal (PO1, PO2, PO3) comprises, on one of its surfaces (FA, CD), a piezoelectric transducer (T1, T2, T3) intended to generate a transverse acoustic wave whereof the energy propagates collinearly to the energy of an incident optical wave (Oi1, Oi2, Oi3), along the entire path of said incident optical wave (Oi1, Oi2, Oi3), in said birefringent acoustic-optical crystal (PO1, PO2, PO3), the aforementioned acoustic-optical crystal comprising reflective surfaces (AB, BC, CD, DE, EA) for the incident optical wave as well as for the transverse acoustic wave, the method comprising a step for applying the incident optical wave on the aforementioned input surface and a step for generating the transverse acoustic wave, characterized in that said reflective surfaces are perpendicular to the axes of symmetry shared by the acoustic slowness curve and the ordinary and extraordinary optical index curves of said acoustic-optical crystal (PO1, PO2, PO3) and in that the input surface, the surface comprising the piezoelectric transducer and the reflective surfaces are arranged so that the transverse acoustic wave and the incident optical wave (Oi1, Oi2, Oi3) travel a path including multiple reflections on one or the other of the reflective surfaces (AB, BC, CD, DE, EA) of the birefringent acoustic-optical crystal (PO1, PO2, PO3).
  2. The application of the method according to claim 1 to the production of expanders for frequency drift lasers.
  3. The application of the method according to claim 1 to the production of acousto-optic tunable filter (AOTF) spectrum analyzers.
  4. The application of the method according to claim 1 to the production of multiple brief light pulse generators with adjustable time spacings.
  5. An acoustic-optical filtering device comprising a birefringent acoustic-optical crystal (PO1, PO2, PO3) having an input surface (Fe1, Fe2, Fe3) intended to receive an incident optical wave (Oi1, Oi2, Oi3), said acoustic-optical crystal (PO1, PO2, PO3) comprises, on one of its surfaces (FA, CD), a piezoelectric transducer (T1, T2, T3) intended to generate a transverse acoustic wave whereof the energy propagates collinearly to the energy of the incident optical wave (Oi1, Oi2, Oi3), along the entire path of said incident optical wave (Oi1, Oi2, Oi3), in the aforementioned birefringent acoustic-optical crystal (PO1, PO2, PO3), the aforementioned acoustic-optical crystal comprising reflective surfaces (AB, BC, CD, DE, EA) for the incident optical wave as well as for the transverse acoustic wave, characterized in that said reflective surfaces are perpendicular to the axes of symmetry shared by the acoustic slowness curve and the ordinary and extraordinary optical index curves of said acoustic-optical crystal (PO1, PO2, PO3) and in that the input surface, the surface comprising the piezoelectric transducer and the reflective surfaces are arranged so that the transverse acoustic wave and the incident optical wave (Oi1, Oi2, Oi3) travel a path including multiple reflections on one or the other of the reflective surfaces (AB, BC, CD, DE, EA) of the birefringent acoustic-optical crystal (PO1, PO2, PO3).
  6. The device according to claim 5,
    characterized in that the reflective surfaces (AB, BC, CD, DE, EA) comprise thin dielectric layers or thin metal films.
  7. The device according to claim 5 or 6,
    characterized in that the piezoelectric transducer (T1, T2, T3) intended to generate a transverse acoustic wave is a transducer welded on a surface (FA, CD) of the birefringent acoustic-optical crystal (PO1, PO2, PO3).
  8. The device according to one of claims 5 to 7,
    characterized in that the acoustic-optical crystal (PO1, PO2, PO3) is part of tetragonal crystalline classes 422, 4/mmm, and 4/2m.
  9. The device according to claim 8,
    characterized in that the aforementioned optical-acoustic crystal (PO1) is tellurium dioxide, having formula TeO2.
  10. The device according to claim 8,
    characterized in that the aforementioned acoustic-optical crystal (PO2) is calomel having formula Hg2Cl2.
  11. The device according to claim 8,
    characterized in that the aforementioned acoustic-optical crystal (PO3) is KDP.
EP10177128A 2010-09-16 2010-09-16 Acoustic-optical filtering method and device based on a long acousto-optical interaction Active EP2431791B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10177128A EP2431791B1 (en) 2010-09-16 2010-09-16 Acoustic-optical filtering method and device based on a long acousto-optical interaction
AT10177128T ATE557315T1 (en) 2010-09-16 2010-09-16 METHOD AND DEVICE FOR ACOUSTO-OPTICAL FILTERING WITH LARGE ACOUSTO-OPTICAL INTERACTION LENGTH

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10177128A EP2431791B1 (en) 2010-09-16 2010-09-16 Acoustic-optical filtering method and device based on a long acousto-optical interaction

Publications (2)

Publication Number Publication Date
EP2431791A1 EP2431791A1 (en) 2012-03-21
EP2431791B1 true EP2431791B1 (en) 2012-05-09

Family

ID=43088366

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10177128A Active EP2431791B1 (en) 2010-09-16 2010-09-16 Acoustic-optical filtering method and device based on a long acousto-optical interaction

Country Status (2)

Country Link
EP (1) EP2431791B1 (en)
AT (1) ATE557315T1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921500B1 (en) * 2007-09-24 2010-03-12 Fastlite METHOD AND DEVICE FOR HIGH-RESOLUTION PROGRAMMABLE ACOUSTO-OPTICAL FILTERING IN THE INFRARED DOMAIN

Also Published As

Publication number Publication date
ATE557315T1 (en) 2012-05-15
EP2431791A1 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
EP1604435B1 (en) Method and device for controlling the amplitude of the wavelength spectrum of ultra-short light pulses emitted by multipass laser amplifiers
EP0112732B1 (en) Non-linear integrated optical coupler and parametric amplifier using the same
EP0882251B1 (en) Device for controlling light pulses by a programmable acousto-optic means
EP1783544B1 (en) Spectral amplitude programmable light pulse dispersion device
JP4820904B2 (en) Spectral doubling-mediated chirped pulse amplifier using third-order dispersion chirping
EP0390662B1 (en) High power laser with output direction control
JP5376652B2 (en) Laser apparatus and laser amplification method
FR2986916A1 (en) OPTICAL AMPLIFIER AND PULSE LASER SYSTEM WITH IMPULSE ENERGY LIMITS.
US4914664A (en) Tunable dye laser with suppressed frequency shift anomalies
EP2040109A1 (en) Method and device for high-resolution programmable acoustic-optical filtering in the infrared domain
EP2510392B1 (en) Device for compensating temporaral dispersion applied to ultra-short light pulse generation
EP2656454B1 (en) Stabilized femtosecond pulsed laser and stabilization method
EP2431791B1 (en) Acoustic-optical filtering method and device based on a long acousto-optical interaction
EP2629142B1 (en) Rapid optical delay scanning method and apparatus using time dependence of acousto-optic diffraction
FR2943433A1 (en) Acousto-optics filtering method for e.g. acousto-optic tunable filter, involves forming reflexions on one another of reflective faces of acousto-optic perpendicular to axes common to all curves
FR3023929A1 (en) METHOD AND DEVICE FOR PROGRAMMABLE DISPERSIVE ACOUSTO-OPTICAL FILTERING
US20120069427A1 (en) Method and device for acousto-optic filtering with long optical and acoustic interaction length
EP1570313B1 (en) Generator of a multiple frequency component electric signal
Kotov et al. Pulse modulation of multicolored radiation of an argon laser
Kotov et al. Pulse Modulation of Multicolor Radiation Via Light Diffraction by Sound
CN115967000A (en) High-energy ultrashort pure quartic soliton fiber laser system based on pulse shaping
FR2820837A1 (en) IMPROVEMENT ON PROGRAMMABLE ACOUSTO-OPTICAL DEVICES FOR OPTICAL COMMUNICATION SYSTEMS
FR2877444A1 (en) DEVICE FOR THE PROGRAMMABLE CONTROL OF THE AMPLITUDE AND THE SPECTRAL PHASE OF LIGHT PULSES FROM AN OPTICAL MIXER
FR2827679A1 (en) Ultrashort optical pulse amplifier, has index network inscribed in optical block formed by holographic inscription in photosensitive material
JPH0667238A (en) Light wavelength converting device

Legal Events

Date Code Title Description
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 557315

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010001448

Country of ref document: DE

Effective date: 20120719

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120509

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120809

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 557315

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120910

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120810

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: FASTLITE

Effective date: 20120930

26N No opposition filed

Effective date: 20130212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010001448

Country of ref document: DE

Effective date: 20130212

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120916

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120916

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100916

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230928

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230928

Year of fee payment: 14