EP2427919A1 - Recepteur solaire hybride et systeme solaire a concentration le comportant - Google Patents

Recepteur solaire hybride et systeme solaire a concentration le comportant

Info

Publication number
EP2427919A1
EP2427919A1 EP10727103A EP10727103A EP2427919A1 EP 2427919 A1 EP2427919 A1 EP 2427919A1 EP 10727103 A EP10727103 A EP 10727103A EP 10727103 A EP10727103 A EP 10727103A EP 2427919 A1 EP2427919 A1 EP 2427919A1
Authority
EP
European Patent Office
Prior art keywords
heat
photovoltaic cells
heat pipe
solar receiver
hybrid solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10727103A
Other languages
German (de)
English (en)
Inventor
Qinglong Lin
André Manificat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2427919A1 publication Critical patent/EP2427919A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the present invention relates to a hybrid solar receiver, photovoltaic and thermal, for simultaneously generating electricity and heat by optimizing the surface of photovoltaic cells used, particularly well suited for domestic use.
  • the patent FR 2 727 790 relates to a hybrid photovoltaic and thermal solar module.
  • a photovoltaic panel is used to produce electricity, at the same time that a gas is ventilated under the photovoltaic panel to cool it. The gas thus heated gives up its heat by circulating through an exchanger.
  • the advantage of such a receiver is that it allows to extract and recover some of the heat accumulated on the photovoltaic panel while the fan is powered by a portion of the electricity produced by the photovoltaic panel.
  • the disadvantage is that the exhaust gas stream can not quickly and sufficiently remove the heat accumulated on the photovoltaic panel, and therefore, the total efficiency is not high, which limits the use.
  • Patent WO 2006/038508 discloses a hybrid solar system for heat and electricity cogeneration which uses the evaporator portion of a heat pipe to recover the heat accumulated on the photovoltaic solar panel.
  • the heat pipe has a two-plate structure in which a meandering channel is formed, a coolant flowing in this channel. The advantage of this system is that the high heat flux transferred by the heat pipe keeps the photovoltaic panel at a low temperature.
  • photovoltaic solar cells with electricity and heat cogeneration are just juxtapositions that do not allow at all to optimize the simultaneous generation of electricity and heat from solar radiation.
  • another economic aspect plays an important role for solar energy products and applied technology.
  • photovoltaic solar panels photovoltaic cells account for about 70% of the total cost of the panel. Better use of silicon in the photovoltaic cell contributes to decrease the total cost of the panel.
  • Solar concentration technology is a way of decreasing the area of photovoltaic cells needed and therefore the amount of silicon material needed. However the concentration leads to a rise in the temperature of the photovoltaic cell very important insofar as the efficiency of the cells is of the order of 15% only, 85% of the solar radiation being dissipated in heat.
  • a photovoltaic cell functions better when its temperature is around the ambient temperature (except with cells using amorphous silicon). As a result, it is necessary to dissipate the heat to maintain the temperature of the photovoltaic cell and prevent it from rising to values where its performance is degraded.
  • the solution is often to stick a heat exchanger directly under the photovoltaic panel.
  • the layers underneath the photovoltaic cells in the photovoltaic panel are made of materials that have high heat resistance, such as EVA and Teldar ®. These layers are essential components for the conventional photovoltaic solar panel that can not be removed. Given the relatively low sunlight intensity, the heat to be dissipated is not very important and the ventilation under a conventional photovoltaic panel is sufficient to regulate the possible overheating.
  • the solution conventionally adopted is to combine a heat exchanger with a much larger exchange surface than that of the photovoltaic cells.
  • the heat exchanger is placed under the photovoltaic cells with a heat transfer fluid circulating inside.
  • the heat exchanger surface is very large and its heat exchange capacity per unit area is not high, the temperature of the heat transfer fluid therefore remains quite low.
  • Patent WO 2004/042828 relates to such a system for cooling by air at ambient temperature of a concentrated photovoltaic system.
  • the photovoltaic cells are attached to a heat pipe of special shape by an adhesive layer of thermal conductivity, an intermediate layer of metal and an elastic plate, or by an adhesive layer of thermal conductivity, a metal intermediate layer, a layer adhesive thermal conductivity (or a solder layer) and an elastic plate.
  • Such a system has many disadvantages: firstly, the photovoltaic cells are not protected against air and humidity and are therefore corrodable; moreover, with the concentration of the solar radiation, the current of electricity produced is high and there is a risk of electrical conduction between the cells and the heat pipe since the intermediate layers are only layers of thermal conductivity and metal (electrical conductor); then, the intermediate layers are mechanically attached to the heat pipe by an elastic plate, and this poses a mechanical problem on the photovoltaic cells because there is a risk of crushing the photovoltaic cells by the differential force created by a non-homogeneous temperature; finally, this system only serves to cool the cells by air with a considerable heat exchange surface and can not produce hot coolant
  • the object of the invention is to propose an innovative solution for solving the contradictory problem of temperature versus the efficiency of photovoltaic cells in a photovoltaic solar system with a concentration that minimizes the surface area of photovoltaic material (silicon). At the same time, it allows the production of heat at a temperature directly adapted to the production of hot water for domestic use, in a hybrid photovoltaic and thermal solar receiver that is particularly efficient for the simultaneous production of electricity and heat.
  • the hybrid solar receiver for concentrating solar systems, for simultaneously generating electricity and heat of the type comprising photovoltaic cells for converting the concentrated solar rays on these cells into electricity and a heat pipe to evacuate the heat accumulated on the photovoltaic cells via a coolant is characterized in that:
  • the photovoltaic cells have a front face (Sl) for accommodating the concentrated solar rays and a rear face (S2) on the back of the face (Sl);
  • the heat pipe has a thermal evacuation zone making the evaporator office to evacuate the heat accumulated on the photovoltaic cells and a dissipation zone to dissipate the heat which it absorbs all the rear face of the photovoltaic cells being in contact with the zone of thermal evacuation of the heat pipe via a double function interface layer which electrically isolates the photovoltaic cells of the heat pipe, for instantaneously transmitting the heat accumulated on the photovoltaic cells to the heat transfer fluid of the heat pipe;
  • a transparent plate is deposited on the encapsulation layer; the set formed by the transparent plate, the encapsulation layer, the photovoltaic cells and the interface layer being fixed on the heat pipe.
  • a heat pipe is a device that transports large amounts of heat under low temperature gradients.
  • capillary pumping heat pipes can be mentioned, the capillary structure of which consists of grooves which have been machined in the metal wall.
  • a heat pipe is in the form of a hermetic enclosure, which contains a coolant.
  • the heat pipe is divided into three zones: a heat evacuation zone (also frequently called “evaporation zone” or “evaporator”) located at the level of heat input, an adiabatic zone (also called “neutral zone”) which can be in some cases omitted because it is not always necessary, and a dissipation zone (also frequently called “condenser”) placed at the cold source. Circulating in these various regions by exploiting the latent heat of phase change, the fluid follows a closed thermodynamic cycle. This cycle consists of four stages. When the evaporator of the heat pipe is in contact with the hot source, that is to say the photovoltaic cells in operation, the liquid, which is in the capillary structure, evaporates by absorbing the equivalent of the quantity of latent heat of change of state.
  • This phase change leads to an increase in the pressure in the vapor phase which causes the flow of steam to the condensation zone.
  • the vapor condenses, and it then releases all the heat energy absorbed during the vaporization.
  • the return of the liquid to the evaporator must be ensured by a driving force. This function can be ensured by the gravity of the coolant. It is then sufficient to place the condensation zone above the evaporation zone. In the opposite configuration, this role is played by the capillary action. To do this, the inner wall of the heat pipe is lined with a capillary network. The fluid then develops a curved meniscus which is responsible for the appearance of a pressure difference between these two phases. This pressure difference then makes it possible to compensate for the pressure losses developed along the heat pipe, in order to ensure the return of the liquid from the condensation zone to the evaporation zone.
  • heat pipes An advantage of heat pipes is to be able to transfer a large heat flow under a very low temperature gradient.
  • the heat pipes also have other advantages, among which we can cite their light weight, their high reliability, their flexibility in terms of geometry or the fact that it is a passive system. . To these properties, we can add:
  • the invention applies in a process that has an intensified source of heat, due to the concentration of solar energy by the solar concentrators and which comprises relatively small photovoltaic cells (typically between 100 to 180 micrometer). These cells are also very fragile because of the differential expansion, caused by the temperature difference between different points on the surface of the cell. On conventional devices, this phenomenon engages a rapid fatigue of the material leading to its rupture. Indeed, when the temperature difference exceeds 5 ° C on a photovoltaic cell, the life of the cell becomes uncertain. Consequently, the invention makes it possible to obtain a homogeneity of the temperature on the cells, which increases the service life and the operating stability.
  • the interface layer has a thermal resistance of less than 7.10 4 m 2 .K / W
  • the material constituting the dual function interface layer is chosen comprising ceramic materials, EVA and ceramic material combinations, and silicone pastes.
  • the ceramic material is chosen from aluminum nitride (AlN), beryllium oxide (BeO), and alumina (Al2O3).
  • the material constituting the encapsulation layer is chosen from the group comprising EVA, PVB, EVA doped with metal particles, PVB doped with metal particles.
  • the heat sink dissipation zone has fins on its surface to increase the heat exchange surface and the dissipation zone is connected to an extraction exchanger fed with a heat transfer fluid.
  • the entire surface of the heat pipe except the contact surface with the rear face of the photovoltaic cells and the surface of the dissipation zone, is covered with a material whose radiation absorption coefficient is greater than the emission coefficient of radiation.
  • the outer section of the thermal evacuation zone is semicircular with a flat surface, and the rear face of the photovoltaic cells faces this flat surface of the thermal exhaust zone to which it is bound via the dual function interface layer.
  • the outer section of the thermal evacuation zone is rectangular, one of the four flat surfaces and the rear face of the photovoltaic cells being in contact via the dual function interface layer.
  • the outer section of the thermal evacuation zone is circular, the rear face of the photovoltaic cells being in contact with the outer surface of the cylindrical thermal evacuation zone via the dual function interface layer.
  • the heat pipe has a fin on each side of the thermal exhaust zone.
  • the transparent plate is treated anti-reflective.
  • the photovoltaic cells cover the entire surface of the thermal discharge zone.
  • the thermal exhaust zone of the heat pipe is enclosed by a vacuum tube to reduce the heat loss.
  • the invention also relates to a solar system comprising a linear concentrator solar concentrator and a hybrid solar receiver as described above, characterized in that, the electricity that is necessary for it to power a drive motor to follow the race of the sun and to circulate the coolant, is provided by the system itself.
  • FIG. 1 is a perspective diagram of an embodiment of a hybrid solar receiver according to the invention for linear concentration solar systems with a semicircular section heat pipe;
  • FIG. 2a is an exploded diagram of the components of a conventional photovoltaic solar panel.
  • FIG 2b is an exploded diagram of the components of a hybrid solar panel according to the invention.
  • FIG. 3a is a perspective diagram of a hybrid solar receiver intended for linear concentration solar systems illustrated in FIG. 1 by coating a closed tube and connecting with an extraction exchanger according to the invention.
  • FIG. 3b is a diagram of a sectional view AA of FIG. 3a
  • FIG. 4a is a perspective diagram of an embodiment of a hybrid solar receiver for linear concentrating solar systems with a rectangular section heat pipe according to the invention
  • FIG 4b is a diagram of a sectional view A-A of Figure 4a.
  • FIG. 5a is a perspective diagram of an embodiment of a hybrid solar receiver for linear concentration solar systems with a circular section heat pipe according to the invention;
  • FIG. 5b is a diagram of a sectional view A-A of FIG. 5a.
  • FIG. 6a is a perspective diagram of an embodiment of a hybrid solar receiver for linear concentration solar systems, with a circular section heat pipe having fins, according to the invention
  • FIG 6b is a diagram of a sectional view A-A of Figure 6a.
  • FIG. 7a is a perspective diagram of an embodiment of a hybrid solar receiver according to the invention associated with a solar concentrator as described in patent WO2008 / 132300.
  • FIG. 7b is a diagram of a sectional view A-A of FIG. 7a showing the trajectory of a parallel solar beam in such concentrator.
  • the present invention makes it possible to provide a simple and effective solution for reducing the cost of solar energy technology by means of solar concentration and simultaneously generating electricity and heat between 45 ° C to 150 0 C to meet most daily needs.
  • the hybrid solar receiver according to the invention is intended in particular for solar systems with linear concentration.
  • a concentrated solar system is called "linear" when the solar rays are concentrated on a line or a small linear band: it is for example, a concentric solar system with cylindrical parabola, a solar system with Fresnel mirror concentration, a concentric solar system with a cylindrical lens, or a solar concentrator as described in the patent WO2008 / 132300. If photovoltaic cells are applied directly to the concentration zone of such a concentrator which can concentrate about 20 times the intensity of sunshine, the conventional solutions for evacuation of the heat produced prove to be notably insufficient to prevent the cells from overheating. PV.
  • the invention relates to a hybrid solar receiver particularly well adapted to the use of such a linear concentrator, but is also applicable to other concentrating systems.
  • the hybrid solar receiver intended in particular for solar systems with linear concentration of the aforementioned type comprises photovoltaic cells (2) which have a front face (Sl) for receiving the concentrated solar rays, and a rear face (S2) to evacuate the accumulated heat.
  • a heat pipe (3) has a thermal exhaust zone (3a) used to extract the heat accumulated on the photo voltaic cells (2) and a dissipation zone (3c) to dissipate the heat that it absorbs: the entire face rear of the cells (S2) is positioned in contact with the thermal discharge zone (3a) of the heat pipe (3) via a dual function interface layer (4) which electrically isolates the photovoltaic cells (2) from the heat pipe (3) and which also has a thermal resistance of less than 7.10 "4 m 2 K / W for instantaneously evacuating the heat accumulated on the photovoltaic cells (2).
  • This interface layer (4) electrically insulating and thermally conductive, is a layer of ceramic material, for example, a layer of epoxide compound loaded with aluminum nitride (AlN), or a layer of beryllium oxide (BeO), or silicone.
  • AlN aluminum nitride
  • BeO beryllium oxide
  • silicone silicone.
  • a transparent plate 9 is deposited on the encapsulation layer (5) and the transparent plate 9 is fixed on the heat exchanger (3) having an air gap around said photovoltaic cells (2) by means in the field of skill of the skilled person.
  • the dissipation zone (3c) has fins (11) on its surface to increase the heat exchange surface; the dissipation zone (3c) is connected to a heat extraction exchanger (7) fed with a cold incoming heat transfer fluid according to (7a) and hot spring according to (7b), by evacuating the heat absorbed by the heat pipe (3) . It is thus possible to recover a portion of the energy communicated to the heat pipe by the photovoltaic cells, to exploit it moreover, for example to supply a drive motor to follow the path of the sun or to circulate the heat transfer fluid of the circuit. 'extraction.
  • the photovoltaic cells (2) are formed either of silicon, multi-crystalline, monocrystalline or amorphous, in one or more thin layers of silicon, in hetero-structure based on amorphous silicon and crystalline silicon, or by silicon nanocrystalline, either based on cadmium telluride and indium copper selenide, or based on organic materials. They are connected either in series or in parallel, are coupled in series and in parallel, and are provided with two electrical conductors to drive the electricity produced outside.
  • the encapsulation layer (5) may consist of an ethylene / vinyl acetate (EVA) copolymer membrane, or polyvinyl butyral (PVB), or improved EVA (that is to say doped metal particles to increase its thermal conductivity without causing electrical conductivity), or enhanced PVB (doped metal particles to increase its thermal conductivity without causing electrical conductivity).
  • EVA ethylene / vinyl acetate
  • PVB polyvinyl butyral
  • the transparent plate (9) can be made of glass, tempered glass or plastic.
  • the surface of the transparent plate (9) is treated so as to have an anti-reflection capability so that the maximum of rays can reach the photocells.
  • the dual function interface layer (4) may be composed of the same material as the encapsulation layer (5) for a solar concentration tau of less than 5 times for which the heat to be dissipated and the temperature-related expansion are not not very important.
  • the dual function interface layer (4) may be a double layer of the encapsulation layer (5) and a ceramic layer previously cited for a solar concentration tau greater than 5 times for which the heat to be dissipated and the Temperature-related dilation is more important.
  • the layer (4) is preferably a ceramic layer mentioned above.
  • the dissipation zone (3c) is instrumented with fins (11) to intensify the heat exchange and the shape of the fins (11) is adapted according to the exchange intensification quality.
  • the entire surface of the heat pipe, with the exception of the contact surface with the rear face (S2) of the cells and except the surface of the dissipation zone (3 c) is covered with a material whose absorption coefficient of radiation is greater than the radiation emission coefficient.
  • the superposed layers in a conventional photovoltaic solar module of the prior art are the following: (111), tempered glass window; (112) and (1140), EVA encapsulation sheets; (113) photovoltaic cells; (1150), TPT Laminate (Tedlar ® - Terephthalic Polyethylene)
  • - (111) 3mm thick tempered glass roles 1) to protect the EVA against air and external humidity; 2) serve as a cover to protect the PV cell against natural elements, for example hail; 3) ensure light transmission - 112 EVA encapsulation sheet 0.4mm thick: Roles 1) encapsulate the PV cell; 2) bond the tempered glass layer with the PV cell; 3) damper for PV cell expansion in case of temperature change; 4) to ensure the transmission of light; 5) very high electrical resistivity to form a very good electrical insulator; - (113) Photo voltaic cells: Generate electricity;
  • EVA encapsulation sheet roles 1) encapsulate the PV cell; 2) stick the PV cell with the TPT layer; 3) dampen the expansion of the PV cells when the temperature changes;
  • TPT laminate protect against moisture.
  • the superimposed layers in a hybrid solar receiver according to the invention consist of: (111), tempered glass window; (112), EVA encapsulation sheet; (113) photovoltaic cells; (1141), EVA encapsulation sheet and / or ceramic laminate of low thermal resistance (less than 7. 10 -4 m 2 K / W) and electrical insulation, or silicone paste (1151), heat pipe for evacuate the heat accumulated on the photovoltaic cells.
  • - (111) tempered glass less than 2mm thick roles: 1) to protect the EVA against air and moisture; 2) serve as a cover to protect the PV cell against natural elements such as hail; 3) to ensure the transmission of light;
  • EVA encapsulation sheet 0.4mm thick: Roles1) encapsulate the PV cell; 2) bond the tempered glass layer with the PV cell; 3) dampen the expansion of the PV cells in case of temperature change; 4) to ensure the transmission of light; 5) very high electrical resistivity to form a very good electrical insulator;
  • Photovoltaic cells 1) Generate electricity; 2) generate heat;
  • EVA encapsulation sheet and / or ceramic laminate roles 1) encapsulate the PV cell; 2) stick the PV cell with the heat pipe; 3) dampen the expansion of the PV cells in case of temperature change; 4) very high electrical resistivity to form a very good electrical insulator; 5) conduct heat through good thermal conduction;
  • Half-cylinder heat pipe with a diameter of 20 mm and 1800 mm in length roles 1) cooling the PV cells; 2) transport the heat; 3) Protect together the EVA layer and the photovoltaic cells against moisture.
  • characteristic values of the different materials used recalled below generally values at a temperature of 20 ° C.
  • the sum of the thermal resistances is equal to: - on the front face of the PV cell
  • the thermal resistance on the rear panel is 2.46 times higher than that of the front panel.
  • glass and TEDLAR ® behave like thermal insulators. If a conventional photovoltaic module were used in a non-heat dissipation concentration concentration linear solar system, the temperature of the back face would rise to over 750 ° C, and destroy the module. Even if a heat pipe is used to evacuate the heat, because of the very high thermal resistance of the TEDLAR ® (7.7.10 3 m 2 'KW " ' for a thickness of 2.54.10 ⁇ 4 m), the temperature of the face back will rise even more than 200 0 C and the module will degrade.
  • An essential characteristic of the invention is therefore to reduce the thermal resistance of the layer on the rear face of the photovoltaic cells, and to do this, to remove the TEDLAR ® layer and to replace it with a layer of better thermal conductivity: without the TEDLAR ® layer, the temperature of the back face will reach between 100 0 C and 150 0 C with heat dissipation by a heat pipe.
  • EVA is not an ideal material for driving heat, but it can still be maintained. Nevertheless, in a truly optimal embodiment, the EVA layer will also be replaced by a material of lower thermal resistance.
  • the operating performance of a hybrid solar receiver according to the invention is a function of the concentration concentration of the radiation on the photovoltaic cells and of the thermal resistance between the photovoltaic cell and the heat exchanger, to evacuate the heat accumulated on the area of photovoltaic cells.
  • the choice of material for the intermediate layers and that of the heat exchanger are adapted to evacuate the heat of the cells by transferring it to a maximum temperature of the order of 90 ° C. to 120 ° C. C, adapted for domestic use.
  • the solar concentrator concentration of the concentrator to receive all the concentrated radii without increasing the diameter of the heat pipe (3), it is possible to add fins (10) to the heat exchanger (3).
  • the fin length does not exceed the outside radius size of the heat pipe (3) so that the temperature difference between the heat pipe and the fin edge is not too high. If this temperature difference does not exceed 5 ° C, photovoltaic cells can be deposited on the fins (10) if necessary.
  • the solar hybrid receiver for linear concentration solar systems (1) can take the form of a tube for sealing the part where the photovoltaic cells (2) are located and reduce the thermal loss by infrared.
  • the tube may be a single-wall vacuum tube.
  • the tube may be a double-wall vacuum tube whose interior is in depression, or filled with oxygen-free dry air, or an inert gas.
  • the tube may contain desiccants or antioxidants.
  • the electricity required to power the servo motor for tracking the sun (tracking to maintain the radiation of the concentrated sun on a linear strip of photovoltaic cells regardless of the position of the sun relative to the receiver) and / or for the Heat pipe coolant pump can be provided by the receiver itself, or by an electric storage battery.
  • the structure of the hybrid solar receiver for the linear concentration solar systems (1) has the following advantages: the receiver using a concentrating solar system has a reduced surface to accommodate the solar rays: the quantity of material photovoltaic power needed to receive the sun's rays is greatly diminished compared to conventional panels without concentration and the investment cost on this material is lower.
  • the receiver produces electricity and at the same time can recover heat to produce hot water in particular.
  • the total efficiency is therefore higher, and it is a very good solution for installations with a limited sunny surface.
  • the receiver increases the heat to be dissipated on the surface of the cells. Therefore it becomes more interesting to recover it to produce, for example, domestic hot water at a high temperature.
  • the entire surface of the photovoltaic cells is in contact with the exchange surface of the heat pipe.
  • the use of the heat pipe technique allows the transfer of heat immediately and allows to operate in almost isothermal. As a result, the temperature of the entire surface of the photovoltaic cells is kept almost uniform and there is therefore less risk of rupture of the photovoltaic cells by the constraints generated by the temperature differentials: the lifetime of the photovoltaic cells can therefore be much greater. longer and guaranteed.
  • the thermal loss is proportional to the heat transfer surface and the photovoltaic efficiency is proportional to the flux intensity of the solar radiation.
  • the invention implements a much reduced surface to absorb solar rays, so the photovoltaic cell efficiency is higher and the thermal loss is less important.
  • this hybrid solar receiver 1 can be carried out according to the following steps:
  • the tube is then filled with coolant and closed at both ends to form a heat pipe by standard heat pipe manufacturing processes. 5.
  • an EVA layer, the photovoltaic cell layer and a glass are deposited on the ceramic, and then they are heated together at 120-150 ° C. to melt the EVA and stick together.
  • the glass is attached to the heat pipe by techniques of the art.
  • This method of manufacturing the receiver according to the invention is only an exemplary embodiment.
  • the hybrid solar receiver 1 may take the form of a closed tube 8 for sealing the part where said photovoltaic cells 2, as shown in FIG. 3a, are located.
  • Figure 3b shows the section A-A of Fig. 3a.
  • the inner structure of said heat pipe may have grooves making the office of capillary structure, but it may have other capillary structures (not shown) to drain the heat flow to intensify the heat transfer.
  • Figure 4a shows a second embodiment with a heat pipe having a rectangular section.
  • the thermal discharge zone (3a) has four flat surfaces, and the surface S2 is placed on and in contact with one of the four flat surfaces of the thermal discharge zone (3a) of said heat pipe 3 via a layer 4.
  • Figure 4b shows section A-A of fig 4a.
  • the inner structure of the heat pipe may have grooves acting as a capillary structure, but it may have other capillary structures (not shown) to drain the heat flow to intensify the heat transfer.
  • Figure 5a shows a third embodiment with a heat pipe having a circular section.
  • the thermal discharge zone (3a) is a cylinder, and the surface S2 is on and in contact with the cylindrical surface of the thermal discharge zone (3a) via the layer 4.
  • Figure 5b shows section AA of Figure 5a.
  • the inner structure of said heat pipe may have grooves acting as a capillary structure, but it may have other capillary structures (not shown) for draining heat flow to intensify heat transfer.
  • Figure 6a shows another embodiment with a heat pipe having a circular section and having fins.
  • the thermal exhaust zone (3a) is a cylinder with a fin at each tube side.
  • the surface S2 is on and in contact with the cylindrical surface of the thermal discharge zone (3a) via the layer 4.
  • the surface S2 can be placed on and in contact with said fins.
  • Figure 6b shows section A-A of Fig. 6a.
  • the inner structure of the heat pipe may have grooves acting as a capillary structure, but it may have other capillary structures (not shown) to drain the heat flow to intensify the heat transfer.
  • FIG. 7a shows a hybrid solar receiver according to the invention comprising a solar concentrator (100) as described in patent WO2008 / 132300.
  • the concentrator concentrates the rays on the final image focus (FIF)
  • the hybrid solar receiver according to the invention is placed at the focus FIF and follows the movement of the focus FIF.
  • the front of the photovoltaic cells is turned towards the bottom of the concentrator to receive the concentrated rays.
  • FIG. 7b shows section A-A of Figure 7a.
  • a parallel solar beam represented by the rays R1 and R2 strikes the solar concentrator (100).
  • the beam passes through the lens by refracting and is reflected by the side mirrors and the background mirror, to finally focus at the final image focus (FIF) where the hybrid solar receiver (1) according to the invention is placed.
  • FIF final image focus
  • the solar rays striking the concentrator are concentrated on its final image focus on a 2cmx 100cm strip where the hybrid solar receiver is placed.
  • the solar hybrid receiver is composed of a strip of photovoltaic cells having a surface 2cmxl00cm and a heat pipe of semicircular section whose thermal discharge zone (3a) has a contact surface with the cell strip which is also 2cmxl00cm and whose dissipation zone (3c) is connected with a heat exchanger for discharging the condensed heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Le récepteur solaire hybride selon l'invention comprend des cellules photovoltaïques (2) pour convertir les rayons solaires concentrés sur ces cellules en électricité et un caloduc (3) ayant une zone d'évacuation thermique (3a) faisant office d' évaporateur pour évacuer la chaleur accumulée sur les cellules photovoltaïques (2) et une zone de dissipation (3c) pour dissiper la chaleur qu'il absorbe, toute la face arrière (S2) des cellules photovoltaïques (2) étant posée sur et en contact avec la zone d'évacuation thermique (3a) du caloduc (3) via une couche d'interface (4) qui isole électriquement les cellules photovoltaïques (2) du caloduc (3), pour transmettre instantanément la chaleur accumulée sur les cellules photovoltaïques (2) au liquide caloporteur du caloduc. Toute la surface des cellules photovoltaïques (2), sauf la face arrière (S2) est recouverte d'une couche (5) d'un produit d' encapsulation et une plaque transparente (9) est déposée sur la couche (5) d' encapsulation. L'utilisation d'un tel récepteur avec un concentrateur linéaire forme un système solaire à concentration générant de l'électricité et de la chaleur à utilisation domestique de façon optimale.

Description

RECEPTEUR SOLAIRE HYBRIDE ET SYSTEME SOLAIRE A CONCENTRATION LE COMPORTANT
DOMAINE TECHNIQUE DE L'INVENTION
La présente invention concerne un récepteur solaire hybride, photovoltaïque et thermique, destiné à générer simultanément de l'électricité et de la chaleur en optimisant la surface de cellules photovoltaïques utilisée, particulièrement bien adapté à des usages domestiques. ETAT DE LA TECHNIQUE ANTERIEURE
Avec le développement, le secteur énergétique, au niveau mondial doit accompagner une demande croissante malgré une raréfaction des ressources, tout en répondant aux menaces du changement climatique induites par l'émission de gaz à effet de serre. Les changements dans les technologies utilisées, le basculement des sources conventionnelles vers les énergies renouvelables, dépendront évidemment du prix du kilowattheure produit.
Aujourd'hui, avec les améliorations qui s'enchaînent, le rendement des panneaux solaires photovoltaïques est d'environ 15%. Ce rendement est évidemment encore bas et le prix de l'électricité produite est encore supérieur à celui de l'électricité produite par les voies traditionnelles, ce qui souvent amène les projets solaires photovoltaïques à n'exister qu'avec des subventions. Pour diminuer le coût de la technologie solaire photovoltaïque et pour récupérer la partie de chaleur à diffuser, il existe aujourd'hui des récepteurs solaires hybrides.
Le brevet FR 2 727 790 concerne un module solaire hybride photovoltaïque et thermique. Un panneau photovoltaïque est utilisé pour produire de l'électricité, en même temps qu'un gaz est ventilé sous le panneau photovoltaïque pour le refroidir. Le gaz ainsi réchauffé cède sa chaleur en circulant au travers d'un échangeur. L'avantage d'un tel récepteur est qu'il permet d'extraire et de récupérer une partie de la chaleur accumulée sur le panneau photovoltaïque tandis que le ventilateur est alimenté par une partie de l'électricité produite par le panneau photovoltaïque. Cependant, l'inconvénient est que le flux gazeux d'extraction ne peut pas évacuer rapidement et suffisamment la chaleur accumulée sur le panneau photovoltaïque, et donc, le rendement total n'est pas élevé, ce qui en limite l'usage.
Le brevet WO 2006/038508 décrit un système solaire hybride en cogénération de chaleur et d'électricité qui utilise la partie évaporateur d'un caloduc pour récupérer la chaleur accumulée sur le panneau solaire photovoltaïque. Le caloduc a une structure de deux plaques dans laquelle un canal méandrique est ménagé, un fluide réfrigérant circulant dans ce canal. L'avantage de ce système est que le haut flux de chaleur transféré par le caloduc permet de maintenir le panneau photovoltaïque à une basse température. Cependant, ce système résulte de la simple superposition d'un panneau photovoltaïque classique et d'un caloduc : la dissipation de la chaleur du panneau photovoltaïque n'est pas optimisée à cause de la résistance thermique élevée de la face arrière du panneau photovoltaïque formé d'une couche de copolymère éthylène vinyle acétate, EVA dans la suite, et d'une couche de colaminé de fluorure de polyvinyle, de polyéthylène de téréphtalate commercialisé sous la marque « TEDLAR® ». De plus, le canal méandrique du caloduc est prévu pour augmenter la surface d'échange, mais cette structure limite la circulation du fluide caloporteur dans le caloduc. Un tel système ne peut fonctionner qu'à une basse intensité solaire, car quand l'intensité solaire est élevée, le canal méandrique empêche la circulation du fluide caloporteur vers le condenseur et finalement le caloduc ne peut pas fonctionner correctement. Enfin avec une structure à deux plaques avec un canal méandrique, la surface d'échange thermique du caloduc est indépendante de la surface des cellules photo voltaïques et il y a un risque de non homogénéité de la température sur la surface des cellules photovoltaïques.
Aujourd'hui, la problématique des récepteurs solaires hybrides en cogénération d'électricité et de chaleur est qu'il y a un conflit entre la température moyenne efficace des cellules photovoltaïques et celle du récepteur thermique. En effet la plupart des cellules photovoltaïques fonctionnent mieux quand leur température est autour de celle de l'environnement, mais pour une bonne efficacité thermique, on a souvent besoin d'une température plus élevée. A cause de la relativement basse intensité des rayons solaires et le bas niveau de rendement des cellules photovoltaïques environ 15%, si on augmente la température moyenne des cellules photovoltaïques pour pouvoir récupérer de l'énergie thermique à haute température, la puissance crête des cellules photovoltaïques décroît fortement (0.4%/°C) et le rendement de production est encore plus mauvais. En conséquence, pour éviter le problème de surchauffe de la cellule photovoltaïque, la solution la plus connue est de refroidir cette cellule photovoltaïque par une ventilation naturelle ou artificielle placée au-dessous du panneau photovoltaïque, la chaleur n'étant pas alors récupérée et étant rejetée dans l'environnement.
En résumé, les récepteurs solaires photovoltaïques à cogénération d'électricité et de chaleur ne sont que des juxtapositions qui ne permettent pas du tout d'optimiser la génération simultanée d'électricité et de chaleur à partir du rayonnement solaire. Par ailleurs, un autre aspect économique joue un rôle important pour les produits d'énergie solaire et la technologie appliquée. Dans les panneaux solaires photovoltaïques classiques, les cellules photovoltaïques comptent pour environ 70% du coût total du panneau. Une meilleure utilisation du silicium de la cellule photovoltaïque contribue à diminuer le coût total du panneau. La technologie de concentration solaire est un moyen de diminuer la surface de cellules photovoltaïques nécessaire et donc la quantité de matériau silicium nécessaire. Cependant la concentration conduit à une élévation de la température de la cellule photovoltaïque très importante dans la mesure où le rendement des cellules est de l'ordre de 15% seulement, 85% du rayonnement solaire étant dissipé en chaleur. De plus, comme indiqué ci-dessus une cellule photovoltaïque fonctionne mieux quand sa température est autour de la température ambiante (sauf avec des cellules mettant en œuvre du silicium amorphe). En conséquence, il est nécessaire de dissiper la chaleur pour maintenir la température de la cellule photovoltaïque et éviter qu'elle ne s'élève à des valeurs où son rendement se dégrade.
Pour résoudre le problème de surchauffe éventuelle dans les systèmes solaires hybrides sans concentration, la solution est souvent de coller un échangeur thermique directement sous le panneau photovoltaïque. Cependant, les couches au-dessous des cellules photovoltaïques dans le panneau photovoltaïque sont constituées de matériaux qui ont très grande résistance thermique, tels que l'EVA et le TELDAR®. Ces couches sont des composants essentiels pour le panneau solaire photovoltaïque classique qui ne peuvent pas être enlevées. Compte tenu de l'intensité d'ensoleillement relativement basse, la chaleur à dissiper n'est pas très importante et la ventilation sous un panneau photovoltaïque classique est suffisante pour réguler la surchauffe éventuelle. Par contre, dans un système solaire photovoltaïque à concentration, le problème de surchauffe des cellules photovoltaïque est crucial : la solution classiquement adoptée est de combiner un échangeur thermique avec une surface d'échange beaucoup plus grande que celle des cellules photovoltaïques. L'échangeur thermique est placé sous les cellules photovoltaïques avec un fluide caloporteur qui circule à l'intérieur. La surface d' échangeur thermique est très grande et sa capacité d'échange thermique par unité de surface n'est pas élevée, la température du fluide caloporteur reste donc assez basse.
Le brevet WO 2004/042828 concerne un tel système de refroidissement par l'air à la température ambiante d'un système photovoltaïque à concentration. Dans ce système, les cellules photovoltaïques sont attachées à un caloduc de forme spéciale par une couche adhésive de conductivité thermique, une couche intermédiaire en métal et une plaque élastique, ou par une couche adhésive de conductivité thermique, une couche intermédiaire en métal, une couche adhésive de conductivité thermique (ou une couche de brasure) et une plaque élastique. Un tel système a beaucoup d'inconvénients : d'abord, les cellules photovoltaïques ne sont pas protégées contre l'air et l'humidité et sont donc corrodables ; de plus, avec la concentration du rayonnement solaire, le courant d'électricité produite est élevé et il y a une risque de conduction électrique entre les cellules et le caloduc puisque les couches intermédiaires ne sont que des couches de conductivité thermique et métal (conducteur électrique); ensuite, les couches intermédiaires sont attachées mécaniquement au caloduc par une plaque élastique, et ceci pose un problème mécanique sur les cellules photovoltaïques car il y a un risque d'écrasement des cellules photovoltaïques par la force différentielle créée par une température non-homogène ; enfin, ce système ne sert que refroidir les cellules par l'air avec une surface considérable d'échange thermique et ne peut pas produire de liquide caloporteur chaud
EXPOSE DE L'INVENTION L'objet de l'invention est de proposer une solution innovante pour résoudre la problématique contradictoire de la température versus le rendement des cellules photovoltaïques dans un système solaire photo voltaïque à concentration minimisant la surface de matériau photovoltaïque (silicium), qui permet en même temps de produire de la chaleur à une température directement adaptée à la production d'eau chaude à usage domestique, dans un récepteur solaire hybride photovoltaïque et thermique particulièrement efficace pour la production simultanée d'électricité et de chaleur.
Selon l'invention, le récepteur solaire hybride destiné aux systèmes solaires à concentration , pour générer simultanément de l'électricité et de la chaleur, du type comprenant des cellules photovoltaïques pour convertir les rayons solaires concentrés sur ces cellules en électricité et un caloduc pour évacuer la chaleur accumulée sur les cellules photovoltaïques via un liquide caloporteur, est caractérisé en ce que :
- les cellules photovoltaïques ont une face avant (Sl) pour accueillir les rayons solaires concentrés et une face arrière(S2) au dos de la face (Sl);
- le caloduc a une zone d'évacuation thermique faisant l'office d'évaporateur pour évacuer la chaleur accumulée sur les cellules photovoltaïques et une zone de dissipation pour dissiper la chaleur qu'il absorbe toute la face arrière des cellules photovoltaïques étant en contact avec la zone d'évacuation thermique du caloduc via une couche d'interface double fonction qui isole électriquement les cellules photovoltaïques du caloduc, pour transmettre instantanément la chaleur accumulée sur les cellules photovoltaïques au liquide caloporteur du caloduc ;
- toute la surface des cellules photovoltaïques, sauf la face arrière (S2), étant recouverte d'une couche d'encapsulation;
- une plaque transparente est déposée sur la couche d'encapsulation; -l'ensemble formé par la plaque transparente, la couche d'encapsulation les cellules photovoltaïques et la couche d'interface étant fixé sur le caloduc.
Ainsi, l'invention trouve un avantage particulier dans l'emploi de caloducs pour évacuer la chaleur présente au niveau des cellules photovoltaïques. Un caloduc est un dispositif qui transporte de grandes quantités de chaleur sous de faibles gradients de températures. On peut par exemple citer les caloducs à pompage capillaire, dont la structure capillaire se compose de rainures qui ont été usinées dans la paroi métallique. Un caloduc se présente sous la forme d'une enceinte hermétique, qui renferme un liquide caloporteur. Le caloduc est divisé en trois zones : une zone d'évacuation thermique (également fréquemment appelée « zone d'évaporation » ou « évaporateur ») située au niveau de l'apport de chaleur, une zone adiabatique (également appelée « zone neutre ») qui peut être dans certains cas omise car elle n'est pas toujours nécessaire, et une zone de dissipation (également fréquemment appelée « condenseur ») placée au niveau de la source froide. Circulant dans ces diverses régions en exploitant la chaleur latente de changement de phase, le fluide suit un cycle thermodynamique fermé. Ce cycle est composé de quatre étapes. Lorsque l' évaporateur du caloduc est en contact avec la source chaude, c'est-à-dire les cellules photovoltaïques en fonctionnement, le liquide, qui se situe dans la structure capillaire, s'évapore en absorbant l'équivalent de la quantité de chaleur latente de changement d'état. Ce changement de phase mène à une augmentation de la pression dans la phase vapeur qui provoque l'écoulement de la vapeur vers la zone de condensation. La vapeur se condense, et elle libère alors la totalité de l'énergie calorifique absorbée lors de la vaporisation. Pour permettre le fonctionnement passif du système, le retour du liquide vers l'évaporateur doit être assuré par une force motrice. Cette fonction peut être assurée par la gravité du fluide caloporteur. Il suffit alors de placer la zone de condensation au-dessus de la zone d'évaporation. Dans la configuration inverse, ce rôle est joué par l'action capillaire. Pour ce faire, la paroi interne du caloduc est tapissée d'un réseau capillaire. Le fluide développe alors un ménisque incurvé qui est responsable de l'apparition d'une différence de pression entre ces deux phases. Cette différence de pression permet alors de compenser les pertes de charge développées le long du caloduc, afin d'assurer le retour du liquide de la zone de condensation vers la zone d'évaporation.
Ainsi, pour autant qu'elles soient de même géométrie, toutes les rainures se comportent de manière identique et doivent permettre au liquide de développer une différence de pression capillaire capable de compenser les pertes de charge le long du caloduc.
Un intérêt des caloducs est de pouvoir transférer un flux thermique important sous un très faible gradient de température. Outre cette qualité exceptionnelle, les caloducs présentent également d'autres avantages, parmi lesquels on peut citer leur poids léger, leur grande fiabilité, leur flexibilité au niveau de la géométrie ou encore, le fait qu'il s'agit d'un système passif. A ces propriétés, on peut ajouter:
- leur capacité de transport thermique importante. Celle-ci les rend bien adaptés pour évacuer la chaleur dégagée par les cellules photovoltaïques, et en particulier lorsque celles-ci sont employées avec des systèmes de concentration.
- leur grande conductivité thermique. Cette propriété leur permet d'uniformiser la température des éléments qui en sont au contact. C'est ainsi que la température est maintenue à un niveau très homogène sur toute la surface des cellules photovoltaïques. Ceci améliore grandement la fiabilité des cellules en réduisant en particulier les risques de dilatation différentielle localisée, et garantit une stabilité de fonctionnement.
- la rapidité du transfert thermique. Ceci permet d'assurer la régulation de la température des cellules photovoltaïques.
En d'autres termes, l'invention s'applique dans un processus qui a une source de la chaleur intensifié, due à la concentration d'énergie solaire par les concentrateurs solaires et qui comporte des cellules photovoltaïques relativement fines (typiquement entre 100 à 180 micromètre). Ces cellules sont également très fragiles à cause de la dilatation différentielle, provoquée par l'écart de température entre différentes points sur la surface de la cellule. Sur des dispositifs classiques, ce phénomène engage une fatigue rapide du matériau conduisant à sa rupture. En effet, lorsque l'écart de température dépasse à 5°C sur une cellule photovoltaïque, la durée de vie de la cellule devient incertaine. En conséquence, l'invention permet d'obtenir une homogénéité de la température sur les cellules, ce qui augmente la durée de vie et la stabilité de fonctionnement.
Selon d'autres caractéristiques de l'invention :
- la couche interface a une résistance thermique inférieure à 7.104 m2.K/W
- le matériau constituant la couche d'interface double fonction est choisi comprenant les matériaux céramiques, les associations d'EVA et de matériau céramique, les pâtes de silicone. Avantageusement, le matériau céramique est choisi parmi le nitrure d'aluminium (AlN), l'oxyde de béryllium (BeO), et l'alumine (AI2O3).
- le matériau constituant la couche d'encapsulation est choisi dans le groupe comprenant l'EVA, le PVB, l'EVA dopé avec des particules métalliques, le PVB dopé avec des particules métalliques. - la zone de dissipation du caloduc a des ailettes sur sa surface pour augmenter la surface d'échange thermique et la zone de dissipation est connectée à un échangeur d'extraction alimenté en un fluide caloporteur.
- toute la surface du caloduc, sauf la surface de contact avec la face arrière des cellules photovoltaïques et la surface de la zone de dissipation, est recouverte d'un matériau dont le coefficient d'absorption de rayonnement est supérieur au coefficient d'émission de rayonnement.
- la section extérieure de la zone d'évacuation thermique est semi circulaire avec une surface plane, et la face arrière des cellules photovoltaïques fait face à cette surface plane de la zone d'évacuation thermique à laquelle elle est liée via la couche d'interface double fonction.
- la section extérieure de la zone d'évacuation thermique est rectangulaire, l'une des quatre surfaces planes et la face arrière des cellules photovoltaïques étant en contact via la couche d'interface double fonction.
- la section extérieure de la zone d'évacuation thermique est circulaire, la face arrière des cellules photovoltaïques étant en contact avec la surface extérieure de la zone d'évacuation thermique cylindrique via la couche d'interface double fonction.
- le caloduc a une ailette de chaque côté de la zone d'évacuation thermique. - la plaque transparente est traitée de façon antireflet.
- les cellules photovoltaïques recouvrent toute la surface de la zone d'évacuation thermique.
- la zone d'évacuation thermique du caloduc est enfermée par un tube sous vide pour diminuer la perte thermique.
L'invention vise également un système solaire comportant un concentrateur solaire à concentration linéaire et un récepteur solaire hybride comme décrit ci-avant, caractérisé en ce que, l'électricité qui lui est nécessaire pour alimenter un moteur d'entraînement pour suivre la course du soleil et pour faire circuler le fluide caloporteur, est fournie par le système lui-même.
PRESENTATION DES FIGURES
L'invention sera mieux comprise à la lecture de la description suivante faite en référence aux dessins annexés dans lesquels les mêmes références désignent les mêmes éléments et où:
-la figure 1 est un schéma en perspective, d'un mode de réalisation d'un récepteur solaire hybride selon l'invention destiné aux systèmes solaires à concentration linéaire avec un caloduc de section semi circulaire;
-la figure 2a est un schéma éclaté des composants d'un panneau solaire photovoltaïque classique.
-la figure 2b est un schéma éclaté des composants d'un panneau solaire hybride selon l'invention.
-la figure 3a est un schéma en perspective de récepteur solaire hybride destiné aux systèmes solaires à concentration linéaire illustrée dans la figure 1 en revêtant un tube clos et en connectant avec un échangeur d'extraction selon l'invention.
-la figure 3b est un schéma d'une vue en coupe A-A de la figure 3a ; -la figure 4a est un schéma en perspective, d'un mode de réalisation d'un récepteur solaire hybride destiné aux systèmes solaires à concentration linéaire avec un caloduc de section rectangulaire selon l'invention ;
-la figure 4b est un schéma d'une vue en coupe A-A de la figure 4a. -la figure 5a est un schéma en perspective, d'un mode de réalisation d'un récepteur solaire hybride destiné aux systèmes solaires à concentration linéaire avec un caloduc de section circulaire selon l'invention ;
-la figure 5b est un schéma d'une vue en coupe A-A de la figure 5a.
-la figure 6a est un schéma en perspective, d'un mode de réalisation d'un récepteur solaire hybride destiné aux systèmes solaires à concentration linéaire, avec un caloduc de section circulaire ayant des ailettes, selon l'invention ;
-la figure 6b est un schéma d'une vue en coupe A-A de la figure 6a.
-La figure 7a est un schéma en perspective d'un mode de réalisation d'un récepteur solaire hybride selon l'invention associé à un concentrateur solaire tel que décrit dans le brevet WO2008/132300.
-La figure 7b est un schéma d'une vue en coupe A-A de la figure 7a où est représentée la trajectoire d'un faisceau solaire parallèle dans tel concentrateur.
DESCRIPTION DETAILLEE DE L'INVENTION La présente invention permet d'apporter une solution simple et efficace pour diminuer le coût de la technologie de l'énergie solaire par la voie de la concentration solaire et de générer simultanément de l'électricité et de la chaleur entre 45°C à 1500C pour répondre à la plupart de besoins quotidiens.
Le récepteur solaire hybride selon l'invention est destiné en particulier aux systèmes solaires à concentration linéaire. Un système solaire à concentration est dit « linéaire » lorsque les rayons solaires sont concentrés sur une ligne ou une petite bande linéaire : c'est par exemple, un système solaire à concentration à parabole cylindrique, un système solaire à concentration à miroir de Fresnel, un système solaire à concentration à lentille cylindrique, ou un concentrateur solaire tel que décrit dans le brevet WO2008/132300. Si des cellules photovoltaïques sont appliquées directement sur la zone de concentration d'un tel concentrateur qui peut concentrer environ 20 fois l'intensité d'ensoleillement, les solutions classiques d'évacuation de la chaleur produite se révèlent notablement insuffisantes pour éviter la surchauffe des cellules photovoltaïques. L 'invention concerne un récepteur solaire hybride particulièrement bien adapté à l'utilisation d'un tel concentrateur linéaire, mais est également applicable à d'autres systèmes à concentration.
A cette fin, selon la présente invention et en référence à la Figure 1 , le récepteur solaire hybride destiné en particulier aux systèmes solaires à concentration linéaire du type précité, comporte des cellules photovoltaïques (2) qui ont une face avant(Sl) pour recevoir les rayons solaires concentrés, et une face arrière (S2) pour évacuer la chaleur accumulée. Un caloduc (3) a une zone d'évacuation thermique (3a) utilisée pour extraire la chaleur accumulée sur les cellules photo voltaïques(2) et une zone de dissipation (3 c) pour dissiper la chaleur qu'il absorbe : toute la face arrière des cellules(S2) est positionnée en contact avec la zone d'évacuation thermique (3a) du caloduc (3) via une couche d'interface double fonction (4) qui isole électriquement les cellules photovoltaïques (2) du caloduc (3) et qui possède également une résistance thermique inférieure à 7.10"4 m2K/W permettant d'évacuer instantanément la chaleur accumulée sur les cellules photovoltaïques (2). Cette couche d'interface (4), isolante électriquement et conductrice thermiquement, est une couche de matériau céramique, par exemple, une couche de composé époxyde chargée en nitrure d'aluminium (AlN), ou une couche d'oxyde de béryllium (BeO), ou de silicone. Toute la surface des cellules photovoltaïques (2), sauf la face arrière (S2) recouverte de la couche d'interface double fonction (4) est recouverte d'une couche d'encapsulation (5). Une plaque transparente 9, est déposée sur la couche d'encapsulation (5) et la plaque transparente 9 est fixée sur l'échangeur thermique (3) ayant un vide d'air autour desdites cellules photovoltaïques (2) par des moyens dans le domaine de compétence de l'homme du métier. La zone de dissipation (3c) a des ailettes (11) sur sa surface pour augmenter la surface d'échange thermique ; la zone de dissipation (3c) est connectée à un échangeur d'extraction de chaleur (7) alimenté en un fluide caloporteur entrant froid selon (7a) et ressortant chaud selon (7b), en évacuant la chaleur absorbée par le caloduc (3). On peut ainsi récupérer une partie de l'énergie communiquée au caloduc par les cellules photovoltaïques, pour l'exploiter par ailleurs, par exemple pour alimenter un moteur d'entraînement pour suivre la course du soleil ou pour faire circuler le fluide caloporteur du circuit d'extraction.
De manière classique, les cellules photovoltaïques (2) sont formées soit à base de silicium, multi cristallin, monocristallin ou amorphe, en une ou des couches minces de silicium, en hétéro-structure à base de silicium amorphe et silicium cristallin, ou par silicium nanocristallin, soit à base de tellurure de cadmium et de séléniure de cuivre indium, soit à base de matériaux organiques. Elles sont connectées soit en série, soit en parallèle, soit couplées en série et en parallèle, et sont munies de deux conducteurs électriques pour conduire l'électricité produite à l'extérieur.
La couche d'encapsulation (5) peut être constituée d'une membrane de copolymère d'éthylène/vinyle acétate (EVA), ou polyvinyl-butyral (PVB), ou EVA amélioré (c'est-à-dire dopé des particules métaux pour augmenter son conductivité thermique sans provoquer la conductivité électrique), ou PVB amélioré (dopé des particules métaux pour augmenter son conductivité thermique sans provoquer la conductivité électrique).
La plaque transparente (9) peut être en verre, en verre trempé ou en plastique. La surface de la plaque transparente (9) est traitée de façon à posséder une capacité anti-réflexion pour que le maximum de rayons puisse atteindre les cellules photo vo ltaïques .
La couche d'interface double fonction (4) peut être composée du même matériau que la couche (5) d'encapsulation pour un tau de concentration solaire inférieure à 5 fois pour laquelle la chaleur à dissiper et la dilatation liée à la température ne sont pas très importantes. La couche d'interface double fonction (4) peut être une double-couche de la couche (5) d'encapsulation et une couche de céramique citée précédemment pour un tau de concentration solaire supérieur à 5 fois pour laquelle la chaleur à dissiper et la dilatation liée à la température sont plus importantes. Cependant, la couche(4) de préférence est une couche de céramique citée précédemment.
La zone de dissipation (3c) est instrumentée d' ailettes (11) pour intensifier l'échange thermique et la forme des ailettes (11) est adaptée en fonction de la qualité d'intensification d'échange.
Toute la surface du caloduc, à l'exception de la surface de contact avec la face arrière(S2) des cellules et sauf la surface de la zone de dissipation (3 c) est recouverte d'un matériau dont le coefficient d'absorption de rayonnement est supérieur au coefficient d'émission de rayonnement.
Comme la figure 2a le montre, les couches superposées dans un module solaire photovoltaïque classique de l'Art Antérieur sont les suivantes : (111), Vitre en verre trempé ; (112) et (1140), Feuilles d'encapsulation en EVA ; (113), cellules photovoltaïques ; (1150),Laminé de TPT (Tedlar® - Polyéthylène téréphtalaque
-Tedlar®). Dans un tel panneau solaire photovoltaïque classique de 1482x676mm, les épaisseurs et les rôles des couches qui le composent peuvent être décrits comme suit:
- (111) verre trempé d'épaisseur 3mm : rôles 1) protéger l'EVA contre l'air et l'humidité extérieur; 2) servir de couverture pour protéger la cellule PV contre les éléments naturels, par exemple la grêle; 3) assurer la transmission de la lumière;- 112 Feuille d'encapsulation EVA de 0,4mm d'épaisseur: Rôles 1) encapsuler la cellule PV; 2) coller la couche verre trempé avec la cellule PV; 3) amortisseur pour la dilatation de cellule PV en cas de changement de température; 4) assurer la transmission de la lumière; 5) résistivité électrique très élevée pour former un très bon isolant électrique; - (113) Cellules photo voltaïques : Générer de l'électricité ;
- (1140) Feuille d'encapsulation EVA de 0,4mm : rôles 1) encapsuler la cellule PV ; 2) coller la cellule PV avec la couche TPT ; 3) amortir la dilatation des cellules PV en cas de changement la température;
- (1150) Laminé de TPT de 0,25mm : rôle protéger contre l'humidité.
Par opposition, comme la figure 2b le montre, les couches superposées dans un récepteur solaire hybride selon l'invention se composent de : (111), Vitre en verre trempé ; (112), Feuille d'encapsulation EVA ; (113), cellules photovoltaïques ; (1141), Feuille d'encapsulation EVA et/ou laminé de céramique de faible résistance thermique (inférieure à 7. 10"4 m2 K/W) et d'isolation électrique ; ou pâte de silicone ; (1151), caloduc pour évacuer la chaleur accumulée sur les cellules photovoltaïques.
Dans un tel récepteur solaire hybride selon l'invention de 1500x20mm, les épaisseurs et les rôles des couches le composant peuvent être décrits comme suit:
- (111) verre trempé d'épaisseur inférieure à 2mm : rôles: 1) protéger l'EVA contre l'air et l'humidité; 2) servir de couverture pour protéger la cellule PV contre les éléments naturels par exemple la grêle; 3) assurer la transmission de la lumière;
- (112) Feuille d'encapsulation EVA de 0,4mm d'épaisseur: Rôlesl) encapsuler la cellule PV; 2) coller la couche verre trempé avec la cellule PV; 3) amortir la dilatation des cellules PV en cas de changement de température; 4) assurer la transmission de la lumière; 5) résistivité électrique très élevée pour former un très bon isolant électrique;
- (113) Cellules photovoltaïques : 1) Générer de l'électricité; 2) générer de la chaleur;
- (1141) Feuille d'encapsulation EVA et/ou laminé de céramique: rôles 1) encapsuler la cellule PV ; 2) coller la cellule PV avec le caloduc; 3) amortir la dilatation des cellules PV en cas de changement de température; 4) résistivité électrique très élevée pour former un très bon isolant électrique; 5) conduire la chaleur via une bonne conduction thermique;
- (1151) Caloduc en demi-cylindre de diamètre 20 mm et de 1800mm de longueur: rôles 1) refroidir les cellules PV; 2) transporter la chaleur; 3) protéger ensemble de la couche EVA et les cellules photovoltaïques contre l'humidité. Ceci montre que les épaisseurs et les rôles des couches constituées dans les deux systèmes ne sont pas identiques même lorsqu'elles sont constituées des mêmes matériaux, ceci résultant des caractéristiques physiques des matériaux choisis pour permettre la dissipation de chaleur dans un tel système solaire à concentration, et également des valeurs caractéristiques des différents matériaux utilisés rappelées ci-dessous ( valeurs générales à une température de 200C):
Conductivité thermique* épaisseur Résistance thermique
X [WW-K"1] mm e/λ [m^K-W"1]
- verre 1,1 3 2,73.10"3
- EVA 0,6 0,4 6,7.104
- Silicium PV 150 0,18 1,2.10"6
- Pâte de silicone 1,5 0,2 1,3.10"4
- Al2O3 39 0,2 5,1.10"6
- BeO 218 0,2 9,2.107
- AlN 170 0,2 1,2.10"6
- TELDAR® 0,033 0,254 7,7.10"3
D'après les valeurs ci-dessus, dans le panneau photo voltaïque classique, la somme des résistances thermiques est égale à : - en face avant de la cellule PV
Résistances (Verre+EVA)=2,73.10"3+6,7.10"4
=3,4.10"3[m2-K.W"1] pour une épaisseur de verre de 3mm (3.10"3m) et une épaisseur d'EVA de 0,4mm (4.10"4m) ;
- en face arrière de la cellule PV Résistances (EVA+TELDAR®)= 6,7.10"4 +7,7.10"3 =8,37. ÎO^^-KW"1] pour une épaisseur d'EVA de 0,4mm et pour une épaisseur de TEDLAR® de 0,254mm.
La résistance thermique en face arrière est 2,46 fois plus élevée que celle de la face avant. En pratique, le verre et le TEDLAR® se comportent comme des isolants thermiques. Si un module photovoltaïque classique était utilisé dans un système solaire à concentration linéaire de taux de concentration 20 sans évacuation de chaleur, la température de la face arrière monterait à plus de 750°C,et détruirait le module. Même si un caloduc est utilisé pour évacuer la chaleur, du fait de la résistance thermique très élevée du TEDLAR® (7,7.103 m2'K.W"' pour une épaisseur de 2,54.10~4m), la température de la face arrière montera encore à plus de 2000C et le module se dégradera.
Une caractéristique essentielle de l'invention est donc de diminuer la résistance thermique de la couche en face arrière des cellules photovoltaïques, et pour ce faire, d'enlever la couche TEDLAR® et de la remplacer par une couche d'un matériau de meilleure conductivité thermique : sans la couche TEDLAR®, la température de la face arrière atteindra entre 1000C et 1500C avec une dissipation de chaleur par un caloduc. L'EVA n'est pas un matériau idéal pour conduire la chaleur, mais il peut malgré tout être maintenu. Néanmoins, dans un mode de réalisation vraiment optimal, la couche d'EVA sera aussi remplacée par un matériau de moindre résistance thermique.
En résumé, la performance de fonctionnement d'un récepteur solaire hybride selon l'invention est fonction du taux de concentration du rayonnement sur les cellules photovoltaïques et de la résistance thermique entre la cellule photovoltaïque et l'échangeur thermique, pour évacuer la chaleur accumulée sur la zone des cellules photovoltaïques. Pour chaque taux de concentration du rayonnement solaire, le choix du matériau pour les couches intermédiaires et celui de l'échangeur thermique sont adaptés pour évacuer la chaleur des cellules en la transférant à une température maximum de l'ordre de 900C à 1200C, adaptée aux usages domestiques.
Dans un mode de réalisation, en prenant compte du taux de concentration solaire du concentrateur, pour recevoir tous les rayons concentrés sans augmenter le diamètre du caloduc (3), on peut rajouter des ailettes (10) sur l'échangeur thermique (3). La longueur d'ailette ne dépasse pas la taille de rayon extérieur du caloduc (3) pour que l'écart de la température entre le caloduc et le bord d'ailette ne soit pas trop élevé. Si cet écart de température ne dépasse pas 5°C, on peut déposer des cellules photovoltaïques sur les ailettes (10) si nécessaire.
Le récepteur solaire hybride destiné aux systèmes solaires à concentration linéaire (1) selon l'invention peut revêtir la forme d'un tube pour étancher la partie où se situe les cellules photovoltaïques (2) et diminuer la perte thermique par infrarouge. Le tube peut être un tube simple paroi sous-vide. Le tube peut être un tube de double-paroi sous vide dont l'intérieur est en dépression, ou rempli avec de l'air sec exempt d'oxygène, ou d'un gaz inerte. Le tube peut contenir des produits dessicatifs ou antioxydants.
L'électricité nécessaire pour alimenter le moteur d'asservissement pour le suivi du soleil (tracking permettant de maintenir le rayonnement du soleil concentré sur une bande linéaire de cellules photovoltaïques quelle que soit la position du soleil par rapport au récepteur) et/ou pour la pompe de fluide caloporteur du caloduc peut être fournie par le récepteur lui-même, ou par une batterie de stockage d'électricité.
Ainsi, la structure du récepteur solaire hybride destiné aux systèmes solaires à concentration linéaire (1) selon l'invention a les avantages suivants : - le récepteur utilisant un système solaire à concentration possède une surface réduite pour accueillir les rayons solaires : la quantité de matériau photovoltaïque nécessaire pour recevoir les rayons solaires est très diminuée par rapport aux systèmes à panneaux classiques sans concentration et le coût d'investissement sur ce matériau est moins élevé.
- le récepteur produit de l'électricité et en même temps permet de récupérer de la chaleur pour produire notamment l'eau chaude sanitaire. Le rendement total est donc plus élevé, et c'est une très bonne solution pour les installations avec une surface ensoleillée limitée.
- le récepteur augmente la chaleur à dissiper sur la surface des cellules. De ce fait il devient plus intéressant de la récupérer pour produire, par exemple, de l'eau chaude sanitaire à une température élevée. - selon l'invention, toute la surface des cellules photovoltaïques est en contact avec la surface d'échange du caloduc. L'utilisation de la technique de caloduc permet de transférer la chaleur immédiatement et permet de fonctionner en quasi isotherme. De ce fait la température de toute la surface des cellules photovoltaïques est maintenue quasi uniforme et il y a donc moins de risques de rupture des cellules photovoltaïques par les contraintes engendrées par les différentiels de température : la durée de vie des cellules photovoltaïques peut donc être beaucoup plus longue et garantie.
- la perte thermique est proportionnelle à la surface de transfert de chaleur et le rendement photovoltaïque est proportionnel à l'intensité de flux du rayonnement solaire. L'invention met en œuvre une surface beaucoup réduite pour absorber les rayons solaires, donc le rendement de cellule photovoltaïque est plus élevé et la perte thermique est moins importante.
- la surface pour capter les rayons solaires est réduite par rapport aux panneaux solaires photovoltaïques classiques, et la maintenance et l'entretien sont donc réduits.
La jonction entre couches est très importante car il faut éviter l'air et l'humidité entre deux couches. Pour ce faire, un procédé de fabrication de ce récepteur solaire hybride 1 selon l'invention peut être effectué selon les étapes suivantes :
1. Une pièce de céramique de Nitrure d'aluminium, AlN, de forme parallélépipède d'épaisseur de 2 à 6.104 m, est polie jusqu'à la finesse 0,15±0,3 μm, puis est nettoyée à l'acétone et placée dans un four à 12000C pendant 12heures avec une quantité d'oxygène maîtrisée pour obtenir une laminé de 4μm d'alumine A12O3. Ensuite, la céramique est refroidie à 10000C avec une vitesse de refroidissement 5°C par minute, puis la céramique est transférée dans une enceinte sous vide.
2. un tube en cuivre avec une surface plane qui est polie jusqu'à 0.15± 0.3 μm, puis est nettoyée à l'acétone, est chauffé à 10000C pendant une heure dans plein d'air pour obtenir une laminé 4μm d'oxyde de cuivre, Cu2O, sur la surface plane. En suite, le tube est transféré dans l'enceinte sous vide. 3. la céramique pré-oxydée résultant de l'étape 1 est mise sur le tube pré-oxydé résultant de l'étape 2, puis ils sont réchauffés à une température supérieure à celle du système eutectique de cuivre et oxyde de cuivre (soit environ 10650C), mais inférieure à celle de fusion de cuivre (soit 10840C) pendant 3 minutes dans cette enceinte sous vide pour obtenir une jonction forte de Cu-Cu2O/A12O3-AlN. Ensuite, ils sont refroidis à 10000C avec une vitesse de refroidissement 5°C par minute, puis ils sont refroidis jusqu'à 1200C avec une vitesse de refroidissement 100C par minute.
4. Le tube est ensuite rempli de fluide caloporteur et fermé en ses deux extrémités pour former un caloduc par des procédés standard de fabrication de caloduc. 5. Ensuite, une couche d'EVA, la couche de cellules photovoltaïques et un verre sont déposés sur la céramique, puis ils sont chauffés ensemble à 120-1500C pour fondre l'EVA et se coller ensemble. Le verre est fixé sur le caloduc par des techniques de l'homme de métier.
Ce procédé de fabrication du récepteur selon l'invention n'est qu'un exemple de réalisation.
Le récepteur solaire hybride 1 peut revêtir la forme d'un tube 8 clos pour étancher la partie où se situe lesdites cellules photovoltaïques 2, comme la figure 3a le montre. La figure 3b montre la section A-A de la figue 3a. La structure intérieure dudit caloduc peut avoir des rainures faisant l'office de structure capillaire, mais il peut avoir autres structures capillaires (non représentées) permettant de drainer le flux thermique pour intensifier le transfert thermique.
La figure 4a montre un deuxième mode de réalisation avec un caloduc ayant une section rectangulaire. La zone d'évacuation thermique (3a) a quatre surfaces planes, et la surface S2 est posée sur et en contact avec une des quatre surfaces planes de la zone d'évacuation thermique (3a) dudit caloduc 3 par l'intermédiaire d'une couche 4.
La figure 4b montre la section A-A de la figue 4a. La structure intérieure du caloduc peut avoir des rainures faisant office de structure capillaire, mais il peut avoir d'autres structures capillaires (non représentées) permettant de drainer le flux thermique pour intensifier le transfert thermique.
La figure 5a montre un troisième mode de réalisation avec un caloduc ayant une section circulaire. La zone d'évacuation thermique (3a) est un cylindre, et la surface S2 est sur et en contact avec la surface cylindrique de la zone d'évacuation thermique (3a) par l'intermédiaire de la couche 4.
La figure 5b montre la section A-A de la figure 5 a. La structure intérieure dudit caloduc peut avoir des rainures faisant office de structure capillaire, mais il peut avoir autres structures capillaires (non représentées) permettant de drainer le flux thermique pour intensifier le transfert thermique.
La figure 6a présente un autre mode de réalisation avec un caloduc ayant une section circulaire et ayant des ailettes. La zone d'évacuation thermique (3a) est un cylindre avec une ailette à chaque côté de tube. La surface S2 est sur et en contact avec la surface cylindrique de la zone d'évacuation thermique (3a) par l'intermédiaire de la couche 4. La surface S2 peut être posée sur et en contact avec lesdites ailettes. La figure 6b montre la section A-A de la figue 6a. La structure intérieure du caloduc peut avoir des rainures faisant office de structure capillaire, mais il peut avoir autres structures capillaires (non représentées) permettant de drainer le flux thermique pour intensifier le transfert thermique.
La figure 7a montre récepteur solaire hybride selon l'invention comportant un concentrateur solaire (100) tel que décrit dans le brevet WO2008/132300. le concentrateur concentre les rayons sur le foyer image fmal(FIF), le récepteur solaire hybride selon l'invention est placé au foyer FIF et suit le mouvement du foyer FIF. La face avant des cellules photovoltaïques est tournée vers le fond du concentrateur pour recevoir les rayons concentrés.
La figure 7b montre la section A-A de la figure 7a. Un faisceau solaire parallèle représenté par les rayons Rl et R2 frappe sur le concentrateur solaire (100). Le faisceau traverse la lentille en se réfractant puis est réfléchi par les miroirs latéraux et le miroir de fond, pour se concentrer finalement au foyer image final (FIF) où le récepteur solaire hybride (1) selon l'invention est placé.
A titre d'exemple, pour un concentrateur solaire (100) tel que décrit dans le brevet WO2008/132300 ayant par exemple une surface d'ensoleillement de 40cm x 100cm, les rayons solaires qui frappent le concentrateur sont concentrés sur son foyer image finale sur une bande de 2cmx 100cm où le récepteur solaire hybride est placé. Le récepteur solaire hybride est composé d'une bande de cellules photovoltaïques ayant une surface 2cmxl00cm et un caloduc de section semi- circulaire dont la zone d'évacuation thermique (3 a) a une surface de contact avec la bande de cellules qui est aussi 2cmxl00cm et dont la zone de dissipation (3c) est connectée avec un échangeur thermique pour évacuer la chaleur condensée. Pour plus détailler les dimensions des éléments représentés sur la figure 1, la zone de dissipation (3 c) est de 15 cm de longueur ; la zone adiabatique 3b entre la zone d'évacuation thermique (3a) et la zone de dissipation (3 c) est de 15 cm de longueur. Donc la longueur de caloduc est de 100cm+15cm+15cm=130cm. Il est bien entendu que ces valeurs ne sont données qu'à titre d'exemple non limitatif, pour permettre de bien comprendre le principe de l'invention.

Claims

REVENDICATIONS
1. Récepteur solaire hybride destiné aux systèmes solaires à concentration (1), pour générer simultanément de l'électricité et de la chaleur, du type comprenant des cellules photovoltaïques (2) pour convertir les rayons solaires concentrés sur ces cellules en électricité et un caloduc (3) pour évacuer la chaleur accumulée sur les cellules photovoltaïques (2) via un liquide caloporteur, caractérisé en ce que :
- les cellules photovoltaïques (2) ont une face avant (Sl) pour accueillir les rayons solaires concentrés et une face arrière(S2) au dos de la face (Sl); - le caloduc (3) a une zone d'évacuation thermique (3a) faisant l'office d'évaporateur pour évacuer la chaleur accumulée sur les cellules photovoltaïques (2) et une zone de dissipation (3c) pour dissiper la chaleur qu'il absorbe, toute la face arrière (S2) des cellules photovoltaïques (2) étant posée sur et en contact avec la zone d'évacuation thermique (3a) dudit caloduc (3) via une couche d'interface (4) qui isole électriquement les cellules photovoltaïques (2) du caloduc (3), pour transmettre instantanément la chaleur accumulée sur les cellules photovoltaïques (2) au liquide caloporteur du caloduc ;
- toute la surface des cellules photovoltaïques (2), sauf la face arrière (S2), est recouverte d'une couche (5) d'un produit d'encapsulation ; - une plaque transparente (9) est déposée sur la couche (5) de produit d'encapsulation;
- l'ensemble formé par la plaque transparente (9), les cellules photovoltaïques (2) et les couches intermédiaires étant fixé sur le caloduc (3).
2. Récepteur solaire hybride selon la revendication 1, caractérisé en ce que la couche interface (4) a une résistance thermique inférieure à 7.10"4 m2.K/W
3. Récepteur solaire hybride selon la revendication 1 caractérisé en ce que le matériau constituant la couche d'interface double fonction (4) est choisi comprenant les matériaux céramiques, les associations d'EVA et de matériau céramique, les pâtes de silicone.
4. Récepteur solaire hybride selon la revendication 3, caractérisé en ce que le matériau céramique est choisi parmi le nitrure d'aluminium (AlN), l'oxyde de béryllium (BeO), et l'alumine (Al2O3).
5. Récepteur solaire hybride selon l'une des revendications 1 à 4, caractérisé en ce que le matériau constituant la couche d'encapsulation (5) est choisi dans le groupe comprenant l'EVA, le PVB, l'EVA dopé avec des particules métalliques, le PVB dopé avec des particules métalliques.
6. Récepteur solaire hybride selon la revendication 1, caractérisé en ce que la zone de dissipation (3c) a des ailettes (11) sur sa surface pour augmenter la surface d'échange thermique et la zone de dissipation (3c) est connectée à un échangeur d'extraction (7) alimenté en un fluide caloporteur.
7. Récepteur solaire hybride selon l'une quelconque des revendications 1 à 6, caractérisé en ce que toute la surface du caloduc (3), sauf la surface de contact avec la face arrière (S2) des cellules photo voltaïques et la surface de la zone de dissipation (3c), est recouverte d'un matériau dont le coefficient d'absorption de rayonnement est supérieur au coefficient d'émission de rayonnement.
8. Récepteur solaire hybride destiné aux systèmes solaires à concentration linéaire selon l'une quelconque des revendications 1 à 7, la section extérieure de la zone d'évacuation thermique (3a) est semi circulaire avec une surface plane, et la face arrière (S2) des cellules photovoltaïques fait face à cette surface plane de la zone d'évacuation thermique (3a) à laquelle elle est liée via la la couche d'interface double fonction (4).
9. Récepteur solaire hybride (1) selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la section extérieure de la zone d'évacuation thermique (3a) est rectangulaire, l'une des quatre surfaces planes et la face arrière (S2) des cellules photovoltaïques étant en contact via la couche d'interface double fonction (4).
10. Récepteur solaire hybride (1) selon l'une quelconque des revendications 1 à 7, la section extérieure de la zone d'évacuation thermique (3a) est circulaire, la face arrière (S2) des cellules photovoltaïques étant en contact avec la surface extérieure de la zone d'évacuation thermique (3a) cylindrique via la couche d'interface double fonction (4).
11. Récepteur solaire hybride (1) selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le caloduc(3) a une ailette (10) de chaque côté de la zone d'évacuation thermique (3a).
12. Récepteur solaire hybride (1) selon les revendications 1 et 11, la plaque transparente (9) est traitée de façon anti-reflet.
13. Récepteur solaire hybride (1) selon l'une quelconque des revendications 1 à 12, caractérisé en ce que les cellules photovoltaïques (2) recouvrent toute la surface de la zone d'évacuation thermique (3a).
14. Récepteur solaire hybride (1) selon l'une quelconque des revendications 1 à 13, caractérisé en ce que la zone d'évacuation thermique (3a) du caloduc (3) est enfermée par un tube (8) sous vide pour diminuer la perte thermique.
15. Système solaire comportant un concentrateur solaire à concentration linéaire et un récepteur solaire hybride (1) selon l'une quelconque des revendications 1 à 14, caractérisé en ce que, l'électricité qui lui est nécessaire pour alimenter un moteur d'entraînement pour suivre la course du soleil et pour faire circuler le fluide caloporteur, est fournie par le système lui-même.
EP10727103A 2009-05-06 2010-05-05 Recepteur solaire hybride et systeme solaire a concentration le comportant Withdrawn EP2427919A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0953028A FR2945376B1 (fr) 2009-05-06 2009-05-06 Recepteur solaire hybride pour la production d'electricite et de chaleur et systeme solaire a concentration comportant un tel recepteur
PCT/FR2010/050860 WO2010128251A1 (fr) 2009-05-06 2010-05-05 Recepteur solaire hybride et systeme solaire a concentration le comportant

Publications (1)

Publication Number Publication Date
EP2427919A1 true EP2427919A1 (fr) 2012-03-14

Family

ID=41665522

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10727103A Withdrawn EP2427919A1 (fr) 2009-05-06 2010-05-05 Recepteur solaire hybride et systeme solaire a concentration le comportant

Country Status (5)

Country Link
US (1) US9029684B2 (fr)
EP (1) EP2427919A1 (fr)
CN (1) CN102422440B (fr)
FR (1) FR2945376B1 (fr)
WO (1) WO2010128251A1 (fr)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2489401B (en) 2011-03-21 2014-04-23 Naked Energy Ltd Solar energy converter
CN102290475A (zh) * 2011-08-15 2011-12-21 袁长胜 一种提高光伏电池发电能力的冷却装置
US20130098428A1 (en) * 2011-10-21 2013-04-25 Electronics And Telecommunications Research Institute Sunlight complex modules and apparatuses for using solar energy
CN102721182B (zh) * 2012-04-24 2016-08-10 江苏启能新能源材料有限公司 一种电磁辅助加热系统
ITNA20120019A1 (it) * 2012-04-26 2013-10-27 Bukshtynava Aksana Generatore solare ibrido composto da un collettore pvt (acronimo dell'inglese photovoltaic and thermal) a fluido, un accumulatore dal dielettrico solido o elettrolitico, un sistema di segnalazione a led, un controllo elettronico per la gestione dei l
WO2014132197A2 (fr) * 2013-02-28 2014-09-04 Rutgers, The State University Of New Jersey Matériaux d'encapsulation et conception d'un module photovoltaïque et thermique (pvt) intégré
GB2503108A (en) * 2013-06-10 2013-12-18 Gert Pille Cooling Photo-Voltaic Cells Using Thermosyphon Cooling Circuit
CN103531652B (zh) * 2013-10-31 2016-06-08 中国石油大学(华东) 一种碟式太阳能聚光光伏电池板的冷却装置
ES2539511B1 (es) * 2013-12-31 2016-05-18 Abengoa Solar New Tech Sa Sistema híbrido de cilindro paramétrico termosolar y receptor fotovoltaico
JP6283785B2 (ja) * 2014-02-04 2018-02-28 千代田空調機器株式会社 太陽光発電パネル用冷却装置および太陽光発電装置
US10348241B1 (en) * 2015-03-19 2019-07-09 National Technology & Engineering Solutions Of Sandia, Llc Solar receivers and methods for capturing solar energy
US9705448B2 (en) * 2015-08-11 2017-07-11 James T. Ganley Dual-use solar energy conversion system
WO2017172841A1 (fr) 2016-03-28 2017-10-05 The Administrators Of The Tulane Educational Fund Module photovoltaïque concentré transmissif avec système de refroidissement
AT518923A1 (de) 2016-08-09 2018-02-15 Rep Ip Ag Transportbehälter
AT518924A1 (de) * 2016-08-09 2018-02-15 Rep Ip Ag Transportbehälter
CA2939667A1 (fr) * 2016-08-22 2018-02-22 Patrick Michael Bradley Module de logement capteur solaire en totem
CN106130451A (zh) * 2016-08-27 2016-11-16 无锡中洁能源技术有限公司 一种自动转动升降太阳能电池板
CN106130453A (zh) * 2016-08-27 2016-11-16 无锡中洁能源技术有限公司 一种转动式升降太阳能电池板
CN106208921A (zh) * 2016-08-27 2016-12-07 无锡中洁能源技术有限公司 一种带保护盖的太阳能电池板
CN106130458A (zh) * 2016-08-27 2016-11-16 无锡中洁能源技术有限公司 一种带移动保护盖的双转动太阳能电池板
CN106130461A (zh) * 2016-08-27 2016-11-16 无锡中洁能源技术有限公司 一种带转动保护盖的自动双转动太阳能电池板
CN106130452A (zh) * 2016-08-27 2016-11-16 无锡中洁能源技术有限公司 一种带移动保护盖的自动转动太阳能电池板
CN106100560A (zh) * 2016-08-27 2016-11-09 无锡中洁能源技术有限公司 一种自动双转动升降太阳能电池板
AU2018224292B2 (en) 2017-02-24 2022-12-08 The Administrators Of The Tulane Educational Fund Concentrated solar photovoltaic and photothermal system
US20190293364A1 (en) * 2018-03-22 2019-09-26 Johnson Controls Technology Company Varied geometry heat exchanger systems and methods
US10852505B2 (en) * 2019-04-05 2020-12-01 Soter Technology, LLC Isothermalized mirror assembly
WO2020209956A1 (fr) * 2019-04-11 2020-10-15 Massachusetts Institute Of Technology Système de stockage d'énergie
WO2021021819A1 (fr) * 2019-07-29 2021-02-04 Understory, Inc. Coussin à grêlons électronique
CN113606633B (zh) * 2021-06-29 2022-07-29 国网天津市电力公司电力科学研究院 双玻双面pv/t组件与热泵耦合的供暖系统及其控制方法
CN114530516A (zh) * 2022-01-26 2022-05-24 中国长江三峡集团有限公司 一种用于低倍聚光光伏的全被动散热装置
KR102681972B1 (ko) * 2022-06-24 2024-07-08 주식회사 메카로에너지 투광형 태양전지 및 그 제조 방법

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852803A (en) * 1973-06-18 1974-12-03 Gen Electric Heat sink cooled power semiconductor device assembly having liquid metal interface
US4037014A (en) * 1975-10-21 1977-07-19 Rca Corporation Semiconductor absorber for photothermal converter
US4320246A (en) * 1978-05-04 1982-03-16 Russell George F Uniform surface temperature heat pipe and method of using the same
US4380112A (en) * 1980-08-25 1983-04-19 Spire Corporation Front surface metallization and encapsulation of solar cells
US4448028A (en) * 1982-04-29 1984-05-15 Ecd-Anr Energy Conversion Company Thermoelectric systems incorporating rectangular heat pipes
US4548258A (en) * 1984-07-02 1985-10-22 Whirlpool Corporation Method and means for inhibiting corrosion in a heat pipe
US4686961A (en) * 1985-11-01 1987-08-18 John D. Garrison Integrated solar thermal energy collector system
FR2727790A1 (fr) 1994-12-02 1996-06-07 Cythelia Sarl Module solaire hybride photovoltaique et thermique fonctionnant en cogeneration de chaleur et d'energie electrique
EP1172864A1 (fr) * 2000-07-11 2002-01-16 SANYO ELECTRIC Co., Ltd. Module de cellules de solaires
JP3472550B2 (ja) * 2000-11-13 2003-12-02 株式会社小松製作所 熱電変換デバイス及びその製造方法
US20040045596A1 (en) * 2001-05-29 2004-03-11 Paul Lawheed Flat plate panel solar electrical generators and methods
NZ532091A (en) * 2001-10-24 2005-12-23 Shell Int Research In situ recovery from a hydrocarbon containing formation using barriers
DE10251446B4 (de) * 2002-11-05 2004-11-11 Day4 Energy Inc. Kühlanordnung für lichtbündelnde Photovoltaik-Anlagen
AU2003200316B2 (en) * 2003-01-31 2009-10-01 Mono Pumps Limited Solar-powered pumping device
CN1771609A (zh) * 2003-06-10 2006-05-10 阳光信任有限责任公司 改进的平板面板太阳能发电机和方法
JPWO2006038508A1 (ja) 2004-10-06 2008-05-15 タマティーエルオー株式会社 太陽電池システムおよび熱電気複合型太陽電池システム
US20070028960A1 (en) * 2005-08-03 2007-02-08 The University Of Sydney Active cooling device
FR2927155B1 (fr) 2007-03-05 2010-04-02 R & D Ind Sarl Capteur solaire.
US7665459B2 (en) * 2007-04-18 2010-02-23 Energistic Systems, Llc Enclosed solar collector
CN101730449A (zh) * 2008-10-24 2010-06-09 鸿富锦精密工业(深圳)有限公司 液冷散热装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010128251A1 *

Also Published As

Publication number Publication date
WO2010128251A1 (fr) 2010-11-11
US9029684B2 (en) 2015-05-12
US20120097216A1 (en) 2012-04-26
CN102422440B (zh) 2016-01-13
FR2945376A1 (fr) 2010-11-12
CN102422440A (zh) 2012-04-18
FR2945376B1 (fr) 2012-06-29

Similar Documents

Publication Publication Date Title
EP2427919A1 (fr) Recepteur solaire hybride et systeme solaire a concentration le comportant
Li et al. A review of solar photovoltaic-thermoelectric hybrid system for electricity generation
TWI396290B (zh) 太陽電池模組及太陽電池模組之製造方法
EP2901089B1 (fr) Dispositif solaire hybride de production d'electricite a duree de vie augmentee
EP2462629B1 (fr) Collecteur d'énergie solaire hybride et centrale solaire comprenant au moins un tel collecteur
Salvi et al. Technological advances to maximize solar collector energy output: a review
EP2047516A2 (fr) Couvercle de cellule photovoltaïque
Narducci et al. Challenges and perspectives in tandem thermoelectric–photovoltaic solar energy conversion
WO2010147638A2 (fr) Dispositif de conversion de rayonnement incident en énergie électrique
FR2922365A1 (fr) Perfectionnements apportes a des elements capables de collecter de la lumiere.
WO2008132445A2 (fr) Cellule solaire
Haloui et al. The copper indium selenium (CuInSe2) thin Films solar cells for hybrid photovoltaic thermal collectors (PVT)
WO2010034730A2 (fr) Reseau de cellules photovoltaiques avec decouplage mecanique des cellules par rapport a leur support
KR20110124112A (ko) 레이저 리프트 오프 공정을 이용한 플렉서블 cis계 태양전지의 제조 방법
US20210135622A1 (en) Combined heat and electricity solar collector with wide angle concentrator
US20130192668A1 (en) Combined heat and power solar system
FR2957952A1 (fr) Element photovoltaique fortement galbe
JP2003069068A (ja) 太陽電池モジュール
FR3060240A1 (fr) Structure de conversion thermophotovoltaique
WO2010084145A1 (fr) Convertisseur photovoltaïque a duree de vie augmentee
FR2893766A1 (fr) Generateur photovoltaique a concentration, procede contre l'echauffement par un dispositf d'evacuation de la chaleur utilisant la convection, le rayonnement infrarouge sur l'espace et le stockage en chaleur latente
GB2446219A (en) Hybrid photovoltaic and solar heat collector panel
Das et al. Solar power of mobile transmitter/receiver tower antennas in remote areas
Raj Characterization of hybrid thin films for application in the field of solar cells–A response to climate change
TW201101500A (en) Solar cell

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111028

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20170126