EP2426189B1 - Method for producing kerosene and diesel fuels using light unsaturated cuts and BTX-rich aromatic cuts - Google Patents

Method for producing kerosene and diesel fuels using light unsaturated cuts and BTX-rich aromatic cuts Download PDF

Info

Publication number
EP2426189B1
EP2426189B1 EP11290375A EP11290375A EP2426189B1 EP 2426189 B1 EP2426189 B1 EP 2426189B1 EP 11290375 A EP11290375 A EP 11290375A EP 11290375 A EP11290375 A EP 11290375A EP 2426189 B1 EP2426189 B1 EP 2426189B1
Authority
EP
European Patent Office
Prior art keywords
unit
fraction
stage
preferred manner
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11290375A
Other languages
German (de)
French (fr)
Other versions
EP2426189A1 (en
Inventor
Vincent Coupard
Annick Pucci
Quentin Debuisschert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP2426189A1 publication Critical patent/EP2426189A1/en
Application granted granted Critical
Publication of EP2426189B1 publication Critical patent/EP2426189B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including a sorption process as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/08Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of reforming naphtha
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1096Aromatics or polyaromatics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Definitions

  • the present invention provides an attractive solution allowing from light cracked naphtha (possibly including any proportion of C3 and C4 olefinic cuts called "LPG"), and an aromatic cut rich in BTX, to meet an increased demand for fuel diesel and kerosene, without involving new and expensive hydrocracking units.
  • LPG light cracked naphtha
  • BTX aromatic cut rich in BTX
  • the solution described in the present invention is particularly well suited to remodeling of existing refining units.
  • refiners face surpluses of gas whose exports in geographically deficient areas are uncertain in the short term because of the increase in refining capacity and / or the decrease in consumption in the regions. concerned areas.
  • the patent application US2010 / 108568 discloses a process for producing kerosene from C5 + naphtha and C2-C5 hydrocarbon gases derived from Fischer-Tropsch synthesis by oligomerization of the feed to form light hydrocarbons, kerosene and a distillate, hydrotreating kerosene, flavoring a C3 + cut from Fischer-Tropsch, alkylation of the aromatic rich naphtha fraction with the olefinic cut of the light hydrocarbons of the oligomerization step and the hydrotreatment of the kerosene product of the alkylation step.
  • the present solution can be defined as an alternative to the "hydrocracking" solution, using an oligomerization of light olefins of 3 to 10 carbon atoms, preferably of 4 to 6 carbon atoms, coupled to an alkylation of olefins. from 8 to 10 carbon atoms, not reacted to oligomerization on a high-BTX cut, generally available from a semi-regenerative or regenerative reforming.
  • the solution that is the subject of the present invention remains economically much less expensive than the hydrocracking solution in terms of investment, utilities and hydrogen consumption, and leads to a reduction in gasoline and an increase in distillate in the same order of magnitude.
  • the petrol fraction constituting the charge (1) is a catalytic cracking gasoline which contains from 5 to 10 carbon atoms, and preferably from 5 to 7 carbon atoms.
  • step 2 of treatment with an acidic catalyst uses an acidic catalyst of ion exchange resin or phosphoric supported type, or any acid catalyst previously used in the steps downstream oligomerization (OLG) or alkylation (ALK), in a temperature range of 20 ° C to 350 ° C, preferably from 40 ° C to 250 ° C, and in a pressure range of 1 bar at 100 bar, preferably from 10 to 30 bar, and in a range of VVH from 0.1 hr -1 to 5 hr -1, preferably from 0.3 hr -1 to 2.0 hr -1.
  • OLG oligomerization
  • ALK alkylation
  • VVH designates the ratio between the volume flow rate of charge and the volume of catalyst.
  • the oligomerization step 4 is fed with the cracking gasoline (4) and optionally an LPG cut containing olefins, and operates on an acid catalyst preferably of zeolitic type, or silica alumina in a temperature range of 100 ° C to 350 ° C, and in a pressure range of 20 to 70 bar, and in a range of VHV of 0.2 hr-1 to 1.0 hr-1.
  • an acid catalyst preferably of zeolitic type, or silica alumina in a temperature range of 100 ° C to 350 ° C, and in a pressure range of 20 to 70 bar, and in a range of VHV of 0.2 hr-1 to 1.0 hr-1.
  • the alkylation step (ALK) is fed by the effluent (8) of the oligomerization unit (OLG), and by a rich aromatic cut (9) containing From 6 to 12 carbon atoms, and more preferably from 6 to 9 carbon atoms, and works on an acidic catalyst, preferably of zeolitic or silicoaluminate type, in a temperature range of 100 ° C. to 350 ° C., and a pressure range of 20 bar to 70 bar, and in a range of VVH from 0.1 hr-1 to 2.0 hr-1.
  • step 6 of hydrotreatment uses a catalyst containing at least one metal chosen from Ni, Co, and Mo, and operates in a temperature range of 50 ° C to 400 ° C, preferably 100 ° C to 350 ° C, and in a pressure range of 1 bar to 100 bar, more preferably 20 to 100 ° C. bars at 70 bar, and in a range of VHV from 0.1 hr-1 to hr-1, and preferably from 0.5 hr-1 to 5.0 hr-1.
  • step 6 of hydrotreatment uses a catalyst containing at least one metal chosen from Pd and Pt, and operates in a temperature range of 50 ° C. to 300 ° C. ° C, and preferably from 100 ° C to 250 ° C, in a pressure range of 1 bar to 100 bar, and preferably from 20 bar to 70 bar, and in a range of VVH of 0.10h. 1 to 10 h -1, and preferably from 0.5 h -1 to 5.0 h -1.
  • step 2 of treatment on acid catalyst (TR) is preceded by a step 1 of selective hydrogenation (SHU) of the starting gasoline cut.
  • SHU selective hydrogenation
  • the present invention describes a process for obtaining diesel fuel or kerosene from olefinic cuts, typically from a catalytic cracking unit of gasolines (abbreviated as FCC) and a BTX-rich fraction (abbreviation of benzene, toluene).
  • FCC catalytic cracking unit of gasolines
  • BTX-rich fraction abbreviation of benzene, toluene
  • xylene typically results from a semi-regenerative or regenerative reforming unit, generally present at the same site as the FCC unit.
  • the olefinic cut can also come from steam-cracking units (abbreviated as SC), Fischer Tropsch synthesis unit (abbreviated as FT), coking (denoted CK abbreviated) or a viscosity unit. reduction (noted VB abbreviated).
  • SC steam-cracking units
  • FT Fischer Tropsch synthesis unit
  • CK coking
  • VB viscosity unit. reduction
  • the BTX-rich fraction can also come from a steam cracking unit (SC), a steam reforming unit (abbreviated as VR), an olefin cracking unit (abbreviated CO) or a transforming unit.
  • MTO methanol to olefins
  • the feed to be treated (1) is a gasoline distillation range of between 30 ° C and 250 ° C.
  • This charge is optionally sent to a SHU unit which makes it possible to selectively hydrogenate gum-forming unsaturated hydrocarbons, such as diolefins.
  • the treated effluent (2) is sent directly or after distillation to a treatment unit (TR) based on the use of an acid catalyst, preferably a resin type catalyst ion exchange, as described in the patent FR 2.840.620 or of supported phosphoric acid type.
  • This step is intended to capture poisonous compounds acid catalysts, including nitrogen compounds, and optionally, to turn them into heavier compounds.
  • the head cut (4) is sent to an oligomerization unit (OLG) which will form oligomers with a number of carbon atoms of between 8 and 20 constituting the flow. (7).
  • OLG oligomerization unit
  • the oligomerization unit operates on an acid catalyst of zeolitic or silica-alumina type, in a temperature range of 100 ° C to 350 ° C, and in a pressure range of 20 bars to 70 bars, and in a VVH range from 0.2h-1 to 1.0h-1.
  • the fraction of light olefins having a boiling point of less than 150 ° C. which has not reacted in the oligomerization unit (OLG) constitutes the stream (8) which feeds the alkylation unit (ALK). which uses a BTX cut (9) generally derived from a regenerative species reforming unit.
  • the alkylation unit of the olefins (8) from the oligomerization unit (OLG) on the BTX cut (9) operates on a zeolitic acid or silicoaluminate acid catalyst, in a temperature range of 100 ° C. at 350 ° C, and in a pressure range of 20 bar to 70 bar, and in a range of VHV from 0.1 hr-1 to 2.0 hr-1.
  • the intermediate effluent (5) of the distillation column CD1 is sent to the gasoline pool.
  • the effluent (11) of the alkylation unit (ALK) is sent to a second distillation column (CD2) which produces in the bottom an effluent (11c) which is sent to the total hydrogenation unit (HT). and thus contributes to the production of the desired diesel (13).
  • the lateral effluent (11b) of the distillation column (CD2) is returned to the alkylation unit (ALK).
  • the overhead effluent (11a) of column CD2 is sent to the gasoline pool.
  • Tables A and B below give details of flows according to the scheme of the figure 1 .
  • the process according to the invention therefore produced 66 tonnes / hour of diesel (13), from 100 tonnes / hour of FCC gasoline (1), of 18 tonnes / hour of BTX cut (9) and 25 tonnes of gasoline.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

INTRODUCTIONINTRODUCTION

L'évolution des moteurs automobiles entraîne actuellement une augmentation de la demande en carburant diesel au dépend de celle de l'essence.The evolution of automotive engines is currently driving an increase in the demand for diesel fuel at the expense of that of gasoline.

Les prévisions concernant l'évolution du marché des carburants automobiles indiquent une diminution quasi généralisée dans le monde de la demande en essence.Forecasts for the evolution of the automotive fuel market point to an almost universal decline in the world of gasoline demand.

Ainsi, alors qu'en 2000 le rapport de consommation d'essence par rapport au diesel était de 2, on prévoit qu'il sera proche de 1,5 en 2015.Thus, while in 2000 the ratio of gas consumption to diesel was 2, it is expected that it will be close to 1.5 in 2015.

Pour l'Union Européenne, cette diminution est extrêmement forte, puisque ce rapport qui était de 1 en 2000, devrait passer à 0,5 en 2012, et même encore baisser au delà.For the European Union, this reduction is extremely strong, since this ratio, which was 1 in 2000, should increase to 0.5 in 2012, and even drop further.

Par ailleurs, la demande en kérosène devrait également significativement augmenter dans les prochaines années en liaison avec l'évolution du marché du transport aérien.In addition, the demand for kerosene is also expected to increase significantly in the coming years in connection with the evolution of the air transport market.

Cette évolution inéluctable vers une demande accrue en distillats moyens, et la diminution de la demande en essence pose à l'industrie du raffinage un grave problème d'adaptation de l'offre à la demande, et ceci dans un délai très court peu compatible avec la construction de nouvelles installations coûteuses et longues à mettre en oeuvre, telles que les hydrocraquages de gasoil sous vide.This unavoidable evolution towards an increased demand for middle distillates, and the decrease in the demand for petrol, poses a serious problem for the refining industry in adapting supply to demand, and this in a very short time that is not very compatible with the construction of new installations that are costly and time consuming to implement, such as the hydrocrackings of vacuum gas oil.

La présente invention propose une solution attractive permettant à partir de naphta craqué léger (incluant éventuellement une proportion quelconque de coupes oléfiniques C3 et C4 dite "LPG"), et d'une coupe aromatique riche en BTX, de répondre à une demande accrue en carburant diesel et kérosène, sans impliquer d'unités neuves et couteuses d'hydrocraquage.The present invention provides an attractive solution allowing from light cracked naphtha (possibly including any proportion of C3 and C4 olefinic cuts called "LPG"), and an aromatic cut rich in BTX, to meet an increased demand for fuel diesel and kerosene, without involving new and expensive hydrocracking units.

La solution décrite dans la présente invention est particulièrement bien adaptée à des remodelages d'unités de raffinage existantes.The solution described in the present invention is particularly well suited to remodeling of existing refining units.

ART ANTERIEURPRIOR ART

Dans un marché dominé par la consommation d'essence, comme c'est le cas par exemple aux États-Unis, la production de carburant diesel est assurée essentiellement à partir des distillats moyens dit "straight run", c'est à dire provenant de la distillation directe du pétrole brut.In a market dominated by the consumption of gasoline, as is the case for example in the United States, the production of diesel fuel is ensured essentially from the so-called "straight run" middle distillates, that is to say from direct distillation of crude oil.

Ces distillats moyens doivent être hydrotraités pour répondre aux spécifications maintenant très sévères de teneur en soufre (10 ppm max) et de teneurs en aromatiques. Actuellement, cette production est notoirement insuffisante et oblige les raffineurs dans certaines zones géographiques, et notamment l'Europe, à importer du carburant diesel pour satisfaire à la demande intérieure.These middle distillates must be hydrotreated to meet the now very strict specifications of sulfur content (10 ppm max) and aromatics contents. Currently, this production is notoriously insufficient and requires refiners in certain areas especially Europe, to import diesel fuel to meet domestic demand.

Inversement, et particulièrement en Europe, les raffineurs font face à des excédents d'essence dont les exportations dans les zones géographiques déficitaires sont incertaines à court terme en raison de l'augmentation des capacités de raffinage et/ou de la baisse de consommation dans les zones concernées.Conversely, and particularly in Europe, refiners face surpluses of gas whose exports in geographically deficient areas are uncertain in the short term because of the increase in refining capacity and / or the decrease in consumption in the regions. concerned areas.

Pour toutes ces raisons, un certain nombre de raffineurs ont construit des installations d'hydrocraquage qui permettent de transformer des coupes lourdes telles que le gasoil sous-vide en carburant diesel de très bonne qualité. Néanmoins, ce procédé est très coûteux en investissement et utilités car il fonctionne à très haute pression (supérieures à 100 bars), et entraîne une très forte consommation d'hydrogène (de l'ordre de 10 à 30 kg d'hydrogène par tonne de charge), nécessitant d'implanter une installation spécifique de production d'hydrogène. D'autres solutions moins couteuses pour produire du carburant diesel sont envisageables, à savoir l'oligomérisation des oléfines légères ayant de 3 à 6 atomes de carbone, par exemple issues du craquage catalytique. Cependant ces coupes oléfiniques contiennent très souvent des impuretés sulfurées et azotées qui désactivent rapidement le catalyseur d'oligomérisation et peuvent rendre le procédé moins économique. Il est donc nécessaire de purifier la charge de l'oligomérisation. Ceci se fait en ajoutant des équipements de purification, le plus souvent en plusieurs étapes, incluant des masses adsorbantes diverses, régénératives ou non régénératives.For all these reasons, a number of refiners have built hydrocracking plants that convert heavy cuts such as vacuum gas oil into high quality diesel fuel. However, this process is very costly in investment and utilities because it operates at very high pressure (above 100 bars), and leads to a very high hydrogen consumption (of the order of 10 to 30 kg of hydrogen per tonne of hydrogen). load), requiring the implementation of a specific hydrogen production facility. Other less expensive solutions for producing diesel fuel are possible, namely the oligomerization of light olefins having from 3 to 6 carbon atoms, for example from catalytic cracking. However, these olefinic cuts very often contain sulphurous and nitrogen impurities which rapidly deactivate the oligomerization catalyst and can make the process less economical. It is therefore necessary to purify the charge of the oligomerization. This is done by adding purification equipment, usually in several stages, including various adsorbent masses, regenerative or non-regenerative.

La demande de brevet US2010/108568 divulgue un procédé de production de kérosène à partir de naphta C5+ et de gaz hydrocarbures C2-C5 issus de synthèse Fischer-Tropsch par oligomérisation de la charge pour former des hydrocarbures légers, du kérosène et un distillat, hydrotraitement du kérosène, aromatisation d'une coupe C3+ issue de Fischer-Tropsch, alkylation de la coupe naphta riche en aromatiques avec la coupe oléfinique des hydrocarbures légers de l'étape d'oligomérisation et l'hydrotraitement du produit kérosène de l'étape d'alkylation.The patent application US2010 / 108568 discloses a process for producing kerosene from C5 + naphtha and C2-C5 hydrocarbon gases derived from Fischer-Tropsch synthesis by oligomerization of the feed to form light hydrocarbons, kerosene and a distillate, hydrotreating kerosene, flavoring a C3 + cut from Fischer-Tropsch, alkylation of the aromatic rich naphtha fraction with the olefinic cut of the light hydrocarbons of the oligomerization step and the hydrotreatment of the kerosene product of the alkylation step.

La présente solution peut se définir comme une alternative à la solution "hydrocraquage", faisant appel à une oligomérisation d'oléfines légères de 3 à 10 atomes de carbone, de manière préférée de 4 à 6 atomes de carbone, couplée à une alkylation des oléfines de 8 à 10 atomes de carbone, n'ayant pas réagi à l'oligomérisation sur une coupe riche en BTX, généralement disponible à partir d'un reforming semi régénératif ou régénératif.The present solution can be defined as an alternative to the "hydrocracking" solution, using an oligomerization of light olefins of 3 to 10 carbon atoms, preferably of 4 to 6 carbon atoms, coupled to an alkylation of olefins. from 8 to 10 carbon atoms, not reacted to oligomerization on a high-BTX cut, generally available from a semi-regenerative or regenerative reforming.

Cette alkylation aboutit à une coupe située dans la gamme des distillats moyens (gazole ou kérosène) qu'il faut ensuite hydrotraiter et/ou hydrogéner pour aboutir à des produits commerciaux.This alkylation results in a cut in the range of middle distillates (gas oil or kerosene) which must then be hydrotreated and / or hydrogenated to produce commercial products.

La solution objet de la présente invention reste économiquement beaucoup moins couteuse que la solution hydrocraquage en termes d'investissement, d'utilités et de consommation d'hydrogène, et conduit à une réduction d'essence et une augmentation de distillat dans le même ordre de grandeur.The solution that is the subject of the present invention remains economically much less expensive than the hydrocracking solution in terms of investment, utilities and hydrogen consumption, and leads to a reduction in gasoline and an increase in distillate in the same order of magnitude.

DESCRIPTION SOMMAIRE DE L'INVENTIONSUMMARY DESCRIPTION OF THE INVENTION

La présente invention décrit un procédé de production de gazole (13) à partir d'une coupe essence (1) provenant d'une unité de craquage catalytique, et d'une coupe BTX (9) provenant d'une unité de reformage catalytique des essences, faisant appel à l'enchainement d'étapes suivantes:

  • une étape optionnelle 1 d'hydrogénation sélective (SHU) de la coupe essence de départ,
  • une étape 2 de traitement sur catalyseur acide (TR) de l'effluent issu de l'étape 1,
  • une étape 3 de distillation de l'effluent de l'étape 2 réalisée dans une première colonne à distiller (CD1) permettant de séparer en tête une coupe oléfinique (4) ayant un point final d'ébullition d'environ 60°, intermédiairement une coupe (5) d'intervalle de distillation compris entre 60°C et 150°C, et en fond une coupe (6) de point d'ébullition supérieur à 150°C, qui est envoyée vers une unité d'hydrotraitement (HDT), l'effluent (12) de l'unité d'hydrotraitement étant envoyé vers une unité d'hydrogénation totale (HT) qui produit le gazole recherché (13),
  • une étape 4 d'oligomérisation (OLG) de la coupe oléfinique (4) éventuellement en mélange avec une coupe LPG (10) contenant des oléfines, de laquelle on extrait après distillation un flux (7) d'oléfines oligomérisées à nombre d'atomes de carbone allant de 8 à 20, qui est envoyée pour une première partie par le flux 7a, vers l'unité d'hydrotraitement (HDT) constituant l'étape (6), et pour une seconde partie par le flux 7b, vers l'unité d'hydrogénation totale (HT),
  • une étape 5 d'alkylation du flux (8) d'oléfines en C3 et en C8 sur la coupe BTX (9), l'effluent (11) de l'unité d'alkylation (ALK) étant envoyé dans une seconde colonne à distiller (CD2) de laquelle on extrait 3 coupes:
  • une coupe essence (11a) de point d'ébullition inférieur à 100°C qui est envoyée vers le pool essence,
  • une coupe intermédiaire (11b) d'intervalle de distillation compris entre 100°C et 150°C, essentiellement constituée des BTX n'ayant pas réagi, qui est en majorité recyclée à l'entrée de l'unité d'alkylation (ALK), à l'exception d'une fraction constituant la purge de ladite unité (ALK) qui est elle même envoyée au pool essence après stabilisation,
  • une coupe lourde (11c) de point d'ébullition supérieur à 150°C qui est envoyée à l'unité d'hydrogénation totale (HT) de laquelle est extrait le gazole recherché (13).
The present invention describes a process for producing gas oil (13) from a gasoline cut (1) from a catalytic cracking unit, and a BTX cut (9) from a catalytic reforming unit of species, using the following sequence of steps:
  • an optional step 1 of selective hydrogenation (SHU) of the starting gasoline cut,
  • a step 2 of treatment on acid catalyst (TR) of the effluent from step 1,
  • a step 3 of the distillation of the effluent of step 2 carried out in a first distillation column (CD1) allowing to separate at the head an olefinic cut (4) having a boiling point of about 60 °, intermediately a section (5) of distillation range between 60 ° C and 150 ° C, and bottom a section (6) of boiling point above 150 ° C, which is sent to a hydrotreating unit (HDT) the effluent (12) of the hydrotreating unit being sent to a total hydrogenation unit (HT) which produces the desired diesel (13),
  • a step 4 of oligomerization (OLG) of the olefinic section (4) possibly mixed with an LPG (10) containing olefins, from which a stream (7) of oligomerized olefins with a number of atoms is extracted after distillation of carbon ranging from 8 to 20, which is sent for a first part by the flow 7a, to the hydrotreating unit (HDT) constituting the step (6), and for a second part by the flow 7b, to the total hydrogenation unit (HT),
  • a step 5 of alkylation of the flow (8) of C3 and C8 olefins on the BTX cut (9), the effluent (11) of the alkylation unit (ALK) being sent in a second column to distiller (CD2) from which 3 cuts are extracted:
  • a gasoline cut (11a) with a boiling point below 100 ° C which is sent to the gasoline pool,
  • an intermediate cut (11b) of distillation range of between 100 ° C and 150 ° C, essentially consisting of unreacted BTX, which is mostly recycled at the inlet of the alkylation unit (ALK) , except for a fraction constituting the purge of said unit (ALK) which is itself sent to the gasoline pool after stabilization,
  • a heavy cut (11c) of boiling point greater than 150 ° C which is sent to the total hydrogenation unit (HT) from which is extracted the desired diesel (13).

La coupe essence constituant la charge (1) est une essence de craquage catalytique qui contient de 5 à 10 atomes de carbone, et de manière préférée, de 5 à 7 atomes de carbone.The petrol fraction constituting the charge (1) is a catalytic cracking gasoline which contains from 5 to 10 carbon atoms, and preferably from 5 to 7 carbon atoms.

Selon une variante préférée du procédé selon la présente invention, l'étape 2 de traitement sur catalyseur acide (TR) fait appel à un catalyseur acide de type résine échangeuse d'ion, ou phosphorique supporté, ou tout catalyseur acide préalablement utilisé dans les étapes aval d'oligomérisation (OLG) ou d'alkylation (ALK), dans une gamme de température de 20°C à 350 °C, de manière préférée de 40°C à 250 °C, et dans une gamme de pression de 1 bar à 100 bars, de manière préférée de 10 à 30 bars, et dans une gamme de VVH de 0,1 h-1 à 5 h-1, de manière préférée de 0,3 h-1 à 2,0 h-1.According to a preferred variant of the process according to the present invention, step 2 of treatment with an acidic catalyst (TR) uses an acidic catalyst of ion exchange resin or phosphoric supported type, or any acid catalyst previously used in the steps downstream oligomerization (OLG) or alkylation (ALK), in a temperature range of 20 ° C to 350 ° C, preferably from 40 ° C to 250 ° C, and in a pressure range of 1 bar at 100 bar, preferably from 10 to 30 bar, and in a range of VVH from 0.1 hr -1 to 5 hr -1, preferably from 0.3 hr -1 to 2.0 hr -1.

On rappelle que 1 bar = 105 Pascal et que la VVH désigne le rapport entre le débit volumique de charge et le volume de catalyseur.It is recalled that 1 bar = 10 5 Pascal and that the VVH designates the ratio between the volume flow rate of charge and the volume of catalyst.

Dans le procédé selon la présente invention, l'étape d'oligomérisation 4 est alimentée par l'essence de craquage (4) et éventuellement une coupe LPG contenant des oléfines, et travaille sur un catalyseur acide de préférence de type zéolitique, ou silice alumine, dans une gamme de température de 100°C à 350 °C, et dans une gamme pression de 20 à 70 bars, et dans une gamme de VVH de 0,2 h-1 à 1,0 h-1.In the process according to the present invention, the oligomerization step 4 is fed with the cracking gasoline (4) and optionally an LPG cut containing olefins, and operates on an acid catalyst preferably of zeolitic type, or silica alumina in a temperature range of 100 ° C to 350 ° C, and in a pressure range of 20 to 70 bar, and in a range of VHV of 0.2 hr-1 to 1.0 hr-1.

Dans le procédé selon la présente invention, l'étape 5 d'alkylation (ALK) est alimentée par l'effluent (8) de l'unité d'oligomérisation (OLG), et par une coupe riche en aromatiques (9) contenant de 6 à 12 atomes de carbone, et de manière encore préférée de 6 à 9 atomes de carbone, et travaille sur un catalyseur acide de préférence de type zéolitique ou silicoaluminate, dans une gamme de température de 100°C à 350 °C, et dans une gamme de pression de 20 bars à 70 bars, et dans une gamme de VVH de 0,1 h-1 à 2,0 h-1.In the process according to the present invention, the alkylation step (ALK) is fed by the effluent (8) of the oligomerization unit (OLG), and by a rich aromatic cut (9) containing From 6 to 12 carbon atoms, and more preferably from 6 to 9 carbon atoms, and works on an acidic catalyst, preferably of zeolitic or silicoaluminate type, in a temperature range of 100 ° C. to 350 ° C., and a pressure range of 20 bar to 70 bar, and in a range of VVH from 0.1 hr-1 to 2.0 hr-1.

Selon une autre variante préférée du procédé selon la présente invention, l'étape 6 d'hydrotraitement (HDT) utilise un catalyseur contenant au moins un métal choisi parmi le Ni, le Co, et le Mo, et opère dans une gamme de température de 50°C à 400 °C, de manière préférée de 100°C à 350 °C, et dans une gamme de pression de 1 bar à 100 bars, de manière préférée de 20 bars à 70 bars, et dans une gamme de VVH de 0,1 h-1 à 10 h-1, et de manière préférée de 0,5 h-1 à 5,0 h-1.According to another preferred variant of the process according to the present invention, step 6 of hydrotreatment (HDT) uses a catalyst containing at least one metal chosen from Ni, Co, and Mo, and operates in a temperature range of 50 ° C to 400 ° C, preferably 100 ° C to 350 ° C, and in a pressure range of 1 bar to 100 bar, more preferably 20 to 100 ° C. bars at 70 bar, and in a range of VHV from 0.1 hr-1 to hr-1, and preferably from 0.5 hr-1 to 5.0 hr-1.

Selon une autre variante du procédé selon la présente invention, l'étape 6 d'hydrotraitement (HDT) utilise un catalyseur contenant au moins un métal choisi parmi le Pd et le Pt, et opère dans une gamme de température de 50°C à 300 °C, et de manière préférée de 100°C à 250 °C, dans une gamme de pression de 1 bar à 100 bars, et de manière préférée de 20 bar à 70 bars, et dans une gamme de VVH de 0,10h-1 à 10 h-1, et de manière préférée de 0,5 h-1 à 5,0h-1.According to another variant of the process according to the present invention, step 6 of hydrotreatment (HDT) uses a catalyst containing at least one metal chosen from Pd and Pt, and operates in a temperature range of 50 ° C. to 300 ° C. ° C, and preferably from 100 ° C to 250 ° C, in a pressure range of 1 bar to 100 bar, and preferably from 20 bar to 70 bar, and in a range of VVH of 0.10h. 1 to 10 h -1, and preferably from 0.5 h -1 to 5.0 h -1.

Enfin, selon une dernière variante du procédé selon la présente invention, l'étape 2 de traitement sur catalyseur acide (TR) est précédée d'une étape 1 d'hydrogénation sélective (SHU) de la coupe essence de départ.Finally, according to a last variant of the process according to the present invention, step 2 of treatment on acid catalyst (TR) is preceded by a step 1 of selective hydrogenation (SHU) of the starting gasoline cut.

DESCRIPTION DETAILLEE DE L'INVENTIONDETAILED DESCRIPTION OF THE INVENTION

La présente invention décrit un procédé d'obtention de carburant diesel ou kérosène à partir de coupes oléfiniques issue typiquement d'une unité de craquage catalytique des essences (notée FCC en abrégé) et d'une coupe riche en BTX (abréviation de benzène, toluène, xylène) issue typiquement d'une unité de reforming semi régénérative ou régénérative, généralement présente sur le même site que l'unité de FCC.The present invention describes a process for obtaining diesel fuel or kerosene from olefinic cuts, typically from a catalytic cracking unit of gasolines (abbreviated as FCC) and a BTX-rich fraction (abbreviation of benzene, toluene). , xylene) typically results from a semi-regenerative or regenerative reforming unit, generally present at the same site as the FCC unit.

On entend par "typiquement" le cas le plus fréquent qui n'exclut pas d'autres sources telles que décrites ci après.By "typically" is meant the most frequent case that does not exclude other sources as described below.

La coupe oléfinique peut également provenir d'unités de type vapocraquage (notée SC en abrégé), d'unité de synthèse Fischer Tropsch (notée FT en abrégé), de cokéfaction (notée CK en abrégé) ou encore d'une unité de visco-réduction (notée VB en abrégé). La coupe riche en BTX peut provenir également d'une unité de vapocraquage (SC), de vaporéformage (notée VR en abrégé), d'une unité de craquage d'oléfines (notée CO en abrégé), ou encore d'une unité transformant le méthanol en oléfines (notée MTO en abrégé).The olefinic cut can also come from steam-cracking units (abbreviated as SC), Fischer Tropsch synthesis unit (abbreviated as FT), coking (denoted CK abbreviated) or a viscosity unit. reduction (noted VB abbreviated). The BTX-rich fraction can also come from a steam cracking unit (SC), a steam reforming unit (abbreviated as VR), an olefin cracking unit (abbreviated CO) or a transforming unit. methanol to olefins (abbreviated as MTO).

La charge à traiter (1) est une essence d'intervalle de distillation compris entre 30°C et 250°C. Cette charge est éventuellement envoyée dans une unité SHU qui permet d'hydrogéner sélectivement les hydrocarbures insaturés générateurs de gomme, tels que les dioléfines. L'effluent traité (2) est envoyé directement ou après distillation dans une unité de traitement (TR) reposant sur l'utilisation d'un catalyseur acide, de préférence un catalyseur de type résine échangeuse d'ions, telle que décrite dans le brevet FR 2.840.620 , ou de type acide phosphorique supporté.The feed to be treated (1) is a gasoline distillation range of between 30 ° C and 250 ° C. This charge is optionally sent to a SHU unit which makes it possible to selectively hydrogenate gum-forming unsaturated hydrocarbons, such as diolefins. The treated effluent (2) is sent directly or after distillation to a treatment unit (TR) based on the use of an acid catalyst, preferably a resin type catalyst ion exchange, as described in the patent FR 2.840.620 or of supported phosphoric acid type.

Cette étape a pour but de capter des composés empoisonnants des catalyseurs acides, notamment les composés azotés, et optionnellement, de les transformer en composés plus lourds.This step is intended to capture poisonous compounds acid catalysts, including nitrogen compounds, and optionally, to turn them into heavier compounds.

Il a été en effet observé de manière surprenante que les catalyseurs cités ci dessus, après une période de captation quasi totale des composés azotés, continuent à convertir les composés azotés de la charge en composés plus lourds de sorte que si une distillation est installée en aval du traitement, la coupe légère obtenue en tête de la colonne de distillation est appauvrie en azote. Cette coupe légère de tête peut être traitée sans purification additionnelle sur les catalyseurs acides aval.It has been observed, surprisingly, that the catalysts mentioned above, after a period of almost total capture of the nitrogenous compounds, continue to convert the nitrogen compounds of the feed into heavier compounds so that if a distillation is installed downstream of the treatment, the light cut obtained at the top of the distillation column is depleted in nitrogen. This light head cut can be treated without additional purification on downstream acid catalysts.

Il a été également observé sur cette étape de traitement (TR), un alourdissement des composés soufrés de sorte que la coupe légère issue de la distillation aval est aussi appauvrie en composés soufrés.It has also been observed on this treatment step (TR), a heavier sulfur compounds so that the light cut resulting from the downstream distillation is also depleted of sulfur compounds.

L'effluent (3) de l'unité de traitement aux résines (TR) est envoyé dans une colonne à distiller (CD1) de laquelle on extrait 3 coupes:

  1. a) une coupe de tête correspondant au flux (4) qui est envoyé dans l'enchainement d'unités oligomérisation (OLG) - alkylation sur BTX (ALK) en vue de produire une coupe (11) d'intervalle de distillation de type gazole qui est hydrogénée dans l'unité d'hydrogénation totale (HT) pour produire le distillat recherché (13),
  2. b) une coupe intermédiaire (5) qui peut être envoyée dans une unité d'hydrodésulfuration permettant de réduire la teneur en soufre à moins de 10 ppm (non représentée sur la figure 1).
The effluent (3) of the resin treatment unit (TR) is sent to a distillation column (CD1) from which three cuts are extracted:
  1. a) a head section corresponding to the flow (4) which is fed into the oligomerization unit (OLG) - alkylation on BTX (ALK) sequence to produce a diesel-type distillation range section (11) which is hydrogenated in the total hydrogenation unit (HT) to produce the desired distillate (13),
  2. b) an intermediate cut (5) which can be sent to a hydrodesulfurization unit for reducing the sulfur content to less than 10 ppm (not shown in FIG. figure 1 ).

Ce type d'unité est par exemple l'unité connue commercialement sous le nom de Prime G+, commercialisée par la société AXENS, dont on peut trouver une description dans le brevet FR 2.797.639 .

  1. c) une coupe de fond (6) qui est envoyée dans une unité d'hydrotraitement sévère (HDT) permettant de réduire la teneur en soufre à moins de 10 ppm, d'hydrogéner la quasi totalité des oléfines, et de réduire significativement la teneur en aromatiques. L'effluent de l'unité d'hydrotraitement (HDT), noté flux (12), est envoyé vers l'unité d'hydrotraitement total (HT).
This type of unit is for example the unit known commercially under the name Prime G +, marketed by AXENS, a description of which can be found in the patent FR 2,797,639 .
  1. c) a bottom cut (6) which is sent to a severe hydrotreatment unit (HDT) to reduce the sulfur content to less than 10 ppm, to hydrogenate almost all the olefins, and to significantly reduce the content in aromatics. The effluent of the hydrotreatment unit (HDT), noted flow (12), is sent to the total hydrotreatment unit (HT).

La coupe de tête (4), éventuellement en mélange avec une coupe LPG (10), est envoyée dans une unité d'oligomérisation (OLG) qui va former des oligomères à nombre d'atomes de carbone compris entre 8 et 20 constituant le flux (7).The head cut (4), optionally mixed with an LPG cut (10), is sent to an oligomerization unit (OLG) which will form oligomers with a number of carbon atoms of between 8 and 20 constituting the flow. (7).

En fonction de sa teneur en soufre, ce flux (7) est:

  • soit envoyé (flux 7a) vers l'unité d'hydrotraitement (HDT), lorsque sa teneur en soufre est supérieure à 10 ppm,
  • soit envoyé (flux 7b) vers l'unité d'hydrogénation totale (HT) lorsque sa teneur en soufre est inférieure à 10 ppm.
According to its sulfur content, this stream (7) is:
  • is sent (stream 7a) to the hydrotreating unit (HDT), when its sulfur content is greater than 10 ppm,
  • is sent (stream 7b) to the total hydrogenation unit (HT) when its sulfur content is less than 10 ppm.

L'unité d'oligomérisation (OLG) fonctionne sur un catalyseur acide de type zéolitique ou silice alumine, dans une gamme de température de 100°C à 350 °C, et dans une gamme pression de 20 bars à 70 bars, et dans une gamme de VVH de 0,2h-1 à 1,0h-1.The oligomerization unit (OLG) operates on an acid catalyst of zeolitic or silica-alumina type, in a temperature range of 100 ° C to 350 ° C, and in a pressure range of 20 bars to 70 bars, and in a VVH range from 0.2h-1 to 1.0h-1.

La fraction d'oléfines légères, de point d'ébullition inférieur à 150°C, n'ayant pas réagi dans l'unité d'oligomérisation (OLG) constitue le flux (8) qui alimente l'unité d'alkylation (ALK) qui fait appel à une coupe BTX (9) généralement issue d' une unité de reforming régénératif des essences.The fraction of light olefins having a boiling point of less than 150 ° C. which has not reacted in the oligomerization unit (OLG) constitutes the stream (8) which feeds the alkylation unit (ALK). which uses a BTX cut (9) generally derived from a regenerative species reforming unit.

L'unité d'alkylation des oléfines (8) issues de l'unité d'oligomérisation (OLG), sur la coupe BTX (9) fonctionne sur un catalyseur acide de type zéolitique ou silicoaluminate, dans une gamme de température de 100°C à 350 °C, et dans une gamme pression de 20 bars à 70 bars, et dans une gamme de VVH de 0,1 h-1 à 2,0 h-1.The alkylation unit of the olefins (8) from the oligomerization unit (OLG) on the BTX cut (9) operates on a zeolitic acid or silicoaluminate acid catalyst, in a temperature range of 100 ° C. at 350 ° C, and in a pressure range of 20 bar to 70 bar, and in a range of VHV from 0.1 hr-1 to 2.0 hr-1.

L'effluent (11) de l'unité d'alkylation (ALK) est envoyé dans une colonne à distiller (CD2) d'où l'on extrait 3 coupes:

  • une coupe essence (11a) de point d'ébullition inférieur à 100°C qui est envoyée vers le pool essence,
  • une coupe intermédiaire (11b) d'intervalle de distillation compris entre 100°C et 150°C, essentiellement constituée des BTX n'ayant pas réagi et qui est en majorité recyclée à l'entrée de l'unité d'alkylation, à l'exception d'une fraction constituant la purge de l'unité et qui est elle même envoyée au pool essence après stabilisation,
  • une coupe lourde (11c) de point d'ébullition supérieur à 150°C qui est envoyée à l'unité d'hydrogénation totale (HT) de laquelle est extrait le gazole recherché (13).
The effluent (11) of the alkylation unit (ALK) is sent to a distillation column (CD2) from which three cuts are extracted:
  • a gasoline cut (11a) with a boiling point below 100 ° C which is sent to the gasoline pool,
  • an intermediate cross-section (11b) of distillation range between 100 ° C and 150 ° C, essentially consisting of unreacted BTX and which is mostly recycled at the inlet of the alkylation unit, exception of a fraction constituting the purge of the unit and which is itself sent to the gasoline pool after stabilization,
  • a heavy cut (11c) of boiling point greater than 150 ° C which is sent to the total hydrogenation unit (HT) from which is extracted the desired diesel (13).

EXEMPLEEXAMPLE

L'exemple suivant illustre le procédé selon l'invention.The following example illustrates the process according to the invention.

On part d'une charge constituée d'une essence de craquage catalytique et d'une coupe BTX provenant d'une unité de reformage catalytique. On ajoute également à cette charge une coupe LPG provenant de l'unité de craquage catalytique.Starting from a catalytic cracking gasoline feedstock and a BTX cut from a catalytic reforming unit. An LPG cut from the catalytic cracking unit is also added to this feed.

Les débits massiques des constituants de la charge sont les suivants:

  • essence (1): 100 t/h
  • coupe BTX (9): 18 t/h
  • coupe LPG(10): 25 t/h
The mass flow rates of the constituents of the load are as follows:
  • petrol (1): 100 t / h
  • BTX cut (9): 18 t / h
  • LPG cut (10): 25 t / h

L'essence (1) est introduite dans une unité d'hydrogénation sélective (SHU) qui fonctionne aux conditions suivantes:

  • pression 15 bars effectifs
  • température 120°C
  • catalyseur HR 945 commercialisé par la société Axens, avec une VVH de 2 h-1 l'essence hydrogénée (2) est introduite dans une unité de traitement sur catalyseur acide (TR) qui fonctionne aux conditions suivantes:
  • pression 15 bars effectifs
  • température 100 °C
  • catalyseur TA 801 commercialisé par la société Axens, avec une VVH de 0,5 h-1
Gasoline (1) is introduced into a Selective Hydrogenation Unit (SHU) which operates under the following conditions:
  • pressure 15 bars effective
  • temperature 120 ° C
  • HR 945 catalyst sold by the company Axens, with a VHV of 2 h -1 the hydrogenated gasoline (2) is introduced into an acid catalyst (TR) treatment unit which operates under the following conditions:
  • pressure 15 bars effective
  • temperature 100 ° C
  • TA 801 catalyst marketed by the company Axens, with a VVH of 0.5 h -1

L'effluent (3) de l'unité TR est introduit dans une colonne à distiller (CD1) de laquelle on sépare:

  • en tête une coupe oléfinique (4) ayant un point final d'ébullition de 60°C,
  • intermédiairement une coupe (5) d'intervalle de distillation compris entre 60°C et 150°C,
  • en fond une coupe (6) de point d'ébullition supérieur à 150°C.
The effluent (3) of the unit TR is introduced into a distillation column (CD1) from which is separated:
  • at the top an olefinic cut (4) having a boiling point of 60 ° C,
  • intermediably a section (5) of distillation range between 60 ° C and 150 ° C,
  • in bottom a section (6) with a boiling point greater than 150 ° C.

La coupe de tête (4) est mélangée avec une certaine quantité de coupe LPG (10) et le mélange résultant est introduit dans l'unité d'oligomérisation (OLG) qui fonctionne aux conditions suivantes:

  • pression: 60 bars effectifs
  • température: 160 °C
  • catalyseur IP 811 commercialisé par la société Axens, avec une VVH de 0,5 à 2 h-1.
The top cup (4) is mixed with a certain amount of LPG cup (10) and the resulting mixture is introduced into the oligomerization unit (OLG) which operates under the following conditions:
  • pressure: 60 bars effective
  • temperature: 160 ° C
  • Catalyst IP 811 sold by the company Axens, with a VVH of 0.5 to 2 h -1.

L'unité d'oligomérisation (OLG) produit d'une part un effluent (7) constitué d'oléfines oligomérisées qui est envoyé pour partie (7a) en mélange avec la coupe (6) de fond de la colonne à distiller (CD1) dans une unité d'hydrotraitement (HDT) fonctionnant aux conditions suivantes:

  • pression 20 bars effectifs
  • température 300°C
  • catalyseur HR 506 commercialisé par la société Axens, utilisé avec une VVH de 1 h-1. L'effluent (12) de l'unité d'hydrogénation (HDT) est envoyé vers l'unité d'hydrogénation totale (HT), éventuellement en mélange avec la partie (7b) de l'effluent oléfinique (7). L'effluent (13) de l'unité d'hydrogénation totale (HT) constitue la production de gazole recherché aux spécifications suivantes:
    • indice de cétane moteur : 45
    • densité 0,775 kg/m3
The oligomerization unit (OLG) produces on the one hand an effluent (7) consisting of oligomerized olefins which is partially (7a) mixed with the bottom section (6) of the distillation column (CD1). in a hydrotreating unit (HDT) operating under the following conditions:
  • pressure 20 bars effective
  • temperature 300 ° C
  • HR 506 catalyst marketed by the company Axens, used with a VHV of 1 h-1. The effluent (12) of the hydrogenation unit (HDT) is sent to the total hydrogenation unit (HT), optionally mixed with the portion (7b) of the olefinic effluent (7). The effluent (13) of the total hydrogenation unit (HT) constitutes the desired diesel production with the following specifications:
    • cetane number motor: 45
    • density 0.775 kg / m3

L'effluent intermédiaire (5) de la colonne à distiller CD1 est envoyé au pool essence.The intermediate effluent (5) of the distillation column CD1 is sent to the gasoline pool.

L'unité d'oligomérisation (OLG) produit également un effluent (8) d'oléfines en C3 et C4 qui est envoyé avec la coupe BTX (9) dans une unité d'alkylation (ALK) travaillant aux conditions suivantes:

  • pression 2500 kPa (k est l'abréviation de kilo soit 103 pascal)
  • température 150°C
  • catalyseur zéolithe Y,
  • VSL : 2,5 h-1
The oligomerization unit (OLG) also produces an effluent (8) of C3 and C4 olefins which is fed with the BTX cut (9) into an alkylation unit (ALK) operating under the following conditions:
  • pressure 2500 kPa (k is the abbreviation of kilo or 10 3 pascal)
  • temperature 150 ° C
  • zeolite catalyst Y,
  • VSL: 2.5 hrs-1

L'effluent (11) de l'unité d'alkylation (ALK) est envoyé dans une seconde colonne à distiller (CD2) qui produit en fond un effluent (11c) qui est envoyé dans l'unité d'hydrogénation totale (HT) et contribue donc à la production du gazole recherché (13).The effluent (11) of the alkylation unit (ALK) is sent to a second distillation column (CD2) which produces in the bottom an effluent (11c) which is sent to the total hydrogenation unit (HT). and thus contributes to the production of the desired diesel (13).

L'effluent latéral (11b) de la colonne à distiller (CD2) est renvoyé à l'unité d'alkylation (ALK). L'effluent de tête (11a) de la colonne CD2 est envoyé vers le pool essence.The lateral effluent (11b) of the distillation column (CD2) is returned to the alkylation unit (ALK). The overhead effluent (11a) of column CD2 is sent to the gasoline pool.

Les tableaux A et B ci dessous donnent le détail des flux selon le schéma de la figure 1.Tables A and B below give details of flows according to the scheme of the figure 1 .

Globalement le procédé selon l'invention a donc produit 66 tonnes / heure de gazole (13), à partir de 100 tonnes /heure d'essence de FCC (1), de 18 tonnes/heure de coupe BTX (9) et de 25 t/h de coupe LPG de FCC (10), soit un rendement (13)/(1)+(9)+(10) de 46% de transformation d'une coupe essence en coupe distillat, utilisable comme base de kérosène ou de gazole.Overall, the process according to the invention therefore produced 66 tonnes / hour of diesel (13), from 100 tonnes / hour of FCC gasoline (1), of 18 tonnes / hour of BTX cut (9) and 25 tonnes of gasoline. t / h FCC LPG cut (10), a yield (13) / (1) + (9) + (10) of 46% conversion of a gasoline cut into a distillate cut, usable as a kerosene base or of diesel.

Pour la bonne compréhension des tableaux A et B, nous précisons la signification des abréviations utilisées:

  • Cn désigne une coupe paraffinique à n atomes de carbone
  • Cn= désigne une coupe oléfinique à n atomes de carbone
  • A désigne les aromatiques
  • B désigne le benzène,
  • T désigne le toluène, X désigne les xylènes
  • les indices n,i,c signifient respectivement normale (ou linéaire), iso (ou ramifié) et cycliques.
TABLEAU "A" Feed Effluent SHU Effluent TR CD1 lights CD1 heart cut CD1 heavy cut Feed C4 Oligo Feed Oligo Prod Oligo heavies Oligo lights (1) (2) (3) (4) (5) (6) (10) (10)+(4) (8)+(7) (7) (8) C4(i,n) 0.05 0.08 0.08 0.08 - - 12.00 12.08 12.08 - 12.08 C4= 0.27 0.24 0.22 0.22 - - 13.00 13.22 0.66 - 0.66 C5(i,n,c) 10.49 11.14 11.14 11.14 - - - 11.14 11.14 - 11.14 C5= 13.10 12.74 11.47 11.47 - - - 11.47 1.72 - 1.72 C6(i,n,c) 8.57 8.77 8.77 0.88 7.90 - - 0.88 0.88 - 0.88 C6= 8.34 8.13 8.13 0.81 7.32 - - 0.81 0.20 - 0.20 B 0.94 0.94 0.94 - 0.94 - - - - - - C7(i,n,c) 6.28 6.28 6.28 - 6.28 - - - - - - C7= 3.61 3.61 3.61 - 3.61 - - - - - - T 4.87 4.87 4.87 - 4.87 - - - - - - C8(i,n,c) 4.09 4.09 4.09 - 4.09 - - - - - - C8= 1.64 1.64 1.64 - 1.64 - - - - - - X 9.70 9.70 9.70 - 9.70 - - - - - - C9(i,n,c) 1.85 1.85 1.85 - 0.56 1.30 - - - - - C9= 1.26 1.26 1.26 - 0.38 0.89 - - - - - A9 9.93 9.93 9.93 - 1.49 8.44 - - - - - C10(i,n,c) 1.90 1.90 1.90 - - 1.90 - - - - - C10= 0.84 0.84 0.84 - - 0.84 - - - - - A10 7.88 7.88 7.88 - - 7.88 - - - - - C11(i,n,c) 0.57 0.57 0.57 - - 0.57 - - - - - C11= 0.70 0.70 0.70 - - 0.70 - - - - - A11 1.28 1.28 1.28 - - 1.28 - - - - - C12(i,n,c) 0.46 0.46 0.46 - - 0.46 - - - - - C12= 0.14 0.14 0.14 - - 0.14 - - - - - A12 0.89 0.89 0.89 - - 0.89 - - - - - C12(i,n,c) 0.02 0.02 0.02 - - 0.02 - - - - - C12= - - - - - - - - - - A12 0.01 0.01 0.01 - - 0.01 - - - - - Oligomères C8-C12 - - 1.30 - 1.30 - - - 17.19 - 17.19 Oligomères C12-C16 - - - - - - - - 5.73 5.73 - Alkylate - - Dienes 0.33 0.03 0.03 - - 0.03 - - - - - HT oligomers C12-C15 - - HT Alkylate - - S(ppm pds) 1000 800 800 8 320 472 10 9 9 78 0 N(ppm pds) 30 27 14 0 3 11 1 1 1 5 0 Total 100.00 100.00 100.00 24.60 50.06 25.35 25.00 49.60 49.60 5.73 43.87 TABLEAU"B" Feed BTX BTX recycle Alky effluent Light purge Heart cut purge Heavy Product Heart cut to gasoline Oligo Heavies to HDT Oligo Heavies to HT HDT Effluent (après strippeur) (H2 feed non exemplifié) HT feed HDT Effluent (après strippeur) (H2 feed non exemplifié) (9) 11b)recycle (11) (11a) (11b) (11c) (11b)out (7a) (7b) (12a) (7b+12+11c) (13) C4(i,n) - - 12.08 12.08 - - - - - - - - C4= - - 0.01 0.01 - - - - - - - - C5(i,n,c) - - 11.14 11.14 - - - 11.14 - - - - C5= - - 0.02 0.02 - - - - - - - - C6(i,n,c) - - 0.88 0.88 - - - 0.88 - - - - C6= - - 0.00 0.00 - - - B - - - - - - - - - - - - C7(i,n,c) - - - - - - - - - - - - C7= - - - - - - - - - - - - T 14.00 68.55 70.67 - 70.67 - 2.12 - - - C8(i,n,c) - - - - - - - - - - - - C8= - - - - - - - - - - - - X 4.00 1.29 1.33 - 1.33 - 0.04 - - - - - C9(i,n,c) - - - - - - - - - 1.39 1.39 6.40 C9= - - - - - - - - - 0.80 0.80 - A9 - - - - - - - - - 8.44 8.44 4.22 C10(i,n,c) - - - - - - - - - 1.98 1.98 6.68 C10= - - - 0.76 0.76 - A10 - - - - - - - - - 7.88 7.88 3.94 C11(i,n,c) - - - - - - - - - 0.64 0.64 1.91 C11= - - - - - - - - - 0.63 0.63 - A11 - - - - - - - - - 1.28 1.28 0.64 C12(i,n,c) - - - - - - - - - 0.47 0.47 1.05 C12= - - - - - - - - - 0.13 0.13 - A12 - - - - - - - - - 0.89 0.89 0.45 C12(i,n,c) - - - - - - - - - 0.02 0.02 0.02 C12= - - - - - - - - - - - - A12 - - - - - - - - - 0.01 0.01 0.00 Oligomères C8-C12 - 3.64 3.75 - 3.75 - 0.11 - - - - - Oligomères C12-C16 - - 0.42 - - 0.42 - - 5.73 - 6.15 - Alkylate - - 35.06 - 0.00 35.06 0.00 - - - 35.06 - Dienes - - - - - - - - - 0.03 0.03 - HT oligomers C12-C15 - - - - - - - - - - - 6.15 HT Alkylate - - - - - - - - - - - 35.06 s(ppm pds) 0 0 0 0 0 0 0 0 78 12 11 1 N(ppm pds) 0 0 0 0 0 0 0 0 5 5 2 1 Total 18.00 73.48 135.35 24.12 75.76 35.47 2.27 - 5.73 25.35 66.55 66.61 For a good understanding of Tables A and B, we specify the meaning of the abbreviations used:
  • Cn denotes a paraffinic cut with n carbon atoms
  • Cn = denotes an olefinic cut with n carbon atoms
  • A denotes the aromatics
  • B is benzene,
  • T is toluene, X is xylenes
  • the indices n, i, c mean respectively normal (or linear), iso (or branched) and cyclic.
TABLE "A" Feed Effluent SHU TR Effluent CD1 lights CD1 heart cut CD1 heavy cut Feed C4 Oligo Feed Oligo Prod Oligo heavies Oligo lights (1) (2) (3) (4) (5) (6) (10) (10) + (4) (8) + (7) (7) (8) C4 (i, n) 0.05 0.08 0.08 0.08 - - 12.00 12.08 12.08 - 12.08 C4 = 0.27 0.24 0.22 0.22 - - 13.00 13.22 0.66 - 0.66 C5 (i, n, c) 10.49 11.14 11.14 11.14 - - - 11.14 11.14 - 11.14 C5 = 13.10 12.74 11.47 11.47 - - - 11.47 1.72 - 1.72 C6 (i, n, c) 8.57 8.77 8.77 0.88 7.90 - - 0.88 0.88 - 0.88 C6 = 8.34 8.13 8.13 0.81 7.32 - - 0.81 0.20 - 0.20 B 0.94 0.94 0.94 - 0.94 - - - - - - C7 (i, n, c) 6.28 6.28 6.28 - 6.28 - - - - - - C7 = 3.61 3.61 3.61 - 3.61 - - - - - - T 4.87 4.87 4.87 - 4.87 - - - - - - C8 (i, n, c) 4.09 4.09 4.09 - 4.09 - - - - - - C8 = 1.64 1.64 1.64 - 1.64 - - - - - - X 9.70 9.70 9.70 - 9.70 - - - - - - C9 (i, n, c) 1.85 1.85 1.85 - 0.56 1.30 - - - - - C9 = 1.26 1.26 1.26 - 0.38 0.89 - - - - - A9 9.93 9.93 9.93 - 1.49 8.44 - - - - - C10 (i, n, c) 1.90 1.90 1.90 - - 1.90 - - - - - C10 = 0.84 0.84 0.84 - - 0.84 - - - - - A10 7.88 7.88 7.88 - - 7.88 - - - - - C11 (i, n, c) 0.57 0.57 0.57 - - 0.57 - - - - - C11 = 0.70 0.70 0.70 - - 0.70 - - - - - A11 1.28 1.28 1.28 - - 1.28 - - - - - C12 (i, n, c) 0.46 0.46 0.46 - - 0.46 - - - - - C12 = 0.14 0.14 0.14 - - 0.14 - - - - - AT 12 0.89 0.89 0.89 - - 0.89 - - - - - C12 (i, n, c) 0.02 0.02 0.02 - - 0.02 - - - - - C12 = - - - - - - - - - - AT 12 0.01 0.01 0.01 - - 0.01 - - - - - Oligomers C8-C12 - - 1.30 - 1.30 - - - 17.19 - 17.19 Oligomers C12-C16 - - - - - - - - 5.73 5.73 - alkylate - - Dienes 0.33 0.03 0.03 - - 0.03 - - - - - HT oligomers C12-C15 - - HT Alkylate - - S (ppm wt) 1000 800 800 8 320 472 10 9 9 78 0 N (ppm wt) 30 27 14 0 3 11 1 1 1 5 0 Total 100.00 100.00 100.00 24.60 50.06 25.35 25.00 49.60 49.60 5.73 43.87 BTX Feed BTX recycles Alky effluent Light purge Heart cut purge Heavy Product Heart cut to gasoline Oligo Heavies to HDT Oligo Heavies to HT HDT Effluent (after stripper) (H2 feed not exemplified) HT feed HDT Effluent (after stripper) (H2 feed not exemplified) (9) 11b) recycles (11) (11a) (11b) (11c) (11b) out (7a) (7b) (12a) (7b 12 + + 11c) (13) C4 (i, n) - - 12.08 12.08 - - - - - - - - C4 = - - 0.01 0.01 - - - - - - - - C5 (i, n, c) - - 11.14 11.14 - - - 11.14 - - - - C5 = - - 0.02 0.02 - - - - - - - - C6 (i, n, c) - - 0.88 0.88 - - - 0.88 - - - - C6 = - - 0.00 0.00 - - - B - - - - - - - - - - - - C7 (i, n, c) - - - - - - - - - - - - C7 = - - - - - - - - - - - - T 14.00 68.55 70.67 - 70.67 - 2.12 - - - C8 (i, n, c) - - - - - - - - - - - - C8 = - - - - - - - - - - - - X 4.00 1.29 1.33 - 1.33 - 0.04 - - - - - C9 (i, n, c) - - - - - - - - - 1.39 1.39 6.40 C9 = - - - - - - - - - 0.80 0.80 - A9 - - - - - - - - - 8.44 8.44 4.22 C10 (i, n, c) - - - - - - - - - 1.98 1.98 6.68 C10 = - - - 0.76 0.76 - A10 - - - - - - - - - 7.88 7.88 3.94 C11 (i, n, c) - - - - - - - - - 0.64 0.64 1.91 C11 = - - - - - - - - - 0.63 0.63 - A11 - - - - - - - - - 1.28 1.28 0.64 C12 (i, n, c) - - - - - - - - - 0.47 0.47 1.05 C12 = - - - - - - - - - 0.13 0.13 - AT 12 - - - - - - - - - 0.89 0.89 0.45 C12 (i, n, c) - - - - - - - - - 0.02 0.02 0.02 C12 = - - - - - - - - - - - - AT 12 - - - - - - - - - 0.01 0.01 0.00 Oligomers C8-C12 - 3.64 3.75 - 3.75 - 0.11 - - - - - Oligomers C12-C16 - - 0.42 - - 0.42 - - 5.73 - 6.15 - alkylate - - 35.06 - 0.00 35.06 0.00 - - - 35.06 - Dienes - - - - - - - - - 0.03 0.03 - HT oligomers C12-C15 - - - - - - - - - - - 6.15 HT Alkylate - - - - - - - - - - - 35.06 s (ppm wt) 0 0 0 0 0 0 0 0 78 12 11 1 N (ppm wt) 0 0 0 0 0 0 0 0 5 5 2 1 Total 18.00 73.48 135.35 24.12 75.76 35.47 2.27 - 5.73 25.35 66.55 66.61

Claims (4)

  1. Process for the production of diesel fuel from a gasoline fraction that contains 5 to 10 carbon atoms and in a preferred manner 5 to 7 carbon atoms originating from a catalytic cracking unit (1), and a BTX fraction (9) that typically originates from a unit for catalytic reforming of gasolines, relying on the concatenation of the following stages:
    - a stage 1 for selective hydrogenation (SHU) of the initial gasoline fraction,
    - a stage 2 for treatment on the acid catalyst (TR) of the effluent that is obtained from stage 1,
    - a stage 3 for distillation of the effluent of stage 2 that is produced in a first distillation column (CD1) that makes it possible to separate at the top an olefinic fraction (4) that has a final boiling point of approximately 60°, intermediately a distillation interval fraction (5) of between 60°C and 150°C, and at the bottom a fraction (6) with a boiling point that is greater than 150) C, which is sent to a hydrotreatment (HDT) unit,
    - a stage 4 for oligomerization (OLG) of the olefinic fraction (4), optionally mixed with an LPG fraction (10) that contains olefins, from which, after distillation, a stream (7) of oligomerized olefins with a number of carbon atoms that ranges from 8 to 20 is sent for a first part (7a) to the hydrotreatment (HDT) unit and for a second part (7b) to a total hydrogenation (HT) unit is extracted,
    - a stage 5 for alkylation of the stream (8) of olefins into C3 and C4 obtained from stage 4 for oligomerization on the BTX fraction (9) that is rich with aromatic compounds containing 6 to 12 carbon atoms, and in a preferred manner 6 to 9 carbon atoms, whereby the effluent (11) of the alkylation (ALK) unit is sent into a second distillation column (CD2) from which 3 fractions are extracted:
    - a gasoline fraction (11a) with a boiling point that is less than 100°C, which is sent to the gasoline pool,
    - an intermediate fraction (11b) with a distillation interval of between 100°C and 150°C, essentially consisting of BTX that has not reacted, which is for the most part recycled at the input of the alkylation unit, with the exception of a fraction (11d) that constitutes the purging of the (ALK) unit, and which is itself sent to the gasoline pool after stabilization,
    - a heavy fraction (11c) with a boiling point that is greater than 150°C that is sent to the total hydrogenation (HT) unit from which the desired diesel fuel (13) is extracted,
    with the oligomerization stage 4 working on a preferably zeolitic- or silica-alumina-type acid catalyst, in a temperature range of 100°C to 350°C, and in a pressure range of 20 to 70 bar, and in a WH range of 0.2 to 1.0 h-1,
    and with alkylation stage 5 working on a preferably zeolitic- or silicoaluminate-type acid catalyst in a temperature range of 100 to 350°C, and in a pressure range of 20 to 70 bar, and in a WH range of 0.1 h-1 to 2.0 h-1.
  2. Process for the production of diesel fuel according to claim 1, in which the stage 2 for treatment on an acid catalyst relies on an ion-exchange resin-type acid catalyst, or supported phosphoric acid catalyst, or any acid catalyst previously used in the downstream stages of oligomerization (OLG) or alkylation (ALK), in a temperature range of 20°C to 350°C, in a preferred manner of 40 to 250°C, and in a pressure range of 1 to 100 bar, in a preferred manner 10 to 30 bar, and in a WH range of 0.1 to 5 h-1, in a preferred manner 0.3 to 2.0 h-1.
  3. Process for the production of distillates according to claim 1, in which the hydrotreatment (HDT) stage uses a catalyst that contains at least one metal that is selected from among Ni, Co and Mo and operates in a temperature range of 50 to 400°C, in a preferred manner 100 to 350°C, and in a pressure range of 1 to 100 bar, in a preferred manner 20 to 70 bar, and in a VVH range of 0.1 h-1 to 10 h-1, in a preferred manner 0.5 h-1 to 5.0 h-1.
  4. Process for the production of distillates according to claim 1, in which the hydrotreatment (HDT) stage uses a catalyst that contains at least one metal that is selected from among Pd and Pt and operates within a temperature range of 50 to 300°C, in a preferred manner 100°C to 250°C, and in a pressure range of 1 to 100 bar, in a preferred manner 20 to 70 bar, and in a VVH range of 0.1 h-1 to 10 h-1, in a preferred manner 0.5 h-1 to 5.0 h-1.
EP11290375A 2010-09-07 2011-08-17 Method for producing kerosene and diesel fuels using light unsaturated cuts and BTX-rich aromatic cuts Active EP2426189B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1003559A FR2964389A1 (en) 2010-09-07 2010-09-07 PROCESS FOR PRODUCING KEROSENE AND DIESEL FUELS FROM UNSATURATED UNSATURATED CUTTINGS AND AROMATIC CUTTINGS RICH IN BTX

Publications (2)

Publication Number Publication Date
EP2426189A1 EP2426189A1 (en) 2012-03-07
EP2426189B1 true EP2426189B1 (en) 2013-03-27

Family

ID=43825200

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11290375A Active EP2426189B1 (en) 2010-09-07 2011-08-17 Method for producing kerosene and diesel fuels using light unsaturated cuts and BTX-rich aromatic cuts

Country Status (3)

Country Link
US (1) US20120103867A1 (en)
EP (1) EP2426189B1 (en)
FR (1) FR2964389A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986799B1 (en) * 2012-02-15 2015-02-06 IFP Energies Nouvelles HEAVY LOAD CONVERTING METHOD USING CATALYTIC CRACKING UNIT AND SELECTIVE HYDROGENATION STEP FROM CATALYTIC CRACKING GASOLINE
WO2014109766A1 (en) * 2013-01-14 2014-07-17 Badger Licensing Llc Process for balancing gasoline and distillate production in a refinery
CN104711022B (en) * 2013-12-16 2016-11-16 中国石油化工股份有限公司 A kind of yield of gasoline that increases produces the two-stage catalytic gasoline modifying method of super low-sulfur oil

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950823A (en) * 1989-07-03 1990-08-21 Mobil Oil Corp. Benzene upgrading reformer integration
EP1057879A3 (en) * 1999-06-02 2001-07-04 Haldor Topsoe A/S A combined process for improved hydrotreating of diesel fuels
FR2797639B1 (en) 1999-08-19 2001-09-21 Inst Francais Du Petrole PROCESS FOR PRODUCING LOW SULFUR ESSENCE
FR2840620B1 (en) 2002-06-07 2004-07-30 Inst Francais Du Petrole PROCESS FOR PRODUCING LOW SULFUR AND NITROGEN HYDROCARBONS
EP1648982A2 (en) * 2003-08-01 2006-04-26 The Procter & Gamble Company Fuel for jet, gas turbine, rocket, and diesel engines
US7525002B2 (en) * 2005-02-28 2009-04-28 Exxonmobil Research And Engineering Company Gasoline production by olefin polymerization with aromatics alkylation
US7601254B2 (en) * 2005-05-19 2009-10-13 Uop Llc Integrated fluid catalytic cracking process
CN101711274B (en) * 2007-04-10 2013-06-19 沙索技术有限公司 Fischer-tropsch jet fuel process
US20110147263A1 (en) * 2009-12-18 2011-06-23 Exxonmobil Research And Engineering Company Process and system to convert olefins to diesel and other distillates

Also Published As

Publication number Publication date
FR2964389A1 (en) 2012-03-09
US20120103867A1 (en) 2012-05-03
EP2426189A1 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
EP2333031B1 (en) Process to produce high quality kerosine and diesel fuels and hydrogen coproduction from light saturated fractions
KR102243952B1 (en) Process for recovering gasoline and diesel from the aromatic complex bottom
KR101629047B1 (en) Hydrotreatment and dewaxing treatments for improving freezing point of jet fuels
EP2321385B1 (en) Method of converting a heavy charge into petrol and propylene, having a variable-yield structure
EP2256179B1 (en) Method for producing a hydrocarbon cut with a high octane level and low sulphur content
EP2636661B1 (en) Method for converting a heavy load using a catalytic cracking unit and a step for selective hydrogenation of gasoline from catalytic cracking
EP1972678B1 (en) Method of desulphurating hydrocarbon fractions from steam cracking effluent
EP2930224A1 (en) Method for producing light olefins and btx using an fcc unit treating a highly hydrotreated vgo heavy feedstock, coupled with a catalytic reformer unit and an aromatic complex treating a naphtha feedstock
FR2886941A1 (en) SOFT HYDROCRACKING PROCESS INCLUDING DILUTION OF THE LOAD
EP3121248A1 (en) Method for hydrotreating renewable materials with improved gas recycling
EP1849850A1 (en) Method of desulphurating olefin gasolines comprising at least two distinct hydrodesulphuration steps
WO2013093227A1 (en) Improved process for converting a heavy feedstock into middle distillates using a pretreatment upstream of the catalytic cracking unit
FR2968010A1 (en) METHOD FOR CONVERTING A HEAVY LOAD TO MEDIUM DISTILLATE
EP2426189B1 (en) Method for producing kerosene and diesel fuels using light unsaturated cuts and BTX-rich aromatic cuts
KR101717827B1 (en) Improved Process Development by Parallel Operation of Paraffin Isomerization Unit with Reformer
EP2385094A1 (en) Catalytic cracking method with recycling of an olefin cut taken upstream from the gas-separation section in order to maximise the production of propylene
EP3312260B1 (en) Method for hydrodesulphurisation of olefinic gasoline
FR2919299A1 (en) Hydrotreatment and/or hydroconversion of biorenewable mixture, comprises hydrotreating and/or hydroconversion of biorenewable mixture in bubbling bed reactor in presence of granular catalyst and passing effluent in distillation area
EP0949315A1 (en) Process for the conversion of hydrocarbons by treatment in a distillation zone associated with a reaction zone and its application in the hydrogenation of benzene
EP0980909A1 (en) Hydrocarbon conversion process and its application in the hydrogenation of benzene
EP2597135B1 (en) Method for generating middle distillates from a conventional heavy feedstock including a step of selective hydrogenation of the HCO EX FCC cut
EP1370629B1 (en) Method for producing low-sulphur petrol
WO2024208767A1 (en) Method for catalytic reforming with upgrading of non-aromatic effluents

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120907

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 603428

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011001178

Country of ref document: DE

Effective date: 20130523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130627

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130627

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 603428

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130327

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130628

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130708

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: IFP ENERGIES NOUVELLES

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

26N No opposition filed

Effective date: 20140103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011001178

Country of ref document: DE

Effective date: 20140103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130817

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130627

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130817

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110817

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240828

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240827

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240826

Year of fee payment: 14