EP2423450A1 - Strömungsteilereinrichtung für eine Kondensationsdampfturbine mit mehreren Austritten - Google Patents

Strömungsteilereinrichtung für eine Kondensationsdampfturbine mit mehreren Austritten Download PDF

Info

Publication number
EP2423450A1
EP2423450A1 EP10174372A EP10174372A EP2423450A1 EP 2423450 A1 EP2423450 A1 EP 2423450A1 EP 10174372 A EP10174372 A EP 10174372A EP 10174372 A EP10174372 A EP 10174372A EP 2423450 A1 EP2423450 A1 EP 2423450A1
Authority
EP
European Patent Office
Prior art keywords
flow divider
flow
differential pressure
cooling medium
stagnation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10174372A
Other languages
English (en)
French (fr)
Inventor
Benjamin Kumm
Norbert Sürken
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP10174372A priority Critical patent/EP2423450A1/de
Priority to EP11745975.0A priority patent/EP2609295B1/de
Priority to CN201180041746.1A priority patent/CN103080480B/zh
Priority to PCT/EP2011/064207 priority patent/WO2012025449A1/de
Publication of EP2423450A1 publication Critical patent/EP2423450A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/023Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines the working-fluid being divided into several separate flows ; several separate fluid flows being united in a single flow; the machine or engine having provision for two or more different possible fluid flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/08Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines

Definitions

  • the invention relates to a flow divider device for a condensing steam turbine having a plurality of outlets.
  • one stage of a condensing steam turbine consisting of a fixed stator and an impeller rotating about the machine axis, is designed as a Baumann stage in which an annular web is mounted, with which the blade channels are divided into an outer and an inner sub-channel.
  • the steam mass flow is divided in the stage with flow divider into two partial streams, which are then guided via different expansion paths through the further blading to a condenser.
  • the web is the vanes intersecting built into the vane grille, wherein the web has a circumferential leading edge.
  • the web is rigid, so that the inclination of the leading edge to the machine axis of the condensing steam turbine is always constant over time.
  • the angle of inclination is taken as the angle of flow of the steam flow with which the steam flow in the design operating state of the condensing steam turbine strikes the leading edge of the web.
  • the velocity components of the steam flow may change such that the angle of flow of the steam flow is no longer equal to the angle of attack of the leading edge of the web. Any deviation of the angle of attack from the angle of attack in the design mode of operation results in a false flow of the web, which results in an increase of flow losses in the steam flow.
  • This false flow of the web may, for example, cause, depending on the inside or outside Albertanströmung that form a pressure side or a suction side on the inside or the outside of the web. On the suction side there is a risk that the flow separates, which in turn high flow losses of the steam flow are the result. These flow losses adversely affect the thermodynamic efficiency of the condensing steam turbine so that the condensing steam turbine is operable in operating conditions away from the design mode of operation only at lower efficiencies.
  • the object of the invention is to provide a flow divider device for a condensing steam turbine having a plurality of outlets, wherein the condensing steam turbine can be operated with a high thermal efficiency in operating states which do not correspond to the design operating state of the condensing steam turbine.
  • the flow divider for a multi-outlet condensing steam turbine of the present invention includes a flow divider dividing the total steam flow into two vapor streams each flowing through a condenser associated therewith, a stagnation point detecting means for locating the stagnation point formed at the flow divider leading edge when dividing the total steam flow, and a cooling medium dividing means the cooling medium supply to the capacitors is controlled in dependence on the localization of the stagnation point in such a way that the stagnation point is centrally located while avoiding flow separation at the stagnation point divider. If the stagnation point is located centrally on the flow divider, then the flow divider leading edge is flowed around substantially symmetrically, so that flow separation does not occur at the flow divider. If, on the other hand, the stagnation point on the flow divisor front edge changes its position to the outside or inside, the flow divider would be misdirected, as a result of which flow separation can occur at the flow divider.
  • the position of the stagnation point on the flow divider leading edge results from the current operating state of the condensation steam turbine and the ratio of the discharge pressures of the vapor streams.
  • the Abströmdschreibe are in turn given by the cooling medium supply to the capacitors.
  • An increase in the cooling medium supply to the condenser causes an increase in the heat dissipation when condensing the respective vapor stream and thus an increase in the condenser capacity, whereby the condensation pressure is lowered as the Abströmdruck this vapor stream.
  • the back pressure of the vapor stream increases as the condensing temperature and thus the condensation pressure are increased by decreasing the cooling medium supply to the condenser.
  • the condensation temperature and thus the condensation pressure for each of the vapor streams can be adjusted.
  • the total vapor mass flow at the flow divider is divided into corresponding partial mass flows, which according to the invention are set such that the dew point settles in the middle of the flow divider leading edge, whereby the flow separation is prevented at the flow divider.
  • the stagnation point detection device preferably has a differential pressure detection device with which the differential pressure in the region of the flow divider leading edge between the vapor streams at the flow divider can be measured and the differential pressure of the cooling medium distribution device is provided for controlling the cooling medium supply to the condensers. If the stagnation point is located centrally on the flow divider, then the flow around the flow divider is essentially symmetrical. As a result, in the region of the flow divider leading edge for the vapor streams at the flow divider, pressure levels which are essentially the same are obtained.
  • the differential pressure in the region of the flow divider leading edge between the vapor streams at the flow divider is a measure of the mean of the stagnation point.
  • the differential pressure detection device preferably has, for each of the vapor streams, a pressure transducer for measuring the static pressure on the surface of the flow divider in the region of the flow divider leading edge and a differential pressure determination device with which the difference between the static pressures can be determined.
  • the differential pressure-determining device supplies the differential pressure for the two sides of the flow divider, so that with the differential pressure determining device, the cooling medium supply to the capacitors in dependence of the differential pressure, which is determined by the differential pressure detection device controllable.
  • At least one of the pressure transducers is preferably arranged directly below the surface location of the flow divider, at which the static pressure is measured with the respective pressure transducer.
  • At least one of the pressure transducers is remotely located from the surface location of the flow divider against which the static pressure to be measured is located and coupled to the surface location by a pressure transmitting channel in the flow divider.
  • the pressure-transmitting channel may be, for example, a pressure measuring bore.
  • the flow divider is preferably provided as a ring concentric with the machine axis of the condensing steam turbine, which is fixed to at least one Axialleitschaufel the Kondensationsdampfturbine, wherein the axial upstream of the Axialleitschaufelvorderkante projecting in the flow divisor leading edge, so that the surface locations of the flow divider, where the static pressures to be measured abutment, upstream of the Axialleitschaufelvorderkante are arranged.
  • secondary flow influences of the axial guide vanes are located downstream of the surface locations of the flow divider, so that the static pressures to be measured at these surface locations are substantially unaffected by the secondary flow influences of the axial guide vanes.
  • the position of the stagnation point at the flow divider leading edge is an accurate measure of the flow divider flow, since the detection of the stagnation point position with the aid of the static pressure to be measured at the surface locations is not adversely affected by the secondary flow effects of the axial guide vanes.
  • a predetermined cooling medium mass flow as the cooling medium supply to the capacitors is divided with thedemediumaufannons founded depending on the differential pressure.
  • the predetermined cooling medium mass flow preferably corresponds to the maximum available cooling medium mass flow for the condensation steam turbine.
  • the maximum available heat is always dissipated by the maximum available cooling medium mass flow for dissipating the heat of condensation from the capacitors, wherein the maximum available cooling medium mass flow is divided among the capacitors.
  • the cooling medium supplies to the condensers are controlled so that the back pressures of the individual vapor streams are such that the stagnation point is located at the flow divisor leading edge in the middle.
  • the cooling medium distribution device is preferably fed back with the differential pressure detection device via the differential pressure that the back pressures of the individual vapor streams are set such that the absolute, detected by the differential pressure detection device differential pressure is minimal.
  • a condensation steam turbine 1 has an exhaust steam housing 2, in which a turbine rotor 3 is arranged. During operation of the condensation steam turbine 1, a total vapor mass flow that exits at an exhaust steam outlet 4 of the exhaust steam housing 2 flows through the exhaust steam housing 2.
  • a flow divider 5 is arranged as an annular web, which is coaxially located around the turbine rotor 3 and divides the flow channel in the Abdampfgephase 2 in an inner region and an outer region.
  • the flow divider 5 has a flow divider leading edge 6, wherein 7 a flow divider chord in the cross section of the flow divider 5 is shown in phantom.
  • the inner region of the flow channel of the exhaust steam housing 2 is delimited by a flow divider inner side 8, whereas the outer region is delimited by a flow divider outer side 9, wherein both the flow divider inner side 8 and the flow divider outer side 9 adjoin the flow divider leading edge 6.
  • the flow divider 5 is held in the exhaust steam housing 2 by an inner vane 10 and an outer vane 11, the flow divider 5 with its flow divider inside 8 attached to the inner vane 10 and with its flow divider outer side 9 on the outer vane 11.
  • the total vapor mass flow is divided into an inner vapor stream and an outer vapor stream, wherein at the Abdampfaustritt 4 for the inner vapor stream an inner exhaust steam line 12 and for the outer vapor stream an outer exhaust steam line 13 are provided.
  • the inner vapor flow is through the inner exhaust steam line 12 to a first condenser 14 and the outer vapor stream is passed through the outer exhaust pipe 13 to a second condenser 15, wherein the inner vapor stream in the first condenser 14 and the outer vapor stream in the second condenser 15 is condensed.
  • the condensate condensed by the inner vapor flow is discharged in a first condensate line 16, whereas the condensate condensed by the outer vapor flow is removed by a second condensate line 17 from the second condenser 15.
  • an inner pressure sensor 18 is installed in the flow divider 5 on the flow divider inside 8 and an outer pressure sensor 19 is installed on the flow divider outer side 9.
  • the pressure transducers 18, 19 the static pressure at the flow divider inside 8 with the inner pressure transducer 18 and the static pressure at the flow divider outer side 9 with the outer pressure transducer 19 are measured when flowing around the flow divider 5 immediately downstream of the flow divider leading edge 6.
  • a pressure difference measuring device 20 is provided, with which the difference between the static pressures, which are measured by the pressure transducers 18, 19, is determined.
  • the pressure difference is supplied in the form of an electrical signal with a differential pressure signal line 21 to a cooling water splitting device 22.
  • a division of a total cooling water supply is accomplished, which is supplied through a total cooling water supply line 23 of the cooling water splitting device 22.
  • the total cooling water supply is divided into a first cooling water supply and a second cooling water supply, wherein the first cooling water supply in a first cooling water supply line 24 to the first capacitor 14 and the second cooling water supply in a second cooling water supply line 25 to the second capacitor 15 is supplied.
  • the first cooling water supply in the first capacitor 14 the first vapor stream condensed to condensate
  • the second condenser 15 with the second cooling water supply in the second cooling water supply line 25 the second vapor stream is condensed to condensate.
  • the condensate is discharged in each case with a cooling water discharge line 26, 27.
  • FIGS. 3 to 5 The flow around the flow divider leading edge 6 is in FIGS. 3 to 5 illustrated with streamlines 28, 30, 31.
  • the inflow has a stagnation point stream line 28, which forms a stagnation point 29 at the flow divider leading edge 6.
  • FIGS. 3 to 5 an inner streamline 30 and at the top an outer streamline 31 are shown, wherein the inner streamline 30 represents the inner vapor stream and the outer streamline 31 represents the outer vapor stream.
  • FIG. 3 is the stagnation point 29 on the flow divider 7, so that the stagnation point 29 is located symmetrically to the flow divider leading edge 6.
  • the streamlines 30, 31 are formed symmetrically about the flow divider chord 7, whereby the flow around the flow divider 5 is symmetrical by the vapor streams.
  • flow around the flow divider leading edge 6 of the stagnation point 29 is located above the flow divider chord 7, so that the flow around the flow divider leading edge 6 is asymmetrical.
  • a separation region 32 is formed on the flow inside 8, associated with the flow losses and efficiency reduction of the steam turbine condensation.
  • Analog is in FIG. 5 a flow around the flow divisor leading edge 6 is shown, in which the stagnation point 29 is arranged offset below the flow divider chord 7, so that at the flow divider outer side 9, a separation region 32 is formed.
  • the value of the static pressure measured by the outer pressure transducer 19 is greater than the value of the static pressure measured by the inner pressure transducer 18, so that a corresponding signal is fed from the differential pressure gauge 20 to the cooling water treatment device 22 via the differential pressure signal line 21.
  • the signal in the differential pressure signal line 21 is thus in accordance with the flow conditions FIG. 3 in about zero, in the flow conditions according to FIG. 4 for example, positive when the differential pressure is defined as the difference between the pressure at the outer pressure transducer 19 and the inner pressure transducer 18.
  • FIG. 5 the differential pressure negative.
  • the differential pressure signal Via the differential pressure signal line 21 of the cooling water splitting device 22, the differential pressure signal is provided, wherein the cooling water splitting device 22 is switched so that in the positive differential pressure signal, the cooling water supply through the first cooling water supply line 24 to the first condenser 14 and reduces while maintaining the total cooling water supply through the entire cooling water supply line 23, the cooling water supply the second cooling water supply pipe 25 is increased to the second condenser 15.
  • the flow conditions change in the direction of the flow conditions that occur in FIG. 3 are shown, so that the stagnation point 29 migrates from the flow divider outer side 9 on the flow divider chord 7. This again the in FIG. 3 achieved symmetrical flow conditions around the flow divider 5, whereby the in FIG. 4 shown detachment area 32 has disappeared.
  • the in the flow conditions according to FIG. 5 present negative differential pressure signal in the differential pressure signal line 21 in the cooling water splitting device 22 causes the total cooling water supply in the total cooling water supply line 23 to be divided into corresponding cooling water supplies for the first cooling water supply line 24 for the first condenser 14 and for the second cooling water supply line 25 for the second condenser 15 such that the cooling water supply for the first condenser Increased 14 and the cooling water supply for the second capacitor 15 is lowered, so that the stagnation point 29 moves from the flow divider inside 8 on the flow divider 7.
  • FIGS. 4 and 5 By deposited in the cooling water distribution device 22 control, which is coupled to the current location of the stagnation point 22 via the differential pressure signal, leads in FIGS. 4 and 5 shown inhomogeneous flow conditions back into the according FIG. 3 shown symmetrical flow conditions. In doing so, the in FIGS. 4 and 5 dissolved separation areas 32, whereby a reduction of flow losses in the steam flows is achieved.
  • the control logic stored in the cooling water splitter 22 maintaining the thermal efficiency of the condensing steam turbine 1 at a high level is maintained, although the operating conditions of the condensing steam turbine may vary and deviate from a design point of the condensing turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Eine Strömungsteilereinrichtung für eine Kondensationsdampfturbine mit mehreren Austritten weist einen Strömungsteiler (5), der den Dampfgesamtstrom in dem Abdampfgehäuse (2) in zwei Dampfströme (30, 31) teilt, die jeweils einen ihnen zugeordneten Kondensator (14, 15) durchströmen, eine Staupunktdetektionseinrichtung (18-20) zur Lokalisierung des sich beim Teilen des Dampfgesamtstroms ausbildenden Staupunkts (29) an der Strömungsteilervorderkante (6) und eine Kühlmediumaufteilungseinrichtung (21, 22), mit der die Kühlmediumzufuhr (23) zu den Kondensatoren (14, 15) in Abhängigkeit der Lokalisierung des Staupunkts (29) derart gesteuert ist, dass der Staupunkt (29) unter Vermeidung einer Strömungsablösung (32) an dem Strömungsteiler (5) mittig angesiedelt ist.

Description

  • Die Erfindung betrifft eine Strömungsteilereinrichtung für eine Kondensationsdampfturbine mit mehreren Austritten.
  • Eine Stufe einer Kondensationsdampfturbine, bestehend aus einem feststehenden Leitrad und einem um die Maschinenachse rotierenden Laufrad, ist beispielsweise als eine Baumann-Stufe ausgeführt, bei der ein ringförmiger Steg angebracht ist, mit dem die Schaufelkanäle in einen äußeren und einen inneren Teilkanal unterteilt sind. Dabei wird der Dampfmassenstrom in der Stufe mit Strömungsteiler in zwei Teilströme aufgeteilt, die dann über unterschiedliche Expansionspfade durch die weitere Beschaufelung zu einem Kondensator geführt werden. Der Steg ist die Leitschaufeln kreuzend in das Leitschaufelgitter eingebaut, wobei der Steg eine umlaufende Vorderkante hat.
  • Herkömmlich ist der Steg starr ausgebildet, so dass die Neigung der Vorderkante zur Maschinenachse der Kondensationsdampfturbine über die Zeit stets konstant ist. In der Regel wird als der Neigungswinkel der Anströmwinkel der Dampfströmung genommen, mit dem die Dampfströmung im Auslegungsbetriebszustand der Kondensationsdampfturbine auf die Vorderkante des Stegs trifft. Weicht jedoch der Betriebszustand der Kondensationsdampfturbine vom Auslegungsbetriebszustand ab, so können sich die Geschwindigkeitskomponenten der Dampfströmung derart ändern, dass der Anströmwinkel der Dampfströmung nicht mehr gleich dem Anstellwinkel der Vorderkante des Stegs ist. Jede Abweichung des Anströmwinkels vom Anstellwinkel im Auslegungsbetriebszustand führt zu einer Fehlanströmung des Stegs, die eine Erhöhung von Strömungsverlusten in der Dampfströmung zur Folge hat. Diese Fehlanströmung des Stegs kann beispielsweise dazu führen, je nach innenseitiger oder außenseitiger Fehlanströmung, dass sich an der Innenseite bzw. der Außenseite des Stegs eine Druckseite bzw. eine Saugseite ausbilden. An der Saugseite besteht die Gefahr, dass die Strömung ablöst, wodurch wiederum hohe Strömungsverluste der Dampfströmung die Folge sind. Diese Strömungsverluste beeinträchtigen den thermodynamischen Wirkungsgrad der Kondensationsdampfturbine, so dass die Kondensationsdampfturbine in Betriebszuständen weg vom Auslegungsbetriebszustand nur bei schlechteren Wirkungsgraden betreibbar ist.
  • Aufgabe der Erfindung ist es, eine Strömungsteilereinrichtung für eine Kondensationsdampfturbine mit mehreren Austritten zu schaffen, wobei die Kondensationsdampfturbine mit einem hohen thermischen Wirkungsgrad in Betriebszuständen betreibbar ist, die nicht dem Auslegungsbetriebszustand der Kondensationsdampfturbine entsprechen.
  • Die erfindungsgemäße Strömungsteilereinrichtung für eine Kondensationsdampfturbine mit mehreren Austritten weist einen Strömungsteiler, der den Dampfgesamtstrom in zwei Dampfströme teilt, die jeweils einen ihnen zugeordneten Kondensator durchströmen, eine Staupunktdetektionseinrichtung zur Lokalisierung des sich beim Teilen des Dampfgesamtstroms ausbildenden Staupunkts an der Strömungsteilervorderkante und eine Kühlmediumaufteilungseinrichtung auf, mit der die Kühlmediumzufuhr zu den Kondensatoren in Abhängigkeit der Lokalisierung des Staupunkts derart gesteuert ist, dass der Staupunkt unter Vermeidung einer Strömungsablösung an dem Staupunktteiler mittig angesiedelt ist. Ist der Staupunkt mittig am Strömungsteiler angesiedelt, so wird die Strömungsteilervorderkante im Wesentlichen symmetrisch umströmt, so dass sich an dem Strömungsteiler eine Strömungsablösung nicht einstellt. Sollte hingegen der Staupunkt auf der Strömungsteilervorderkante seine Lage nach außen bzw. innen verändern, so würde der Strömungsteiler fehlangeströmt werden, wodurch an dem Strömungsteiler die Strömungsablösung entstehen kann.
  • Die Lage des Staupunkts auf der Strömungsteilervorderkante ergibt sich aus dem aktuellen Betriebszustand der Kondensationsdampfturbine und dem Verhältnis der Abströmdrücke der Dampfströme. Die Abströmdrücke sind ihrerseits durch die Kühlmediumzufuhr zu den Kondensatoren vorgegeben. Eine Erhöhung der Kühlmediumzufuhr zu dem Kondensator bewirkt eine Erhöhung der Wärmeabfuhr beim Kondensieren des jeweiligen Dampfstroms und somit eine Erhöhung der Kondensatorleistung, wodurch sich der Kondensationsdruck als der Abströmdruck dieses Dampfstroms absenkt. Im Gegensatz dazu erhöht sich der Gegendruck des Dampfstroms, wenn durch eine Verminderung der Kühlmediumzufuhr zu dem Kondensator die Kondensationstemperatur und somit der Kondensationsdruck erhöht werden. Dadurch kann in jedem der Kondensatoren durch die entsprechende Kühlmediumzufuhr zu jedem der Kondensatoren die Kondensationstemperatur und somit der Kondensationsdruck für jeden der Dampfströme eingestellt werden. Entsprechend dem Verhältnis der Abströmdrücke der Dampfströme teilt sich der Dampfgesamtmassenstrom an dem Strömungsteiler in entsprechende Teilmassenströme auf, die erfindungsgemäß so eingestellt sind, dass sich der Staupunkt mittig an der Strömungsteilervorderkante ansiedelt, wodurch an dem Strömungsteiler die Strömungsablösung unterbunden ist.
  • Durch die erfindungsgemäße Lokalisierung des Staupunkts an der Strömungsteilervorderkante mit der Staupunktdetektionseinrichtung ist die Güte der Umströmung des Strömungsteilers zu ermitteln, wodurch in Abhängigkeit der Umströmungsgüte, d.h. der Lage des Staupunkts an der Strömungsteilervorderkante, das Abströmdruckverhältnis der Dampfströme mit der entsprechenden Kühlmittelzufuhr zu den einzelnen Kondensatoren gesteuert ist. Dadurch wird erfindungsgemäß erreicht, dass der Ort des Staupunkts an der Strömungsteilervorderkante aufgrund der Lokalisierung und der darauf abgestimmten Kühlmediumzufuhr zu den einzelnen Kondensatoren in der mittigen Stellung an dem Strömungsteiler gehalten werden kann, so dass bei unterschiedlichen Betriebszuständen der Kondensationsdampfturbine der Strömungsteiler stets unter Vermeidung der Strömungsablösung verlustarm umströmt wird. Dadurch hat die Kondensationsdampfturbine mit der erfindungsgemäßen Strömungsteilereinrichtung einen hohen thermischen Wirkungsgrad, auch in Betriebszuständen, die weg von einem Auslegungsbetriebszustand sind, auf den etwa die aerodynamisch wirksame Kontur des Strömungsteilers abgestimmt ist.
  • Die Staupunktdetektionseinrichtung weist bevorzugt eine Differenzdruckerfassungseinrichtung auf, mit der der Differenzdruck im Bereich der Strömungsteilervorderkante zwischen den Dampfströmen an dem Strömungsteiler messbar ist und der Differenzdruck der Kühlmediumaufteilungseinrichtung zum Steuern der Kühlmediumzufuhr zu den Kondensatoren bereitgestellt ist. Ist der Staupunkt an dem Strömungsteiler mittig angesiedelt, so ist die Umströmung des Strömungsteilers im Wesentlichen symmetrisch. Dadurch ergeben sich im Bereich der Strömungsteilervorderkante für die Dampfströme an dem Strömungsteiler Druckniveaus, die im Wesentlichen gleich sind. Sollte der Staupunkt an der Strömungsteilervorderkante sich einseitig verschieben, so herrscht an der Seite des Strömungsteilers, die dem Staupunkt zugewandt ist, im Allgemeinen ein höheres Druckniveau als an der dieser Seite abgewandten, anderen Seite des Strömungsteilers. Somit ist der Differenzdruck im Bereich der Strömungsteilervorderkante zwischen den Dampfströmen an dem Strömungsteiler ein Maß für die Mittigkeit des Staupunkts.
  • Die Differenzdruckerfassungseinrichtung weist bevorzugt für jeden der Dampfströme einen Druckaufnehmer zum Messen des statischen Drucks an der Oberfläche des Strömungsteilers im Bereich der Strömungsteilervorderkante und ein Differenzdruckermittlungsgerät auf, mit dem die Differenz zwischen den statischen Drücken ermittelbar ist. Dadurch liefert das Differenzdruckermittlungsgerät den Differenzdruck für die beiden Seiten des Strömungsteilers, so dass mit dem Differenzdruckermittlungsgerät die Kühlmediumzufuhr zu den Kondensatoren in Abhängigkeit des Differenzdrucks, der von dem Differenzdruckermittlungsgerät ermittelt ist, steuerbar ist. Mindestens einer der Druckaufnehmer ist bevorzugt direkt unterhalb der Oberflächenstelle des Strömungsteilers angeordnet, an der der statische Druck mit dem jeweiligen Druckaufnehmer gemessen wird. Alternativ oder zusätzlich ist es bevorzugt, dass mindestens einer der Druckaufnehmer von der Oberflächenstelle des Strömungsteilers, an der der zu messende statische Druck anliegt, entfernt angeordnet und mit einem druckübertragenden Kanal in dem Strömungsteiler mit der Oberflächenstelle gekoppelt ist. Der druckübertragende Kanal kann beispielsweise eine Druckmessbohrung sein. Alternativ kann ferner bevorzugt statt dem Druckaufnehmer und dem Differenzdruckermittlungsgerät ein Differenzdruckmessgerät vorgesehen sein, das an den jeweiligen Oberflächenstellen des Strömungsteilers den zu messenden statischen Druck ermittelt.
  • Der Strömungsteiler ist bevorzugt als ein zur Maschinenachse der Kondensationsdampfturbine konzentrischer Ring vorgesehen, der an mindestens einer Axialleitschaufel der Kondensationsdampfturbine festgelegt ist, wobei im Bereich der Strömungsteilervorderkante diese axial stromauf der Axialleitschaufelvorderkante vorsteht, so dass die Oberflächenstellen des Strömungsteilers, an denen die zu messenden statischen Drücke anliegen, stromauf der Axialleitschaufelvorderkante angeordnet sind. Dadurch sind vorteilhaft Sekundärströmungseinflüsse der Axialleitschaufeln, wie beispielsweise Eckenwirbel und Grenzschichten, stromab der Oberflächenstellen des Strömungsteilers angesiedelt, so dass die an diesen Oberflächenstellen zu messenden statischen Drücke im Wesentlichen unbeeinflusst von den Sekundärströmungseinflüssen der Axialleitschaufeln sind. Dadurch stellt die Lage des Staupunkts an der Strömungsteilervorderkante ein genaues Maß für die Güte der Umströmung des Strömungsteilers dar, da die Detektion der Staupunktlage mit Hilfe des an den Oberflächenstellen zu messenden statischen Drucks nicht von den Sekundärströmungseffekten der Axialleitschaufeln beeinträchtigt wird.
  • Bevorzugtermaßen ist mit der Kühlmediumaufteilungseinrichtung in Abhängigkeit des Differenzdrucks ein vorherbestimmter Kühlmediummassenstrom als die Kühlmediumzufuhr zu den Kondensatoren aufgeteilt. Dabei entspricht bevorzugt der vorherbestimmte Kühlmediummassenstrom dem maximal verfügbaren Kühlmediummassenstrom für die Kondensationsdampfturbine. Dadurch wird stets zum Abführen der Kondensationswärme von den Kondensatoren die maximal verfügbare Wärme durch den maximal verfügbaren Kühlmediummassenstrom abgeführt, wobei der maximal verfügbare Kühlmediummassenstrom auf die Kondensatoren aufgeteilt ist. Ferner ist es bevorzugt, dass mit der Kühlmediumaufteilungseinrichtung die Kühlmedienzufuhren zu den Kondensatoren derart gesteuert sind, dass die Gegendrücke der einzelnen Dampfströme derart sind, dass der Staupunkt an der Strömungsteilervorderkante mittig angesiedelt ist. Die Kühlmediumaufteilungseinrichtung ist dabei bevorzugt mit der Differenzdruckerfassungseinrichtung via den Differenzdruck rückgekoppelt, dass die Gegendrücke der einzelnen Dampfströme derart eingestellt sind, dass der absolute, von der Differenzdruckerfassungseinrichtung erfasste Differenzdruck minimal ist. Dadurch ist erfindungsgemäß erreicht, dass die Lage des Staupunkts an dem Strömungsteiler stets mittig angesiedelt ist, wobei der absolute, von der Differenzdruckerfassungseinrichtung erfasste Minimaldruck im Wesentlichen Null ist.
  • Im Folgenden wird ein bevorzugtes Ausführungsbeispiel einer erfindungsgemäßen Strömungsteilereinrichtung anhand der beigefügten schematischen Zeichnungen erläutert. Es zeigen:
  • Figur 1
    ein Schemadiagramm einer Kondensationsdampfturbine mit dem Ausführungsbeispiel der Strömungsteilereinrichtung,
    Figur 2
    einen Detailquerschnitt einer Vorderkante eines Strömungsteilers des Ausführungsbeispiels der Strömungsteilereinrichtung und
    Figuren 3 bis 5
    den Detailquerschnitt aus Figur 2 bei verschiedenen Strömungszuständen um die Vorderkante des Strömungsteilers.
  • Wie es aus Figuren 1 bis 5 ersichtlich ist, weist eine Kondensationsdampfturbine 1 ein Abdampfgehäuse 2 auf, in dem ein Turbinenrotor 3 angeordnet ist. Durch das Abdampfgehäuse 2 strömt beim Betrieb der Kondensationsdampfturbine 1 ein Dampfgesamtmassenstrom, der an einem Abdampfaustritt 4 des Abdampfgehäuses 2 austritt.
  • In dem Abdampfgehäuse 2 ist als ein ringförmiger Steg ein Strömungsteiler 5 angeordnet, der koaxial um den Turbinenrotor 3 angesiedelt ist und den Strömungskanal in dem Abdampfgehäuse 2 in einen inneren Bereich und einen äußeren Bereich teilt. Der Strömungsteiler 5 weist eine Strömungsteilervorderkante 6 auf, wobei mit 7 eine Strömungsteilersehne im Querschnitt des Strömungsteilers 5 strichpunktiert dargestellt ist. Der innere Bereich des Strömungskanals des Abdampfgehäuses 2 wird von einer Strömungsteilerinnenseite 8 begrenzt, wohingegen der äußere Bereich von einer Strömungsteileraußenseite 9 begrenzt ist, wobei an der Strömungsteilervorderkante 6 sowohl die Strömungsteilerinnenseite 8 als auch die Strömungsteileraußenseite 9 sich anschließen.
  • Der Strömungsteiler 5 ist in dem Abdampfgehäuse 2 von einer inneren Leitschaufel 10 und einer äußeren Leitschaufel 11 gehalten, wobei der Strömungsteiler 5 mit seiner Strömungsteilerinnseite 8 an der inneren Leitschaufel 10 und mit seiner Strömungsteileraußenseite 9 an der äußeren Leitschaufel 11 befestigt ist. Von dem Strömungsteiler 5 ist der Dampfgesamtmassenstrom in einen inneren Dampfstrom und einen äußeren Dampfstrom aufgeteilt, wobei am Abdampfaustritt 4 für den inneren Dampfstrom eine innere Abdampfleitung 12 und für den äußeren Dampfstrom eine äußere Abdampfleitung 13 vorgesehen sind. Der innere Dampfstrom wird durch die innere Abdampfleitung 12 zu einem ersten Kondensator 14 und der äußere Dampfstrom wird durch die äußere Abdampfleitung 13 zu einem zweiten Kondensator 15 geführt, wobei der innere Dampfstrom in dem ersten Kondensator 14 und der äußere Dampfstrom in dem zweiten Kondensator 15 kondensiert wird. Von dem ersten Kondensator 14 wird das von dem inneren Dampfstrom kondensierte Kondensat in einer ersten Kondensatleitung 16 abgeführt, wohingegen von dem zweiten Kondensator 15 das von dem äußeren Dampfstrom kondensierte Kondensat mit einer zweiten Kondensatleitung 17 abgeführt wird.
  • Im Bereich der Strömungsteilervorderkante 6 ist in dem Strömungsteiler 5 an der Strömungsteilerinnseite 8 ein innerer Druckaufnehmer 18 und an der Strömungsteileraußenseite 9 ein äußerer Druckaufnehmer 19 eingebaut. Mit den Druckaufnehmern 18, 19 wird beim Umströmen des Strömungsteilers 5 unmittelbar stromab der Strömungsteilervorderkante 6 der statische Druck an der Strömungsteilerinnseite 8 mit dem inneren Druckaufnehmer 18 und der statische Druck an der Strömungsteileraußenseite 9 mit dem äußeren Druckaufnehmer 19 gemessen. Ferner ist in dem Strömungsteiler 5 ein Druckdifferenzmessgerät 20 vorgesehen, mit dem die Differenz zwischen den statischen Drücken, die von den Druckaufnehmern 18, 19 gemessen werden, ermittelt wird. Die Druckdifferenz wird in Form eines elektrischen Signals mit einer Differenzdrucksignalleitung 21 einer Kühlwasseraufteilungseinrichtung 22 zugeführt.
  • Mit der Kühlwasseraufteilungseinrichtung 22 wird eine Aufteilung einer Gesamtkühlwasserzuführung bewerkstelligt, die durch eine Gesamtkühlwasserzufuhrleitung 23 der Kühlwasseraufteilungseinrichtung 22 zugeführt wird. Die Gesamtkühlwasserzuführung wird dabei in eine erste Kühlwasserzuführung und eine zweite Kühlwasserzuführung aufgeteilt, wobei die erste Kühlwasserzuführung in einer ersten Kühlwasserzufuhrleitung 24 dem ersten Kondensator 14 und die zweite Kühlwasserzuführung in einer zweiten Kühlwasserzufuhrleitung 25 dem zweiten Kondensator 15 zugeführt wird. Mit der ersten Kühlwasserzuführung wird in dem ersten Kondensator 14 der erste Dampfstrom zu Kondensat kondensiert, wohingegen in dem zweiten Kondensator 15 mit der zweiten Kühlwasserzuführung in der zweiten Kühlwasserzufuhrleitung 25 der zweite Dampfstrom zu Kondensat kondensiert wird. Von den Kondensatoren 14, 15 wird jeweils mit einer Kühlwasserabfuhrleitung 26, 27 das Kondensat abgeführt.
  • Die Umströmung der Strömungsteilervorderkante 6 ist in Figuren 3 bis 5 mit Stromlinien 28, 30, 31 veranschaulicht. Die Zuströmung weist eine Staupunktstromlinie 28 auf, die an der Strömungsteilervorderkante 6 einen Staupunkt 29 ausbildet. In Figuren 3 bis 5 ist unten eine innere Stromlinie 30 und oben eine äußere Stromlinie 31 gezeigt, wobei die innere Stromlinie 30 den inneren Dampfstrom und die äußere Stromlinie 31 den äußeren Dampfstrom repräsentieren. In Figur 3 liegt der Staupunkt 29 auf der Strömungsteilersehne 7, so dass der Staupunkt 29 symmetrisch an der Strömungsteilervorderkante 6 angesiedelt ist. Dadurch sind die Stromlinien 30, 31 symmetrisch um die Strömungsteilersehne 7 ausgebildet, wodurch die Umströmung des Strömungsteilers 5 durch die Dampfströme symmetrisch ist. Die Werte der von den Druckaufnehmern 18, 19 gemessenen, statischen Drücke sind somit in etwa gleich groß, so dass mit dem Differenzdruckmessgerät 20 der Differenzdruck als in etwa Null ermittelt wird, wobei von dem Druckdifferenzgerät 20 in die Druckdifferenzsignalleitung 21 ein entsprechendes Signal eingespeist wird.
  • Bei der in Figur 4 gezeigten Umströmung der Strömungsteilervorderkante 6 ist der Staupunkt 29 nach oberhalb der Strömungsteilersehne 7 angesiedelt, so dass die Umströmung der Strömungsteilervorderkante 6 unsymmetrisch ist. So ist an der Strömungsinnenseite 8 ein Ablösegebiet 32 ausgebildet, mit dem Strömungsverluste und eine Wirkungsgradabsenkung der Kondensationsdampfturbine einhergehen. Analog ist in Figur 5 eine Umströmung der Strömungsteilervorderkante 6 gezeigt, bei der der Staupunkt 29 nach unterhalb der Strömungsteilersehne 7 versetzt angeordnet ist, so dass sich an der Strömungsteileraußenseite 9 ein Ablösegebiet 32 ausbildet.
  • Bei den in Figur 4 gezeigten Strömungsverhältnissen ist der Wert des von dem äußeren Druckaufnehmer 19 gemessenen, statischen Drucks größer als der Wert des von dem inneren Druckaufnehmer 18 gemessenen, statischen Drucks, so dass von dem Differenzdruckmessgerät 20 zu der Kühlwasseraufbereitungseinrichtung 22 via die Differenzdrucksignalleitung 21 ein entsprechendes Signal eingespeist wird. Analog verhält es sich bei den Strömungsverhältnissen in Figur 5, wobei der Wert des von dem äußeren Druckaufnehmer 19 gemessenen, statischen Drucks kleiner als der Wert des von dem inneren Druckaufnehmer 18 gemessenen, statischen Drucks ist. Das Signal in der Differenzdrucksignalleitung 21 ist somit bei den Strömungsverhältnissen gemäß Figur 3 in etwa Null, bei den Strömungsverhältnissen gemäß Figur 4 beispielsweise positiv, wenn der Differenzdruck als die Differenz zwischen dem Druck bei dem äußeren Druckaufnehmer 19 und dem inneren Druckaufnehmer 18 definiert ist. Dementsprechend ist bei den Strömungsverhältnissen gemäß Figur 5 der Differenzdruck negativ. Via die Differenzdrucksignalleitung 21 wird der Kühlwasseraufteilungseinrichtung 22 das Differenzdrucksignal bereitgestellt, wobei die Kühlwasseraufteilungseinrichtung 22 so geschaltet ist, dass bei dem positiven Differenzdrucksignal die Kühlwasserzufuhr durch die erste Kühlwasserzufuhrleitung 24 zu dem ersten Kondensator 14 vermindert und unter Beibehaltung der Gesamtkühlwasserzufuhr durch die Gesamtkühlwasserzufuhrleitung 23 die Kühlwasserzufuhr durch die zweite Kühlwasserzufuhrleitung 25 zu dem zweiten Kondensator 15 erhöht wird. Dabei verändern sich die Strömungsverhältnisse in Richtung zu den Strömungsverhältnissen, die in Figur 3 gezeigt sind, so dass der Staupunkt 29 von der Strömungsteileraußenseite 9 auf die Strömungsteilersehne 7 wandert. Dadurch sind wieder die in Figur 3 gezeigten symmetrischen Strömungsverhältnisse um den Strömungsteiler 5 erzielt, wodurch das in Figur 4 gezeigte Ablösegebiet 32 verschwunden ist.
  • Das bei den Strömungsverhältnissen gemäß Figur 5 vorliegende negative Differenzdrucksignal in der Differenzdrucksignalleitung 21 führt in der Kühlwasseraufteilungseinrichtung 22 dazu, dass die Gesamtkühlwasserzuführung in der Gesamtkühlwasserzufuhrleitung 23 in entsprechende Kühlwasserzuführungen für die erste Kühlwasserzufuhrleitung 24 für den ersten Kondensator 14 und für die zweite Kühlwasserzufuhrleitung 25 für den zweiten Kondensator 15 derart aufgeteilt wird, dass die Kühlwasserzuführung für den ersten Kondensator 14 erhöht und die Kühlwasserzuführung für den zweiten Kondensator 15 erniedrigt wird, so dass der Staupunkt 29 von der Strömungsteilerinnseite 8 auf die Strömungsteilersehne 7 wandert. Dabei löst sich das in Figur 5 gezeigte Ablösegebiet 32 auf und die Strömung ist wieder gemäß Figur 3 homogen und gleichmäßig.
  • Durch die in der Kühlwasseraufteilungseinrichtung 22 hinterlegte Regelung, die mit dem momentanen Ort des Staupunkts 22 via das Differenzdrucksignal gekoppelt ist, führt die in Figuren 4 und 5 gezeigten inhomogenen Strömungsverhältnisse zurück in die gemäß Figur 3 gezeigten symmetrischen Strömungsverhältnisse. Dabei werden die in Figuren 4 und 5 gezeigten Ablösegebiete 32 aufgelöst, wodurch eine Reduzierung von Strömungsverlusten in den Dampfströmen erzielt wird. Somit wird mit der in der Kühlwasseraufteilungseinrichtung 22 hinterlegten Regelungslogik ein Halten des thermischen Wirkungsgrads der Kondensationsdampfturbine 1 bei hohem Niveau erreicht, obwohl die Betriebszustände der Kondensationsdampfturbine variieren und von einem Auslegungspunkt der Kondensationsturbine abweichen können.

Claims (10)

  1. Strömungsteilereinrichtung für eine Kondensationsdampfturbine mit mehreren Austritten,
    mit einem Strömungsteiler (5), der den Dampfgesamtstrom in zwei Dampfströme (30, 31) teilt, die jeweils einen ihnen zugeordneten Kondensator (14, 15) durchströmen,
    einer Staupunktdetektionseinrichtung (18-20) zur Lokalisierung des sich beim Teilen des Dampfgesamtstroms ausbildenden Staupunkts (29) an der Strömungsteilervorderkante (6) und einer Kühlmediumaufteilungseinrichtung (21, 22), mit der die Kühlmediumzufuhr (23) zu den Kondensatoren (14, 15) in Abhängigkeit der Lokalisierung des Staupunkts (29) derart gesteuert ist,
    dass der Staupunkt (29) unter Vermeidung einer Strömungsablösung (32) an dem Strömungsteiler (5) mittig angesiedelt ist.
  2. Strömungsteilereinrichtung gemäß Anspruch 1,
    wobei die Staupunktdetektionseinrichtung (18-20) eine Differenzdruckerfassungseinrichtung (20) aufweist,
    mit der der Differenzdruck im Bereich der Strömungsteilervorderkante (6) zwischen den Dampfströmen (30, 31) an dem Strömungsteiler (5) messbar ist und der Differenzdruck der Kühlmediumaufteilungseirichtung (21, 22) zum Steuern der Kühlmediumzufuhr (24, 25) zu den Kondensatoren (14, 15) bereitgestellt ist.
  3. Strömungsteilereinrichtung gemäß Anspruch 2,
    wobei die Differenzdruckerfassungseinrichtung (18-20) für jeden der Dampfströme (30, 31) jeweils einen Druckaufnehmer (18, 19) zum Messen des statischen Drucks an der Oberfläche des Strömungsteilers (5) im Bereich der Strömungsteilervorderkante (6) und ein Differenzdruckermittlungsgerät (20) aufweist,
    mit dem der Differenzdruck zwischen den statischen Drücken ermittelbar ist.
  4. Strömungsteilereinrichtung gemäß Anspruch 3,
    wobei mindestens einer der Druckaufnehmer (18, 19) direkt unterhalb der Oberflächenstelle des Strömungsteilers (5) angeordnet ist, an der der statische Druck mit dem jeweiligen Druckaufnehmer (18, 19) messbar ist.
  5. Strömungsteilereinrichtung gemäß Anspruch 3 oder 4, wobei mindestens einer der Druckaufnehmer (18, 19) von der Oberflächenstelle des Strömungsteilers (5), an der der zu messende statische Druck anliegt, entfernt angeordnet und mit einem druckübertragenden Kanal in dem Strömungsteiler (5) mit der Oberflächenstelle gekoppelt ist.
  6. Strömungsteilereinrichtung gemäß einem der Ansprüche 3 bis 5,
    wobei der Strömungsteiler (5) als ein konzentrischer Ring vorgesehen ist, der an mindestens einer Axialleitschaufel (10, 11) der Kondensationsdampfturbine (1) festgelegt ist, wobei im Bereich der Strömungsteilervorderkante (6) diese axial stromauf von der Axialleitschaufelvorderkante vorsteht, so dass die Oberflächenstelle des Strömungsteilers (5), an der die zu messenden statischen Drücke anliegen, stromauf der Axialleitschaufelvorderkante angeordnet sind.
  7. Strömungsteilereinrichtung gemäß einem der Ansprüche 2 bis 6,
    wobei mit der Kühlmediumaufteilungseirichtung (21, 22) in Abhängigkeit des Differenzdrucks ein vorherbestimmter Kühlmediummassenstrom (23) als die Kühlmediumzufuhr (24, 25) zu den Kondensatoren (14, 15) aufgeteilt ist.
  8. Strömungsteilereinrichtung gemäß Anspruch 7,
    wobei der vorherbestimmte Kühlmediummassenstrom (23) dem maximal verfügbaren Kühlmediummassenstrom entspricht.
  9. Strömungsteilereinrichtung gemäß einem der Ansprüche 2 bis 8,
    wobei mit der Kühlmediumaufteilungseinrichtung (21, 22) die Kühlmediumzufuhren (24, 25) zu den Kondensatoren (14, 15) derart gesteuert sind, dass die Gegendrücke der einzelnen Dampfströme (30, 31) derart sind, dass der Staupunkt (29) an der Strömungsteilervorderkante (6) mittig angesiedelt ist.
  10. Strömungsteilereinrichtung gemäß Anspruch 9,
    wobei die Kühlmediumaufteilungseinrichtung (21, 22) mit der Differenzdruckerfassungseinrichtung (20) via den Differenzdruck rückgekoppelt ist, dass die Gegendrücke der einzelnen Dampfströme (30, 31) derart eingestellt sind, dass der absolute, von der Differenzdruckerfassungseinrichtung (20) erfasste Differenzdruck minimal ist.
EP10174372A 2010-08-27 2010-08-27 Strömungsteilereinrichtung für eine Kondensationsdampfturbine mit mehreren Austritten Withdrawn EP2423450A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10174372A EP2423450A1 (de) 2010-08-27 2010-08-27 Strömungsteilereinrichtung für eine Kondensationsdampfturbine mit mehreren Austritten
EP11745975.0A EP2609295B1 (de) 2010-08-27 2011-08-18 Strömungsteilereinrichtung für eine kondensationsdampfturbine mit mehreren austritten
CN201180041746.1A CN103080480B (zh) 2010-08-27 2011-08-18 用于具有多个出口的冷凝式蒸汽轮机的分流装置
PCT/EP2011/064207 WO2012025449A1 (de) 2010-08-27 2011-08-18 Strömungsteilereinrichtung für eine kondensationsdampfturbine mit mehreren austritten

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10174372A EP2423450A1 (de) 2010-08-27 2010-08-27 Strömungsteilereinrichtung für eine Kondensationsdampfturbine mit mehreren Austritten

Publications (1)

Publication Number Publication Date
EP2423450A1 true EP2423450A1 (de) 2012-02-29

Family

ID=44474994

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10174372A Withdrawn EP2423450A1 (de) 2010-08-27 2010-08-27 Strömungsteilereinrichtung für eine Kondensationsdampfturbine mit mehreren Austritten
EP11745975.0A Not-in-force EP2609295B1 (de) 2010-08-27 2011-08-18 Strömungsteilereinrichtung für eine kondensationsdampfturbine mit mehreren austritten

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11745975.0A Not-in-force EP2609295B1 (de) 2010-08-27 2011-08-18 Strömungsteilereinrichtung für eine kondensationsdampfturbine mit mehreren austritten

Country Status (3)

Country Link
EP (2) EP2423450A1 (de)
CN (1) CN103080480B (de)
WO (1) WO2012025449A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9546550B2 (en) 2012-04-23 2017-01-17 Thomas Francis Landon Bypass foil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3802187A (en) * 1972-06-01 1974-04-09 Avco Corp Exhaust system for rear drive engine
DE3025041A1 (de) * 1979-07-02 1981-01-08 Zakl Mech Im Gen K S Stufe oder stufengruppe einer thermischen turbine
US5174120A (en) * 1991-03-08 1992-12-29 Westinghouse Electric Corp. Turbine exhaust arrangement for improved efficiency

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH278105A (de) * 1949-12-05 1951-09-30 Tech Studien Ag Austrittsgehäuse für axial durchströmte Maschinen, insbesondere Verdichter und Turbinen.
GB746832A (en) * 1953-02-10 1956-03-21 Rolls Royce Jet pipes of gas turbine engines
CH484358A (de) * 1968-02-15 1970-01-15 Escher Wyss Ag Abströmgehäuse einer axialen Turbomaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3802187A (en) * 1972-06-01 1974-04-09 Avco Corp Exhaust system for rear drive engine
DE3025041A1 (de) * 1979-07-02 1981-01-08 Zakl Mech Im Gen K S Stufe oder stufengruppe einer thermischen turbine
US5174120A (en) * 1991-03-08 1992-12-29 Westinghouse Electric Corp. Turbine exhaust arrangement for improved efficiency

Also Published As

Publication number Publication date
CN103080480B (zh) 2015-04-01
EP2609295B1 (de) 2015-03-18
EP2609295A1 (de) 2013-07-03
WO2012025449A1 (de) 2012-03-01
CN103080480A (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
DE102008055824B4 (de) Dampfturbine
EP2108784B1 (de) Strömungsmaschine mit Fluid-Injektorbaugruppe
DE112007002564T5 (de) Diffusor und Auslasssystem für Turbine
CH695869A5 (de) Mehrstufiger, zwischen Last- und Leerlaufbetrieb umschaltbarer Verdichter.
EP2881548B1 (de) Gasturbinenverdichter
EP2947270B3 (de) Schaufelreihengruppe
DE112010004710T5 (de) Verfahren und Vorrichtung zum Steuern bzw. Regeln des Druckes in mehreren Zonen eines Prozesswekzeuges
WO2008034681A1 (de) Wasserabscheider für dampfturbinenanlage
EP1739283A2 (de) Rotorspalt Steuervorrichtung für eine Turbomaschine
DE102014203607A1 (de) Schaufelreihengruppe
EP2609295B1 (de) Strömungsteilereinrichtung für eine kondensationsdampfturbine mit mehreren austritten
EP2090786A2 (de) Gehäusestrukturierung zum Stabilisieren der Strömung in einer Strömungsarbeitsmaschine
DE60105737T2 (de) Turbinenschaufelanordnung
EP3589843B1 (de) Verfahren und vorrichtung zum bestimmen eines indikators für eine vorhersage einer instabilität in einem verdichter sowie verwendung
US20160363608A1 (en) Measuring device and unit having such a measuring device
EP3460255A1 (de) Durchströmbare anordnung
DE1902097C3 (de) Spaltdichtung zwischen Läufer und Gehäuse einer Strömungsmaschine
DE2653336C2 (de) Vorrichtung zum Erfassen des Druckes in einer Strömungskammer
DE2126270B2 (de) Selbsttätige Einrichtung zur Konstanthaltung der Breite eines Dichtspalts eines Gasturbinentriebwerks
WO2019034740A1 (de) Diffusor für einen radialverdichter
DE112020001492T5 (de) Verdichtersystem
DE102017216279A1 (de) Verfahren zur Erkennung einer Fehlstellung der Winkellage einer in einem Verdichter angeordneten, um ihre Längsachse schwenkbaren Verdichterleitschaufel
WO2008155243A1 (de) Leitschaufelreihe
DE102017114007A1 (de) Diffusor für einen Radialverdichter
EP3769052B1 (de) Sensoranordnung

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120830